]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - arch/sparc/mm/init_64.c
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
[mirror_ubuntu-kernels.git] / arch / sparc / mm / init_64.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
b00dc837 2/*
1da177e4
LT
3 * arch/sparc64/mm/init.c
4 *
5 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
6 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
7 */
8
cdd4f4c7 9#include <linux/extable.h>
1da177e4
LT
10#include <linux/kernel.h>
11#include <linux/sched.h>
12#include <linux/string.h>
13#include <linux/init.h>
14#include <linux/bootmem.h>
15#include <linux/mm.h>
16#include <linux/hugetlb.h>
1da177e4
LT
17#include <linux/initrd.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
c9cf5528 20#include <linux/poison.h>
1da177e4
LT
21#include <linux/fs.h>
22#include <linux/seq_file.h>
05e14cb3 23#include <linux/kprobes.h>
1ac4f5eb 24#include <linux/cache.h>
13edad7a 25#include <linux/sort.h>
f6d4fb5c 26#include <linux/ioport.h>
5cbc3073 27#include <linux/percpu.h>
95f72d1e 28#include <linux/memblock.h>
919ee677 29#include <linux/mmzone.h>
5a0e3ad6 30#include <linux/gfp.h>
1da177e4
LT
31
32#include <asm/head.h>
1da177e4
LT
33#include <asm/page.h>
34#include <asm/pgalloc.h>
35#include <asm/pgtable.h>
36#include <asm/oplib.h>
37#include <asm/iommu.h>
38#include <asm/io.h>
7c0f6ba6 39#include <linux/uaccess.h>
1da177e4
LT
40#include <asm/mmu_context.h>
41#include <asm/tlbflush.h>
42#include <asm/dma.h>
43#include <asm/starfire.h>
44#include <asm/tlb.h>
45#include <asm/spitfire.h>
46#include <asm/sections.h>
517af332 47#include <asm/tsb.h>
481295f9 48#include <asm/hypervisor.h>
372b07bb 49#include <asm/prom.h>
5cbc3073 50#include <asm/mdesc.h>
3d5ae6b6 51#include <asm/cpudata.h>
59dec13b 52#include <asm/setup.h>
4f70f7a9 53#include <asm/irq.h>
1da177e4 54
27137e52 55#include "init_64.h"
9cc3a1ac 56
4f93d21d 57unsigned long kern_linear_pte_xor[4] __read_mostly;
494e5b6f 58static unsigned long page_cache4v_flag;
9cc3a1ac 59
4f93d21d
DM
60/* A bitmap, two bits for every 256MB of physical memory. These two
61 * bits determine what page size we use for kernel linear
62 * translations. They form an index into kern_linear_pte_xor[]. The
63 * value in the indexed slot is XOR'd with the TLB miss virtual
64 * address to form the resulting TTE. The mapping is:
65 *
66 * 0 ==> 4MB
67 * 1 ==> 256MB
68 * 2 ==> 2GB
69 * 3 ==> 16GB
70 *
71 * All sun4v chips support 256MB pages. Only SPARC-T4 and later
72 * support 2GB pages, and hopefully future cpus will support the 16GB
73 * pages as well. For slots 2 and 3, we encode a 256MB TTE xor there
74 * if these larger page sizes are not supported by the cpu.
75 *
76 * It would be nice to determine this from the machine description
77 * 'cpu' properties, but we need to have this table setup before the
78 * MDESC is initialized.
9cc3a1ac 79 */
9cc3a1ac 80
d1acb421 81#ifndef CONFIG_DEBUG_PAGEALLOC
4f93d21d
DM
82/* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
83 * Space is allocated for this right after the trap table in
84 * arch/sparc64/kernel/head.S
2d9e2763
DM
85 */
86extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
d1acb421 87#endif
0dd5b7b0 88extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
d7744a09 89
ce33fdc5
DM
90static unsigned long cpu_pgsz_mask;
91
d195b71b 92#define MAX_BANKS 1024
13edad7a 93
7c9503b8
GKH
94static struct linux_prom64_registers pavail[MAX_BANKS];
95static int pavail_ents;
13edad7a 96
52708d69
NG
97u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES];
98
13edad7a
DM
99static int cmp_p64(const void *a, const void *b)
100{
101 const struct linux_prom64_registers *x = a, *y = b;
102
103 if (x->phys_addr > y->phys_addr)
104 return 1;
105 if (x->phys_addr < y->phys_addr)
106 return -1;
107 return 0;
108}
109
110static void __init read_obp_memory(const char *property,
111 struct linux_prom64_registers *regs,
112 int *num_ents)
113{
8d125562 114 phandle node = prom_finddevice("/memory");
13edad7a
DM
115 int prop_size = prom_getproplen(node, property);
116 int ents, ret, i;
117
118 ents = prop_size / sizeof(struct linux_prom64_registers);
119 if (ents > MAX_BANKS) {
120 prom_printf("The machine has more %s property entries than "
121 "this kernel can support (%d).\n",
122 property, MAX_BANKS);
123 prom_halt();
124 }
125
126 ret = prom_getproperty(node, property, (char *) regs, prop_size);
127 if (ret == -1) {
5da444aa
AM
128 prom_printf("Couldn't get %s property from /memory.\n",
129 property);
13edad7a
DM
130 prom_halt();
131 }
132
13edad7a
DM
133 /* Sanitize what we got from the firmware, by page aligning
134 * everything.
135 */
136 for (i = 0; i < ents; i++) {
137 unsigned long base, size;
138
139 base = regs[i].phys_addr;
140 size = regs[i].reg_size;
10147570 141
13edad7a
DM
142 size &= PAGE_MASK;
143 if (base & ~PAGE_MASK) {
144 unsigned long new_base = PAGE_ALIGN(base);
145
146 size -= new_base - base;
147 if ((long) size < 0L)
148 size = 0UL;
149 base = new_base;
150 }
0015d3d6
DM
151 if (size == 0UL) {
152 /* If it is empty, simply get rid of it.
153 * This simplifies the logic of the other
154 * functions that process these arrays.
