]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - arch/sparc/kernel/smp_64.c
Replace <asm/uaccess.h> with <linux/uaccess.h> globally
[mirror_ubuntu-zesty-kernel.git] / arch / sparc / kernel / smp_64.c
CommitLineData
1da177e4
LT
1/* smp.c: Sparc64 SMP support.
2 *
cf3d7c1e 3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
1da177e4
LT
4 */
5
066bcaca 6#include <linux/export.h>
1da177e4
LT
7#include <linux/kernel.h>
8#include <linux/sched.h>
9#include <linux/mm.h>
10#include <linux/pagemap.h>
11#include <linux/threads.h>
12#include <linux/smp.h>
1da177e4
LT
13#include <linux/interrupt.h>
14#include <linux/kernel_stat.h>
15#include <linux/delay.h>
16#include <linux/init.h>
17#include <linux/spinlock.h>
18#include <linux/fs.h>
19#include <linux/seq_file.h>
20#include <linux/cache.h>
21#include <linux/jiffies.h>
22#include <linux/profile.h>
73fffc03 23#include <linux/bootmem.h>
4fd78a5f 24#include <linux/vmalloc.h>
9960e9e8 25#include <linux/ftrace.h>
82960b85 26#include <linux/cpu.h>
5a0e3ad6 27#include <linux/slab.h>
d3091298 28#include <linux/kgdb.h>
1da177e4
LT
29
30#include <asm/head.h>
31#include <asm/ptrace.h>
60063497 32#include <linux/atomic.h>
1da177e4
LT
33#include <asm/tlbflush.h>
34#include <asm/mmu_context.h>
35#include <asm/cpudata.h>
27a2ef38
DM
36#include <asm/hvtramp.h>
37#include <asm/io.h>
cf3d7c1e 38#include <asm/timer.h>
59dec13b 39#include <asm/setup.h>
1da177e4
LT
40
41#include <asm/irq.h>
6d24c8dc 42#include <asm/irq_regs.h>
1da177e4
LT
43#include <asm/page.h>
44#include <asm/pgtable.h>
45#include <asm/oplib.h>
7c0f6ba6 46#include <linux/uaccess.h>
1da177e4
LT
47#include <asm/starfire.h>
48#include <asm/tlb.h>
56fb4df6 49#include <asm/sections.h>
07f8e5f3 50#include <asm/prom.h>
5cbc3073 51#include <asm/mdesc.h>
4f0234f4 52#include <asm/ldc.h>
e0204409 53#include <asm/hypervisor.h>
b62818e5 54#include <asm/pcr.h>
1da177e4 55
280ff974 56#include "cpumap.h"
a0c54a21 57#include "kernel.h"
280ff974 58
d5a7430d 59DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
f78eae2e
DM
60cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
61 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
4f0234f4 62
acc455cf 63cpumask_t cpu_core_sib_map[NR_CPUS] __read_mostly = {
64 [0 ... NR_CPUS-1] = CPU_MASK_NONE };
65
d624716b
AP
66cpumask_t cpu_core_sib_cache_map[NR_CPUS] __read_mostly = {
67 [0 ... NR_CPUS - 1] = CPU_MASK_NONE };
68
d5a7430d 69EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
4f0234f4 70EXPORT_SYMBOL(cpu_core_map);
acc455cf 71EXPORT_SYMBOL(cpu_core_sib_map);
d624716b 72EXPORT_SYMBOL(cpu_core_sib_cache_map);
4f0234f4 73
1da177e4 74static cpumask_t smp_commenced_mask;
1da177e4
LT
75
76void smp_info(struct seq_file *m)
77{
78 int i;
79
80 seq_printf(m, "State:\n");
394e3902
AM
81 for_each_online_cpu(i)
82 seq_printf(m, "CPU%d:\t\tonline\n", i);
1da177e4
LT
83}
84
85void smp_bogo(struct seq_file *m)
86{
87 int i;
88
394e3902
AM
89 for_each_online_cpu(i)
90 seq_printf(m,
394e3902 91 "Cpu%dClkTck\t: %016lx\n",
394e3902 92 i, cpu_data(i).clock_tick);
1da177e4
LT
93}
94
112f4871 95extern void setup_sparc64_timer(void);
1da177e4
LT
96
97static volatile unsigned long callin_flag = 0;
98
2066aadd 99void smp_callin(void)
1da177e4
LT
100{
101 int cpuid = hard_smp_processor_id();
102
56fb4df6 103 __local_per_cpu_offset = __per_cpu_offset(cpuid);
1da177e4 104
4a07e646 105 if (tlb_type == hypervisor)
490384e7 106 sun4v_ktsb_register();
481295f9 107
56fb4df6 108 __flush_tlb_all();
1da177e4 109
112f4871 110 setup_sparc64_timer();
1da177e4 111
816242da
DM
112 if (cheetah_pcache_forced_on)
113 cheetah_enable_pcache();
114
1da177e4
LT
115 callin_flag = 1;
116 __asm__ __volatile__("membar #Sync\n\t"
117 "flush %%g6" : : : "memory");
118
119 /* Clear this or we will die instantly when we
120 * schedule back to this idler...
