]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/sparc/kernel/perf_event.c
sparc64: Add perf_event abstractions for orthogonal PMUs.
[mirror_ubuntu-artful-kernel.git] / arch / sparc / kernel / perf_event.c
CommitLineData
cdd6c482 1/* Performance event support for sparc64.
59abbd1e 2 *
4f6dbe4a 3 * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
59abbd1e 4 *
cdd6c482 5 * This code is based almost entirely upon the x86 perf event
59abbd1e
DM
6 * code, which is:
7 *
8 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
9 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
10 * Copyright (C) 2009 Jaswinder Singh Rajput
11 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
12 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
13 */
14
cdd6c482 15#include <linux/perf_event.h>
59abbd1e 16#include <linux/kprobes.h>
667f0cee 17#include <linux/ftrace.h>
59abbd1e
DM
18#include <linux/kernel.h>
19#include <linux/kdebug.h>
20#include <linux/mutex.h>
21
4f6dbe4a 22#include <asm/stacktrace.h>
59abbd1e 23#include <asm/cpudata.h>
4f6dbe4a 24#include <asm/uaccess.h>
60063497 25#include <linux/atomic.h>
59abbd1e
DM
26#include <asm/nmi.h>
27#include <asm/pcr.h>
d550bbd4 28#include <asm/cacheflush.h>
59abbd1e 29
cb1b8209 30#include "kernel.h"
4f6dbe4a
DM
31#include "kstack.h"
32
59abbd1e
DM
33/* Sparc64 chips have two performance counters, 32-bits each, with
34 * overflow interrupts generated on transition from 0xffffffff to 0.
35 * The counters are accessed in one go using a 64-bit register.
36 *
37 * Both counters are controlled using a single control register. The
38 * only way to stop all sampling is to clear all of the context (user,
39 * supervisor, hypervisor) sampling enable bits. But these bits apply
40 * to both counters, thus the two counters can't be enabled/disabled
41 * individually.
42 *
43 * The control register has two event fields, one for each of the two
44 * counters. It's thus nearly impossible to have one counter going
45 * while keeping the other one stopped. Therefore it is possible to
46 * get overflow interrupts for counters not currently "in use" and
47 * that condition must be checked in the overflow interrupt handler.
48 *
49 * So we use a hack, in that we program inactive counters with the
50 * "sw_count0" and "sw_count1" events. These count how many times
51 * the instruction "sethi %hi(0xfc000), %g0" is executed. It's an
52 * unusual way to encode a NOP and therefore will not trigger in
53 * normal code.
54 */
55
cdd6c482 56#define MAX_HWEVENTS 2
59abbd1e
DM
57#define MAX_PERIOD ((1UL << 32) - 1)
58
59#define PIC_UPPER_INDEX 0
60#define PIC_LOWER_INDEX 1
e7bef6b0 61#define PIC_NO_INDEX -1
59abbd1e 62
cdd6c482 63struct cpu_hw_events {
e7bef6b0
DM
64 /* Number of events currently scheduled onto this cpu.
65 * This tells how many entries in the arrays below
66 * are valid.
67 */
68 int n_events;
69
70 /* Number of new events added since the last hw_perf_disable().
71 * This works because the perf event layer always adds new
72 * events inside of a perf_{disable,enable}() sequence.
73 */
74 int n_added;
75
76 /* Array of events current scheduled on this cpu. */
77 struct perf_event *event[MAX_HWEVENTS];
78
79 /* Array of encoded longs, specifying the %pcr register
80 * encoding and the mask of PIC counters this even can
81 * be scheduled on. See perf_event_encode() et al.
82 */
83 unsigned long events[MAX_HWEVENTS];
84
85 /* The current counter index assigned to an event. When the
86 * event hasn't been programmed into the cpu yet, this will
87 * hold PIC_NO_INDEX. The event->hw.idx value tells us where
88 * we ought to schedule the event.
89 */
90 int current_idx[MAX_HWEVENTS];
91
92 /* Software copy of %pcr register on this cpu. */
d1751388 93 u64 pcr;
e7bef6b0
DM
94
95 /* Enabled/disable state. */
d1751388 96 int enabled;
a13c3afd
LM
97
98 unsigned int group_flag;
59abbd1e 99};
cdd6c482 100DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
59abbd1e 101
e7bef6b0
DM
102/* An event map describes the characteristics of a performance
103 * counter event. In particular it gives the encoding as well as
104 * a mask telling which counters the event can be measured on.
105 */
59abbd1e
DM
106struct perf_event_map {
107 u16 encoding;
108 u8 pic_mask;
109#define PIC_NONE 0x00
110#define PIC_UPPER 0x01
111#define PIC_LOWER 0x02
112};
113
e7bef6b0 114/* Encode a perf_event_map entry into a long. */
a72a8a5f
DM
115static unsigned long perf_event_encode(const struct perf_event_map *pmap)
116{
117 return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
118}
119
e7bef6b0
DM
120static u8 perf_event_get_msk(unsigned long val)
121{
122 return val & 0xff;
123}
124
125static u64 perf_event_get_enc(unsigned long val)
a72a8a5f 126{
e7bef6b0 127 return val >> 16;
a72a8a5f
DM
128}
129
2ce4da2e
DM
130#define C(x) PERF_COUNT_HW_CACHE_##x
131
132#define CACHE_OP_UNSUPPORTED 0xfffe
133#define CACHE_OP_NONSENSE 0xffff
134
135typedef struct perf_event_map cache_map_t
136 [PERF_COUNT_HW_CACHE_MAX]
137 [PERF_COUNT_HW_CACHE_OP_MAX]
138 [PERF_COUNT_HW_CACHE_RESULT_MAX];
139
59abbd1e
DM
140struct sparc_pmu {
141 const struct perf_event_map *(*event_map)(int);
2ce4da2e 142 const cache_map_t *cache_map;
59abbd1e
DM
143 int max_events;
144 int upper_shift;
145 int lower_shift;
146 int event_mask;
91b9286d 147 int hv_bit;
496c07e3 148 int irq_bit;
660d1376
DM
149 int upper_nop;
150 int lower_nop;
b38e99f5
DM
151 unsigned int flags;
152#define SPARC_PMU_ALL_EXCLUDES_SAME 0x00000001
153#define SPARC_PMU_HAS_CONFLICTS 0x00000002
59abbd1e
DM
154};
155
28e8f9be 156static const struct perf_event_map ultra3_perfmon_event_map[] = {
59abbd1e
DM
157 [PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
158 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
159 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
160 [PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
161};
162
28e8f9be 163static const struct perf_event_map *ultra3_event_map(int event_id)
59abbd1e 164{
28e8f9be 165 return &ultra3_perfmon_event_map[event_id];
59abbd1e
DM
166}
167
28e8f9be 168static const cache_map_t ultra3_cache_map = {
2ce4da2e
DM
169[C(L1D)] = {
170 [C(OP_READ)] = {
171 [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
172 [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
173 },
174 [C(OP_WRITE)] = {
175 [C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
176 [C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
177 },
178 [C(OP_PREFETCH)] = {
179 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
180 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
181 },
182},
183[C(L1I)] = {
184 [C(OP_READ)] = {
185 [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
186 [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
187 },
188 [ C(OP_WRITE) ] = {
189 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
190 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
191 },
192 [ C(OP_PREFETCH) ] = {
193 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
194 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
195 },
196},
197[C(LL)] = {
198 [C(OP_READ)] = {
199 [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
200 [C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
201 },
202 [C(OP_WRITE)] = {
203 [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
204 [C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
205 },
206 [C(OP_PREFETCH)] = {
207 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