155 */
156 memmove(&regs[i], &regs[i + 1],
157 (ents - i - 1) * sizeof(regs[0]));
486ad10a 158 i--;
0015d3d6
DM
159 ents--;
160 continue;
486ad10a 161 }
0015d3d6
DM
162 regs[i].phys_addr = base;
163 regs[i].reg_size = size;
486ad10a
DM
164 }
165
166 *num_ents = ents;
167
c9c10830 168 sort(regs, ents, sizeof(struct linux_prom64_registers),
13edad7a
DM
169 cmp_p64, NULL);
170}
1da177e4 171
d1112018 172/* Kernel physical address base and size in bytes. */
1ac4f5eb
DM
173unsigned long kern_base __read_mostly;
174unsigned long kern_size __read_mostly;
1da177e4 175
1da177e4
LT
176/* Initial ramdisk setup */
177extern unsigned long sparc_ramdisk_image64;
178extern unsigned int sparc_ramdisk_image;
179extern unsigned int sparc_ramdisk_size;
180
1ac4f5eb 181struct page *mem_map_zero __read_mostly;
35802c0b 182EXPORT_SYMBOL(mem_map_zero);
1da177e4 183
0835ae0f
DM
184unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
185
186unsigned long sparc64_kern_pri_context __read_mostly;
187unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
188unsigned long sparc64_kern_sec_context __read_mostly;
189
64658743 190int num_kernel_image_mappings;
1da177e4 191
1da177e4
LT
192#ifdef CONFIG_DEBUG_DCFLUSH
193atomic_t dcpage_flushes = ATOMIC_INIT(0);
194#ifdef CONFIG_SMP
195atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
196#endif
197#endif
198
7a591cfe 199inline void flush_dcache_page_impl(struct page *page)
1da177e4 200{
7a591cfe 201 BUG_ON(tlb_type == hypervisor);
1da177e4
LT
202#ifdef CONFIG_DEBUG_DCFLUSH
203 atomic_inc(&dcpage_flushes);
204#endif
205
206#ifdef DCACHE_ALIASING_POSSIBLE
207 __flush_dcache_page(page_address(page),
208 ((tlb_type == spitfire) &&
209 page_mapping(page) != NULL));
210#else
211 if (page_mapping(page) != NULL &&
212 tlb_type == spitfire)
213 __flush_icache_page(__pa(page_address(page)));
214#endif
215}
216
217#define PG_dcache_dirty PG_arch_1
22adb358
DM
218#define PG_dcache_cpu_shift 32UL
219#define PG_dcache_cpu_mask \
220 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
1da177e4
LT
221
222#define dcache_dirty_cpu(page) \
48b0e548 223 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
1da177e4 224
d979f179 225static inline void set_dcache_dirty(struct page *page, int this_cpu)
1da177e4
LT
226{
227 unsigned long mask = this_cpu;
48b0e548
DM
228 unsigned long non_cpu_bits;
229
230 non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
231 mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
232
1da177e4
LT
233 __asm__ __volatile__("1:\n\t"
234 "ldx [%2], %%g7\n\t"
235 "and %%g7, %1, %%g1\n\t"
236 "or %%g1, %0, %%g1\n\t"
237 "casx [%2], %%g7, %%g1\n\t"
238 "cmp %%g7, %%g1\n\t"
239 "bne,pn %%xcc, 1b\n\t"
b445e26c 240 " nop"
1da177e4
LT
241 : /* no outputs */
242 : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
243 : "g1", "g7");
244}
245
d979f179 246static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
1da177e4
LT
247{
248 unsigned long mask = (1UL << PG_dcache_dirty);
249
250 __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
251 "1:\n\t"
252 "ldx [%2], %%g7\n\t"
48b0e548 253 "srlx %%g7, %4, %%g1\n\t"
1da177e4
LT
254 "and %%g1, %3, %%g1\n\t"
255 "cmp %%g1, %0\n\t"
256 "bne,pn %%icc, 2f\n\t"
257 " andn %%g7, %1, %%g1\n\t"
258 "casx [%2], %%g7, %%g1\n\t"
259 "cmp %%g7, %%g1\n\t"
260 "bne,pn %%xcc, 1b\n\t"
b445e26c 261 " nop\n"
1da177e4
LT
262 "2:"
263 : /* no outputs */
264 : "r" (cpu), "r" (mask), "r" (&page->flags),
48b0e548
DM
265 "i" (PG_dcache_cpu_mask),
266 "i" (PG_dcache_cpu_shift)
1da177e4
LT
267 : "g1", "g7");
268}
269
517af332
DM
270static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
271{
272 unsigned long tsb_addr = (unsigned long) ent;
273
3b3ab2eb 274 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
517af332
DM
275 tsb_addr = __pa(tsb_addr);
276
277 __tsb_insert(tsb_addr, tag, pte);
278}
279
c4bce90e 280unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
c4bce90e 281
ff9aefbf 282static void flush_dcache(unsigned long pfn)
1da177e4 283{
ff9aefbf 284 struct page *page;
7a591cfe 285
ff9aefbf 286 page = pfn_to_page(pfn);
1a78cedb 287 if (page) {
7a591cfe 288 unsigned long pg_flags;
7a591cfe 289
ff9aefbf
SR
290 pg_flags = page->flags;
291 if (pg_flags & (1UL << PG_dcache_dirty)) {
7a591cfe
DM
292 int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
293 PG_dcache_cpu_mask);
294 int this_cpu = get_cpu();
295
296 /* This is just to optimize away some function calls
297 * in the SMP case.
298 */
299 if (cpu == this_cpu)
300 flush_dcache_page_impl(page);
301 else
302 smp_flush_dcache_page_impl(page, cpu);
303
304 clear_dcache_dirty_cpu(page, cpu);
305
306 put_cpu();
307 }
1da177e4 308 }
ff9aefbf
SR
309}
310
9e695d2e
DM
311/* mm->context.lock must be held */
312static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
313 unsigned long tsb_hash_shift, unsigned long address,
314 unsigned long tte)
315{
316 struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
317 unsigned long tag;
318
bcd896ba
DM
319 if (unlikely(!tsb))
320 return;
321
9e695d2e
DM
322 tsb += ((address >> tsb_hash_shift) &
323 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
324 tag = (address >> 22UL);
325 tsb_insert(tsb, tag, tte);
326}
327
c7d9f77d 328#ifdef CONFIG_HUGETLB_PAGE
8399e4b8
NG
329static void __init add_huge_page_size(unsigned long size)
330{
331 unsigned int order;
332
333 if (size_to_hstate(size))
334 return;
335
336 order = ilog2(size) - PAGE_SHIFT;
337 hugetlb_add_hstate(order);
338}
339
340static int __init hugetlbpage_init(void)
341{
342 add_huge_page_size(1UL << HPAGE_64K_SHIFT);
343 add_huge_page_size(1UL << HPAGE_SHIFT);
344 add_huge_page_size(1UL << HPAGE_256MB_SHIFT);
345 add_huge_page_size(1UL << HPAGE_2GB_SHIFT);
346
347 return 0;
348}
349
350arch_initcall(hugetlbpage_init);
351
df7b2155
NG
352static void __init pud_huge_patch(void)
353{
354 struct pud_huge_patch_entry *p;
355 unsigned long addr;
356
357 p = &__pud_huge_patch;
358 addr = p->addr;
359 *(unsigned int *)addr = p->insn;
360
361 __asm__ __volatile__("flush %0" : : "r" (addr));
362}
363
c7d9f77d
NG
364static int __init setup_hugepagesz(char *string)
365{
366 unsigned long long hugepage_size;
367 unsigned int hugepage_shift;
368 unsigned short hv_pgsz_idx;
369 unsigned int hv_pgsz_mask;
370 int rc = 0;
371
372 hugepage_size = memparse(string, &string);
373 hugepage_shift = ilog2(hugepage_size);
374
375 switch (hugepage_shift) {
df7b2155
NG
376 case HPAGE_16GB_SHIFT:
377 hv_pgsz_mask = HV_PGSZ_MASK_16GB;
378 hv_pgsz_idx = HV_PGSZ_IDX_16GB;
379 pud_huge_patch();
380 break;
85b1da7c
NG
381 case HPAGE_2GB_SHIFT:
382 hv_pgsz_mask = HV_PGSZ_MASK_2GB;
383 hv_pgsz_idx = HV_PGSZ_IDX_2GB;
384 break;
c7d9f77d
NG
385 case HPAGE_256MB_SHIFT:
386 hv_pgsz_mask = HV_PGSZ_MASK_256MB;
387 hv_pgsz_idx = HV_PGSZ_IDX_256MB;
388 break;
389 case HPAGE_SHIFT:
390 hv_pgsz_mask = HV_PGSZ_MASK_4MB;
391 hv_pgsz_idx = HV_PGSZ_IDX_4MB;
392 break;
dcd1912d
NG
393 case HPAGE_64K_SHIFT:
394 hv_pgsz_mask = HV_PGSZ_MASK_64K;
395 hv_pgsz_idx = HV_PGSZ_IDX_64K;
396 break;
c7d9f77d
NG
397 default:
398 hv_pgsz_mask = 0;
399 }
400
401 if ((hv_pgsz_mask & cpu_pgsz_mask) == 0U) {
f322980b
LH
402 hugetlb_bad_size();
403 pr_err("hugepagesz=%llu not supported by MMU.\n",
c7d9f77d
NG
404 hugepage_size);
405 goto out;
406 }
407
8399e4b8 408 add_huge_page_size(hugepage_size);
c7d9f77d
NG
409 rc = 1;
410
411out:
412 return rc;
413}
414__setup("hugepagesz=", setup_hugepagesz);
415#endif /* CONFIG_HUGETLB_PAGE */
416
4b3073e1 417void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
ff9aefbf
SR
418{
419 struct mm_struct *mm;
bcd896ba 420 unsigned long flags;
df7b2155 421 bool is_huge_tsb;
4b3073e1 422 pte_t pte = *ptep;
ff9aefbf
SR
423
424 if (tlb_type != hypervisor) {
425 unsigned long pfn = pte_pfn(pte);
426
427 if (pfn_valid(pfn))
428 flush_dcache(pfn);
429 }
bd40791e
DM
430
431 mm = vma->vm_mm;
7a1ac526 432
18f38132
DM
433 /* Don't insert a non-valid PTE into the TSB, we'll deadlock. */
434 if (!pte_accessible(mm, pte))
435 return;
436
7a1ac526
DM
437 spin_lock_irqsave(&mm->context.lock, flags);
438
df7b2155 439 is_huge_tsb = false;
9e695d2e 440#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
df7b2155
NG
441 if (mm->context.hugetlb_pte_count || mm->context.thp_pte_count) {
442 unsigned long hugepage_size = PAGE_SIZE;
443
444 if (is_vm_hugetlb_page(vma))
445 hugepage_size = huge_page_size(hstate_vma(vma));
446
447 if (hugepage_size >= PUD_SIZE) {
448 unsigned long mask = 0x1ffc00000UL;
449
450 /* Transfer bits [32:22] from address to resolve
451 * at 4M granularity.