121 */
db7d9a4e 122 current_thread_info()->new_child = 0;
1da177e4
LT
123
124 /* Attach to the address space of init_task. */
125 atomic_inc(&init_mm.mm_count);
126 current->active_mm = &init_mm;
127
82960b85
DM
128 /* inform the notifiers about the new cpu */
129 notify_cpu_starting(cpuid);
130
fb1fece5 131 while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
4f07118f 132 rmb();
1da177e4 133
fb1fece5 134 set_cpu_online(cpuid, true);
5bfb5d69
NP
135
136 /* idle thread is expected to have preempt disabled */
137 preempt_disable();
87fa05ae 138
ce2521bf
KT
139 local_irq_enable();
140
fc6d73d6 141 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
1da177e4
LT
142}
143
144void cpu_panic(void)
145{
146 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
147 panic("SMP bolixed\n");
148}
149
1da177e4
LT
150/* This tick register synchronization scheme is taken entirely from
151 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
152 *
153 * The only change I've made is to rework it so that the master
154 * initiates the synchonization instead of the slave. -DaveM
155 */
156
157#define MASTER 0
158#define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
159
160#define NUM_ROUNDS 64 /* magic value */
161#define NUM_ITERS 5 /* likewise */
162
49b6c01f 163static DEFINE_RAW_SPINLOCK(itc_sync_lock);
1da177e4
LT
164static unsigned long go[SLAVE + 1];
165
166#define DEBUG_TICK_SYNC 0
167
168static inline long get_delta (long *rt, long *master)
169{
170 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
171 unsigned long tcenter, t0, t1, tm;
172 unsigned long i;
173
174 for (i = 0; i < NUM_ITERS; i++) {
175 t0 = tick_ops->get_tick();
176 go[MASTER] = 1;
293666b7 177 membar_safe("#StoreLoad");
1da177e4 178 while (!(tm = go[SLAVE]))
4f07118f 179 rmb();
1da177e4 180 go[SLAVE] = 0;
4f07118f 181 wmb();
1da177e4
LT
182 t1 = tick_ops->get_tick();
183
184 if (t1 - t0 < best_t1 - best_t0)
185 best_t0 = t0, best_t1 = t1, best_tm = tm;
186 }
187
188 *rt = best_t1 - best_t0;
189 *master = best_tm - best_t0;
190
191 /* average best_t0 and best_t1 without overflow: */
192 tcenter = (best_t0/2 + best_t1/2);
193 if (best_t0 % 2 + best_t1 % 2 == 2)
194 tcenter++;
195 return tcenter - best_tm;
196}
197
198void smp_synchronize_tick_client(void)
199{
200 long i, delta, adj, adjust_latency = 0, done = 0;
c6fee081 201 unsigned long flags, rt, master_time_stamp;
1da177e4
LT
202#if DEBUG_TICK_SYNC
203 struct {
204 long rt; /* roundtrip time */
205 long master; /* master's timestamp */
206 long diff; /* difference between midpoint and master's timestamp */
207 long lat; /* estimate of itc adjustment latency */
208 } t[NUM_ROUNDS];
209#endif
210
211 go[MASTER] = 1;
212
213 while (go[MASTER])
4f07118f 214 rmb();
1da177e4
LT
215
216 local_irq_save(flags);
217 {
218 for (i = 0; i < NUM_ROUNDS; i++) {
219 delta = get_delta(&rt, &master_time_stamp);
c6fee081 220 if (delta == 0)
1da177e4 221 done = 1; /* let's lock on to this... */
1da177e4
LT
222
223 if (!done) {
224 if (i > 0) {
225 adjust_latency += -delta;
226 adj = -delta + adjust_latency/4;
227 } else
228 adj = -delta;
229
112f4871 230 tick_ops->add_tick(adj);
1da177e4
LT
231 }
232#if DEBUG_TICK_SYNC
233 t[i].rt = rt;
234 t[i].master = master_time_stamp;
235 t[i].diff = delta;
236 t[i].lat = adjust_latency/4;
237#endif
238 }
239 }
240 local_irq_restore(flags);
241
242#if DEBUG_TICK_SYNC
243 for (i = 0; i < NUM_ROUNDS; i++)
244 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
245 t[i].rt, t[i].master, t[i].diff, t[i].lat);
246#endif
247
519c4d2d
JP
248 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
249 "(last diff %ld cycles, maxerr %lu cycles)\n",
250 smp_processor_id(), delta, rt);
1da177e4
LT
251}
252
253static void smp_start_sync_tick_client(int cpu);
254
255static void smp_synchronize_one_tick(int cpu)
256{
257 unsigned long flags, i;
258
259 go[MASTER] = 0;
260
261 smp_start_sync_tick_client(cpu);
262
263 /* wait for client to be ready */
264 while (!go[MASTER])
4f07118f 265 rmb();
1da177e4
LT
266
267 /* now let the client proceed into his loop */
268 go[MASTER] = 0;
293666b7 269 membar_safe("#StoreLoad");
1da177e4 270
49b6c01f 271 raw_spin_lock_irqsave(&itc_sync_lock, flags);
1da177e4
LT
272 {
273 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
274 while (!go[MASTER])
4f07118f 275 rmb();
1da177e4 276 go[MASTER] = 0;
4f07118f 277 wmb();
1da177e4 278 go[SLAVE] = tick_ops->get_tick();
293666b7 279 membar_safe("#StoreLoad");
1da177e4
LT
280 }
281 }
49b6c01f 282 raw_spin_unlock_irqrestore(&itc_sync_lock, flags);
1da177e4
LT
283}
284
b14f5c10 285#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
2066aadd
PG
286static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
287 void **descrp)
b14f5c10
DM
288{
289 extern unsigned long sparc64_ttable_tl0;
290 extern unsigned long kern_locked_tte_data;
b14f5c10
DM
291 struct hvtramp_descr *hdesc;
292 unsigned long trampoline_ra;
293 struct trap_per_cpu *tb;
294 u64 tte_vaddr, tte_data;
295 unsigned long hv_err;
64658743 296 int i;
b14f5c10 297
64658743
DM
298 hdesc = kzalloc(sizeof(*hdesc) +
299 (sizeof(struct hvtramp_mapping) *
300 num_kernel_image_mappings - 1),
301 GFP_KERNEL);
b14f5c10 302 if (!hdesc) {
27a2ef38 303 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
b14f5c10
DM
304 "hvtramp_descr.\n");
305 return;
306 }
557fe0e8 307 *descrp = hdesc;
b14f5c10
DM
308
309 hdesc->cpu = cpu;
64658743 310 hdesc->num_mappings = num_kernel_image_mappings;
b14f5c10
DM
311
312 tb = &trap_block[cpu];
b14f5c10
DM
313
314 hdesc->fault_info_va = (unsigned long) &tb->fault_info;
315 hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
316
317 hdesc->thread_reg = thread_reg;
318
319 tte_vaddr = (unsigned long) KERNBASE;
320 tte_data = kern_locked_tte_data;
321
64658743
DM
322 for (i = 0; i < hdesc->num_mappings; i++) {
323 hdesc->maps[i].vaddr = tte_vaddr;
324 hdesc->maps[i].tte = tte_data;
b14f5c10
DM
325 tte_vaddr += 0x400000;
326 tte_data += 0x400000;
b14f5c10
DM
327 }
328
329 trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
330
331 hv_err = sun4v_cpu_start(cpu, trampoline_ra,
332 kimage_addr_to_ra(&sparc64_ttable_tl0),
333 __pa(hdesc));
e0204409
DM
334 if (hv_err)
335 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
336 "gives error %lu\n", hv_err);
b14f5c10
DM
337}
338#endif
339
1da177e4
LT
340extern unsigned long sparc64_cpu_startup;
341
342/* The OBP cpu startup callback truncates the 3rd arg cookie to
343 * 32-bits (I think) so to be safe we have it read the pointer
344 * contained here so we work on >4GB machines. -DaveM
345 */
346static struct thread_info *cpu_new_thread = NULL;
347
2066aadd 348static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
1da177e4
LT
349{
350 unsigned long entry =
351 (unsigned long)(&sparc64_cpu_startup);
352 unsigned long cookie =
353 (unsigned long)(&cpu_new_thread);
557fe0e8 354 void *descr = NULL;
7890f794 355 int timeout, ret;
1da177e4 356
1da177e4 357 callin_flag = 0;
f0a2bc7e 358 cpu_new_thread = task_thread_info(idle);
1da177e4 359
7890f794 360 if (tlb_type == hypervisor) {
b14f5c10 361#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
4f0234f4
DM
362 if (ldom_domaining_enabled)
363 ldom_startcpu_cpuid(cpu,
557fe0e8
DM
364 (unsigned long) cpu_new_thread,
365 &descr);
4f0234f4
DM
366 else
367#endif
368 prom_startcpu_cpuid(cpu, entry, cookie);
7890f794 369 } else {
5cbc3073 370 struct device_node *dp = of_find_node_by_cpuid(cpu);
7890f794 371
6016a363 372 prom_startcpu(dp->phandle, entry, cookie);
7890f794 373 }
1da177e4 374
4f0234f4 375 for (timeout = 0; timeout < 50000; timeout++) {
1da177e4
LT
376 if (callin_flag)
377 break;
378 udelay(100);
379 }
72aff53f 380
1da177e4
LT
381 if (callin_flag) {
382 ret = 0;
383 } else {
384 printk("Processor %d is stuck.\n", cpu);
1da177e4
LT
385 ret = -ENODEV;
386 }
387 cpu_new_thread = NULL;
388
557fe0e8 389 kfree(descr);
b37d40d1 390
1da177e4
LT
391 return ret;
392}
393
394static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
395{
396 u64 result, target;
397 int stuck, tmp;
398
399 if (this_is_starfire) {
400 /* map to real upaid */
401 cpu = (((cpu & 0x3c) << 1) |
402 ((cpu & 0x40) >> 4) |
403 (cpu & 0x3));
404 }
405
406 target = (cpu << 14) | 0x70;
407again:
408 /* Ok, this is the real Spitfire Errata #54.