208 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
209 },
210},
211[C(DTLB)] = {
212 [C(OP_READ)] = {
213 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
214 [C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
215 },
216 [ C(OP_WRITE) ] = {
217 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
218 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
219 },
220 [ C(OP_PREFETCH) ] = {
221 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
222 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
223 },
224},
225[C(ITLB)] = {
226 [C(OP_READ)] = {
227 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
228 [C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
229 },
230 [ C(OP_WRITE) ] = {
231 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
232 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
233 },
234 [ C(OP_PREFETCH) ] = {
235 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
236 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
237 },
238},
239[C(BPU)] = {
240 [C(OP_READ)] = {
241 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
242 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
243 },
244 [ C(OP_WRITE) ] = {
245 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
246 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
247 },
248 [ C(OP_PREFETCH) ] = {
249 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
250 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
251 },
252},
89d6c0b5
PZ
253[C(NODE)] = {
254 [C(OP_READ)] = {
255 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
256 [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
257 },
258 [ C(OP_WRITE) ] = {
259 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
260 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
261 },
262 [ C(OP_PREFETCH) ] = {
263 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
264 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
265 },
266},
2ce4da2e
DM
267};
268
28e8f9be
DM
269static const struct sparc_pmu ultra3_pmu = {
270 .event_map = ultra3_event_map,
271 .cache_map = &ultra3_cache_map,
272 .max_events = ARRAY_SIZE(ultra3_perfmon_event_map),
59abbd1e
DM
273 .upper_shift = 11,
274 .lower_shift = 4,
275 .event_mask = 0x3f,
660d1376
DM
276 .upper_nop = 0x1c,
277 .lower_nop = 0x14,
b38e99f5
DM
278 .flags = (SPARC_PMU_ALL_EXCLUDES_SAME |
279 SPARC_PMU_HAS_CONFLICTS),
59abbd1e
DM
280};
281
7eebda60
DM
282/* Niagara1 is very limited. The upper PIC is hard-locked to count
283 * only instructions, so it is free running which creates all kinds of
6e804251 284 * problems. Some hardware designs make one wonder if the creator
7eebda60
DM
285 * even looked at how this stuff gets used by software.
286 */
287static const struct perf_event_map niagara1_perfmon_event_map[] = {
288 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
289 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
290 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
291 [PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
292};
293
294static const struct perf_event_map *niagara1_event_map(int event_id)
295{
296 return &niagara1_perfmon_event_map[event_id];
297}
298
299static const cache_map_t niagara1_cache_map = {
300[C(L1D)] = {
301 [C(OP_READ)] = {
302 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
303 [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
304 },
305 [C(OP_WRITE)] = {
306 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
307 [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
308 },
309 [C(OP_PREFETCH)] = {
310 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
311 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
312 },
313},
314[C(L1I)] = {
315 [C(OP_READ)] = {
316 [C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
317 [C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
318 },
319 [ C(OP_WRITE) ] = {
320 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
321 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
322 },
323 [ C(OP_PREFETCH) ] = {
324 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
325 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
326 },
327},
328[C(LL)] = {
329 [C(OP_READ)] = {
330 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
331 [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
332 },
333 [C(OP_WRITE)] = {
334 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
335 [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
336 },
337 [C(OP_PREFETCH)] = {
338 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
339 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
340 },
341},
342[C(DTLB)] = {
343 [C(OP_READ)] = {
344 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
345 [C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
346 },
347 [ C(OP_WRITE) ] = {
348 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
349 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
350 },
351 [ C(OP_PREFETCH) ] = {
352 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
353 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
354 },
355},
356[C(ITLB)] = {
357 [C(OP_READ)] = {
358 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
359 [C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
360 },
361 [ C(OP_WRITE) ] = {
362 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
363 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
364 },
365 [ C(OP_PREFETCH) ] = {
366 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
367 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
368 },
369},
370[C(BPU)] = {
371 [C(OP_READ)] = {
372 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
373 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
374 },
375 [ C(OP_WRITE) ] = {
376 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
377 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
378 },
379 [ C(OP_PREFETCH) ] = {
380 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
381 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
382 },
383},
89d6c0b5
PZ
384[C(NODE)] = {
385 [C(OP_READ)] = {
386 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
387 [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
388 },
389 [ C(OP_WRITE) ] = {
390 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
391 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
392 },
393 [ C(OP_PREFETCH) ] = {
394 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
395 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
396 },
397},
7eebda60
DM
398};
399
400static const struct sparc_pmu niagara1_pmu = {
401 .event_map = niagara1_event_map,
402 .cache_map = &niagara1_cache_map,
403 .max_events = ARRAY_SIZE(niagara1_perfmon_event_map),
404 .upper_shift = 0,
405 .lower_shift = 4,
406 .event_mask = 0x7,
407 .upper_nop = 0x0,
408 .lower_nop = 0x0,
b38e99f5
DM
409 .flags = (SPARC_PMU_ALL_EXCLUDES_SAME |
410 SPARC_PMU_HAS_CONFLICTS),
7eebda60
DM
411};
412
b73d8847
DM
413static const struct perf_event_map niagara2_perfmon_event_map[] = {
414 [PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
415 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
416 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
417 [PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
418 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
419 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
420};
421
cdd6c482 422static const struct perf_event_map *niagara2_event_map(int event_id)
b73d8847 423{
cdd6c482 424 return &niagara2_perfmon_event_map[event_id];