452 */
453 pte_val(pte) &= ~mask;
454 pte_val(pte) |= (address & mask);
455 } else if (hugepage_size >= PMD_SIZE) {
456 /* We are fabricating 8MB pages using 4MB
457 * real hw pages.
458 */
459 pte_val(pte) |= (address & (1UL << REAL_HPAGE_SHIFT));
460 }
461
462 if (hugepage_size >= PMD_SIZE) {
463 __update_mmu_tsb_insert(mm, MM_TSB_HUGE,
464 REAL_HPAGE_SHIFT, address, pte_val(pte));
465 is_huge_tsb = true;
466 }
467 }
dcc1e8dd 468#endif
df7b2155 469 if (!is_huge_tsb)
bcd896ba
DM
470 __update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
471 address, pte_val(pte));
7a1ac526
DM
472
473 spin_unlock_irqrestore(&mm->context.lock, flags);
1da177e4
LT
474}
475
476void flush_dcache_page(struct page *page)
477{
a9546f59
DM
478 struct address_space *mapping;
479 int this_cpu;
1da177e4 480
7a591cfe
DM
481 if (tlb_type == hypervisor)
482 return;
483
a9546f59
DM
484 /* Do not bother with the expensive D-cache flush if it
485 * is merely the zero page. The 'bigcore' testcase in GDB
486 * causes this case to run millions of times.
487 */
488 if (page == ZERO_PAGE(0))
489 return;
490
491 this_cpu = get_cpu();
492
493 mapping = page_mapping(page);
1da177e4 494 if (mapping && !mapping_mapped(mapping)) {
a9546f59 495 int dirty = test_bit(PG_dcache_dirty, &page->flags);
1da177e4 496 if (dirty) {
a9546f59
DM
497 int dirty_cpu = dcache_dirty_cpu(page);
498
1da177e4
LT
499 if (dirty_cpu == this_cpu)
500 goto out;
501 smp_flush_dcache_page_impl(page, dirty_cpu);
502 }
503 set_dcache_dirty(page, this_cpu);
504 } else {
505 /* We could delay the flush for the !page_mapping
506 * case too. But that case is for exec env/arg
507 * pages and those are %99 certainly going to get
508 * faulted into the tlb (and thus flushed) anyways.
509 */
510 flush_dcache_page_impl(page);
511 }
512
513out:
514 put_cpu();
515}
917c3660 516EXPORT_SYMBOL(flush_dcache_page);
1da177e4 517
05e14cb3 518void __kprobes flush_icache_range(unsigned long start, unsigned long end)
1da177e4 519{
a43fe0e7 520 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
1da177e4
LT
521 if (tlb_type == spitfire) {
522 unsigned long kaddr;
523
a94aa253
DM
524 /* This code only runs on Spitfire cpus so this is
525 * why we can assume _PAGE_PADDR_4U.
526 */
527 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
528 unsigned long paddr, mask = _PAGE_PADDR_4U;
529
530 if (kaddr >= PAGE_OFFSET)
531 paddr = kaddr & mask;
532 else {
533 pgd_t *pgdp = pgd_offset_k(kaddr);
534 pud_t *pudp = pud_offset(pgdp, kaddr);
535 pmd_t *pmdp = pmd_offset(pudp, kaddr);
536 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
537
538 paddr = pte_val(*ptep) & mask;
539 }
540 __flush_icache_page(paddr);
541 }
1da177e4
LT
542 }
543}
917c3660 544EXPORT_SYMBOL(flush_icache_range);
1da177e4 545
1da177e4
LT
546void mmu_info(struct seq_file *m)
547{
ce33fdc5
DM
548 static const char *pgsz_strings[] = {
549 "8K", "64K", "512K", "4MB", "32MB",
550 "256MB", "2GB", "16GB",
551 };
552 int i, printed;
553
1da177e4
LT
554 if (tlb_type == cheetah)
555 seq_printf(m, "MMU Type\t: Cheetah\n");
556 else if (tlb_type == cheetah_plus)
557 seq_printf(m, "MMU Type\t: Cheetah+\n");
558 else if (tlb_type == spitfire)
559 seq_printf(m, "MMU Type\t: Spitfire\n");
a43fe0e7
DM
560 else if (tlb_type == hypervisor)
561 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
1da177e4
LT
562 else
563 seq_printf(m, "MMU Type\t: ???\n");
564
ce33fdc5
DM
565 seq_printf(m, "MMU PGSZs\t: ");
566 printed = 0;
567 for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
568 if (cpu_pgsz_mask & (1UL << i)) {
569 seq_printf(m, "%s%s",
570 printed ? "," : "", pgsz_strings[i]);
571 printed++;
572 }
573 }
574 seq_putc(m, '\n');
575
1da177e4
LT
576#ifdef CONFIG_DEBUG_DCFLUSH
577 seq_printf(m, "DCPageFlushes\t: %d\n",
578 atomic_read(&dcpage_flushes));
579#ifdef CONFIG_SMP
580 seq_printf(m, "DCPageFlushesXC\t: %d\n",
581 atomic_read(&dcpage_flushes_xcall));
582#endif /* CONFIG_SMP */
583#endif /* CONFIG_DEBUG_DCFLUSH */
584}
585
a94aa253
DM
586struct linux_prom_translation prom_trans[512] __read_mostly;
587unsigned int prom_trans_ents __read_mostly;
588
1da177e4
LT
589unsigned long kern_locked_tte_data;
590
c9c10830
DM
591/* The obp translations are saved based on 8k pagesize, since obp can
592 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
74bf4312 593 * HI_OBP_ADDRESS range are handled in ktlb.S.
