]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/sparc/kernel/smp_64.c
Merge remote-tracking branch 'regulator/fix/max77802' into regulator-linus
[mirror_ubuntu-artful-kernel.git] / arch / sparc / kernel / smp_64.c
CommitLineData
1da177e4
LT
1/* smp.c: Sparc64 SMP support.
2 *
cf3d7c1e 3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
1da177e4
LT
4 */
5
066bcaca 6#include <linux/export.h>
1da177e4 7#include <linux/kernel.h>
68e21be2 8#include <linux/sched/mm.h>
ef8bd77f 9#include <linux/sched/hotplug.h>
1da177e4
LT
10#include <linux/mm.h>
11#include <linux/pagemap.h>
12#include <linux/threads.h>
13#include <linux/smp.h>
1da177e4
LT
14#include <linux/interrupt.h>
15#include <linux/kernel_stat.h>
16#include <linux/delay.h>
17#include <linux/init.h>
18#include <linux/spinlock.h>
19#include <linux/fs.h>
20#include <linux/seq_file.h>
21#include <linux/cache.h>
22#include <linux/jiffies.h>
23#include <linux/profile.h>
73fffc03 24#include <linux/bootmem.h>
4fd78a5f 25#include <linux/vmalloc.h>
9960e9e8 26#include <linux/ftrace.h>
82960b85 27#include <linux/cpu.h>
5a0e3ad6 28#include <linux/slab.h>
d3091298 29#include <linux/kgdb.h>
1da177e4
LT
30
31#include <asm/head.h>
32#include <asm/ptrace.h>
60063497 33#include <linux/atomic.h>
1da177e4
LT
34#include <asm/tlbflush.h>
35#include <asm/mmu_context.h>
36#include <asm/cpudata.h>
27a2ef38
DM
37#include <asm/hvtramp.h>
38#include <asm/io.h>
cf3d7c1e 39#include <asm/timer.h>
59dec13b 40#include <asm/setup.h>
1da177e4
LT
41
42#include <asm/irq.h>
6d24c8dc 43#include <asm/irq_regs.h>
1da177e4
LT
44#include <asm/page.h>
45#include <asm/pgtable.h>
46#include <asm/oplib.h>
7c0f6ba6 47#include <linux/uaccess.h>
1da177e4
LT
48#include <asm/starfire.h>
49#include <asm/tlb.h>
56fb4df6 50#include <asm/sections.h>
07f8e5f3 51#include <asm/prom.h>
5cbc3073 52#include <asm/mdesc.h>
4f0234f4 53#include <asm/ldc.h>
e0204409 54#include <asm/hypervisor.h>
b62818e5 55#include <asm/pcr.h>
1da177e4 56
280ff974 57#include "cpumap.h"
a0c54a21 58#include "kernel.h"
280ff974 59
d5a7430d 60DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
f78eae2e
DM
61cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
62 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
4f0234f4 63
acc455cf 64cpumask_t cpu_core_sib_map[NR_CPUS] __read_mostly = {
65 [0 ... NR_CPUS-1] = CPU_MASK_NONE };
66
d624716b
AP
67cpumask_t cpu_core_sib_cache_map[NR_CPUS] __read_mostly = {
68 [0 ... NR_CPUS - 1] = CPU_MASK_NONE };
69
d5a7430d 70EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
4f0234f4 71EXPORT_SYMBOL(cpu_core_map);
acc455cf 72EXPORT_SYMBOL(cpu_core_sib_map);
d624716b 73EXPORT_SYMBOL(cpu_core_sib_cache_map);
4f0234f4 74
1da177e4 75static cpumask_t smp_commenced_mask;
1da177e4
LT
76
77void smp_info(struct seq_file *m)
78{
79 int i;
80
81 seq_printf(m, "State:\n");
394e3902
AM
82 for_each_online_cpu(i)
83 seq_printf(m, "CPU%d:\t\tonline\n", i);
1da177e4
LT
84}
85
86void smp_bogo(struct seq_file *m)
87{
88 int i;
89
394e3902
AM
90 for_each_online_cpu(i)
91 seq_printf(m,
394e3902 92 "Cpu%dClkTck\t: %016lx\n",
394e3902 93 i, cpu_data(i).clock_tick);
1da177e4
LT
94}
95
112f4871 96extern void setup_sparc64_timer(void);
1da177e4
LT
97
98static volatile unsigned long callin_flag = 0;
99
2066aadd 100void smp_callin(void)
1da177e4
LT
101{
102 int cpuid = hard_smp_processor_id();
103
56fb4df6 104 __local_per_cpu_offset = __per_cpu_offset(cpuid);
1da177e4 105
4a07e646 106 if (tlb_type == hypervisor)
490384e7 107 sun4v_ktsb_register();
481295f9 108
56fb4df6 109 __flush_tlb_all();
1da177e4 110
112f4871 111 setup_sparc64_timer();
1da177e4 112
816242da
DM
113 if (cheetah_pcache_forced_on)
114 cheetah_enable_pcache();
115
1da177e4
LT
116 callin_flag = 1;
117 __asm__ __volatile__("membar #Sync\n\t"
118 "flush %%g6" : : : "memory");
119
120 /* Clear this or we will die instantly when we
121 * schedule back to this idler...