409 * One must read back from a UDB internal register
410 * after writes to the UDB interrupt dispatch, but
411 * before the membar Sync for that write.
412 * So we use the high UDB control register (ASI 0x7f,
413 * ADDR 0x20) for the dummy read. -DaveM
414 */
415 tmp = 0x40;
416 __asm__ __volatile__(
417 "wrpr %1, %2, %%pstate\n\t"
418 "stxa %4, [%0] %3\n\t"
419 "stxa %5, [%0+%8] %3\n\t"
420 "add %0, %8, %0\n\t"
421 "stxa %6, [%0+%8] %3\n\t"
422 "membar #Sync\n\t"
423 "stxa %%g0, [%7] %3\n\t"
424 "membar #Sync\n\t"
425 "mov 0x20, %%g1\n\t"
426 "ldxa [%%g1] 0x7f, %%g0\n\t"
427 "membar #Sync"
428 : "=r" (tmp)
429 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
430 "r" (data0), "r" (data1), "r" (data2), "r" (target),
431 "r" (0x10), "0" (tmp)
432 : "g1");
433
434 /* NOTE: PSTATE_IE is still clear. */
435 stuck = 100000;
436 do {
437 __asm__ __volatile__("ldxa [%%g0] %1, %0"
438 : "=r" (result)
439 : "i" (ASI_INTR_DISPATCH_STAT));
440 if (result == 0) {
441 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
442 : : "r" (pstate));
443 return;
444 }
445 stuck -= 1;
446 if (stuck == 0)
447 break;
448 } while (result & 0x1);
449 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
450 : : "r" (pstate));
451 if (stuck == 0) {
90181136 452 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
1da177e4
LT
453 smp_processor_id(), result);
454 } else {
455 udelay(2);
456 goto again;
457 }
458}
459
90f7ae8a 460static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
1da177e4 461{
90f7ae8a
DM
462 u64 *mondo, data0, data1, data2;
463 u16 *cpu_list;
1da177e4
LT
464 u64 pstate;
465 int i;
466
467 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
90f7ae8a
DM
468 cpu_list = __va(tb->cpu_list_pa);
469 mondo = __va(tb->cpu_mondo_block_pa);
470 data0 = mondo[0];
471 data1 = mondo[1];
472 data2 = mondo[2];
473 for (i = 0; i < cnt; i++)
474 spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
1da177e4
LT
475}
476
477/* Cheetah now allows to send the whole 64-bytes of data in the interrupt
478 * packet, but we have no use for that. However we do take advantage of
479 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
480 */
90f7ae8a 481static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
1da177e4 482{
22adb358 483 int nack_busy_id, is_jbus, need_more;
90f7ae8a
DM
484 u64 *mondo, pstate, ver, busy_mask;
485 u16 *cpu_list;
1da177e4 486
90f7ae8a
DM
487 cpu_list = __va(tb->cpu_list_pa);
488 mondo = __va(tb->cpu_mondo_block_pa);
cd5bc89d 489
1da177e4
LT
490 /* Unfortunately, someone at Sun had the brilliant idea to make the
491 * busy/nack fields hard-coded by ITID number for this Ultra-III
492 * derivative processor.
493 */
494 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
92704a1c
DM
495 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
496 (ver >> 32) == __SERRANO_ID);
1da177e4
LT
497
498 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
499
500retry:
22adb358 501 need_more = 0;
1da177e4
LT
502 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
503 : : "r" (pstate), "i" (PSTATE_IE));
504
505 /* Setup the dispatch data registers. */
506 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
507 "stxa %1, [%4] %6\n\t"
508 "stxa %2, [%5] %6\n\t"
509 "membar #Sync\n\t"
510 : /* no outputs */
90f7ae8a 511 : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
1da177e4
LT
512 "r" (0x40), "r" (0x50), "r" (0x60),
513 "i" (ASI_INTR_W));
514
515 nack_busy_id = 0;
0de56d1a 516 busy_mask = 0;
1da177e4
LT
517 {
518 int i;
519
90f7ae8a
DM
520 for (i = 0; i < cnt; i++) {
521 u64 target, nr;
522
523 nr = cpu_list[i];
524 if (nr == 0xffff)
525 continue;
1da177e4 526
90f7ae8a 527 target = (nr << 14) | 0x70;
0de56d1a 528 if (is_jbus) {
90f7ae8a 529 busy_mask |= (0x1UL << (nr * 2));
0de56d1a 530 } else {
1da177e4 531 target |= (nack_busy_id << 24);
0de56d1a
DM
532 busy_mask |= (0x1UL <<
533 (nack_busy_id * 2));
534 }
1da177e4
LT
535 __asm__ __volatile__(
536 "stxa %%g0, [%0] %1\n\t"
537 "membar #Sync\n\t"
538 : /* no outputs */
539 : "r" (target), "i" (ASI_INTR_W));
540 nack_busy_id++;
22adb358
DM
541 if (nack_busy_id == 32) {
542 need_more = 1;
543 break;
544 }
1da177e4
LT
545 }
546 }
547
548 /* Now, poll for completion. */
549 {
0de56d1a 550 u64 dispatch_stat, nack_mask;
1da177e4
LT
551 long stuck;
552
553 stuck = 100000 * nack_busy_id;
0de56d1a 554 nack_mask = busy_mask << 1;
1da177e4
LT
555 do {
556 __asm__ __volatile__("ldxa [%%g0] %1, %0"
557 : "=r" (dispatch_stat)
558 : "i" (ASI_INTR_DISPATCH_STAT));
0de56d1a 559 if (!(dispatch_stat & (busy_mask | nack_mask))) {
1da177e4
LT
560 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
561 : : "r" (pstate));
22adb358 562 if (unlikely(need_more)) {
90f7ae8a
DM
563 int i, this_cnt = 0;
564 for (i = 0; i < cnt; i++) {
565 if (cpu_list[i] == 0xffff)
566 continue;
567 cpu_list[i] = 0xffff;
568 this_cnt++;
569 if (this_cnt == 32)
22adb358
DM
570 break;
571 }
572 goto retry;
573 }
1da177e4
LT
574 return;
575 }
576 if (!--stuck)
577 break;
0de56d1a 578 } while (dispatch_stat & busy_mask);
1da177e4
LT
579
580 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
581 : : "r" (pstate));
582
0de56d1a 583 if (dispatch_stat & busy_mask) {
1da177e4
LT
584 /* Busy bits will not clear, continue instead
585 * of freezing up on this cpu.