c9c10830 594 */
5085b4a5
DM
595static inline int in_obp_range(unsigned long vaddr)
596{
597 return (vaddr >= LOW_OBP_ADDRESS &&
598 vaddr < HI_OBP_ADDRESS);
599}
600
c9c10830 601static int cmp_ptrans(const void *a, const void *b)
405599bd 602{
c9c10830 603 const struct linux_prom_translation *x = a, *y = b;
405599bd 604
c9c10830
DM
605 if (x->virt > y->virt)
606 return 1;
607 if (x->virt < y->virt)
608 return -1;
609 return 0;
405599bd
DM
610}
611
c9c10830 612/* Read OBP translations property into 'prom_trans[]'. */
9ad98c5b 613static void __init read_obp_translations(void)
405599bd 614{
c9c10830 615 int n, node, ents, first, last, i;
1da177e4
LT
616
617 node = prom_finddevice("/virtual-memory");
618 n = prom_getproplen(node, "translations");
405599bd 619 if (unlikely(n == 0 || n == -1)) {
b206fc4c 620 prom_printf("prom_mappings: Couldn't get size.\n");
1da177e4
LT
621 prom_halt();
622 }
405599bd 623 if (unlikely(n > sizeof(prom_trans))) {
5da444aa 624 prom_printf("prom_mappings: Size %d is too big.\n", n);
1da177e4
LT
625 prom_halt();
626 }
405599bd 627
b206fc4c 628 if ((n = prom_getproperty(node, "translations",
405599bd
DM
629 (char *)&prom_trans[0],
630 sizeof(prom_trans))) == -1) {
b206fc4c 631 prom_printf("prom_mappings: Couldn't get property.\n");
1da177e4
LT
632 prom_halt();
633 }
9ad98c5b 634
b206fc4c 635 n = n / sizeof(struct linux_prom_translation);
9ad98c5b 636
c9c10830
DM
637 ents = n;
638
639 sort(prom_trans, ents, sizeof(struct linux_prom_translation),
640 cmp_ptrans, NULL);
641
642 /* Now kick out all the non-OBP entries. */
643 for (i = 0; i < ents; i++) {
644 if (in_obp_range(prom_trans[i].virt))
645 break;
646 }
647 first = i;
648 for (; i < ents; i++) {
649 if (!in_obp_range(prom_trans[i].virt))
650 break;
651 }
652 last = i;
653
654 for (i = 0; i < (last - first); i++) {
655 struct linux_prom_translation *src = &prom_trans[i + first];
656 struct linux_prom_translation *dest = &prom_trans[i];
657
658 *dest = *src;
659 }
660 for (; i < ents; i++) {
661 struct linux_prom_translation *dest = &prom_trans[i];
662 dest->virt = dest->size = dest->data = 0x0UL;
663 }
664
665 prom_trans_ents = last - first;
666
667 if (tlb_type == spitfire) {
668 /* Clear diag TTE bits. */
669 for (i = 0; i < prom_trans_ents; i++)
670 prom_trans[i].data &= ~0x0003fe0000000000UL;
671 }
f4142cba
DM
672
673 /* Force execute bit on. */
674 for (i = 0; i < prom_trans_ents; i++)
675 prom_trans[i].data |= (tlb_type == hypervisor ?
676 _PAGE_EXEC_4V : _PAGE_EXEC_4U);
405599bd 677}
1da177e4 678
d82ace7d
DM
679static void __init hypervisor_tlb_lock(unsigned long vaddr,
680 unsigned long pte,
681 unsigned long mmu)
682{
7db35f31
DM
683 unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
684
685 if (ret != 0) {
5da444aa 686 prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
7db35f31 687 "errors with %lx\n", vaddr, 0, pte, mmu, ret);
12e126ad
DM
688 prom_halt();
689 }
d82ace7d
DM
690}
691
c4bce90e
DM
692static unsigned long kern_large_tte(unsigned long paddr);
693
898cf0ec 694static void __init remap_kernel(void)
405599bd
DM
695{
696 unsigned long phys_page, tte_vaddr, tte_data;
64658743 697 int i, tlb_ent = sparc64_highest_locked_tlbent();
405599bd 698
1da177e4 699 tte_vaddr = (unsigned long) KERNBASE;
0eef331a 700 phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
c4bce90e 701 tte_data = kern_large_tte(phys_page);
1da177e4
LT
702
703 kern_locked_tte_data = tte_data;
704
d82ace7d
DM
705 /* Now lock us into the TLBs via Hypervisor or OBP. */
706 if (tlb_type == hypervisor) {
64658743 707 for (i = 0; i < num_kernel_image_mappings; i++) {
d82ace7d
DM
708 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
709 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
64658743
DM
710 tte_vaddr += 0x400000;
711 tte_data += 0x400000;
d82ace7d
DM
712 }
713 } else {
64658743
DM
714 for (i = 0; i < num_kernel_image_mappings; i++) {
715 prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
716 prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
717 tte_vaddr += 0x400000;
718 tte_data += 0x400000;
d82ace7d 719 }
64658743 720 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
1da177e4 721 }
0835ae0f
DM
722 if (tlb_type == cheetah_plus) {
723 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
724 CTX_CHEETAH_PLUS_NUC);
725 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
726 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
727 }
405599bd 728}
1da177e4 729
405599bd 730
c9c10830 731static void __init inherit_prom_mappings(void)
9ad98c5b 732{
405599bd 733 /* Now fixup OBP's idea about where we really are mapped. */
3c62a2d3 734 printk("Remapping the kernel... ");
405599bd 735 remap_kernel();
3c62a2d3 736 printk("done.\n");
1da177e4
LT
737}
738
1da177e4
LT
739void prom_world(int enter)
740{
1da177e4 741 if (!enter)
dff933da 742 set_fs(get_fs());
1da177e4 743
3487d1d4 744 __asm__ __volatile__("flushw");
1da177e4
LT
745}
746
1da177e4
LT
747void __flush_dcache_range(unsigned long start, unsigned long end)
748{
749 unsigned long va;
750
751 if (tlb_type == spitfire) {
752 int n = 0;
753
754 for (va = start; va < end; va += 32) {
755 spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
756 if (++n >= 512)
757 break;
758 }
a43fe0e7 759 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1da177e4
LT
760 start = __pa(start);
761 end = __pa(end);
762 for (va = start; va < end; va += 32)
763 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
764 "membar #Sync"
765 : /* no outputs */
766 : "r" (va),
767 "i" (ASI_DCACHE_INVALIDATE));
768 }
769}
917c3660 770EXPORT_SYMBOL(__flush_dcache_range);
1da177e4 771
85f1e1f6
DM
772/* get_new_mmu_context() uses "cache + 1". */
773DEFINE_SPINLOCK(ctx_alloc_lock);
c4415235 774unsigned long tlb_context_cache = CTX_FIRST_VERSION;
85f1e1f6
DM
775#define MAX_CTX_NR (1UL << CTX_NR_BITS)
776#define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
777DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
7a5b4bbf 778DEFINE_PER_CPU(struct mm_struct *, per_cpu_secondary_mm) = {0};
85f1e1f6 779
a0582f26
PT
780static void mmu_context_wrap(void)
781{
782 unsigned long old_ver = tlb_context_cache & CTX_VERSION_MASK;
783 unsigned long new_ver, new_ctx, old_ctx;
784 struct mm_struct *mm;
785 int cpu;
786
787 bitmap_zero(mmu_context_bmap, 1 << CTX_NR_BITS);
788
789 /* Reserve kernel context */
790 set_bit(0, mmu_context_bmap);
791
792 new_ver = (tlb_context_cache & CTX_VERSION_MASK) + CTX_FIRST_VERSION;
793 if (unlikely(new_ver == 0))
794 new_ver = CTX_FIRST_VERSION;
795 tlb_context_cache = new_ver;
796
797 /*
798 * Make sure that any new mm that are added into per_cpu_secondary_mm,
799 * are going to go through get_new_mmu_context() path.
800 */
801 mb();
802
803 /*
804 * Updated versions to current on those CPUs that had valid secondary
805 * contexts
806 */
807 for_each_online_cpu(cpu) {
808 /*
809 * If a new mm is stored after we took this mm from the array,
810 * it will go into get_new_mmu_context() path, because we
811 * already bumped the version in tlb_context_cache.
812 */
813 mm = per_cpu(per_cpu_secondary_mm, cpu);
814
815 if (unlikely(!mm || mm == &init_mm))
816 continue;
817
818 old_ctx = mm->context.sparc64_ctx_val;
819 if (likely((old_ctx & CTX_VERSION_MASK) == old_ver)) {
820 new_ctx = (old_ctx & ~CTX_VERSION_MASK) | new_ver;
821 set_bit(new_ctx & CTX_NR_MASK, mmu_context_bmap);
822 mm->context.sparc64_ctx_val = new_ctx;
823 }
824 }
825}
826
1da177e4
LT
827/* Caller does TLB context flushing on local CPU if necessary.
828 * The caller also ensures that CTX_VALID(mm->context) is false.
829 *
830 * We must be careful about boundary cases so that we never
831 * let the user have CTX 0 (nucleus) or we ever use a CTX
832 * version of zero (and thus NO_CONTEXT would not be caught
833 * by version mis-match tests in mmu_context.h).
a0663a79
DM
834 *
835 * Always invoked with interrupts disabled.