122 */
db7d9a4e 123 current_thread_info()->new_child = 0;
1da177e4
LT
124
125 /* Attach to the address space of init_task. */
f1f10076 126 mmgrab(&init_mm);
1da177e4
LT
127 current->active_mm = &init_mm;
128
82960b85
DM
129 /* inform the notifiers about the new cpu */
130 notify_cpu_starting(cpuid);
131
fb1fece5 132 while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
4f07118f 133 rmb();
1da177e4 134
fb1fece5 135 set_cpu_online(cpuid, true);
5bfb5d69
NP
136
137 /* idle thread is expected to have preempt disabled */
138 preempt_disable();
87fa05ae 139
ce2521bf
KT
140 local_irq_enable();
141
fc6d73d6 142 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
1da177e4
LT
143}
144
145void cpu_panic(void)
146{
147 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
148 panic("SMP bolixed\n");
149}
150
1da177e4
LT
151/* This tick register synchronization scheme is taken entirely from
152 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
153 *
154 * The only change I've made is to rework it so that the master
155 * initiates the synchonization instead of the slave. -DaveM
156 */
157
158#define MASTER 0
159#define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
160
161#define NUM_ROUNDS 64 /* magic value */
162#define NUM_ITERS 5 /* likewise */
163
49b6c01f 164static DEFINE_RAW_SPINLOCK(itc_sync_lock);
1da177e4
LT
165static unsigned long go[SLAVE + 1];
166
167#define DEBUG_TICK_SYNC 0
168
169static inline long get_delta (long *rt, long *master)
170{
171 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
172 unsigned long tcenter, t0, t1, tm;
173 unsigned long i;
174
175 for (i = 0; i < NUM_ITERS; i++) {
176 t0 = tick_ops->get_tick();
177 go[MASTER] = 1;
293666b7 178 membar_safe("#StoreLoad");
1da177e4 179 while (!(tm = go[SLAVE]))
4f07118f 180 rmb();
1da177e4 181 go[SLAVE] = 0;
4f07118f 182 wmb();
1da177e4
LT
183 t1 = tick_ops->get_tick();
184
185 if (t1 - t0 < best_t1 - best_t0)
186 best_t0 = t0, best_t1 = t1, best_tm = tm;
187 }
188
189 *rt = best_t1 - best_t0;
190 *master = best_tm - best_t0;
191
192 /* average best_t0 and best_t1 without overflow: */
193 tcenter = (best_t0/2 + best_t1/2);
194 if (best_t0 % 2 + best_t1 % 2 == 2)
195 tcenter++;
196 return tcenter - best_tm;
197}
198
199void smp_synchronize_tick_client(void)
200{
201 long i, delta, adj, adjust_latency = 0, done = 0;
c6fee081 202 unsigned long flags, rt, master_time_stamp;
1da177e4
LT
203#if DEBUG_TICK_SYNC
204 struct {
205 long rt; /* roundtrip time */
206 long master; /* master's timestamp */
207 long diff; /* difference between midpoint and master's timestamp */
208 long lat; /* estimate of itc adjustment latency */
209 } t[NUM_ROUNDS];
210#endif
211
212 go[MASTER] = 1;
213
214 while (go[MASTER])
4f07118f 215 rmb();
1da177e4
LT
216
217 local_irq_save(flags);
218 {
219 for (i = 0; i < NUM_ROUNDS; i++) {
220 delta = get_delta(&rt, &master_time_stamp);
c6fee081 221 if (delta == 0)
1da177e4 222 done = 1; /* let's lock on to this... */
1da177e4
LT
223
224 if (!done) {
225 if (i > 0) {
226 adjust_latency += -delta;
227 adj = -delta + adjust_latency/4;
228 } else
229 adj = -delta;
230
112f4871 231 tick_ops->add_tick(adj);
1da177e4
LT
232 }
233#if DEBUG_TICK_SYNC
234 t[i].rt = rt;
235 t[i].master = master_time_stamp;
236 t[i].diff = delta;
237 t[i].lat = adjust_latency/4;
238#endif
239 }
240 }
241 local_irq_restore(flags);
242
243#if DEBUG_TICK_SYNC
244 for (i = 0; i < NUM_ROUNDS; i++)
245 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
246 t[i].rt, t[i].master, t[i].diff, t[i].lat);
247#endif
248
519c4d2d
JP
249 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
250 "(last diff %ld cycles, maxerr %lu cycles)\n",
251 smp_processor_id(), delta, rt);
1da177e4
LT
252}
253
254static void smp_start_sync_tick_client(int cpu);
255
256static void smp_synchronize_one_tick(int cpu)
257{
258 unsigned long flags, i;
259
260 go[MASTER] = 0;
261
262 smp_start_sync_tick_client(cpu);
263
264 /* wait for client to be ready */
265 while (!go[MASTER])
4f07118f 266 rmb();
1da177e4
LT
267
268 /* now let the client proceed into his loop */
269 go[MASTER] = 0;
293666b7 270 membar_safe("#StoreLoad");
1da177e4 271
49b6c01f 272 raw_spin_lock_irqsave(&itc_sync_lock, flags);
1da177e4
LT
273 {
274 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
275 while (!go[MASTER])
4f07118f 276 rmb();
1da177e4 277 go[MASTER] = 0;
4f07118f 278 wmb();
1da177e4 279 go[SLAVE] = tick_ops->get_tick();
293666b7 280 membar_safe("#StoreLoad");
1da177e4
LT
281 }
282 }
49b6c01f 283 raw_spin_unlock_irqrestore(&itc_sync_lock, flags);
1da177e4
LT
284}
285
b14f5c10 286#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
2066aadd
PG
287static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
288 void **descrp)
b14f5c10
DM
289{
290 extern unsigned long sparc64_ttable_tl0;
291 extern unsigned long kern_locked_tte_data;
b14f5c10
DM
292 struct hvtramp_descr *hdesc;
293 unsigned long trampoline_ra;
294 struct trap_per_cpu *tb;
295 u64 tte_vaddr, tte_data;
296 unsigned long hv_err;
64658743 297 int i;
b14f5c10 298
64658743
DM
299 hdesc = kzalloc(sizeof(*hdesc) +
300 (sizeof(struct hvtramp_mapping) *
301 num_kernel_image_mappings - 1),
302 GFP_KERNEL);
b14f5c10 303 if (!hdesc) {
27a2ef38 304 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
b14f5c10
DM
305 "hvtramp_descr.\n");
306 return;
307 }
557fe0e8 308 *descrp = hdesc;
b14f5c10
DM
309
310 hdesc->cpu = cpu;
64658743 311 hdesc->num_mappings = num_kernel_image_mappings;
b14f5c10
DM
312
313 tb = &trap_block[cpu];
b14f5c10
DM
314
315 hdesc->fault_info_va = (unsigned long) &tb->fault_info;
316 hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
317
318 hdesc->thread_reg = thread_reg;
319
320 tte_vaddr = (unsigned long) KERNBASE;
321 tte_data = kern_locked_tte_data;
322
64658743
DM
323 for (i = 0; i < hdesc->num_mappings; i++) {
324 hdesc->maps[i].vaddr = tte_vaddr;
325 hdesc->maps[i].tte = tte_data;
b14f5c10
DM
326 tte_vaddr += 0x400000;
327 tte_data += 0x400000;
b14f5c10
DM
328 }
329
330 trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
331
332 hv_err = sun4v_cpu_start(cpu, trampoline_ra,
333 kimage_addr_to_ra(&sparc64_ttable_tl0),
334 __pa(hdesc));
e0204409
DM
335 if (hv_err)
336 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
337 "gives error %lu\n", hv_err);
b14f5c10
DM
338}
339#endif
340
1da177e4
LT
341extern unsigned long sparc64_cpu_startup;
342
343/* The OBP cpu startup callback truncates the 3rd arg cookie to
344 * 32-bits (I think) so to be safe we have it read the pointer
345 * contained here so we work on >4GB machines. -DaveM
346 */
347static struct thread_info *cpu_new_thread = NULL;
348
2066aadd 349static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
1da177e4
LT
350{
351 unsigned long entry =
352 (unsigned long)(&sparc64_cpu_startup);
353 unsigned long cookie =
354 (unsigned long)(&cpu_new_thread);
557fe0e8 355 void *descr = NULL;
7890f794 356 int timeout, ret;
1da177e4 357
1da177e4 358 callin_flag = 0;
f0a2bc7e 359 cpu_new_thread = task_thread_info(idle);
1da177e4 360
7890f794 361 if (tlb_type == hypervisor) {
b14f5c10 362#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
4f0234f4
DM
363 if (ldom_domaining_enabled)
364 ldom_startcpu_cpuid(cpu,
557fe0e8
DM
365 (unsigned long) cpu_new_thread,
366 &descr);
4f0234f4
DM
367 else
368#endif
369 prom_startcpu_cpuid(cpu, entry, cookie);
7890f794 370 } else {
5cbc3073 371 struct device_node *dp = of_find_node_by_cpuid(cpu);
7890f794 372
6016a363 373 prom_startcpu(dp->phandle, entry, cookie);
7890f794 374 }
1da177e4 375
4f0234f4 376 for (timeout = 0; timeout < 50000; timeout++) {
1da177e4
LT
377 if (callin_flag)
378 break;
379 udelay(100);
380 }
72aff53f 381
1da177e4
LT
382 if (callin_flag) {
383 ret = 0;
384 } else {
385 printk("Processor %d is stuck.\n", cpu);
1da177e4
LT
386 ret = -ENODEV;
387 }
388 cpu_new_thread = NULL;
389
557fe0e8 390 kfree(descr);
b37d40d1 391
1da177e4
LT
392 return ret;
393}
394
395static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
396{
397 u64 result, target;
398 int stuck, tmp;
399
400 if (this_is_starfire) {
401 /* map to real upaid */
402 cpu = (((cpu & 0x3c) << 1) |
403 ((cpu & 0x40) >> 4) |
404 (cpu & 0x3));
405 }
406
407 target = (cpu << 14) | 0x70;
408again:
409 /* Ok, this is the real Spitfire Errata #54.