b73d8847
DM
425}
426
d0b86480
DM
427static const cache_map_t niagara2_cache_map = {
428[C(L1D)] = {
429 [C(OP_READ)] = {
430 [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
431 [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
432 },
433 [C(OP_WRITE)] = {
434 [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
435 [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
436 },
437 [C(OP_PREFETCH)] = {
438 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
439 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
440 },
441},
442[C(L1I)] = {
443 [C(OP_READ)] = {
444 [C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
445 [C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
446 },
447 [ C(OP_WRITE) ] = {
448 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
449 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
450 },
451 [ C(OP_PREFETCH) ] = {
452 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
453 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
454 },
455},
456[C(LL)] = {
457 [C(OP_READ)] = {
458 [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
459 [C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
460 },
461 [C(OP_WRITE)] = {
462 [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
463 [C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
464 },
465 [C(OP_PREFETCH)] = {
466 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
467 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
468 },
469},
470[C(DTLB)] = {
471 [C(OP_READ)] = {
472 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
473 [C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
474 },
475 [ C(OP_WRITE) ] = {
476 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
477 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
478 },
479 [ C(OP_PREFETCH) ] = {
480 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
481 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
482 },
483},
484[C(ITLB)] = {
485 [C(OP_READ)] = {
486 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
487 [C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
488 },
489 [ C(OP_WRITE) ] = {
490 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
491 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
492 },
493 [ C(OP_PREFETCH) ] = {
494 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
495 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
496 },
497},
498[C(BPU)] = {
499 [C(OP_READ)] = {
500 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
501 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
502 },
503 [ C(OP_WRITE) ] = {
504 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
89d6c0b5
PZ
505 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
506 },
507 [ C(OP_PREFETCH) ] = {
508 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
509 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
510 },
511},
512[C(NODE)] = {
513 [C(OP_READ)] = {
514 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
515 [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
516 },
517 [ C(OP_WRITE) ] = {
518 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
d0b86480
DM
519 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
520 },
521 [ C(OP_PREFETCH) ] = {
522 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
523 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
524 },
525},
526};
527
b73d8847
DM
528static const struct sparc_pmu niagara2_pmu = {
529 .event_map = niagara2_event_map,
d0b86480 530 .cache_map = &niagara2_cache_map,
b73d8847
DM
531 .max_events = ARRAY_SIZE(niagara2_perfmon_event_map),
532 .upper_shift = 19,
533 .lower_shift = 6,
534 .event_mask = 0xfff,
535 .hv_bit = 0x8,
de23cf3c 536 .irq_bit = 0x30,
b73d8847
DM
537 .upper_nop = 0x220,
538 .lower_nop = 0x220,
b38e99f5
DM
539 .flags = (SPARC_PMU_ALL_EXCLUDES_SAME |
540 SPARC_PMU_HAS_CONFLICTS),
b73d8847
DM
541};
542
59abbd1e
DM
543static const struct sparc_pmu *sparc_pmu __read_mostly;
544
cdd6c482 545static u64 event_encoding(u64 event_id, int idx)
59abbd1e
DM
546{
547 if (idx == PIC_UPPER_INDEX)
cdd6c482 548 event_id <<= sparc_pmu->upper_shift;
59abbd1e 549 else
cdd6c482
IM
550 event_id <<= sparc_pmu->lower_shift;
551 return event_id;
59abbd1e
DM
552}
553
554static u64 mask_for_index(int idx)
555{
556 return event_encoding(sparc_pmu->event_mask, idx);
557}
558
559static u64 nop_for_index(int idx)
560{
561 return event_encoding(idx == PIC_UPPER_INDEX ?
660d1376
DM
562 sparc_pmu->upper_nop :
563 sparc_pmu->lower_nop, idx);
59abbd1e
DM
564}
565
d1751388 566static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
59abbd1e
DM
567{
568 u64 val, mask = mask_for_index(idx);
569
d1751388
DM
570 val = cpuc->pcr;
571 val &= ~mask;
572 val |= hwc->config;
573 cpuc->pcr = val;
574
09d053c7 575 pcr_ops->write_pcr(0, cpuc->pcr);
59abbd1e
DM
576}
577
d1751388 578static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
59abbd1e
DM
579{
580 u64 mask = mask_for_index(idx);
581 u64 nop = nop_for_index(idx);
d1751388 582 u64 val;
59abbd1e 583
d1751388
DM
584 val = cpuc->pcr;
585 val &= ~mask;
586 val |= nop;
587 cpuc->pcr = val;
588
09d053c7 589 pcr_ops->write_pcr(0, cpuc->pcr);
59abbd1e
DM
590}
591
59abbd1e
DM
592static u32 read_pmc(int idx)
593{
594 u64 val;
595
09d053c7 596 val = pcr_ops->read_pic(0);
59abbd1e
DM
597 if (idx == PIC_UPPER_INDEX)
598 val >>= 32;
599
600 return val & 0xffffffff;
601}
602
603static void write_pmc(int idx, u64 val)
604{
605 u64 shift, mask, pic;
606
607 shift = 0;
608 if (idx == PIC_UPPER_INDEX)
609 shift = 32;
610
611 mask = ((u64) 0xffffffff) << shift;
612 val <<= shift;
613
09d053c7 614 pic = pcr_ops->read_pic(0);
59abbd1e
DM
615 pic &= ~mask;
616 pic |= val;
09d053c7 617 pcr_ops->write_pic(0, pic);
59abbd1e
DM
618}
619
e7bef6b0
DM
620static u64 sparc_perf_event_update(struct perf_event *event,
621 struct hw_perf_event *hwc, int idx)
622{
623 int shift = 64 - 32;
624 u64 prev_raw_count, new_raw_count;
625 s64 delta;
626
627again:
e7850595 628 prev_raw_count = local64_read(&hwc->prev_count);
e7bef6b0
DM
629 new_raw_count = read_pmc(idx);
630
e7850595 631 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
e7bef6b0
DM
632 new_raw_count) != prev_raw_count)
633 goto again;
634
635 delta = (new_raw_count << shift) - (prev_raw_count << shift);
636 delta >>= shift;
637
e7850595
PZ
638 local64_add(delta, &event->count);
639 local64_sub(delta, &hwc->period_left);
e7bef6b0
DM
640
641 return new_raw_count;
642}
643
cdd6c482 644static int sparc_perf_event_set_period(struct perf_event *event,
d29862f0 645 struct hw_perf_event *hwc, int idx)
59abbd1e 646{
e7850595 647 s64 left = local64_read(&hwc->period_left);
59abbd1e
DM
648 s64 period = hwc->sample_period;
649 int ret = 0;
650
651 if (unlikely(left <= -period)) {
652 left = period;
e7850595 653 local64_set(&hwc->period_left, left);
59abbd1e
DM
654 hwc->last_period = period;
655 ret = 1;
656 }
657
658 if (unlikely(left <= 0)) {
659 left += period;
e7850595 660 local64_set(&hwc->period_left, left);
59abbd1e
DM
661 hwc->last_period = period;
662 ret = 1;
663 }
664 if (left > MAX_PERIOD)
665 left = MAX_PERIOD;
666
e7850595 667 local64_set(&hwc->prev_count, (u64)-left);
59abbd1e
DM
668
669 write_pmc(idx, (u64)(-left) & 0xffffffff);
670
cdd6c482 671 perf_event_update_userpage(event);
59abbd1e
DM
672
673 return ret;
674}
675
e7bef6b0
DM
676/* If performance event entries have been added, move existing
677 * events around (if necessary) and then assign new entries to
678 * counters.