586 */
90181136 587 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
1da177e4
LT
588 smp_processor_id(), dispatch_stat);
589 } else {
590 int i, this_busy_nack = 0;
591
592 /* Delay some random time with interrupts enabled
593 * to prevent deadlock.
594 */
595 udelay(2 * nack_busy_id);
596
597 /* Clear out the mask bits for cpus which did not
598 * NACK us.
599 */
90f7ae8a
DM
600 for (i = 0; i < cnt; i++) {
601 u64 check_mask, nr;
602
603 nr = cpu_list[i];
604 if (nr == 0xffff)
605 continue;
1da177e4 606
92704a1c 607 if (is_jbus)
90f7ae8a 608 check_mask = (0x2UL << (2*nr));
1da177e4
LT
609 else
610 check_mask = (0x2UL <<
611 this_busy_nack);
612 if ((dispatch_stat & check_mask) == 0)
90f7ae8a 613 cpu_list[i] = 0xffff;
1da177e4 614 this_busy_nack += 2;
22adb358
DM
615 if (this_busy_nack == 64)
616 break;
1da177e4
LT
617 }
618
619 goto retry;
620 }
621 }
622}
623
1d2f1f90 624/* Multi-cpu list version. */
90f7ae8a 625static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
a43fe0e7 626{
ed4d9c66 627 int retries, this_cpu, prev_sent, i, saw_cpu_error;
c02a5119 628 unsigned long status;
b830ab66 629 u16 *cpu_list;
17f34f0e 630
b830ab66 631 this_cpu = smp_processor_id();
1d2f1f90 632
b830ab66
DM
633 cpu_list = __va(tb->cpu_list_pa);
634
ed4d9c66 635 saw_cpu_error = 0;
1d2f1f90 636 retries = 0;
3cab0c3e 637 prev_sent = 0;
1d2f1f90 638 do {
3cab0c3e 639 int forward_progress, n_sent;
1d2f1f90 640
b830ab66
DM
641 status = sun4v_cpu_mondo_send(cnt,
642 tb->cpu_list_pa,
643 tb->cpu_mondo_block_pa);
644
645 /* HV_EOK means all cpus received the xcall, we're done. */
646 if (likely(status == HV_EOK))
1d2f1f90 647 break;
b830ab66 648
3cab0c3e
DM
649 /* First, see if we made any forward progress.
650 *
651 * The hypervisor indicates successful sends by setting
652 * cpu list entries to the value 0xffff.
b830ab66 653 */
3cab0c3e 654 n_sent = 0;
b830ab66 655 for (i = 0; i < cnt; i++) {
3cab0c3e
DM
656 if (likely(cpu_list[i] == 0xffff))
657 n_sent++;
1d2f1f90
DM
658 }
659
3cab0c3e
DM
660 forward_progress = 0;
661 if (n_sent > prev_sent)
662 forward_progress = 1;
663
664 prev_sent = n_sent;
665
b830ab66
DM
666 /* If we get a HV_ECPUERROR, then one or more of the cpus
667 * in the list are in error state. Use the cpu_state()
668 * hypervisor call to find out which cpus are in error state.
669 */
670 if (unlikely(status == HV_ECPUERROR)) {
671 for (i = 0; i < cnt; i++) {
672 long err;
673 u16 cpu;
674
675 cpu = cpu_list[i];
676 if (cpu == 0xffff)
677 continue;
678
679 err = sun4v_cpu_state(cpu);
ed4d9c66
DM
680 if (err == HV_CPU_STATE_ERROR) {
681 saw_cpu_error = (cpu + 1);
3cab0c3e 682 cpu_list[i] = 0xffff;
b830ab66
DM
683 }
684 }
685 } else if (unlikely(status != HV_EWOULDBLOCK))
686 goto fatal_mondo_error;
687
3cab0c3e
DM
688 /* Don't bother rewriting the CPU list, just leave the
689 * 0xffff and non-0xffff entries in there and the
690 * hypervisor will do the right thing.
691 *
692 * Only advance timeout state if we didn't make any
693 * forward progress.
694 */
b830ab66
DM
695 if (unlikely(!forward_progress)) {
696 if (unlikely(++retries > 10000))
697 goto fatal_mondo_timeout;
698
699 /* Delay a little bit to let other cpus catch up
700 * on their cpu mondo queue work.
701 */
702 udelay(2 * cnt);
703 }
1d2f1f90
DM
704 } while (1);
705
ed4d9c66 706 if (unlikely(saw_cpu_error))
b830ab66
DM
707 goto fatal_mondo_cpu_error;
708
709 return;
710
711fatal_mondo_cpu_error:
712 printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
ed4d9c66
DM
713 "(including %d) were in error state\n",
714 this_cpu, saw_cpu_error - 1);
b830ab66
DM
715 return;
716
717fatal_mondo_timeout:
b830ab66
DM
718 printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
719 " progress after %d retries.\n",
720 this_cpu, retries);
721 goto dump_cpu_list_and_out;
722
723fatal_mondo_error:
b830ab66
DM
724 printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
725 this_cpu, status);
726 printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
727 "mondo_block_pa(%lx)\n",
728 this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
729
730dump_cpu_list_and_out:
731 printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
732 for (i = 0; i < cnt; i++)
733 printk("%u ", cpu_list[i]);
734 printk("]\n");
1d2f1f90 735}
a43fe0e7 736
90f7ae8a 737static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
deb16999
DM
738
739static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
740{
90f7ae8a
DM
741 struct trap_per_cpu *tb;
742 int this_cpu, i, cnt;
c02a5119 743 unsigned long flags;
90f7ae8a
DM
744 u16 *cpu_list;
745 u64 *mondo;
c02a5119
DM
746
747 /* We have to do this whole thing with interrupts fully disabled.
748 * Otherwise if we send an xcall from interrupt context it will
749 * corrupt both our mondo block and cpu list state.
750 *
751 * One consequence of this is that we cannot use timeout mechanisms
752 * that depend upon interrupts being delivered locally. So, for
753 * example, we cannot sample jiffies and expect it to advance.
754 *
755 * Fortunately, udelay() uses %stick/%tick so we can use that.
756 */
757 local_irq_save(flags);
90f7ae8a
DM
758
759 this_cpu = smp_processor_id();
760 tb = &trap_block[this_cpu];
761
762 mondo = __va(tb->cpu_mondo_block_pa);
763 mondo[0] = data0;
764 mondo[1] = data1;
765 mondo[2] = data2;
766 wmb();
767
768 cpu_list = __va(tb->cpu_list_pa);
769
770 /* Setup the initial cpu list. */
771 cnt = 0;
8e757281 772 for_each_cpu(i, mask) {
90f7ae8a
DM
773 if (i == this_cpu || !cpu_online(i))
774 continue;
775 cpu_list[cnt++] = i;
776 }
777
778 if (cnt)
779 xcall_deliver_impl(tb, cnt);
780
c02a5119 781 local_irq_restore(flags);
deb16999 782}
5e0797e5 783
91a4231c
DM
784/* Send cross call to all processors mentioned in MASK_P
785 * except self. Really, there are only two cases currently,
fb1fece5 786 * "cpu_online_mask" and "mm_cpumask(mm)".