410 * One must read back from a UDB internal register
411 * after writes to the UDB interrupt dispatch, but
412 * before the membar Sync for that write.
413 * So we use the high UDB control register (ASI 0x7f,
414 * ADDR 0x20) for the dummy read. -DaveM
415 */
416 tmp = 0x40;
417 __asm__ __volatile__(
418 "wrpr %1, %2, %%pstate\n\t"
419 "stxa %4, [%0] %3\n\t"
420 "stxa %5, [%0+%8] %3\n\t"
421 "add %0, %8, %0\n\t"
422 "stxa %6, [%0+%8] %3\n\t"
423 "membar #Sync\n\t"
424 "stxa %%g0, [%7] %3\n\t"
425 "membar #Sync\n\t"
426 "mov 0x20, %%g1\n\t"
427 "ldxa [%%g1] 0x7f, %%g0\n\t"
428 "membar #Sync"
429 : "=r" (tmp)
430 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
431 "r" (data0), "r" (data1), "r" (data2), "r" (target),
432 "r" (0x10), "0" (tmp)
433 : "g1");
434
435 /* NOTE: PSTATE_IE is still clear. */
436 stuck = 100000;
437 do {
438 __asm__ __volatile__("ldxa [%%g0] %1, %0"
439 : "=r" (result)
440 : "i" (ASI_INTR_DISPATCH_STAT));
441 if (result == 0) {
442 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
443 : : "r" (pstate));
444 return;
445 }
446 stuck -= 1;
447 if (stuck == 0)
448 break;
449 } while (result & 0x1);
450 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
451 : : "r" (pstate));
452 if (stuck == 0) {
90181136 453 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
1da177e4
LT
454 smp_processor_id(), result);
455 } else {
456 udelay(2);
457 goto again;
458 }
459}
460
90f7ae8a 461static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
1da177e4 462{
90f7ae8a
DM
463 u64 *mondo, data0, data1, data2;
464 u16 *cpu_list;
1da177e4
LT
465 u64 pstate;
466 int i;
467
468 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
90f7ae8a
DM
469 cpu_list = __va(tb->cpu_list_pa);
470 mondo = __va(tb->cpu_mondo_block_pa);
471 data0 = mondo[0];
472 data1 = mondo[1];
473 data2 = mondo[2];
474 for (i = 0; i < cnt; i++)
475 spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
1da177e4
LT
476}
477
478/* Cheetah now allows to send the whole 64-bytes of data in the interrupt
479 * packet, but we have no use for that. However we do take advantage of
480 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
481 */
90f7ae8a 482static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
1da177e4 483{
22adb358 484 int nack_busy_id, is_jbus, need_more;
90f7ae8a
DM
485 u64 *mondo, pstate, ver, busy_mask;
486 u16 *cpu_list;
1da177e4 487
90f7ae8a
DM
488 cpu_list = __va(tb->cpu_list_pa);
489 mondo = __va(tb->cpu_mondo_block_pa);
cd5bc89d 490
1da177e4
LT
491 /* Unfortunately, someone at Sun had the brilliant idea to make the
492 * busy/nack fields hard-coded by ITID number for this Ultra-III
493 * derivative processor.
494 */
495 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
92704a1c
DM
496 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
497 (ver >> 32) == __SERRANO_ID);
1da177e4
LT
498
499 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
500
501retry:
22adb358 502 need_more = 0;
1da177e4
LT
503 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
504 : : "r" (pstate), "i" (PSTATE_IE));
505
506 /* Setup the dispatch data registers. */
507 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
508 "stxa %1, [%4] %6\n\t"
509 "stxa %2, [%5] %6\n\t"
510 "membar #Sync\n\t"
511 : /* no outputs */
90f7ae8a 512 : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
1da177e4
LT
513 "r" (0x40), "r" (0x50), "r" (0x60),
514 "i" (ASI_INTR_W));
515
516 nack_busy_id = 0;
0de56d1a 517 busy_mask = 0;
1da177e4
LT
518 {
519 int i;
520
90f7ae8a
DM
521 for (i = 0; i < cnt; i++) {
522 u64 target, nr;
523
524 nr = cpu_list[i];
525 if (nr == 0xffff)
526 continue;
1da177e4 527
90f7ae8a 528 target = (nr << 14) | 0x70;
0de56d1a 529 if (is_jbus) {
90f7ae8a 530 busy_mask |= (0x1UL << (nr * 2));
0de56d1a 531 } else {
1da177e4 532 target |= (nack_busy_id << 24);
0de56d1a
DM
533 busy_mask |= (0x1UL <<
534 (nack_busy_id * 2));
535 }
1da177e4
LT
536 __asm__ __volatile__(
537 "stxa %%g0, [%0] %1\n\t"
538 "membar #Sync\n\t"
539 : /* no outputs */
540 : "r" (target), "i" (ASI_INTR_W));
541 nack_busy_id++;
22adb358
DM
542 if (nack_busy_id == 32) {
543 need_more = 1;
544 break;
545 }
1da177e4
LT
546 }
547 }
548
549 /* Now, poll for completion. */
550 {
0de56d1a 551 u64 dispatch_stat, nack_mask;
1da177e4
LT
552 long stuck;
553
554 stuck = 100000 * nack_busy_id;
0de56d1a 555 nack_mask = busy_mask << 1;
1da177e4
LT
556 do {
557 __asm__ __volatile__("ldxa [%%g0] %1, %0"
558 : "=r" (dispatch_stat)
559 : "i" (ASI_INTR_DISPATCH_STAT));
0de56d1a 560 if (!(dispatch_stat & (busy_mask | nack_mask))) {
1da177e4
LT
561 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
562 : : "r" (pstate));
22adb358 563 if (unlikely(need_more)) {
90f7ae8a
DM
564 int i, this_cnt = 0;
565 for (i = 0; i < cnt; i++) {
566 if (cpu_list[i] == 0xffff)
567 continue;
568 cpu_list[i] = 0xffff;
569 this_cnt++;
570 if (this_cnt == 32)
22adb358
DM
571 break;
572 }
573 goto retry;
574 }
1da177e4
LT
575 return;
576 }
577 if (!--stuck)
578 break;
0de56d1a 579 } while (dispatch_stat & busy_mask);
1da177e4
LT
580
581 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
582 : : "r" (pstate));
583
0de56d1a 584 if (dispatch_stat & busy_mask) {
1da177e4
LT
585 /* Busy bits will not clear, continue instead
586 * of freezing up on this cpu.