679 */
680static u64 maybe_change_configuration(struct cpu_hw_events *cpuc, u64 pcr)
59abbd1e 681{
e7bef6b0 682 int i;
59abbd1e 683
e7bef6b0
DM
684 if (!cpuc->n_added)
685 goto out;
59abbd1e 686
e7bef6b0
DM
687 /* Read in the counters which are moving. */
688 for (i = 0; i < cpuc->n_events; i++) {
689 struct perf_event *cp = cpuc->event[i];
59abbd1e 690
e7bef6b0
DM
691 if (cpuc->current_idx[i] != PIC_NO_INDEX &&
692 cpuc->current_idx[i] != cp->hw.idx) {
693 sparc_perf_event_update(cp, &cp->hw,
694 cpuc->current_idx[i]);
695 cpuc->current_idx[i] = PIC_NO_INDEX;
696 }
697 }
59abbd1e 698
e7bef6b0
DM
699 /* Assign to counters all unassigned events. */
700 for (i = 0; i < cpuc->n_events; i++) {
701 struct perf_event *cp = cpuc->event[i];
702 struct hw_perf_event *hwc = &cp->hw;
703 int idx = hwc->idx;
704 u64 enc;
705
706 if (cpuc->current_idx[i] != PIC_NO_INDEX)
707 continue;
708
709 sparc_perf_event_set_period(cp, hwc, idx);
710 cpuc->current_idx[i] = idx;
711
712 enc = perf_event_get_enc(cpuc->events[i]);
b7d45c3f 713 pcr &= ~mask_for_index(idx);
a4eaf7f1
PZ
714 if (hwc->state & PERF_HES_STOPPED)
715 pcr |= nop_for_index(idx);
716 else
717 pcr |= event_encoding(enc, idx);
e7bef6b0
DM
718 }
719out:
720 return pcr;
59abbd1e
DM
721}
722
a4eaf7f1 723static void sparc_pmu_enable(struct pmu *pmu)
59abbd1e 724{
e7bef6b0
DM
725 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
726 u64 pcr;
59abbd1e 727
e7bef6b0
DM
728 if (cpuc->enabled)
729 return;
59abbd1e 730
e7bef6b0
DM
731 cpuc->enabled = 1;
732 barrier();
59abbd1e 733
e7bef6b0
DM
734 pcr = cpuc->pcr;
735 if (!cpuc->n_events) {
736 pcr = 0;
737 } else {
738 pcr = maybe_change_configuration(cpuc, pcr);
59abbd1e 739
e7bef6b0
DM
740 /* We require that all of the events have the same
741 * configuration, so just fetch the settings from the
742 * first entry.
743 */
744 cpuc->pcr = pcr | cpuc->event[0]->hw.config_base;
745 }
59abbd1e 746
09d053c7 747 pcr_ops->write_pcr(0, cpuc->pcr);
e7bef6b0
DM
748}
749
a4eaf7f1 750static void sparc_pmu_disable(struct pmu *pmu)
e7bef6b0
DM
751{
752 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
753 u64 val;
754
755 if (!cpuc->enabled)
756 return;
757
758 cpuc->enabled = 0;
759 cpuc->n_added = 0;
760
761 val = cpuc->pcr;
762 val &= ~(PCR_UTRACE | PCR_STRACE |
763 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
764 cpuc->pcr = val;
765
09d053c7 766 pcr_ops->write_pcr(0, cpuc->pcr);
59abbd1e
DM
767}
768
a4eaf7f1
PZ
769static int active_event_index(struct cpu_hw_events *cpuc,
770 struct perf_event *event)
771{
772 int i;
773
774 for (i = 0; i < cpuc->n_events; i++) {
775 if (cpuc->event[i] == event)
776 break;
777 }
778 BUG_ON(i == cpuc->n_events);
779 return cpuc->current_idx[i];
780}
781
782static void sparc_pmu_start(struct perf_event *event, int flags)
783{
784 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
785 int idx = active_event_index(cpuc, event);
786
787 if (flags & PERF_EF_RELOAD) {
788 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
789 sparc_perf_event_set_period(event, &event->hw, idx);
790 }
791
792 event->hw.state = 0;
793
794 sparc_pmu_enable_event(cpuc, &event->hw, idx);
795}
796
797static void sparc_pmu_stop(struct perf_event *event, int flags)
798{
799 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
800 int idx = active_event_index(cpuc, event);
801
802 if (!(event->hw.state & PERF_HES_STOPPED)) {
803 sparc_pmu_disable_event(cpuc, &event->hw, idx);
804 event->hw.state |= PERF_HES_STOPPED;
805 }
806
807 if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) {
808 sparc_perf_event_update(event, &event->hw, idx);
809 event->hw.state |= PERF_HES_UPTODATE;
810 }
811}
812
813static void sparc_pmu_del(struct perf_event *event, int _flags)
59abbd1e 814{
cdd6c482 815 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
e7bef6b0
DM
816 unsigned long flags;
817 int i;
59abbd1e 818
e7bef6b0 819 local_irq_save(flags);
33696fc0 820 perf_pmu_disable(event->pmu);
e7bef6b0
DM
821
822 for (i = 0; i < cpuc->n_events; i++) {
823 if (event == cpuc->event[i]) {
a4eaf7f1
PZ
824 /* Absorb the final count and turn off the
825 * event.
826 */
827 sparc_pmu_stop(event, PERF_EF_UPDATE);
e7bef6b0
DM
828
829 /* Shift remaining entries down into
830 * the existing slot.