1da177e4 787 */
ae583885 788static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
1da177e4
LT
789{
790 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
1da177e4 791
ae583885
DM
792 xcall_deliver(data0, data1, data2, mask);
793}
1da177e4 794
ae583885
DM
795/* Send cross call to all processors except self. */
796static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
797{
fb1fece5 798 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
1da177e4
LT
799}
800
801extern unsigned long xcall_sync_tick;
802
803static void smp_start_sync_tick_client(int cpu)
804{
24445a4a 805 xcall_deliver((u64) &xcall_sync_tick, 0, 0,
fb1fece5 806 cpumask_of(cpu));
1da177e4
LT
807}
808
1da177e4
LT
809extern unsigned long xcall_call_function;
810
f46df02a 811void arch_send_call_function_ipi_mask(const struct cpumask *mask)
1da177e4 812{
f46df02a 813 xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
d172ad18 814}
1da177e4 815
d172ad18 816extern unsigned long xcall_call_function_single;
1da177e4 817
d172ad18
DM
818void arch_send_call_function_single_ipi(int cpu)
819{
19926630 820 xcall_deliver((u64) &xcall_call_function_single, 0, 0,
fb1fece5 821 cpumask_of(cpu));
1da177e4
LT
822}
823
9960e9e8 824void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
1da177e4 825{
d172ad18 826 clear_softint(1 << irq);
ab5c7809 827 irq_enter();
d172ad18 828 generic_smp_call_function_interrupt();
ab5c7809 829 irq_exit();
d172ad18 830}
1da177e4 831
9960e9e8 832void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
d172ad18 833{
1da177e4 834 clear_softint(1 << irq);
ab5c7809 835 irq_enter();
d172ad18 836 generic_smp_call_function_single_interrupt();
ab5c7809 837 irq_exit();
1da177e4
LT
838}
839
bd40791e
DM
840static void tsb_sync(void *info)
841{
6f25f398 842 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
bd40791e
DM
843 struct mm_struct *mm = info;
844
42b2aa86 845 /* It is not valid to test "current->active_mm == mm" here.
6f25f398
DM
846 *
847 * The value of "current" is not changed atomically with
848 * switch_mm(). But that's OK, we just need to check the
849 * current cpu's trap block PGD physical address.
850 */
851 if (tp->pgd_paddr == __pa(mm->pgd))
bd40791e
DM
852 tsb_context_switch(mm);
853}
854
855void smp_tsb_sync(struct mm_struct *mm)
856{
81f1adf0 857 smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
bd40791e
DM
858}
859
1da177e4 860extern unsigned long xcall_flush_tlb_mm;
f36391d2 861extern unsigned long xcall_flush_tlb_page;
1da177e4 862extern unsigned long xcall_flush_tlb_kernel_range;
93dae5b7 863extern unsigned long xcall_fetch_glob_regs;
916ca14a
DM
864extern unsigned long xcall_fetch_glob_pmu;
865extern unsigned long xcall_fetch_glob_pmu_n4;
1da177e4 866extern unsigned long xcall_receive_signal;
ee29074d 867extern unsigned long xcall_new_mmu_context_version;
e2fdd7fd
DM
868#ifdef CONFIG_KGDB
869extern unsigned long xcall_kgdb_capture;
870#endif
1da177e4
LT
871
872#ifdef DCACHE_ALIASING_POSSIBLE
873extern unsigned long xcall_flush_dcache_page_cheetah;
874#endif
875extern unsigned long xcall_flush_dcache_page_spitfire;
876
d979f179 877static inline void __local_flush_dcache_page(struct page *page)
1da177e4
LT
878{
879#ifdef DCACHE_ALIASING_POSSIBLE
880 __flush_dcache_page(page_address(page),
881 ((tlb_type == spitfire) &&
882 page_mapping(page) != NULL));
883#else
884 if (page_mapping(page) != NULL &&
885 tlb_type == spitfire)
886 __flush_icache_page(__pa(page_address(page)));
887#endif
888}
889
890void smp_flush_dcache_page_impl(struct page *page, int cpu)
891{
a43fe0e7
DM
892 int this_cpu;
893
894 if (tlb_type == hypervisor)
895 return;
1da177e4
LT
896
897#ifdef CONFIG_DEBUG_DCFLUSH
898 atomic_inc(&dcpage_flushes);
899#endif
a43fe0e7
DM
900
901 this_cpu = get_cpu();
902
1da177e4
LT
903 if (cpu == this_cpu) {
904 __local_flush_dcache_page(page);
905 } else if (cpu_online(cpu)) {
906 void *pg_addr = page_address(page);
622824db 907 u64 data0 = 0;
1da177e4
LT
908
909 if (tlb_type == spitfire) {
622824db 910 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
1da177e4
LT
911 if (page_mapping(page) != NULL)
912 data0 |= ((u64)1 << 32);
a43fe0e7 913 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1da177e4 914#ifdef DCACHE_ALIASING_POSSIBLE
622824db 915 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
1da177e4
LT
916#endif
917 }
622824db
DM
918 if (data0) {
919 xcall_deliver(data0, __pa(pg_addr),
fb1fece5 920 (u64) pg_addr, cpumask_of(cpu));
1da177e4 921#ifdef CONFIG_DEBUG_DCFLUSH
622824db 922 atomic_inc(&dcpage_flushes_xcall);
1da177e4 923#endif
622824db 924 }
1da177e4
LT
925 }
926
927 put_cpu();
928}
929
930void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
931{
622824db 932 void *pg_addr;
622824db 933 u64 data0;
a43fe0e7
DM
934
935 if (tlb_type == hypervisor)
936 return;
937
c6fee081 938 preempt_disable();
1da177e4 939
1da177e4
LT
940#ifdef CONFIG_DEBUG_DCFLUSH
941 atomic_inc(&dcpage_flushes);
942#endif
622824db
DM
943 data0 = 0;
944 pg_addr = page_address(page);
1da177e4
LT
945 if (tlb_type == spitfire) {
946 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
947 if (page_mapping(page) != NULL)
948 data0 |= ((u64)1 << 32);
a43fe0e7 949 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1da177e4
LT
950#ifdef DCACHE_ALIASING_POSSIBLE
951 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
1da177e4
LT
952#endif
953 }
622824db
DM
954 if (data0) {
955 xcall_deliver(data0, __pa(pg_addr),
fb1fece5 956 (u64) pg_addr, cpu_online_mask);
1da177e4 957#ifdef CONFIG_DEBUG_DCFLUSH
622824db 958 atomic_inc(&dcpage_flushes_xcall);
1da177e4 959#endif
622824db 960 }
1da177e4
LT
961 __local_flush_dcache_page(page);
962
c6fee081 963 preempt_enable();
1da177e4
LT
964}
965
9960e9e8 966void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
1da177e4 967{
a0663a79 968 struct mm_struct *mm;
ee29074d 969 unsigned long flags;
a0663a79 970
1da177e4 971 clear_softint(1 << irq);
a0663a79
DM
972
973 /* See if we need to allocate a new TLB context because
974 * the version of the one we are using is now out of date.