587 */
90181136 588 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
1da177e4
LT
589 smp_processor_id(), dispatch_stat);
590 } else {
591 int i, this_busy_nack = 0;
592
593 /* Delay some random time with interrupts enabled
594 * to prevent deadlock.
595 */
596 udelay(2 * nack_busy_id);
597
598 /* Clear out the mask bits for cpus which did not
599 * NACK us.
600 */
90f7ae8a
DM
601 for (i = 0; i < cnt; i++) {
602 u64 check_mask, nr;
603
604 nr = cpu_list[i];
605 if (nr == 0xffff)
606 continue;
1da177e4 607
92704a1c 608 if (is_jbus)
90f7ae8a 609 check_mask = (0x2UL << (2*nr));
1da177e4
LT
610 else
611 check_mask = (0x2UL <<
612 this_busy_nack);
613 if ((dispatch_stat & check_mask) == 0)
90f7ae8a 614 cpu_list[i] = 0xffff;
1da177e4 615 this_busy_nack += 2;
22adb358
DM
616 if (this_busy_nack == 64)
617 break;
1da177e4
LT
618 }
619
620 goto retry;
621 }
622 }
623}
624
1d2f1f90 625/* Multi-cpu list version. */
90f7ae8a 626static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
a43fe0e7 627{
ed4d9c66 628 int retries, this_cpu, prev_sent, i, saw_cpu_error;
c02a5119 629 unsigned long status;
b830ab66 630 u16 *cpu_list;
17f34f0e 631
b830ab66 632 this_cpu = smp_processor_id();
1d2f1f90 633
b830ab66
DM
634 cpu_list = __va(tb->cpu_list_pa);
635
ed4d9c66 636 saw_cpu_error = 0;
1d2f1f90 637 retries = 0;
3cab0c3e 638 prev_sent = 0;
1d2f1f90 639 do {
3cab0c3e 640 int forward_progress, n_sent;
1d2f1f90 641
b830ab66
DM
642 status = sun4v_cpu_mondo_send(cnt,
643 tb->cpu_list_pa,
644 tb->cpu_mondo_block_pa);
645
646 /* HV_EOK means all cpus received the xcall, we're done. */
647 if (likely(status == HV_EOK))
1d2f1f90 648 break;
b830ab66 649
3cab0c3e
DM
650 /* First, see if we made any forward progress.
651 *
652 * The hypervisor indicates successful sends by setting
653 * cpu list entries to the value 0xffff.
b830ab66 654 */
3cab0c3e 655 n_sent = 0;
b830ab66 656 for (i = 0; i < cnt; i++) {
3cab0c3e
DM
657 if (likely(cpu_list[i] == 0xffff))
658 n_sent++;
1d2f1f90
DM
659 }
660
3cab0c3e
DM
661 forward_progress = 0;
662 if (n_sent > prev_sent)
663 forward_progress = 1;
664
665 prev_sent = n_sent;
666
b830ab66
DM
667 /* If we get a HV_ECPUERROR, then one or more of the cpus
668 * in the list are in error state. Use the cpu_state()
669 * hypervisor call to find out which cpus are in error state.
670 */
671 if (unlikely(status == HV_ECPUERROR)) {
672 for (i = 0; i < cnt; i++) {
673 long err;
674 u16 cpu;
675
676 cpu = cpu_list[i];
677 if (cpu == 0xffff)
678 continue;
679
680 err = sun4v_cpu_state(cpu);
ed4d9c66
DM
681 if (err == HV_CPU_STATE_ERROR) {
682 saw_cpu_error = (cpu + 1);
3cab0c3e 683 cpu_list[i] = 0xffff;
b830ab66
DM
684 }
685 }
686 } else if (unlikely(status != HV_EWOULDBLOCK))
687 goto fatal_mondo_error;
688
3cab0c3e
DM
689 /* Don't bother rewriting the CPU list, just leave the
690 * 0xffff and non-0xffff entries in there and the
691 * hypervisor will do the right thing.
692 *
693 * Only advance timeout state if we didn't make any
694 * forward progress.
695 */
b830ab66
DM
696 if (unlikely(!forward_progress)) {
697 if (unlikely(++retries > 10000))
698 goto fatal_mondo_timeout;
699
700 /* Delay a little bit to let other cpus catch up
701 * on their cpu mondo queue work.
702 */
703 udelay(2 * cnt);
704 }
1d2f1f90
DM
705 } while (1);
706
ed4d9c66 707 if (unlikely(saw_cpu_error))
b830ab66
DM
708 goto fatal_mondo_cpu_error;
709
710 return;
711
712fatal_mondo_cpu_error:
713 printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
ed4d9c66
DM
714 "(including %d) were in error state\n",
715 this_cpu, saw_cpu_error - 1);
b830ab66
DM
716 return;
717
718fatal_mondo_timeout:
b830ab66
DM
719 printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
720 " progress after %d retries.\n",
721 this_cpu, retries);
722 goto dump_cpu_list_and_out;
723
724fatal_mondo_error:
b830ab66
DM
725 printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
726 this_cpu, status);
727 printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
728 "mondo_block_pa(%lx)\n",
729 this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
730
731dump_cpu_list_and_out:
732 printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
733 for (i = 0; i < cnt; i++)
734 printk("%u ", cpu_list[i]);
735 printk("]\n");
1d2f1f90 736}
a43fe0e7 737
90f7ae8a 738static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
deb16999
DM
739
740static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
741{
90f7ae8a
DM
742 struct trap_per_cpu *tb;
743 int this_cpu, i, cnt;
c02a5119 744 unsigned long flags;
90f7ae8a
DM
745 u16 *cpu_list;
746 u64 *mondo;
c02a5119
DM
747
748 /* We have to do this whole thing with interrupts fully disabled.
749 * Otherwise if we send an xcall from interrupt context it will
750 * corrupt both our mondo block and cpu list state.
751 *
752 * One consequence of this is that we cannot use timeout mechanisms
753 * that depend upon interrupts being delivered locally. So, for
754 * example, we cannot sample jiffies and expect it to advance.
755 *
756 * Fortunately, udelay() uses %stick/%tick so we can use that.
757 */
758 local_irq_save(flags);
90f7ae8a
DM
759
760 this_cpu = smp_processor_id();
761 tb = &trap_block[this_cpu];
762
763 mondo = __va(tb->cpu_mondo_block_pa);
764 mondo[0] = data0;
765 mondo[1] = data1;
766 mondo[2] = data2;
767 wmb();
768
769 cpu_list = __va(tb->cpu_list_pa);
770
771 /* Setup the initial cpu list. */
772 cnt = 0;
8e757281 773 for_each_cpu(i, mask) {
90f7ae8a
DM
774 if (i == this_cpu || !cpu_online(i))
775 continue;
776 cpu_list[cnt++] = i;
777 }
778
779 if (cnt)
780 xcall_deliver_impl(tb, cnt);
781
c02a5119 782 local_irq_restore(flags);
deb16999 783}
5e0797e5 784
91a4231c
DM
785/* Send cross call to all processors mentioned in MASK_P
786 * except self. Really, there are only two cases currently,
fb1fece5 787 * "cpu_online_mask" and "mm_cpumask(mm)".