831 */
832 while (++i < cpuc->n_events) {
833 cpuc->event[i - 1] = cpuc->event[i];
834 cpuc->events[i - 1] = cpuc->events[i];
835 cpuc->current_idx[i - 1] =
836 cpuc->current_idx[i];
837 }
838
e7bef6b0 839 perf_event_update_userpage(event);
59abbd1e 840
e7bef6b0
DM
841 cpuc->n_events--;
842 break;
843 }
844 }
59abbd1e 845
33696fc0 846 perf_pmu_enable(event->pmu);
e7bef6b0
DM
847 local_irq_restore(flags);
848}
849
cdd6c482 850static void sparc_pmu_read(struct perf_event *event)
59abbd1e 851{
e7bef6b0
DM
852 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
853 int idx = active_event_index(cpuc, event);
cdd6c482 854 struct hw_perf_event *hwc = &event->hw;
d1751388 855
e7bef6b0 856 sparc_perf_event_update(event, hwc, idx);
59abbd1e
DM
857}
858
cdd6c482 859static atomic_t active_events = ATOMIC_INIT(0);
59abbd1e
DM
860static DEFINE_MUTEX(pmc_grab_mutex);
861
d1751388
DM
862static void perf_stop_nmi_watchdog(void *unused)
863{
864 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
865
866 stop_nmi_watchdog(NULL);
09d053c7 867 cpuc->pcr = pcr_ops->read_pcr(0);
d1751388
DM
868}
869
cdd6c482 870void perf_event_grab_pmc(void)
59abbd1e 871{
cdd6c482 872 if (atomic_inc_not_zero(&active_events))
59abbd1e
DM
873 return;
874
875 mutex_lock(&pmc_grab_mutex);
cdd6c482 876 if (atomic_read(&active_events) == 0) {
59abbd1e 877 if (atomic_read(&nmi_active) > 0) {
d1751388 878 on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
59abbd1e
DM
879 BUG_ON(atomic_read(&nmi_active) != 0);
880 }
cdd6c482 881 atomic_inc(&active_events);
59abbd1e
DM
882 }
883 mutex_unlock(&pmc_grab_mutex);
884}
885
cdd6c482 886void perf_event_release_pmc(void)
59abbd1e 887{
cdd6c482 888 if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
59abbd1e
DM
889 if (atomic_read(&nmi_active) == 0)
890 on_each_cpu(start_nmi_watchdog, NULL, 1);
891 mutex_unlock(&pmc_grab_mutex);
892 }
893}
894
2ce4da2e
DM
895static const struct perf_event_map *sparc_map_cache_event(u64 config)
896{
897 unsigned int cache_type, cache_op, cache_result;
898 const struct perf_event_map *pmap;
899
900 if (!sparc_pmu->cache_map)
901 return ERR_PTR(-ENOENT);
902
903 cache_type = (config >> 0) & 0xff;
904 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
905 return ERR_PTR(-EINVAL);
906
907 cache_op = (config >> 8) & 0xff;
908 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
909 return ERR_PTR(-EINVAL);
910
911 cache_result = (config >> 16) & 0xff;
912 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
913 return ERR_PTR(-EINVAL);
914
915 pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
916
917 if (pmap->encoding == CACHE_OP_UNSUPPORTED)
918 return ERR_PTR(-ENOENT);
919
920 if (pmap->encoding == CACHE_OP_NONSENSE)
921 return ERR_PTR(-EINVAL);
922
923 return pmap;
924}
925
cdd6c482 926static void hw_perf_event_destroy(struct perf_event *event)
59abbd1e 927{
cdd6c482 928 perf_event_release_pmc();
59abbd1e
DM
929}
930
a72a8a5f
DM
931/* Make sure all events can be scheduled into the hardware at
932 * the same time. This is simplified by the fact that we only
933 * need to support 2 simultaneous HW events.
e7bef6b0
DM
934 *
935 * As a side effect, the evts[]->hw.idx values will be assigned
936 * on success. These are pending indexes. When the events are
937 * actually programmed into the chip, these values will propagate
938 * to the per-cpu cpuc->current_idx[] slots, see the code in
939 * maybe_change_configuration() for details.
a72a8a5f 940 */
e7bef6b0
DM
941static int sparc_check_constraints(struct perf_event **evts,
942 unsigned long *events, int n_ev)
a72a8a5f 943{
e7bef6b0
DM
944 u8 msk0 = 0, msk1 = 0;
945 int idx0 = 0;
946
947 /* This case is possible when we are invoked from
948 * hw_perf_group_sched_in().
949 */
950 if (!n_ev)
951 return 0;
952
15ac9a39 953 if (n_ev > MAX_HWEVENTS)
e7bef6b0
DM
954 return -1;
955
b38e99f5
DM
956 if (!(sparc_pmu->flags & SPARC_PMU_HAS_CONFLICTS)) {
957 int i;
958
959 for (i = 0; i < n_ev; i++)
960 evts[i]->hw.idx = i;
961 return 0;
962 }
963
e7bef6b0
DM
964 msk0 = perf_event_get_msk(events[0]);
965 if (n_ev == 1) {
966 if (msk0 & PIC_LOWER)
967 idx0 = 1;
968 goto success;
969 }
970 BUG_ON(n_ev != 2);
971 msk1 = perf_event_get_msk(events[1]);
972
973 /* If both events can go on any counter, OK. */
974 if (msk0 == (PIC_UPPER | PIC_LOWER) &&
975 msk1 == (PIC_UPPER | PIC_LOWER))
976 goto success;
977
978 /* If one event is limited to a specific counter,
979 * and the other can go on both, OK.