1da177e4
LT
836 */
837void get_new_mmu_context(struct mm_struct *mm)
838{
839 unsigned long ctx, new_ctx;
840 unsigned long orig_pgsz_bits;
1da177e4 841
07df8418 842 spin_lock(&ctx_alloc_lock);
a0582f26
PT
843retry:
844 /* wrap might have happened, test again if our context became valid */
845 if (unlikely(CTX_VALID(mm->context)))
846 goto out;
1da177e4
LT
847 orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
848 ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
849 new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
850 if (new_ctx >= (1 << CTX_NR_BITS)) {
851 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
852 if (new_ctx >= ctx) {
a0582f26
PT
853 mmu_context_wrap();
854 goto retry;
1da177e4
LT
855 }
856 }
58897485
PT
857 if (mm->context.sparc64_ctx_val)
858 cpumask_clear(mm_cpumask(mm));
1da177e4
LT
859 mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
860 new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
1da177e4
LT
861 tlb_context_cache = new_ctx;
862 mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
a0582f26 863out:
07df8418 864 spin_unlock(&ctx_alloc_lock);
1da177e4
LT
865}
866
919ee677
DM
867static int numa_enabled = 1;
868static int numa_debug;
869
870static int __init early_numa(char *p)
1da177e4 871{
919ee677
DM
872 if (!p)
873 return 0;
874
875 if (strstr(p, "off"))
876 numa_enabled = 0;
d1112018 877
919ee677
DM
878 if (strstr(p, "debug"))
879 numa_debug = 1;
d1112018 880
919ee677 881 return 0;
d1112018 882}
919ee677
DM
883early_param("numa", early_numa);
884
885#define numadbg(f, a...) \
886do { if (numa_debug) \
887 printk(KERN_INFO f, ## a); \
888} while (0)
d1112018 889
4e82c9a6
DM
890static void __init find_ramdisk(unsigned long phys_base)
891{
892#ifdef CONFIG_BLK_DEV_INITRD
893 if (sparc_ramdisk_image || sparc_ramdisk_image64) {
894 unsigned long ramdisk_image;
895
896 /* Older versions of the bootloader only supported a
897 * 32-bit physical address for the ramdisk image
898 * location, stored at sparc_ramdisk_image. Newer
899 * SILO versions set sparc_ramdisk_image to zero and
900 * provide a full 64-bit physical address at
901 * sparc_ramdisk_image64.
902 */
903 ramdisk_image = sparc_ramdisk_image;
904 if (!ramdisk_image)
905 ramdisk_image = sparc_ramdisk_image64;
906
907 /* Another bootloader quirk. The bootloader normalizes
908 * the physical address to KERNBASE, so we have to
909 * factor that back out and add in the lowest valid
910 * physical page address to get the true physical address.
911 */
912 ramdisk_image -= KERNBASE;
913 ramdisk_image += phys_base;
914
919ee677
DM
915 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
916 ramdisk_image, sparc_ramdisk_size);
917
4e82c9a6
DM
918 initrd_start = ramdisk_image;
919 initrd_end = ramdisk_image + sparc_ramdisk_size;
3b2a7e23 920
95f72d1e 921 memblock_reserve(initrd_start, sparc_ramdisk_size);
d45100f7
DM
922
923 initrd_start += PAGE_OFFSET;
924 initrd_end += PAGE_OFFSET;
4e82c9a6
DM
925 }
926#endif
927}
928
919ee677
DM
929struct node_mem_mask {
930 unsigned long mask;
1537b26d 931 unsigned long match;
919ee677
DM
932};
933static struct node_mem_mask node_masks[MAX_NUMNODES];
934static int num_node_masks;
935
48d37216
SR
936#ifdef CONFIG_NEED_MULTIPLE_NODES
937
1537b26d
PT
938struct mdesc_mlgroup {
939 u64 node;
940 u64 latency;
941 u64 match;
942 u64 mask;
943};
944
945static struct mdesc_mlgroup *mlgroups;
946static int num_mlgroups;
947
919ee677
DM
948int numa_cpu_lookup_table[NR_CPUS];
949cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
950
919ee677
DM
951struct mdesc_mblock {
952 u64 base;
953 u64 size;
954 u64 offset; /* RA-to-PA */
955};
956static struct mdesc_mblock *mblocks;
957static int num_mblocks;
958
1537b26d 959static struct mdesc_mblock * __init addr_to_mblock(unsigned long addr)
919ee677 960{
1537b26d 961 struct mdesc_mblock *m = NULL;
919ee677
DM
962 int i;
963
964 for (i = 0; i < num_mblocks; i++) {
1537b26d 965 m = &mblocks[i];
919ee677
DM
966
967 if (addr >= m->base &&
968 addr < (m->base + m->size)) {
919ee677
DM
969 break;
970 }
971 }
1537b26d
PT
972
973 return m;
919ee677
DM
974}
975
1537b26d 976static u64 __init memblock_nid_range_sun4u(u64 start, u64 end, int *nid)
919ee677 977{
1537b26d 978 int prev_nid, new_nid;
919ee677 979
1537b26d
PT
980 prev_nid = -1;
981 for ( ; start < end; start += PAGE_SIZE) {
982 for (new_nid = 0; new_nid < num_node_masks; new_nid++) {
983 struct node_mem_mask *p = &node_masks[new_nid];
919ee677 984
1537b26d
PT
985 if ((start & p->mask) == p->match) {
986 if (prev_nid == -1)
987 prev_nid = new_nid;
988 break;
989 }
74a5ed5c 990 }
1537b26d
PT
991
992 if (new_nid == num_node_masks) {
993 prev_nid = 0;
994 WARN_ONCE(1, "addr[%Lx] doesn't match a NUMA node rule. Some memory will be owned by node 0.",
995 start);
996 break;
997 }
998
999 if (prev_nid != new_nid)
1000 break;
74a5ed5c 1001 }
1537b26d 1002 *nid = prev_nid;
74a5ed5c 1003
1537b26d 1004 return start > end ? end : start;
919ee677
DM
1005}
1006
87a349f9 1007static u64 __init memblock_nid_range(u64 start, u64 end, int *nid)
919ee677 1008{
1537b26d
PT
1009 u64 ret_end, pa_start, m_mask, m_match, m_end;
1010 struct mdesc_mblock *mblock;
1011 int _nid, i;
1012
1013 if (tlb_type != hypervisor)
1014 return memblock_nid_range_sun4u(start, end, nid);
1015
1016 mblock = addr_to_mblock(start);
1017 if (!mblock) {
1018 WARN_ONCE(1, "memblock_nid_range: Can't find mblock addr[%Lx]",
1019 start);
1020
1021 _nid = 0;
1022 ret_end = end;
1023 goto done;
1024 }
1025
1026 pa_start = start + mblock->offset;
1027 m_match = 0;
1028 m_mask = 0;
919ee677 1029
1537b26d
PT
1030 for (_nid = 0; _nid < num_node_masks; _nid++) {
1031 struct node_mem_mask *const m = &node_masks[_nid];
1032
1033 if ((pa_start & m->mask) == m->match) {
1034 m_match = m->match;
1035 m_mask = m->mask;
919ee677 1036 break;
1537b26d 1037 }
919ee677
DM
1038 }
1039
1537b26d
PT
1040 if (num_node_masks == _nid) {
1041 /* We could not find NUMA group, so default to 0, but lets
1042 * search for latency group, so we could calculate the correct
1043 * end address that we return
1044 */
1045 _nid = 0;
1046
1047 for (i = 0; i < num_mlgroups; i++) {
1048 struct mdesc_mlgroup *const m = &mlgroups[i];
c918dcce 1049
1537b26d
PT
1050 if ((pa_start & m->mask) == m->match) {
1051 m_match = m->match;
1052 m_mask = m->mask;
1053 break;
1054 }
1055 }
1056
1057 if (i == num_mlgroups) {
1058 WARN_ONCE(1, "memblock_nid_range: Can't find latency group addr[%Lx]",
1059 start);
1060
1061 ret_end = end;
1062 goto done;
1063 }
1064 }
1065
1066 /*
1067 * Each latency group has match and mask, and each memory block has an
1068 * offset. An address belongs to a latency group if its address matches
1069 * the following formula: ((addr + offset) & mask) == match
1070 * It is, however, slow to check every single page if it matches a
1071 * particular latency group. As optimization we calculate end value by
1072 * using bit arithmetics.