1da177e4 788 */
ae583885 789static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
1da177e4
LT
790{
791 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
1da177e4 792
ae583885
DM
793 xcall_deliver(data0, data1, data2, mask);
794}
1da177e4 795
ae583885
DM
796/* Send cross call to all processors except self. */
797static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
798{
fb1fece5 799 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
1da177e4
LT
800}
801
802extern unsigned long xcall_sync_tick;
803
804static void smp_start_sync_tick_client(int cpu)
805{
24445a4a 806 xcall_deliver((u64) &xcall_sync_tick, 0, 0,
fb1fece5 807 cpumask_of(cpu));
1da177e4
LT
808}
809
1da177e4
LT
810extern unsigned long xcall_call_function;
811
f46df02a 812void arch_send_call_function_ipi_mask(const struct cpumask *mask)
1da177e4 813{
f46df02a 814 xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
d172ad18 815}
1da177e4 816
d172ad18 817extern unsigned long xcall_call_function_single;
1da177e4 818
d172ad18
DM
819void arch_send_call_function_single_ipi(int cpu)
820{
19926630 821 xcall_deliver((u64) &xcall_call_function_single, 0, 0,
fb1fece5 822 cpumask_of(cpu));
1da177e4
LT
823}
824
9960e9e8 825void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
1da177e4 826{
d172ad18 827 clear_softint(1 << irq);
ab5c7809 828 irq_enter();
d172ad18 829 generic_smp_call_function_interrupt();
ab5c7809 830 irq_exit();
d172ad18 831}
1da177e4 832
9960e9e8 833void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
d172ad18 834{
1da177e4 835 clear_softint(1 << irq);
ab5c7809 836 irq_enter();
d172ad18 837 generic_smp_call_function_single_interrupt();
ab5c7809 838 irq_exit();
1da177e4
LT
839}
840
bd40791e
DM
841static void tsb_sync(void *info)
842{
6f25f398 843 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
bd40791e
DM
844 struct mm_struct *mm = info;
845
42b2aa86 846 /* It is not valid to test "current->active_mm == mm" here.
6f25f398
DM
847 *
848 * The value of "current" is not changed atomically with
849 * switch_mm(). But that's OK, we just need to check the
850 * current cpu's trap block PGD physical address.
851 */
852 if (tp->pgd_paddr == __pa(mm->pgd))
bd40791e
DM
853 tsb_context_switch(mm);
854}
855
856void smp_tsb_sync(struct mm_struct *mm)
857{
81f1adf0 858 smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
bd40791e
DM
859}
860
1da177e4 861extern unsigned long xcall_flush_tlb_mm;
f36391d2 862extern unsigned long xcall_flush_tlb_page;
1da177e4 863extern unsigned long xcall_flush_tlb_kernel_range;
93dae5b7 864extern unsigned long xcall_fetch_glob_regs;
916ca14a
DM
865extern unsigned long xcall_fetch_glob_pmu;
866extern unsigned long xcall_fetch_glob_pmu_n4;
1da177e4 867extern unsigned long xcall_receive_signal;
ee29074d 868extern unsigned long xcall_new_mmu_context_version;
e2fdd7fd
DM
869#ifdef CONFIG_KGDB
870extern unsigned long xcall_kgdb_capture;
871#endif
1da177e4
LT
872
873#ifdef DCACHE_ALIASING_POSSIBLE
874extern unsigned long xcall_flush_dcache_page_cheetah;
875#endif
876extern unsigned long xcall_flush_dcache_page_spitfire;
877
d979f179 878static inline void __local_flush_dcache_page(struct page *page)
1da177e4
LT
879{
880#ifdef DCACHE_ALIASING_POSSIBLE
881 __flush_dcache_page(page_address(page),
882 ((tlb_type == spitfire) &&
883 page_mapping(page) != NULL));
884#else
885 if (page_mapping(page) != NULL &&
886 tlb_type == spitfire)
887 __flush_icache_page(__pa(page_address(page)));
888#endif
889}
890
891void smp_flush_dcache_page_impl(struct page *page, int cpu)
892{
a43fe0e7
DM
893 int this_cpu;
894
895 if (tlb_type == hypervisor)
896 return;
1da177e4
LT
897
898#ifdef CONFIG_DEBUG_DCFLUSH
899 atomic_inc(&dcpage_flushes);
900#endif
a43fe0e7
DM
901
902 this_cpu = get_cpu();
903
1da177e4
LT
904 if (cpu == this_cpu) {
905 __local_flush_dcache_page(page);
906 } else if (cpu_online(cpu)) {
907 void *pg_addr = page_address(page);
622824db 908 u64 data0 = 0;
1da177e4
LT
909
910 if (tlb_type == spitfire) {
622824db 911 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
1da177e4
LT
912 if (page_mapping(page) != NULL)
913 data0 |= ((u64)1 << 32);
a43fe0e7 914 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1da177e4 915#ifdef DCACHE_ALIASING_POSSIBLE
622824db 916 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
1da177e4
LT
917#endif
918 }
622824db
DM
919 if (data0) {
920 xcall_deliver(data0, __pa(pg_addr),
fb1fece5 921 (u64) pg_addr, cpumask_of(cpu));
1da177e4 922#ifdef CONFIG_DEBUG_DCFLUSH
622824db 923 atomic_inc(&dcpage_flushes_xcall);
1da177e4 924#endif
622824db 925 }
1da177e4
LT
926 }
927
928 put_cpu();
929}
930
931void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
932{
622824db 933 void *pg_addr;
622824db 934 u64 data0;
a43fe0e7
DM
935
936 if (tlb_type == hypervisor)
937 return;
938
c6fee081 939 preempt_disable();
1da177e4 940
1da177e4
LT
941#ifdef CONFIG_DEBUG_DCFLUSH
942 atomic_inc(&dcpage_flushes);
943#endif
622824db
DM
944 data0 = 0;
945 pg_addr = page_address(page);
1da177e4
LT
946 if (tlb_type == spitfire) {
947 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
948 if (page_mapping(page) != NULL)
949 data0 |= ((u64)1 << 32);
a43fe0e7 950 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1da177e4
LT
951#ifdef DCACHE_ALIASING_POSSIBLE
952 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
1da177e4
LT
953#endif
954 }
622824db
DM
955 if (data0) {
956 xcall_deliver(data0, __pa(pg_addr),
fb1fece5 957 (u64) pg_addr, cpu_online_mask);
1da177e4 958#ifdef CONFIG_DEBUG_DCFLUSH
622824db 959 atomic_inc(&dcpage_flushes_xcall);
1da177e4 960#endif
622824db 961 }
1da177e4
LT
962 __local_flush_dcache_page(page);
963
c6fee081 964 preempt_enable();
1da177e4
LT
965}
966
e2fdd7fd
DM
967#ifdef CONFIG_KGDB
968void kgdb_roundup_cpus(unsigned long flags)
969{
970 smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
971}
972#endif
973
93dae5b7
DM
974void smp_fetch_global_regs(void)
975{
976 smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
977}
93dae5b7 978
916ca14a
DM
979void smp_fetch_global_pmu(void)
980{
981 if (tlb_type == hypervisor &&
982 sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
983 smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
984 else
985 smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
986}
987
1da177e4
LT
988/* We know that the window frames of the user have been flushed
989 * to the stack before we get here because all callers of us
990 * are flush_tlb_*() routines, and these run after flush_cache_*()
991 * which performs the flushw.