980 */
981 if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
982 msk1 == (PIC_UPPER | PIC_LOWER)) {
983 if (msk0 & PIC_LOWER)
984 idx0 = 1;
985 goto success;
a72a8a5f
DM
986 }
987
e7bef6b0
DM
988 if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
989 msk0 == (PIC_UPPER | PIC_LOWER)) {
990 if (msk1 & PIC_UPPER)
991 idx0 = 1;
992 goto success;
993 }
994
995 /* If the events are fixed to different counters, OK. */
996 if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
997 (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
998 if (msk0 & PIC_LOWER)
999 idx0 = 1;
1000 goto success;
1001 }
1002
1003 /* Otherwise, there is a conflict. */
a72a8a5f 1004 return -1;
e7bef6b0
DM
1005
1006success:
1007 evts[0]->hw.idx = idx0;
1008 if (n_ev == 2)
1009 evts[1]->hw.idx = idx0 ^ 1;
1010 return 0;
a72a8a5f
DM
1011}
1012
01552f76
DM
1013static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
1014{
1015 int eu = 0, ek = 0, eh = 0;
1016 struct perf_event *event;
1017 int i, n, first;
1018
b38e99f5
DM
1019 if (!(sparc_pmu->flags & SPARC_PMU_ALL_EXCLUDES_SAME))
1020 return 0;
1021
01552f76
DM
1022 n = n_prev + n_new;
1023 if (n <= 1)
1024 return 0;
1025
1026 first = 1;
1027 for (i = 0; i < n; i++) {
1028 event = evts[i];
1029 if (first) {
1030 eu = event->attr.exclude_user;
1031 ek = event->attr.exclude_kernel;
1032 eh = event->attr.exclude_hv;
1033 first = 0;
1034 } else if (event->attr.exclude_user != eu ||
1035 event->attr.exclude_kernel != ek ||
1036 event->attr.exclude_hv != eh) {
1037 return -EAGAIN;
1038 }
1039 }
1040
1041 return 0;
1042}
1043
1044static int collect_events(struct perf_event *group, int max_count,
e7bef6b0
DM
1045 struct perf_event *evts[], unsigned long *events,
1046 int *current_idx)
01552f76
DM
1047{
1048 struct perf_event *event;
1049 int n = 0;
1050
1051 if (!is_software_event(group)) {
1052 if (n >= max_count)
1053 return -1;
1054 evts[n] = group;
e7bef6b0
DM
1055 events[n] = group->hw.event_base;
1056 current_idx[n++] = PIC_NO_INDEX;
01552f76
DM
1057 }
1058 list_for_each_entry(event, &group->sibling_list, group_entry) {
1059 if (!is_software_event(event) &&
1060 event->state != PERF_EVENT_STATE_OFF) {
1061 if (n >= max_count)
1062 return -1;
1063 evts[n] = event;
e7bef6b0
DM
1064 events[n] = event->hw.event_base;
1065 current_idx[n++] = PIC_NO_INDEX;
01552f76
DM
1066 }
1067 }
1068 return n;
1069}
1070
a4eaf7f1 1071static int sparc_pmu_add(struct perf_event *event, int ef_flags)
e7bef6b0
DM
1072{
1073 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1074 int n0, ret = -EAGAIN;
1075 unsigned long flags;
1076
1077 local_irq_save(flags);
33696fc0 1078 perf_pmu_disable(event->pmu);
e7bef6b0
DM
1079
1080 n0 = cpuc->n_events;
15ac9a39 1081 if (n0 >= MAX_HWEVENTS)
e7bef6b0
DM
1082 goto out;
1083
1084 cpuc->event[n0] = event;
1085 cpuc->events[n0] = event->hw.event_base;
1086 cpuc->current_idx[n0] = PIC_NO_INDEX;
1087
a4eaf7f1
PZ
1088 event->hw.state = PERF_HES_UPTODATE;
1089 if (!(ef_flags & PERF_EF_START))
1090 event->hw.state |= PERF_HES_STOPPED;
1091
a13c3afd
LM
1092 /*
1093 * If group events scheduling transaction was started,
25985edc 1094 * skip the schedulability test here, it will be performed
a13c3afd
LM
1095 * at commit time(->commit_txn) as a whole
1096 */
8d2cacbb 1097 if (cpuc->group_flag & PERF_EVENT_TXN)
a13c3afd
LM
1098 goto nocheck;
1099
e7bef6b0
DM
1100 if (check_excludes(cpuc->event, n0, 1))
1101 goto out;
1102 if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
1103 goto out;
1104
a13c3afd 1105nocheck:
e7bef6b0
DM
1106 cpuc->n_events++;
1107 cpuc->n_added++;
1108
1109 ret = 0;
1110out:
33696fc0 1111 perf_pmu_enable(event->pmu);
e7bef6b0
DM
1112 local_irq_restore(flags);
1113 return ret;
1114}
1115
b0a873eb 1116static int sparc_pmu_event_init(struct perf_event *event)
59abbd1e 1117{
cdd6c482 1118 struct perf_event_attr *attr = &event->attr;
01552f76 1119 struct perf_event *evts[MAX_HWEVENTS];
cdd6c482 1120 struct hw_perf_event *hwc = &event->hw;
a72a8a5f 1121 unsigned long events[MAX_HWEVENTS];
e7bef6b0 1122 int current_idx_dmy[MAX_HWEVENTS];
59abbd1e 1123 const struct perf_event_map *pmap;
01552f76 1124 int n;
59abbd1e
DM
1125
1126 if (atomic_read(&nmi_active) < 0)
1127 return -ENODEV;
1128
2481c5fa
SE
1129 /* does not support taken branch sampling */
1130 if (has_branch_stack(event))
1131 return -EOPNOTSUPP;
1132
b0a873eb
PZ
1133 switch (attr->type) {
1134 case PERF_TYPE_HARDWARE:
2ce4da2e
DM
1135 if (attr->config >= sparc_pmu->max_events)
1136 return -EINVAL;
1137 pmap = sparc_pmu->event_map(attr->config);
b0a873eb
PZ
1138 break;
1139
1140 case PERF_TYPE_HW_CACHE:
2ce4da2e
DM
1141 pmap = sparc_map_cache_event(attr->config);
1142 if (IS_ERR(pmap))
1143 return PTR_ERR(pmap);
b0a873eb
PZ
1144 break;
1145
1146 case PERF_TYPE_RAW:
d0303d71
IM
1147 pmap = NULL;
1148 break;
59abbd1e 1149
b0a873eb
PZ
1150 default:
1151 return -ENOENT;
1152
1153 }
1154
b343ae51
DM
1155 if (pmap) {
1156 hwc->event_base = perf_event_encode(pmap);
1157 } else {
d0303d71
IM
1158 /*
1159 * User gives us "(encoding << 16) | pic_mask" for
b343ae51
DM
1160 * PERF_TYPE_RAW events.