975 */
976 mm = current->active_mm;
ee29074d
DM
977 if (unlikely(!mm || (mm == &init_mm)))
978 return;
a0663a79 979
ee29074d 980 spin_lock_irqsave(&mm->context.lock, flags);
aac0aadf 981
ee29074d
DM
982 if (unlikely(!CTX_VALID(mm->context)))
983 get_new_mmu_context(mm);
aac0aadf 984
ee29074d 985 spin_unlock_irqrestore(&mm->context.lock, flags);
aac0aadf 986
ee29074d
DM
987 load_secondary_context(mm);
988 __flush_tlb_mm(CTX_HWBITS(mm->context),
989 SECONDARY_CONTEXT);
a0663a79
DM
990}
991
992void smp_new_mmu_context_version(void)
993{
ee29074d 994 smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
1da177e4
LT
995}
996
e2fdd7fd
DM
997#ifdef CONFIG_KGDB
998void kgdb_roundup_cpus(unsigned long flags)
999{
1000 smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1001}
1002#endif
1003
93dae5b7
DM
1004void smp_fetch_global_regs(void)
1005{
1006 smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1007}
93dae5b7 1008
916ca14a
DM
1009void smp_fetch_global_pmu(void)
1010{
1011 if (tlb_type == hypervisor &&
1012 sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
1013 smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
1014 else
1015 smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
1016}
1017
1da177e4
LT
1018/* We know that the window frames of the user have been flushed
1019 * to the stack before we get here because all callers of us
1020 * are flush_tlb_*() routines, and these run after flush_cache_*()
1021 * which performs the flushw.
1022 *
1023 * The SMP TLB coherency scheme we use works as follows:
1024 *
1025 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1026 * space has (potentially) executed on, this is the heuristic
1027 * we use to avoid doing cross calls.
1028 *
1029 * Also, for flushing from kswapd and also for clones, we
1030 * use cpu_vm_mask as the list of cpus to make run the TLB.
1031 *
1032 * 2) TLB context numbers are shared globally across all processors
1033 * in the system, this allows us to play several games to avoid
1034 * cross calls.
1035 *
1036 * One invariant is that when a cpu switches to a process, and
1037 * that processes tsk->active_mm->cpu_vm_mask does not have the
1038 * current cpu's bit set, that tlb context is flushed locally.
1039 *
1040 * If the address space is non-shared (ie. mm->count == 1) we avoid
1041 * cross calls when we want to flush the currently running process's
1042 * tlb state. This is done by clearing all cpu bits except the current
f9384d41 1043 * processor's in current->mm->cpu_vm_mask and performing the
1da177e4
LT
1044 * flush locally only. This will force any subsequent cpus which run
1045 * this task to flush the context from the local tlb if the process
1046 * migrates to another cpu (again).
1047 *
1048 * 3) For shared address spaces (threads) and swapping we bite the
1049 * bullet for most cases and perform the cross call (but only to
1050 * the cpus listed in cpu_vm_mask).
1051 *
1052 * The performance gain from "optimizing" away the cross call for threads is
1053 * questionable (in theory the big win for threads is the massive sharing of
1054 * address space state across processors).
1055 */
62dbec78
DM
1056
1057/* This currently is only used by the hugetlb arch pre-fault
1058 * hook on UltraSPARC-III+ and later when changing the pagesize
1059 * bits of the context register for an address space.
1060 */
1da177e4
LT
1061void smp_flush_tlb_mm(struct mm_struct *mm)
1062{
62dbec78
DM
1063 u32 ctx = CTX_HWBITS(mm->context);
1064 int cpu = get_cpu();
1da177e4 1065
62dbec78 1066 if (atomic_read(&mm->mm_users) == 1) {
81f1adf0 1067 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
62dbec78
DM
1068 goto local_flush_and_out;
1069 }
1da177e4 1070
62dbec78
DM
1071 smp_cross_call_masked(&xcall_flush_tlb_mm,
1072 ctx, 0, 0,
81f1adf0 1073 mm_cpumask(mm));
1da177e4 1074
62dbec78
DM
1075local_flush_and_out:
1076 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1da177e4 1077
62dbec78 1078 put_cpu();
1da177e4
LT
1079}
1080
f36391d2
DM
1081struct tlb_pending_info {
1082 unsigned long ctx;
1083 unsigned long nr;
1084 unsigned long *vaddrs;
1085};
1086
1087static void tlb_pending_func(void *info)
1088{
1089 struct tlb_pending_info *t = info;
1090
1091 __flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
1092}
1093
1da177e4
LT
1094void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1095{
1096 u32 ctx = CTX_HWBITS(mm->context);
f36391d2 1097 struct tlb_pending_info info;
1da177e4
LT
1098 int cpu = get_cpu();
1099
f36391d2
DM
1100 info.ctx = ctx;
1101 info.nr = nr;
1102 info.vaddrs = vaddrs;
1103
f9384d41 1104 if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
81f1adf0 1105 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
dedeb002 1106 else
f36391d2
DM
1107 smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
1108 &info, 1);
1da177e4 1109
1da177e4
LT
1110 __flush_tlb_pending(ctx, nr, vaddrs);
1111
1112 put_cpu();
1113}
1114
f36391d2
DM
1115void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
1116{
1117 unsigned long context = CTX_HWBITS(mm->context);
1118 int cpu = get_cpu();
1119
1120 if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1121 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1122 else
1123 smp_cross_call_masked(&xcall_flush_tlb_page,
1124 context, vaddr, 0,
1125 mm_cpumask(mm));
1126 __flush_tlb_page(context, vaddr);
1127
1128 put_cpu();
1129}
1130
1da177e4
LT
1131void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1132{
1133 start &= PAGE_MASK;
1134 end = PAGE_ALIGN(end);
1135 if (start != end) {
1136 smp_cross_call(&xcall_flush_tlb_kernel_range,
1137 0, start, end);
1138
1139 __flush_tlb_kernel_range(start, end);
1140 }
1141}
1142
1143/* CPU capture. */
1144/* #define CAPTURE_DEBUG */
1145extern unsigned long xcall_capture;
1146
1147static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1148static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1149static unsigned long penguins_are_doing_time;
1150
1151void smp_capture(void)
1152{
4f3316c2 1153 int result = atomic_add_return(1, &smp_capture_depth);
1da177e4
LT
1154
1155 if (result == 1) {
1156 int ncpus = num_online_cpus();
1157
1158#ifdef CAPTURE_DEBUG
1159 printk("CPU[%d]: Sending penguins to jail...",
1160 smp_processor_id());
1161#endif
1162 penguins_are_doing_time = 1;
1da177e4
LT
1163 atomic_inc(&smp_capture_registry);
1164 smp_cross_call(&xcall_capture, 0, 0, 0);
1165 while (atomic_read(&smp_capture_registry) != ncpus)
4f07118f 1166 rmb();
1da177e4
LT
1167#ifdef CAPTURE_DEBUG
1168 printk("done\n");
1169#endif
1170 }
1171}
1172
1173void smp_release(void)
1174{
1175 if (atomic_dec_and_test(&smp_capture_depth)) {
1176#ifdef CAPTURE_DEBUG
1177 printk("CPU[%d]: Giving pardon to "
1178 "imprisoned penguins\n",
1179 smp_processor_id());
1180#endif
1181 penguins_are_doing_time = 0;
293666b7 1182 membar_safe("#StoreLoad");
1da177e4
LT
1183 atomic_dec(&smp_capture_registry);
1184 }
1185}
1186
b4f4372f
DM
1187/* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1188 * set, so they can service tlb flush xcalls...