992 *
993 * The SMP TLB coherency scheme we use works as follows:
994 *
995 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
996 * space has (potentially) executed on, this is the heuristic
997 * we use to avoid doing cross calls.
998 *
999 * Also, for flushing from kswapd and also for clones, we
1000 * use cpu_vm_mask as the list of cpus to make run the TLB.
1001 *
1002 * 2) TLB context numbers are shared globally across all processors
1003 * in the system, this allows us to play several games to avoid
1004 * cross calls.
1005 *
1006 * One invariant is that when a cpu switches to a process, and
1007 * that processes tsk->active_mm->cpu_vm_mask does not have the
1008 * current cpu's bit set, that tlb context is flushed locally.
1009 *
1010 * If the address space is non-shared (ie. mm->count == 1) we avoid
1011 * cross calls when we want to flush the currently running process's
1012 * tlb state. This is done by clearing all cpu bits except the current
f9384d41 1013 * processor's in current->mm->cpu_vm_mask and performing the
1da177e4
LT
1014 * flush locally only. This will force any subsequent cpus which run
1015 * this task to flush the context from the local tlb if the process
1016 * migrates to another cpu (again).
1017 *
1018 * 3) For shared address spaces (threads) and swapping we bite the
1019 * bullet for most cases and perform the cross call (but only to
1020 * the cpus listed in cpu_vm_mask).
1021 *
1022 * The performance gain from "optimizing" away the cross call for threads is
1023 * questionable (in theory the big win for threads is the massive sharing of
1024 * address space state across processors).
1025 */
62dbec78
DM
1026
1027/* This currently is only used by the hugetlb arch pre-fault
1028 * hook on UltraSPARC-III+ and later when changing the pagesize
1029 * bits of the context register for an address space.
1030 */
1da177e4
LT
1031void smp_flush_tlb_mm(struct mm_struct *mm)
1032{
62dbec78
DM
1033 u32 ctx = CTX_HWBITS(mm->context);
1034 int cpu = get_cpu();
1da177e4 1035
62dbec78 1036 if (atomic_read(&mm->mm_users) == 1) {
81f1adf0 1037 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
62dbec78
DM
1038 goto local_flush_and_out;
1039 }
1da177e4 1040
62dbec78
DM
1041 smp_cross_call_masked(&xcall_flush_tlb_mm,
1042 ctx, 0, 0,
81f1adf0 1043 mm_cpumask(mm));
1da177e4 1044
62dbec78
DM
1045local_flush_and_out:
1046 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1da177e4 1047
62dbec78 1048 put_cpu();
1da177e4
LT
1049}
1050
f36391d2
DM
1051struct tlb_pending_info {
1052 unsigned long ctx;
1053 unsigned long nr;
1054 unsigned long *vaddrs;
1055};
1056
1057static void tlb_pending_func(void *info)
1058{
1059 struct tlb_pending_info *t = info;
1060
1061 __flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
1062}
1063
1da177e4
LT
1064void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1065{
1066 u32 ctx = CTX_HWBITS(mm->context);
f36391d2 1067 struct tlb_pending_info info;
1da177e4
LT
1068 int cpu = get_cpu();
1069
f36391d2
DM
1070 info.ctx = ctx;
1071 info.nr = nr;
1072 info.vaddrs = vaddrs;
1073
f9384d41 1074 if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
81f1adf0 1075 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
dedeb002 1076 else
f36391d2
DM
1077 smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
1078 &info, 1);
1da177e4 1079
1da177e4
LT
1080 __flush_tlb_pending(ctx, nr, vaddrs);
1081
1082 put_cpu();
1083}
1084
f36391d2
DM
1085void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
1086{
1087 unsigned long context = CTX_HWBITS(mm->context);
1088 int cpu = get_cpu();
1089
1090 if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1091 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1092 else
1093 smp_cross_call_masked(&xcall_flush_tlb_page,
1094 context, vaddr, 0,
1095 mm_cpumask(mm));
1096 __flush_tlb_page(context, vaddr);
1097
1098 put_cpu();
1099}
1100
1da177e4
LT
1101void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1102{
1103 start &= PAGE_MASK;
1104 end = PAGE_ALIGN(end);
1105 if (start != end) {
1106 smp_cross_call(&xcall_flush_tlb_kernel_range,
1107 0, start, end);
1108
1109 __flush_tlb_kernel_range(start, end);
1110 }
1111}
1112
1113/* CPU capture. */
1114/* #define CAPTURE_DEBUG */
1115extern unsigned long xcall_capture;
1116
1117static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1118static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1119static unsigned long penguins_are_doing_time;
1120
1121void smp_capture(void)
1122{
4f3316c2 1123 int result = atomic_add_return(1, &smp_capture_depth);
1da177e4
LT
1124
1125 if (result == 1) {
1126 int ncpus = num_online_cpus();
1127
1128#ifdef CAPTURE_DEBUG
1129 printk("CPU[%d]: Sending penguins to jail...",
1130 smp_processor_id());
1131#endif
1132 penguins_are_doing_time = 1;
1da177e4
LT
1133 atomic_inc(&smp_capture_registry);
1134 smp_cross_call(&xcall_capture, 0, 0, 0);
1135 while (atomic_read(&smp_capture_registry) != ncpus)
4f07118f 1136 rmb();
1da177e4
LT
1137#ifdef CAPTURE_DEBUG
1138 printk("done\n");
1139#endif
1140 }
1141}
1142
1143void smp_release(void)
1144{
1145 if (atomic_dec_and_test(&smp_capture_depth)) {
1146#ifdef CAPTURE_DEBUG
1147 printk("CPU[%d]: Giving pardon to "
1148 "imprisoned penguins\n",
1149 smp_processor_id());
1150#endif
1151 penguins_are_doing_time = 0;
293666b7 1152 membar_safe("#StoreLoad");
1da177e4
LT
1153 atomic_dec(&smp_capture_registry);
1154 }
1155}
1156
b4f4372f
DM
1157/* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1158 * set, so they can service tlb flush xcalls...