1161 */
1162 hwc->event_base = attr->config;
1163 }
1164
e7bef6b0 1165 /* We save the enable bits in the config_base. */
496c07e3 1166 hwc->config_base = sparc_pmu->irq_bit;
59abbd1e
DM
1167 if (!attr->exclude_user)
1168 hwc->config_base |= PCR_UTRACE;
1169 if (!attr->exclude_kernel)
1170 hwc->config_base |= PCR_STRACE;
91b9286d
DM
1171 if (!attr->exclude_hv)
1172 hwc->config_base |= sparc_pmu->hv_bit;
59abbd1e 1173
01552f76
DM
1174 n = 0;
1175 if (event->group_leader != event) {
1176 n = collect_events(event->group_leader,
15ac9a39 1177 MAX_HWEVENTS - 1,
e7bef6b0 1178 evts, events, current_idx_dmy);
01552f76
DM
1179 if (n < 0)
1180 return -EINVAL;
1181 }
a72a8a5f 1182 events[n] = hwc->event_base;
01552f76
DM
1183 evts[n] = event;
1184
1185 if (check_excludes(evts, n, 1))
1186 return -EINVAL;
1187
e7bef6b0 1188 if (sparc_check_constraints(evts, events, n + 1))
a72a8a5f
DM
1189 return -EINVAL;
1190
e7bef6b0
DM
1191 hwc->idx = PIC_NO_INDEX;
1192
01552f76
DM
1193 /* Try to do all error checking before this point, as unwinding
1194 * state after grabbing the PMC is difficult.
1195 */
1196 perf_event_grab_pmc();
1197 event->destroy = hw_perf_event_destroy;
1198
59abbd1e
DM
1199 if (!hwc->sample_period) {
1200 hwc->sample_period = MAX_PERIOD;
1201 hwc->last_period = hwc->sample_period;
e7850595 1202 local64_set(&hwc->period_left, hwc->sample_period);
59abbd1e
DM
1203 }
1204
59abbd1e
DM
1205 return 0;
1206}
1207
a13c3afd
LM
1208/*
1209 * Start group events scheduling transaction
1210 * Set the flag to make pmu::enable() not perform the
1211 * schedulability test, it will be performed at commit time
1212 */
51b0fe39 1213static void sparc_pmu_start_txn(struct pmu *pmu)
a13c3afd
LM
1214{
1215 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1216
33696fc0 1217 perf_pmu_disable(pmu);
8d2cacbb 1218 cpuhw->group_flag |= PERF_EVENT_TXN;
a13c3afd
LM
1219}
1220
1221/*
1222 * Stop group events scheduling transaction
1223 * Clear the flag and pmu::enable() will perform the
1224 * schedulability test.
1225 */
51b0fe39 1226static void sparc_pmu_cancel_txn(struct pmu *pmu)
a13c3afd
LM
1227{
1228 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1229
8d2cacbb 1230 cpuhw->group_flag &= ~PERF_EVENT_TXN;
33696fc0 1231 perf_pmu_enable(pmu);
a13c3afd
LM
1232}
1233
1234/*
1235 * Commit group events scheduling transaction
1236 * Perform the group schedulability test as a whole
1237 * Return 0 if success
1238 */
51b0fe39 1239static int sparc_pmu_commit_txn(struct pmu *pmu)
a13c3afd
LM
1240{
1241 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1242 int n;
1243
1244 if (!sparc_pmu)
1245 return -EINVAL;
1246
1247 cpuc = &__get_cpu_var(cpu_hw_events);
1248 n = cpuc->n_events;
1249 if (check_excludes(cpuc->event, 0, n))
1250 return -EINVAL;
1251 if (sparc_check_constraints(cpuc->event, cpuc->events, n))
1252 return -EAGAIN;
1253
8d2cacbb 1254 cpuc->group_flag &= ~PERF_EVENT_TXN;
33696fc0 1255 perf_pmu_enable(pmu);
a13c3afd
LM
1256 return 0;
1257}
1258
51b0fe39 1259static struct pmu pmu = {
a4eaf7f1
PZ
1260 .pmu_enable = sparc_pmu_enable,
1261 .pmu_disable = sparc_pmu_disable,
b0a873eb 1262 .event_init = sparc_pmu_event_init,
a4eaf7f1
PZ
1263 .add = sparc_pmu_add,
1264 .del = sparc_pmu_del,
1265 .start = sparc_pmu_start,
1266 .stop = sparc_pmu_stop,
59abbd1e 1267 .read = sparc_pmu_read,
a13c3afd
LM
1268 .start_txn = sparc_pmu_start_txn,
1269 .cancel_txn = sparc_pmu_cancel_txn,
1270 .commit_txn = sparc_pmu_commit_txn,
59abbd1e
DM
1271};
1272
cdd6c482 1273void perf_event_print_debug(void)
59abbd1e
DM
1274{
1275 unsigned long flags;
1276 u64 pcr, pic;
1277 int cpu;
1278
1279 if (!sparc_pmu)
1280 return;
1281
1282 local_irq_save(flags);
1283
1284 cpu = smp_processor_id();
1285
09d053c7
DM
1286 pcr = pcr_ops->read_pcr(0);
1287 pic = pcr_ops->read_pic(0);
59abbd1e
DM
1288
1289 pr_info("\n");
1290 pr_info("CPU#%d: PCR[%016llx] PIC[%016llx]\n",
1291 cpu, pcr, pic);
1292
1293 local_irq_restore(flags);
1294}
1295
cdd6c482 1296static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
d29862f0 1297 unsigned long cmd, void *__args)
59abbd1e
DM
1298{
1299 struct die_args *args = __args;
1300 struct perf_sample_data data;
cdd6c482 1301 struct cpu_hw_events *cpuc;
59abbd1e 1302 struct pt_regs *regs;
e7bef6b0 1303 int i;
59abbd1e 1304
cdd6c482 1305 if (!atomic_read(&active_events))
59abbd1e
DM
1306 return NOTIFY_DONE;
1307
1308 switch (cmd) {
1309 case DIE_NMI:
1310 break;
1311
1312 default:
1313 return NOTIFY_DONE;
1314 }
1315
1316 regs = args->regs;
1317
cdd6c482 1318 cpuc = &__get_cpu_var(cpu_hw_events);
e04ed38d
DM
1319
1320 /* If the PMU has the TOE IRQ enable bits, we need to do a
1321 * dummy write to the %pcr to clear the overflow bits and thus
1322 * the interrupt.
1323 *
1324 * Do this before we peek at the counters to determine
1325 * overflow so we don't lose any events.