1da177e4
LT
1189 */
1190extern void prom_world(int);
96c6e0d8 1191
9960e9e8 1192void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1da177e4 1193{
1da177e4
LT
1194 clear_softint(1 << irq);
1195
1196 preempt_disable();
1197
1198 __asm__ __volatile__("flushw");
1da177e4
LT
1199 prom_world(1);
1200 atomic_inc(&smp_capture_registry);
293666b7 1201 membar_safe("#StoreLoad");
1da177e4 1202 while (penguins_are_doing_time)
4f07118f 1203 rmb();
1da177e4
LT
1204 atomic_dec(&smp_capture_registry);
1205 prom_world(0);
1206
1207 preempt_enable();
1208}
1209
1da177e4 1210/* /proc/profile writes can call this, don't __init it please. */
1da177e4
LT
1211int setup_profiling_timer(unsigned int multiplier)
1212{
777a4475 1213 return -EINVAL;
1da177e4
LT
1214}
1215
1216void __init smp_prepare_cpus(unsigned int max_cpus)
1217{
1da177e4
LT
1218}
1219
7c9503b8 1220void smp_prepare_boot_cpu(void)
7abea921 1221{
7abea921
DM
1222}
1223
5e0797e5
DM
1224void __init smp_setup_processor_id(void)
1225{
1226 if (tlb_type == spitfire)
deb16999 1227 xcall_deliver_impl = spitfire_xcall_deliver;
5e0797e5 1228 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
deb16999 1229 xcall_deliver_impl = cheetah_xcall_deliver;
5e0797e5 1230 else
deb16999 1231 xcall_deliver_impl = hypervisor_xcall_deliver;
5e0797e5
DM
1232}
1233
9b2f753e
AP
1234void __init smp_fill_in_cpu_possible_map(void)
1235{
1236 int possible_cpus = num_possible_cpus();
1237 int i;
1238
1239 if (possible_cpus > nr_cpu_ids)
1240 possible_cpus = nr_cpu_ids;
1241
1242 for (i = 0; i < possible_cpus; i++)
1243 set_cpu_possible(i, true);
1244 for (; i < NR_CPUS; i++)
1245 set_cpu_possible(i, false);
1246}
1247
7c9503b8 1248void smp_fill_in_sib_core_maps(void)
1da177e4 1249{
5cbc3073
DM
1250 unsigned int i;
1251
e0204409 1252 for_each_present_cpu(i) {
5cbc3073
DM
1253 unsigned int j;
1254
fb1fece5 1255 cpumask_clear(&cpu_core_map[i]);
5cbc3073 1256 if (cpu_data(i).core_id == 0) {
fb1fece5 1257 cpumask_set_cpu(i, &cpu_core_map[i]);
5cbc3073
DM
1258 continue;
1259 }
1260
e0204409 1261 for_each_present_cpu(j) {
5cbc3073
DM
1262 if (cpu_data(i).core_id ==
1263 cpu_data(j).core_id)
fb1fece5 1264 cpumask_set_cpu(j, &cpu_core_map[i]);
f78eae2e
DM
1265 }
1266 }
1267
acc455cf 1268 for_each_present_cpu(i) {
1269 unsigned int j;
1270
1271 for_each_present_cpu(j) {
d624716b
AP
1272 if (cpu_data(i).max_cache_id ==
1273 cpu_data(j).max_cache_id)
1274 cpumask_set_cpu(j, &cpu_core_sib_cache_map[i]);
1275
acc455cf 1276 if (cpu_data(i).sock_id == cpu_data(j).sock_id)
1277 cpumask_set_cpu(j, &cpu_core_sib_map[i]);
1278 }
1279 }
1280
e0204409 1281 for_each_present_cpu(i) {
f78eae2e
DM
1282 unsigned int j;
1283
fb1fece5 1284 cpumask_clear(&per_cpu(cpu_sibling_map, i));
f78eae2e 1285 if (cpu_data(i).proc_id == -1) {
fb1fece5 1286 cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
f78eae2e
DM
1287 continue;
1288 }
1289
e0204409 1290 for_each_present_cpu(j) {
f78eae2e
DM
1291 if (cpu_data(i).proc_id ==
1292 cpu_data(j).proc_id)
fb1fece5 1293 cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
5cbc3073
DM
1294 }
1295 }
1da177e4
LT
1296}
1297
2066aadd 1298int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1da177e4 1299{
f0a2bc7e 1300 int ret = smp_boot_one_cpu(cpu, tidle);
1da177e4
LT
1301
1302 if (!ret) {
fb1fece5
KM
1303 cpumask_set_cpu(cpu, &smp_commenced_mask);
1304 while (!cpu_online(cpu))
1da177e4 1305 mb();
fb1fece5 1306 if (!cpu_online(cpu)) {
1da177e4
LT
1307 ret = -ENODEV;
1308 } else {
02fead75
DM
1309 /* On SUN4V, writes to %tick and %stick are
1310 * not allowed.