1073 */
1074 m_end = m_match + (1ul << __ffs(m_mask)) - mblock->offset;
1075 m_end += pa_start & ~((1ul << fls64(m_mask)) - 1);
1076 ret_end = m_end > end ? end : m_end;
1077
1078done:
1079 *nid = _nid;
1080 return ret_end;
919ee677 1081}
919ee677
DM
1082#endif
1083
1084/* This must be invoked after performing all of the necessary
2a4814df 1085 * memblock_set_node() calls for 'nid'. We need to be able to get
919ee677 1086 * correct data from get_pfn_range_for_nid().
f1cfdb55 1087 */
919ee677
DM
1088static void __init allocate_node_data(int nid)
1089{
919ee677 1090 struct pglist_data *p;
aa6f0790 1091 unsigned long start_pfn, end_pfn;
919ee677 1092#ifdef CONFIG_NEED_MULTIPLE_NODES
aa6f0790
PG
1093 unsigned long paddr;
1094
9d1e2492 1095 paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
919ee677
DM
1096 if (!paddr) {
1097 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
1098 prom_halt();
1099 }
1100 NODE_DATA(nid) = __va(paddr);
1101 memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
1102
625d693e 1103 NODE_DATA(nid)->node_id = nid;
919ee677
DM
1104#endif
1105
1106 p = NODE_DATA(nid);
1107
1108 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1109 p->node_start_pfn = start_pfn;
1110 p->node_spanned_pages = end_pfn - start_pfn;
919ee677
DM
1111}
1112
1113static void init_node_masks_nonnuma(void)
d1112018 1114{
48d37216 1115#ifdef CONFIG_NEED_MULTIPLE_NODES
1da177e4 1116 int i;
48d37216 1117#endif
1da177e4 1118
919ee677 1119 numadbg("Initializing tables for non-numa.\n");
6fc5bae7 1120
1537b26d
PT
1121 node_masks[0].mask = 0;
1122 node_masks[0].match = 0;
919ee677 1123 num_node_masks = 1;
d1112018 1124
48d37216 1125#ifdef CONFIG_NEED_MULTIPLE_NODES
919ee677
DM
1126 for (i = 0; i < NR_CPUS; i++)
1127 numa_cpu_lookup_table[i] = 0;
1da177e4 1128
fb1fece5 1129 cpumask_setall(&numa_cpumask_lookup_table[0]);
48d37216 1130#endif
919ee677
DM
1131}
1132
1133#ifdef CONFIG_NEED_MULTIPLE_NODES
1134struct pglist_data *node_data[MAX_NUMNODES];
1135
1136EXPORT_SYMBOL(numa_cpu_lookup_table);
1137EXPORT_SYMBOL(numa_cpumask_lookup_table);
1138EXPORT_SYMBOL(node_data);
1139
919ee677
DM
1140static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
1141 u32 cfg_handle)
1142{
1143 u64 arc;
1144
1145 mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
1146 u64 target = mdesc_arc_target(md, arc);
1147 const u64 *val;
1148
1149 val = mdesc_get_property(md, target,
1150 "cfg-handle", NULL);
1151 if (val && *val == cfg_handle)
1152 return 0;
1153 }
1154 return -ENODEV;
1155}
1156
1157static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
1158 u32 cfg_handle)
1159{
1160 u64 arc, candidate, best_latency = ~(u64)0;
1161
1162 candidate = MDESC_NODE_NULL;
1163 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1164 u64 target = mdesc_arc_target(md, arc);
1165 const char *name = mdesc_node_name(md, target);
1166 const u64 *val;
1167
1168 if (strcmp(name, "pio-latency-group"))
1169 continue;
1170
1171 val = mdesc_get_property(md, target, "latency", NULL);
1172 if (!val)
1173 continue;
1174
1175 if (*val < best_latency) {
1176 candidate = target;
1177 best_latency = *val;
1178 }
1179 }
1180
1181 if (candidate == MDESC_NODE_NULL)
1182 return -ENODEV;
1183
1184 return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
1185}
1186
1187int of_node_to_nid(struct device_node *dp)
1188{
1189 const struct linux_prom64_registers *regs;
1190 struct mdesc_handle *md;
1191 u32 cfg_handle;
1192 int count, nid;
1193 u64 grp;
1194
072bd413
DM
1195 /* This is the right thing to do on currently supported
1196 * SUN4U NUMA platforms as well, as the PCI controller does
1197 * not sit behind any particular memory controller.
1198 */
919ee677
DM
1199 if (!mlgroups)
1200 return -1;
1201
1202 regs = of_get_property(dp, "reg", NULL);
1203 if (!regs)
1204 return -1;
1205
1206 cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
1207
1208 md = mdesc_grab();
1209
1210 count = 0;
1211 nid = -1;
1212 mdesc_for_each_node_by_name(md, grp, "group") {
1213 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
1214 nid = count;
1215 break;
1216 }
1217 count++;
1218 }
1219
1220 mdesc_release(md);
1221
1222 return nid;
1223}
1224
01c45381 1225static void __init add_node_ranges(void)
919ee677 1226{
08b84798 1227 struct memblock_region *reg;
cd429ce2
PT
1228 unsigned long prev_max;
1229
1230memblock_resized:
1231 prev_max = memblock.memory.max;
919ee677 1232
08b84798
BH
1233 for_each_memblock(memory, reg) {
1234 unsigned long size = reg->size;
919ee677
DM
1235 unsigned long start, end;
1236
08b84798 1237 start = reg->base;
919ee677
DM
1238 end = start + size;
1239 while (start < end) {
1240 unsigned long this_end;
1241 int nid;
1242
35a1f0bd 1243 this_end = memblock_nid_range(start, end, &nid);
919ee677 1244
2a4814df 1245 numadbg("Setting memblock NUMA node nid[%d] "
919ee677
DM
1246 "start[%lx] end[%lx]\n",
1247 nid, start, this_end);
1248
e7e8de59
TC
1249 memblock_set_node(start, this_end - start,
1250 &memblock.memory, nid);
cd429ce2
PT
1251 if (memblock.memory.max != prev_max)
1252 goto memblock_resized;
919ee677
DM
1253 start = this_end;
1254 }
1255 }
1256}
1257
1258static int __init grab_mlgroups(struct mdesc_handle *md)
1259{
1260 unsigned long paddr;
1261 int count = 0;
1262 u64 node;
1263
1264 mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1265 count++;
1266 if (!count)
1267 return -ENOENT;
1268
95f72d1e 1269 paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
919ee677
DM
1270 SMP_CACHE_BYTES);
1271 if (!paddr)
1272 return -ENOMEM;
1273
1274 mlgroups = __va(paddr);
1275 num_mlgroups = count;
1276
1277 count = 0;
1278 mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1279 struct mdesc_mlgroup *m = &mlgroups[count++];
1280 const u64 *val;
1281
1282 m->node = node;
1283
1284 val = mdesc_get_property(md, node, "latency", NULL);
1285 m->latency = *val;
1286 val = mdesc_get_property(md, node, "address-match", NULL);
1287 m->match = *val;
1288 val = mdesc_get_property(md, node, "address-mask", NULL);
1289 m->mask = *val;
1290
90181136
SR
1291 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1292 "match[%llx] mask[%llx]\n",
919ee677
DM
1293 count - 1, m->node, m->latency, m->match, m->mask);
1294 }
1295
1296 return 0;
1297}
1298
1299static int __init grab_mblocks(struct mdesc_handle *md)
1300{
1301 unsigned long paddr;
1302 int count = 0;
1303 u64 node;
1304
1305 mdesc_for_each_node_by_name(md, node, "mblock")
1306 count++;
1307 if (!count)
1308 return -ENOENT;
1309
95f72d1e 1310 paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
919ee677
DM
1311 SMP_CACHE_BYTES);
1312 if (!paddr)
1313 return -ENOMEM;
1314
1315 mblocks = __va(paddr);
1316 num_mblocks = count;
1317
1318 count = 0;
1319 mdesc_for_each_node_by_name(md, node, "mblock") {
1320 struct mdesc_mblock *m = &mblocks[count++];
1321 const u64 *val;
1322
1323 val = mdesc_get_property(md, node, "base", NULL);
1324 m->base = *val;
1325 val = mdesc_get_property(md, node, "size", NULL);
1326 m->size = *val;
1327 val = mdesc_get_property(md, node,
1328 "address-congruence-offset", NULL);
771a37ff 1329
1330 /* The address-congruence-offset property is optional.