1326 */
1327 if (sparc_pmu->irq_bit)
09d053c7 1328 pcr_ops->write_pcr(0, cpuc->pcr);
e04ed38d 1329
e7bef6b0
DM
1330 for (i = 0; i < cpuc->n_events; i++) {
1331 struct perf_event *event = cpuc->event[i];
1332 int idx = cpuc->current_idx[i];
cdd6c482 1333 struct hw_perf_event *hwc;
59abbd1e
DM
1334 u64 val;
1335
cdd6c482
IM
1336 hwc = &event->hw;
1337 val = sparc_perf_event_update(event, hwc, idx);
59abbd1e
DM
1338 if (val & (1ULL << 31))
1339 continue;
1340
fd0d000b 1341 perf_sample_data_init(&data, 0, hwc->last_period);
cdd6c482 1342 if (!sparc_perf_event_set_period(event, hwc, idx))
59abbd1e
DM
1343 continue;
1344
a8b0ca17 1345 if (perf_event_overflow(event, &data, regs))
a4eaf7f1 1346 sparc_pmu_stop(event, 0);
59abbd1e
DM
1347 }
1348
1349 return NOTIFY_STOP;
1350}
1351
cdd6c482
IM
1352static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1353 .notifier_call = perf_event_nmi_handler,
59abbd1e
DM
1354};
1355
1356static bool __init supported_pmu(void)
1357{
28e8f9be
DM
1358 if (!strcmp(sparc_pmu_type, "ultra3") ||
1359 !strcmp(sparc_pmu_type, "ultra3+") ||
1360 !strcmp(sparc_pmu_type, "ultra3i") ||
1361 !strcmp(sparc_pmu_type, "ultra4+")) {
1362 sparc_pmu = &ultra3_pmu;
59abbd1e
DM
1363 return true;
1364 }
7eebda60
DM
1365 if (!strcmp(sparc_pmu_type, "niagara")) {
1366 sparc_pmu = &niagara1_pmu;
1367 return true;
1368 }
4ba991d3
DM
1369 if (!strcmp(sparc_pmu_type, "niagara2") ||
1370 !strcmp(sparc_pmu_type, "niagara3")) {
b73d8847
DM
1371 sparc_pmu = &niagara2_pmu;
1372 return true;
1373 }
59abbd1e
DM
1374 return false;
1375}
1376
004417a6 1377int __init init_hw_perf_events(void)
59abbd1e 1378{
cdd6c482 1379 pr_info("Performance events: ");
59abbd1e
DM
1380
1381 if (!supported_pmu()) {
1382 pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
004417a6 1383 return 0;
59abbd1e
DM
1384 }
1385
1386 pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
1387
2e80a82a 1388 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
cdd6c482 1389 register_die_notifier(&perf_event_nmi_notifier);
004417a6
PZ
1390
1391 return 0;
59abbd1e 1392}
efc70d24 1393early_initcall(init_hw_perf_events);
4f6dbe4a 1394
56962b44
FW
1395void perf_callchain_kernel(struct perf_callchain_entry *entry,
1396 struct pt_regs *regs)
4f6dbe4a
DM
1397{
1398 unsigned long ksp, fp;
667f0cee
DM
1399#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1400 int graph = 0;
1401#endif
4f6dbe4a 1402
56962b44
FW
1403 stack_trace_flush();
1404
70791ce9 1405 perf_callchain_store(entry, regs->tpc);
4f6dbe4a
DM
1406
1407 ksp = regs->u_regs[UREG_I6];
1408 fp = ksp + STACK_BIAS;
1409 do {
1410 struct sparc_stackf *sf;
1411 struct pt_regs *regs;
1412 unsigned long pc;
1413
1414 if (!kstack_valid(current_thread_info(), fp))
1415 break;
1416
1417 sf = (struct sparc_stackf *) fp;
1418 regs = (struct pt_regs *) (sf + 1);
1419
1420 if (kstack_is_trap_frame(current_thread_info(), regs)) {
1421 if (user_mode(regs))
1422 break;
1423 pc = regs->tpc;
1424 fp = regs->u_regs[UREG_I6] + STACK_BIAS;
1425 } else {
1426 pc = sf->callers_pc;
1427 fp = (unsigned long)sf->fp + STACK_BIAS;
1428 }
70791ce9 1429 perf_callchain_store(entry, pc);
667f0cee
DM
1430#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1431 if ((pc + 8UL) == (unsigned long) &return_to_handler) {
1432 int index = current->curr_ret_stack;
1433 if (current->ret_stack && index >= graph) {
1434 pc = current->ret_stack[index - graph].ret;
70791ce9 1435 perf_callchain_store(entry, pc);
667f0cee
DM
1436 graph++;
1437 }
1438 }
1439#endif
4f6dbe4a
DM
1440 } while (entry->nr < PERF_MAX_STACK_DEPTH);
1441}
1442
56962b44
FW
1443static void perf_callchain_user_64(struct perf_callchain_entry *entry,
1444 struct pt_regs *regs)
4f6dbe4a
DM
1445{
1446 unsigned long ufp;
1447
70791ce9 1448 perf_callchain_store(entry, regs->tpc);
4f6dbe4a
DM
1449
1450 ufp = regs->u_regs[UREG_I6] + STACK_BIAS;
1451 do {
1452 struct sparc_stackf *usf, sf;
1453 unsigned long pc;
1454
1455 usf = (struct sparc_stackf *) ufp;
1456 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1457 break;
1458
1459 pc = sf.callers_pc;
1460 ufp = (unsigned long)sf.fp + STACK_BIAS;
70791ce9 1461 perf_callchain_store(entry, pc);
4f6dbe4a
DM
1462 } while (entry->nr < PERF_MAX_STACK_DEPTH);
1463}
1464
56962b44
FW
1465static void perf_callchain_user_32(struct perf_callchain_entry *entry,
1466 struct pt_regs *regs)
4f6dbe4a
DM
1467{
1468 unsigned long ufp;
1469
70791ce9 1470 perf_callchain_store(entry, regs->tpc);
4f6dbe4a 1471
9e8307ec 1472 ufp = regs->u_regs[UREG_I6] & 0xffffffffUL;
4f6dbe4a
DM
1473 do {
1474 struct sparc_stackf32 *usf, sf;
1475 unsigned long pc;
1476
1477 usf = (struct sparc_stackf32 *) ufp;
1478 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1479 break;
1480
1481 pc = sf.callers_pc;
1482 ufp = (unsigned long)sf.fp;
70791ce9 1483 perf_callchain_store(entry, pc);
4f6dbe4a
DM
1484 } while (entry->nr < PERF_MAX_STACK_DEPTH);
1485}
1486
56962b44
FW
1487void
1488perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
4f6dbe4a 1489{
56962b44
FW
1490 flushw_user();
1491 if (test_thread_flag(TIF_32BIT))
1492 perf_callchain_user_32(entry, regs);
1493 else
1494 perf_callchain_user_64(entry, regs);
4f6dbe4a 1495}