1da177e4
LT
1159 */
1160extern void prom_world(int);
96c6e0d8 1161
9960e9e8 1162void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1da177e4 1163{
1da177e4
LT
1164 clear_softint(1 << irq);
1165
1166 preempt_disable();
1167
1168 __asm__ __volatile__("flushw");
1da177e4
LT
1169 prom_world(1);
1170 atomic_inc(&smp_capture_registry);
293666b7 1171 membar_safe("#StoreLoad");
1da177e4 1172 while (penguins_are_doing_time)
4f07118f 1173 rmb();
1da177e4
LT
1174 atomic_dec(&smp_capture_registry);
1175 prom_world(0);
1176
1177 preempt_enable();
1178}
1179
1da177e4 1180/* /proc/profile writes can call this, don't __init it please. */
1da177e4
LT
1181int setup_profiling_timer(unsigned int multiplier)
1182{
777a4475 1183 return -EINVAL;
1da177e4
LT
1184}
1185
1186void __init smp_prepare_cpus(unsigned int max_cpus)
1187{
1da177e4
LT
1188}
1189
7c9503b8 1190void smp_prepare_boot_cpu(void)
7abea921 1191{
7abea921
DM
1192}
1193
5e0797e5
DM
1194void __init smp_setup_processor_id(void)
1195{
1196 if (tlb_type == spitfire)
deb16999 1197 xcall_deliver_impl = spitfire_xcall_deliver;
5e0797e5 1198 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
deb16999 1199 xcall_deliver_impl = cheetah_xcall_deliver;
5e0797e5 1200 else
deb16999 1201 xcall_deliver_impl = hypervisor_xcall_deliver;
5e0797e5
DM
1202}
1203
9b2f753e
AP
1204void __init smp_fill_in_cpu_possible_map(void)
1205{
1206 int possible_cpus = num_possible_cpus();
1207 int i;
1208
1209 if (possible_cpus > nr_cpu_ids)
1210 possible_cpus = nr_cpu_ids;
1211
1212 for (i = 0; i < possible_cpus; i++)
1213 set_cpu_possible(i, true);
1214 for (; i < NR_CPUS; i++)
1215 set_cpu_possible(i, false);
1216}
1217
7c9503b8 1218void smp_fill_in_sib_core_maps(void)
1da177e4 1219{
5cbc3073
DM
1220 unsigned int i;
1221
e0204409 1222 for_each_present_cpu(i) {
5cbc3073
DM
1223 unsigned int j;
1224
fb1fece5 1225 cpumask_clear(&cpu_core_map[i]);
5cbc3073 1226 if (cpu_data(i).core_id == 0) {
fb1fece5 1227 cpumask_set_cpu(i, &cpu_core_map[i]);
5cbc3073
DM
1228 continue;
1229 }
1230
e0204409 1231 for_each_present_cpu(j) {
5cbc3073
DM
1232 if (cpu_data(i).core_id ==
1233 cpu_data(j).core_id)
fb1fece5 1234 cpumask_set_cpu(j, &cpu_core_map[i]);
f78eae2e
DM
1235 }
1236 }
1237
acc455cf 1238 for_each_present_cpu(i) {
1239 unsigned int j;
1240
1241 for_each_present_cpu(j) {
d624716b
AP
1242 if (cpu_data(i).max_cache_id ==
1243 cpu_data(j).max_cache_id)
1244 cpumask_set_cpu(j, &cpu_core_sib_cache_map[i]);
1245
acc455cf 1246 if (cpu_data(i).sock_id == cpu_data(j).sock_id)
1247 cpumask_set_cpu(j, &cpu_core_sib_map[i]);
1248 }
1249 }
1250
e0204409 1251 for_each_present_cpu(i) {
f78eae2e
DM
1252 unsigned int j;
1253
fb1fece5 1254 cpumask_clear(&per_cpu(cpu_sibling_map, i));
f78eae2e 1255 if (cpu_data(i).proc_id == -1) {
fb1fece5 1256 cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
f78eae2e
DM
1257 continue;
1258 }
1259
e0204409 1260 for_each_present_cpu(j) {
f78eae2e
DM
1261 if (cpu_data(i).proc_id ==
1262 cpu_data(j).proc_id)
fb1fece5 1263 cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
5cbc3073
DM
1264 }
1265 }
1da177e4
LT
1266}
1267
2066aadd 1268int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1da177e4 1269{
f0a2bc7e 1270 int ret = smp_boot_one_cpu(cpu, tidle);
1da177e4
LT
1271
1272 if (!ret) {
fb1fece5
KM
1273 cpumask_set_cpu(cpu, &smp_commenced_mask);
1274 while (!cpu_online(cpu))
1da177e4 1275 mb();
fb1fece5 1276 if (!cpu_online(cpu)) {
1da177e4
LT
1277 ret = -ENODEV;
1278 } else {
02fead75
DM
1279 /* On SUN4V, writes to %tick and %stick are
1280 * not allowed.
1281 */
1282 if (tlb_type != hypervisor)
1283 smp_synchronize_one_tick(cpu);
1da177e4
LT
1284 }
1285 }
1286 return ret;
1287}
1288
4f0234f4 1289#ifdef CONFIG_HOTPLUG_CPU
e0204409
DM
1290void cpu_play_dead(void)
1291{
1292 int cpu = smp_processor_id();
1293 unsigned long pstate;
1294
1295 idle_task_exit();
1296
1297 if (tlb_type == hypervisor) {
1298 struct trap_per_cpu *tb = &trap_block[cpu];
1299
1300 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1301 tb->cpu_mondo_pa, 0);
1302 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1303 tb->dev_mondo_pa, 0);
1304 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1305 tb->resum_mondo_pa, 0);
1306 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1307 tb->nonresum_mondo_pa, 0);
1308 }
1309
fb1fece5 1310 cpumask_clear_cpu(cpu, &smp_commenced_mask);
e0204409
DM
1311 membar_safe("#Sync");
1312
1313 local_irq_disable();
1314
1315 __asm__ __volatile__(
1316 "rdpr %%pstate, %0\n\t"
1317 "wrpr %0, %1, %%pstate"
1318 : "=r" (pstate)
1319 : "i" (PSTATE_IE));
1320
1321 while (1)
1322 barrier();
1323}
1324
4f0234f4
DM
1325int __cpu_disable(void)
1326{
e0204409
DM
1327 int cpu = smp_processor_id();
1328 cpuinfo_sparc *c;
1329 int i;
1330
fb1fece5
KM
1331 for_each_cpu(i, &cpu_core_map[cpu])
1332 cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1333 cpumask_clear(&cpu_core_map[cpu]);
e0204409 1334
fb1fece5
KM
1335 for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1336 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1337 cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
e0204409
DM
1338
1339 c = &cpu_data(cpu);
1340
1341 c->core_id = 0;
1342 c->proc_id = -1;
1343
e0204409
DM
1344 smp_wmb();
1345
1346 /* Make sure no interrupts point to this cpu. */
1347 fixup_irqs();
1348
1349 local_irq_enable();
1350 mdelay(1);
1351 local_irq_disable();
1352
fb1fece5 1353 set_cpu_online(cpu, false);
4d084617 1354
280ff974
HP
1355 cpu_map_rebuild();
1356
e0204409 1357 return 0;
4f0234f4
DM
1358}
1359
1360void __cpu_die(unsigned int cpu)
1361{
e0204409
DM
1362 int i;
1363
1364 for (i = 0; i < 100; i++) {
1365 smp_rmb();
fb1fece5 1366 if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
e0204409
DM