1331 * Explicity zero it be identifty this.
1332 */
1333 if (val)
1334 m->offset = *val;
1335 else
1336 m->offset = 0UL;
919ee677 1337
90181136 1338 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
919ee677
DM
1339 count - 1, m->base, m->size, m->offset);
1340 }
1341
1342 return 0;
1343}
1344
1345static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1346 u64 grp, cpumask_t *mask)
1347{
1348 u64 arc;
1349
fb1fece5 1350 cpumask_clear(mask);
919ee677
DM
1351
1352 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1353 u64 target = mdesc_arc_target(md, arc);
1354 const char *name = mdesc_node_name(md, target);
1355 const u64 *id;
1356
1357 if (strcmp(name, "cpu"))
1358 continue;
1359 id = mdesc_get_property(md, target, "id", NULL);
e305cb8f 1360 if (*id < nr_cpu_ids)
fb1fece5 1361 cpumask_set_cpu(*id, mask);
919ee677
DM
1362 }
1363}
1364
1365static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1366{
1367 int i;
1368
1369 for (i = 0; i < num_mlgroups; i++) {
1370 struct mdesc_mlgroup *m = &mlgroups[i];
1371 if (m->node == node)
1372 return m;
1373 }
1374 return NULL;
1375}
1376
52708d69
NG
1377int __node_distance(int from, int to)
1378{
1379 if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) {
1380 pr_warn("Returning default NUMA distance value for %d->%d\n",
1381 from, to);
1382 return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE;
1383 }
1384 return numa_latency[from][to];
1385}
1386
bdf2f59e 1387static int __init find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp)
52708d69
NG
1388{
1389 int i;
1390
1391 for (i = 0; i < MAX_NUMNODES; i++) {
1392 struct node_mem_mask *n = &node_masks[i];
1393
1537b26d 1394 if ((grp->mask == n->mask) && (grp->match == n->match))
52708d69
NG
1395 break;
1396 }
1397 return i;
1398}
1399
bdf2f59e
PG
1400static void __init find_numa_latencies_for_group(struct mdesc_handle *md,
1401 u64 grp, int index)
52708d69
NG
1402{
1403 u64 arc;
1404
1405 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1406 int tnode;
1407 u64 target = mdesc_arc_target(md, arc);
1408 struct mdesc_mlgroup *m = find_mlgroup(target);
1409
1410 if (!m)
1411 continue;
1412 tnode = find_best_numa_node_for_mlgroup(m);
1413 if (tnode == MAX_NUMNODES)
1414 continue;
1415 numa_latency[index][tnode] = m->latency;
1416 }
1417}
1418
919ee677
DM
1419static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1420 int index)
1421{
1422 struct mdesc_mlgroup *candidate = NULL;
1423 u64 arc, best_latency = ~(u64)0;
1424 struct node_mem_mask *n;
1425
1426 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1427 u64 target = mdesc_arc_target(md, arc);
1428 struct mdesc_mlgroup *m = find_mlgroup(target);
1429 if (!m)
1430 continue;
1431 if (m->latency < best_latency) {
1432 candidate = m;
1433 best_latency = m->latency;
1434 }
1435 }
1436 if (!candidate)
1437 return -ENOENT;
1438
1439 if (num_node_masks != index) {
1440 printk(KERN_ERR "Inconsistent NUMA state, "
1441 "index[%d] != num_node_masks[%d]\n",
1442 index, num_node_masks);
1443 return -EINVAL;
1444 }
1445
1446 n = &node_masks[num_node_masks++];
1447
1448 n->mask = candidate->mask;
1537b26d 1449 n->match = candidate->match;
1da177e4 1450
1537b26d
PT
1451 numadbg("NUMA NODE[%d]: mask[%lx] match[%lx] (latency[%llx])\n",
1452 index, n->mask, n->match, candidate->latency);
1da177e4 1453
919ee677
DM
1454 return 0;
1455}
1456
1457static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1458 int index)
1459{
1460 cpumask_t mask;
1461 int cpu;
1462
1463 numa_parse_mdesc_group_cpus(md, grp, &mask);
1464
fb1fece5 1465 for_each_cpu(cpu, &mask)
919ee677 1466 numa_cpu_lookup_table[cpu] = index;
fb1fece5 1467 cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
919ee677
DM
1468
1469 if (numa_debug) {
1470 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
fb1fece5 1471 for_each_cpu(cpu, &mask)
919ee677
DM
1472 printk("%d ", cpu);
1473 printk("]\n");
1474 }
1475
1476 return numa_attach_mlgroup(md, grp, index);
1477}
1478
1479static int __init numa_parse_mdesc(void)
1480{
1481 struct mdesc_handle *md = mdesc_grab();
52708d69 1482 int i, j, err, count;
919ee677
DM
1483 u64 node;
1484
1485 node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1486 if (node == MDESC_NODE_NULL) {
1487 mdesc_release(md);
1488 return -ENOENT;
1489 }
1490
1491 err = grab_mblocks(md);
1492 if (err < 0)
1493 goto out;
1494
1495 err = grab_mlgroups(md);
1496 if (err < 0)
1497 goto out;
1498
1499 count = 0;
1500 mdesc_for_each_node_by_name(md, node, "group") {
1501 err = numa_parse_mdesc_group(md, node, count);
1502 if (err < 0)
1503 break;
1504 count++;
1505 }
1506
52708d69
NG
1507 count = 0;
1508 mdesc_for_each_node_by_name(md, node, "group") {
1509 find_numa_latencies_for_group(md, node, count);
1510 count++;
1511 }
1512
1513 /* Normalize numa latency matrix according to ACPI SLIT spec. */
1514 for (i = 0; i < MAX_NUMNODES; i++) {
1515 u64 self_latency = numa_latency[i][i];
1516
1517 for (j = 0; j < MAX_NUMNODES; j++) {
1518 numa_latency[i][j] =
1519 (numa_latency[i][j] * LOCAL_DISTANCE) /
1520 self_latency;
1521 }
1522 }
1523
919ee677
DM
1524 add_node_ranges();
1525
1526 for (i = 0; i < num_node_masks; i++) {
1527 allocate_node_data(i);
1528 node_set_online(i);
1529 }
1530
1531 err = 0;
1532out:
1533 mdesc_release(md);
1534 return err;
1535}
1536
072bd413
DM
1537static int __init numa_parse_jbus(void)
1538{
1539 unsigned long cpu, index;
1540
1541 /* NUMA node id is encoded in bits 36 and higher, and there is
1542 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1543 */
1544 index = 0;
1545 for_each_present_cpu(cpu) {
1546 numa_cpu_lookup_table[cpu] = index;
fb1fece5 1547 cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
072bd413 1548 node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1537b26d 1549 node_masks[index].match = cpu << 36UL;
072bd413
DM
1550
1551 index++;
1552 }
1553 num_node_masks = index;
1554
1555 add_node_ranges();
1556
1557 for (index = 0; index < num_node_masks; index++) {
1558 allocate_node_data(index);
1559 node_set_online(index);
1560 }
1561
1562 return 0;
1563}
1564
919ee677
DM
1565static int __init numa_parse_sun4u(void)
1566{
072bd413
DM
1567 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1568 unsigned long ver;
1569
1570 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1571 if ((ver >> 32UL) == __JALAPENO_ID ||
1572 (ver >> 32UL) == __SERRANO_ID)
1573 return numa_parse_jbus();
1574 }
919ee677
DM
1575 return -1;
1576}
1577
1578static int __init bootmem_init_numa(void)
1579{
36beca65 1580 int i, j;
919ee677
DM
1581 int err = -1;
1582
1583 numadbg("bootmem_init_numa()\n");
1584
36beca65
NG
1585 /* Some sane defaults for numa latency values */
1586 for (i = 0; i < MAX_NUMNODES; i++) {
1587 for (j = 0; j < MAX_NUMNODES; j++)
1588 numa_latency[i][j] = (i == j) ?