1311 */
1312 if (tlb_type != hypervisor)
1313 smp_synchronize_one_tick(cpu);
1da177e4
LT
1314 }
1315 }
1316 return ret;
1317}
1318
4f0234f4 1319#ifdef CONFIG_HOTPLUG_CPU
e0204409
DM
1320void cpu_play_dead(void)
1321{
1322 int cpu = smp_processor_id();
1323 unsigned long pstate;
1324
1325 idle_task_exit();
1326
1327 if (tlb_type == hypervisor) {
1328 struct trap_per_cpu *tb = &trap_block[cpu];
1329
1330 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1331 tb->cpu_mondo_pa, 0);
1332 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1333 tb->dev_mondo_pa, 0);
1334 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1335 tb->resum_mondo_pa, 0);
1336 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1337 tb->nonresum_mondo_pa, 0);
1338 }
1339
fb1fece5 1340 cpumask_clear_cpu(cpu, &smp_commenced_mask);
e0204409
DM
1341 membar_safe("#Sync");
1342
1343 local_irq_disable();
1344
1345 __asm__ __volatile__(
1346 "rdpr %%pstate, %0\n\t"
1347 "wrpr %0, %1, %%pstate"
1348 : "=r" (pstate)
1349 : "i" (PSTATE_IE));
1350
1351 while (1)
1352 barrier();
1353}
1354
4f0234f4
DM
1355int __cpu_disable(void)
1356{
e0204409
DM
1357 int cpu = smp_processor_id();
1358 cpuinfo_sparc *c;
1359 int i;
1360
fb1fece5
KM
1361 for_each_cpu(i, &cpu_core_map[cpu])
1362 cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1363 cpumask_clear(&cpu_core_map[cpu]);
e0204409 1364
fb1fece5
KM
1365 for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1366 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1367 cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
e0204409
DM
1368
1369 c = &cpu_data(cpu);
1370
1371 c->core_id = 0;
1372 c->proc_id = -1;
1373
e0204409
DM
1374 smp_wmb();
1375
1376 /* Make sure no interrupts point to this cpu. */
1377 fixup_irqs();
1378
1379 local_irq_enable();
1380 mdelay(1);
1381 local_irq_disable();
1382
fb1fece5 1383 set_cpu_online(cpu, false);
4d084617 1384
280ff974
HP
1385 cpu_map_rebuild();
1386
e0204409 1387 return 0;
4f0234f4
DM
1388}
1389
1390void __cpu_die(unsigned int cpu)
1391{
e0204409
DM
1392 int i;
1393
1394 for (i = 0; i < 100; i++) {
1395 smp_rmb();
fb1fece5 1396 if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
e0204409
DM
1397 break;
1398 msleep(100);
1399 }
fb1fece5 1400 if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
e0204409
DM
1401 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1402 } else {
1403#if defined(CONFIG_SUN_LDOMS)
1404 unsigned long hv_err;
1405 int limit = 100;
1406
1407 do {
1408 hv_err = sun4v_cpu_stop(cpu);
1409 if (hv_err == HV_EOK) {
fb1fece5 1410 set_cpu_present(cpu, false);
e0204409
DM
1411 break;
1412 }
1413 } while (--limit > 0);
1414 if (limit <= 0) {
1415 printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1416 hv_err);
1417 }
1418#endif
1419 }
4f0234f4
DM
1420}
1421#endif
1422
1da177e4
LT
1423void __init smp_cpus_done(unsigned int max_cpus)
1424{
1da177e4
LT
1425}
1426
1da177e4
LT
1427void smp_send_reschedule(int cpu)
1428{
1a36265b
KT
1429 if (cpu == smp_processor_id()) {
1430 WARN_ON_ONCE(preemptible());
1431 set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1432 } else {
1433 xcall_deliver((u64) &xcall_receive_signal,
1434 0, 0, cpumask_of(cpu));
1435 }
19926630
DM
1436}
1437
9960e9e8 1438void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
19926630
DM
1439{
1440 clear_softint(1 << irq);
184748cc 1441 scheduler_ipi();
1da177e4
LT
1442}
1443
94ab5990
DK
1444static void stop_this_cpu(void *dummy)
1445{
1446 prom_stopself();
1447}
1448
1da177e4
LT
1449void smp_send_stop(void)
1450{
94ab5990
DK
1451 int cpu;
1452
1453 if (tlb_type == hypervisor) {
1454 for_each_online_cpu(cpu) {
1455 if (cpu == smp_processor_id())
1456 continue;
1457#ifdef CONFIG_SUN_LDOMS
1458 if (ldom_domaining_enabled) {
1459 unsigned long hv_err;
1460 hv_err = sun4v_cpu_stop(cpu);
1461 if (hv_err)
1462 printk(KERN_ERR "sun4v_cpu_stop() "
1463 "failed err=%lu\n", hv_err);
1464 } else
1465#endif
1466 prom_stopcpu_cpuid(cpu);
1467 }
1468 } else
1469 smp_call_function(stop_this_cpu, NULL, 0);
1da177e4
LT
1470}
1471
4fd78a5f
DM
1472/**
1473 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1474 * @cpu: cpu to allocate for
1475 * @size: size allocation in bytes
1476 * @align: alignment
1477 *
1478 * Allocate @size bytes aligned at @align for cpu @cpu. This wrapper
1479 * does the right thing for NUMA regardless of the current
1480 * configuration.
1481 *
1482 * RETURNS:
1483 * Pointer to the allocated area on success, NULL on failure.
1484 */
bcb2107f
TH
1485static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1486 size_t align)
4fd78a5f
DM
1487{
1488 const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1489#ifdef CONFIG_NEED_MULTIPLE_NODES
1490 int node = cpu_to_node(cpu);
1491 void *ptr;
1492
1493 if (!node_online(node) || !NODE_DATA(node)) {
1494 ptr = __alloc_bootmem(size, align, goal);
1495 pr_info("cpu %d has no node %d or node-local memory\n",
1496 cpu, node);
1497 pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1498 cpu, size, __pa(ptr));
1499 } else {
1500 ptr = __alloc_bootmem_node(NODE_DATA(node),
1501 size, align, goal);
1502 pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1503 "%016lx\n", cpu, size, node, __pa(ptr));
1504 }
1505 return ptr;
1506#else
1507 return __alloc_bootmem(size, align, goal);
1508#endif
1509}
1510
bcb2107f 1511static void __init pcpu_free_bootmem(void *ptr, size_t size)
4fd78a5f 1512{
bcb2107f
TH
1513 free_bootmem(__pa(ptr), size);
1514}
4fd78a5f 1515
a70c6913 1516static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
bcb2107f
TH
1517{
1518 if (cpu_to_node(from) == cpu_to_node(to))
1519 return LOCAL_DISTANCE;
1520 else
1521 return REMOTE_DISTANCE;
4fd78a5f
DM
1522}
1523
a70c6913
TH
1524static void __init pcpu_populate_pte(unsigned long addr)
1525{
1526 pgd_t *pgd = pgd_offset_k(addr);
1527 pud_t *pud;
1528 pmd_t *pmd;
1529
ac55c768
DM
1530 if (pgd_none(*pgd)) {
1531 pud_t *new;
1532
1533 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1534 pgd_populate(&init_mm, pgd, new);
1535 }
1536
a70c6913
TH
1537 pud = pud_offset(pgd, addr);
1538 if (pud_none(*pud)) {
1539 pmd_t *new;
1540
1541 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1542 pud_populate(&init_mm, pud, new);
1543 }
1544
1545 pmd = pmd_offset(pud, addr);
1546 if (!pmd_present(*pmd)) {
1547 pte_t *new;
1548
1549 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1550 pmd_populate_kernel(&init_mm, pmd, new);
1551 }
1552}
1553
73fffc03 1554void __init setup_per_cpu_areas(void)
1da177e4 1555{
bcb2107f
TH
1556 unsigned long delta;
1557 unsigned int cpu;
a70c6913
TH
1558 int rc = -EINVAL;
1559
1560 if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1561 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1562 PERCPU_DYNAMIC_RESERVE, 4 << 20,
1563 pcpu_cpu_distance,
1564 pcpu_alloc_bootmem,
1565 pcpu_free_bootmem);
1566 if (rc)
1567 pr_warning("PERCPU: %s allocator failed (%d), "
1568 "falling back to page size\n",
1569 pcpu_fc_names[pcpu_chosen_fc], rc);
1570 }
1571 if (rc < 0)
1572 rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1573 pcpu_alloc_bootmem,
1574 pcpu_free_bootmem,
1575 pcpu_populate_pte);
1576 if (rc < 0)
1577 panic("cannot initialize percpu area (err=%d)", rc);
5a089006 1578
4fd78a5f 1579 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
fb435d52
TH
1580 for_each_possible_cpu(cpu)
1581 __per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
951bc82c
DM
1582
1583 /* Setup %g5 for the boot cpu. */
1584 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
b696fdc2
DM
1585
1586 of_fill_in_cpu_data();
1587 if (tlb_type == hypervisor)
6ac5c610 1588 mdesc_fill_in_cpu_data(cpu_all_mask);
1da177e4 1589}