1367 break;
1368 msleep(100);
1369 }
fb1fece5 1370 if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
e0204409
DM
1371 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1372 } else {
1373#if defined(CONFIG_SUN_LDOMS)
1374 unsigned long hv_err;
1375 int limit = 100;
1376
1377 do {
1378 hv_err = sun4v_cpu_stop(cpu);
1379 if (hv_err == HV_EOK) {
fb1fece5 1380 set_cpu_present(cpu, false);
e0204409
DM
1381 break;
1382 }
1383 } while (--limit > 0);
1384 if (limit <= 0) {
1385 printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1386 hv_err);
1387 }
1388#endif
1389 }
4f0234f4
DM
1390}
1391#endif
1392
1da177e4
LT
1393void __init smp_cpus_done(unsigned int max_cpus)
1394{
1da177e4
LT
1395}
1396
1da177e4
LT
1397void smp_send_reschedule(int cpu)
1398{
1a36265b
KT
1399 if (cpu == smp_processor_id()) {
1400 WARN_ON_ONCE(preemptible());
1401 set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1402 } else {
1403 xcall_deliver((u64) &xcall_receive_signal,
1404 0, 0, cpumask_of(cpu));
1405 }
19926630
DM
1406}
1407
9960e9e8 1408void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
19926630
DM
1409{
1410 clear_softint(1 << irq);
184748cc 1411 scheduler_ipi();
1da177e4
LT
1412}
1413
94ab5990
DK
1414static void stop_this_cpu(void *dummy)
1415{
cffb3e76 1416 set_cpu_online(smp_processor_id(), false);
94ab5990
DK
1417 prom_stopself();
1418}
1419
1da177e4
LT
1420void smp_send_stop(void)
1421{
94ab5990
DK
1422 int cpu;
1423
1424 if (tlb_type == hypervisor) {
7dd4fcf5
VK
1425 int this_cpu = smp_processor_id();
1426#ifdef CONFIG_SERIAL_SUNHV
1427 sunhv_migrate_hvcons_irq(this_cpu);
1428#endif
94ab5990 1429 for_each_online_cpu(cpu) {
7dd4fcf5 1430 if (cpu == this_cpu)
94ab5990 1431 continue;
cffb3e76
VK
1432
1433 set_cpu_online(cpu, false);
94ab5990
DK
1434#ifdef CONFIG_SUN_LDOMS
1435 if (ldom_domaining_enabled) {
1436 unsigned long hv_err;
1437 hv_err = sun4v_cpu_stop(cpu);
1438 if (hv_err)
1439 printk(KERN_ERR "sun4v_cpu_stop() "
1440 "failed err=%lu\n", hv_err);
1441 } else
1442#endif
1443 prom_stopcpu_cpuid(cpu);
1444 }
1445 } else
1446 smp_call_function(stop_this_cpu, NULL, 0);
1da177e4
LT
1447}
1448
4fd78a5f
DM
1449/**
1450 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1451 * @cpu: cpu to allocate for
1452 * @size: size allocation in bytes
1453 * @align: alignment
1454 *
1455 * Allocate @size bytes aligned at @align for cpu @cpu. This wrapper
1456 * does the right thing for NUMA regardless of the current
1457 * configuration.
1458 *
1459 * RETURNS:
1460 * Pointer to the allocated area on success, NULL on failure.
1461 */
bcb2107f
TH
1462static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1463 size_t align)
4fd78a5f
DM
1464{
1465 const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1466#ifdef CONFIG_NEED_MULTIPLE_NODES
1467 int node = cpu_to_node(cpu);
1468 void *ptr;
1469
1470 if (!node_online(node) || !NODE_DATA(node)) {
1471 ptr = __alloc_bootmem(size, align, goal);
1472 pr_info("cpu %d has no node %d or node-local memory\n",
1473 cpu, node);
1474 pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1475 cpu, size, __pa(ptr));
1476 } else {
1477 ptr = __alloc_bootmem_node(NODE_DATA(node),
1478 size, align, goal);
1479 pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1480 "%016lx\n", cpu, size, node, __pa(ptr));
1481 }
1482 return ptr;
1483#else
1484 return __alloc_bootmem(size, align, goal);
1485#endif
1486}
1487
bcb2107f 1488static void __init pcpu_free_bootmem(void *ptr, size_t size)
4fd78a5f 1489{
bcb2107f
TH
1490 free_bootmem(__pa(ptr), size);
1491}
4fd78a5f 1492
a70c6913 1493static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
bcb2107f
TH
1494{
1495 if (cpu_to_node(from) == cpu_to_node(to))
1496 return LOCAL_DISTANCE;
1497 else
1498 return REMOTE_DISTANCE;
4fd78a5f
DM
1499}
1500
a70c6913
TH
1501static void __init pcpu_populate_pte(unsigned long addr)
1502{
1503 pgd_t *pgd = pgd_offset_k(addr);
1504 pud_t *pud;
1505 pmd_t *pmd;
1506
ac55c768
DM
1507 if (pgd_none(*pgd)) {
1508 pud_t *new;
1509
1510 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1511 pgd_populate(&init_mm, pgd, new);
1512 }
1513
a70c6913
TH
1514 pud = pud_offset(pgd, addr);
1515 if (pud_none(*pud)) {
1516 pmd_t *new;
1517
1518 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1519 pud_populate(&init_mm, pud, new);
1520 }
1521
1522 pmd = pmd_offset(pud, addr);
1523 if (!pmd_present(*pmd)) {
1524 pte_t *new;
1525
1526 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1527 pmd_populate_kernel(&init_mm, pmd, new);
1528 }
1529}
1530
73fffc03 1531void __init setup_per_cpu_areas(void)
1da177e4 1532{
bcb2107f
TH
1533 unsigned long delta;
1534 unsigned int cpu;
a70c6913
TH
1535 int rc = -EINVAL;
1536
1537 if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1538 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1539 PERCPU_DYNAMIC_RESERVE, 4 << 20,
1540 pcpu_cpu_distance,
1541 pcpu_alloc_bootmem,
1542 pcpu_free_bootmem);
1543 if (rc)
1544 pr_warning("PERCPU: %s allocator failed (%d), "
1545 "falling back to page size\n",
1546 pcpu_fc_names[pcpu_chosen_fc], rc);
1547 }
1548 if (rc < 0)
1549 rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1550 pcpu_alloc_bootmem,
1551 pcpu_free_bootmem,
1552 pcpu_populate_pte);
1553 if (rc < 0)
1554 panic("cannot initialize percpu area (err=%d)", rc);
5a089006 1555
4fd78a5f 1556 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
fb435d52
TH
1557 for_each_possible_cpu(cpu)
1558 __per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
951bc82c
DM
1559
1560 /* Setup %g5 for the boot cpu. */
1561 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
b696fdc2
DM
1562
1563 of_fill_in_cpu_data();
1564 if (tlb_type == hypervisor)
6ac5c610 1565 mdesc_fill_in_cpu_data(cpu_all_mask);
1da177e4 1566}