1589 LOCAL_DISTANCE : REMOTE_DISTANCE;
1590 }
1591
919ee677
DM
1592 if (numa_enabled) {
1593 if (tlb_type == hypervisor)
1594 err = numa_parse_mdesc();
1595 else
1596 err = numa_parse_sun4u();
1597 }
1598 return err;
1599}
1600
1601#else
1da177e4 1602
919ee677
DM
1603static int bootmem_init_numa(void)
1604{
1605 return -1;
1606}
1607
1608#endif
1609
1610static void __init bootmem_init_nonnuma(void)
1611{
95f72d1e
YL
1612 unsigned long top_of_ram = memblock_end_of_DRAM();
1613 unsigned long total_ram = memblock_phys_mem_size();
919ee677
DM
1614
1615 numadbg("bootmem_init_nonnuma()\n");
1616
1617 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1618 top_of_ram, total_ram);
1619 printk(KERN_INFO "Memory hole size: %ldMB\n",
1620 (top_of_ram - total_ram) >> 20);
1621
1622 init_node_masks_nonnuma();
e7e8de59 1623 memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
919ee677 1624 allocate_node_data(0);
919ee677
DM
1625 node_set_online(0);
1626}
1627
919ee677
DM
1628static unsigned long __init bootmem_init(unsigned long phys_base)
1629{
1630 unsigned long end_pfn;
919ee677 1631
95f72d1e 1632 end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
919ee677
DM
1633 max_pfn = max_low_pfn = end_pfn;
1634 min_low_pfn = (phys_base >> PAGE_SHIFT);
1635
1636 if (bootmem_init_numa() < 0)
1637 bootmem_init_nonnuma();
1638
625d693e
DM
1639 /* Dump memblock with node info. */
1640 memblock_dump_all();
919ee677 1641
625d693e 1642 /* XXX cpu notifier XXX */
d1112018 1643
625d693e 1644 sparse_memory_present_with_active_regions(MAX_NUMNODES);
d1112018
DM
1645 sparse_init();
1646
1da177e4
LT
1647 return end_pfn;
1648}
1649
9cc3a1ac
DM
1650static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1651static int pall_ents __initdata;
1652
0dd5b7b0
DM
1653static unsigned long max_phys_bits = 40;
1654
1655bool kern_addr_valid(unsigned long addr)
1656{
0dd5b7b0
DM
1657 pgd_t *pgd;
1658 pud_t *pud;
1659 pmd_t *pmd;
1660 pte_t *pte;
1661
bb4e6e85 1662 if ((long)addr < 0L) {
0dd5b7b0
DM
1663 unsigned long pa = __pa(addr);
1664
adfae8a5 1665 if ((pa >> max_phys_bits) != 0UL)
bb4e6e85
DM
1666 return false;
1667
0dd5b7b0
DM
1668 return pfn_valid(pa >> PAGE_SHIFT);
1669 }
1670
bb4e6e85
DM
1671 if (addr >= (unsigned long) KERNBASE &&
1672 addr < (unsigned long)&_end)
1673 return true;
1674
0dd5b7b0
DM
1675 pgd = pgd_offset_k(addr);
1676 if (pgd_none(*pgd))
1677 return 0;
1678
1679 pud = pud_offset(pgd, addr);
1680 if (pud_none(*pud))
1681 return 0;
1682
1683 if (pud_large(*pud))
1684 return pfn_valid(pud_pfn(*pud));
1685
1686 pmd = pmd_offset(pud, addr);
1687 if (pmd_none(*pmd))
1688 return 0;
1689
1690 if (pmd_large(*pmd))
1691 return pfn_valid(pmd_pfn(*pmd));
1692
1693 pte = pte_offset_kernel(pmd, addr);
1694 if (pte_none(*pte))
1695 return 0;
1696
1697 return pfn_valid(pte_pfn(*pte));
1698}
1699EXPORT_SYMBOL(kern_addr_valid);
1700
1701static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
1702 unsigned long vend,
1703 pud_t *pud)
1704{
1705 const unsigned long mask16gb = (1UL << 34) - 1UL;
1706 u64 pte_val = vstart;
1707
1708 /* Each PUD is 8GB */
1709 if ((vstart & mask16gb) ||
1710 (vend - vstart <= mask16gb)) {
1711 pte_val ^= kern_linear_pte_xor[2];
1712 pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
1713
1714 return vstart + PUD_SIZE;
1715 }
1716
1717 pte_val ^= kern_linear_pte_xor[3];
1718 pte_val |= _PAGE_PUD_HUGE;
1719
1720 vend = vstart + mask16gb + 1UL;
1721 while (vstart < vend) {
1722 pud_val(*pud) = pte_val;
1723
1724 pte_val += PUD_SIZE;
1725 vstart += PUD_SIZE;
1726 pud++;
1727 }
1728 return vstart;
1729}
1730
1731static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
1732 bool guard)
1733{
1734 if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
1735 return true;
1736
1737 return false;
1738}
1739
1740static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
1741 unsigned long vend,
1742 pmd_t *pmd)
1743{
1744 const unsigned long mask256mb = (1UL << 28) - 1UL;
1745 const unsigned long mask2gb = (1UL << 31) - 1UL;
1746 u64 pte_val = vstart;
1747
1748 /* Each PMD is 8MB */
1749 if ((vstart & mask256mb) ||
1750 (vend - vstart <= mask256mb)) {
1751 pte_val ^= kern_linear_pte_xor[0];
1752 pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
1753
1754 return vstart + PMD_SIZE;
1755 }
1756
1757 if ((vstart & mask2gb) ||
1758 (vend - vstart <= mask2gb)) {
1759 pte_val ^= kern_linear_pte_xor[1];
1760 pte_val |= _PAGE_PMD_HUGE;
1761 vend = vstart + mask256mb + 1UL;
1762 } else {
1763 pte_val ^= kern_linear_pte_xor[2];
1764 pte_val |= _PAGE_PMD_HUGE;
1765 vend = vstart + mask2gb + 1UL;
1766 }
1767
1768 while (vstart < vend) {
1769 pmd_val(*pmd) = pte_val;
1770
1771 pte_val += PMD_SIZE;
1772 vstart += PMD_SIZE;
1773 pmd++;
1774 }
1775
1776 return vstart;
1777}
1778
1779static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
1780 bool guard)
1781{
1782 if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
1783 return true;
1784
1785 return false;
1786}
1787
896aef43 1788static unsigned long __ref kernel_map_range(unsigned long pstart,
0dd5b7b0
DM
1789 unsigned long pend, pgprot_t prot,
1790 bool use_huge)
56425306
DM
1791{
1792 unsigned long vstart = PAGE_OFFSET + pstart;
1793 unsigned long vend = PAGE_OFFSET + pend;
1794 unsigned long alloc_bytes = 0UL;
1795
1796 if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
13edad7a 1797 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
56425306
DM
1798 vstart, vend);
1799 prom_halt();
1800 }
1801
1802 while (vstart < vend) {
1803 unsigned long this_end, paddr = __pa(vstart);
1804 pgd_t *pgd = pgd_offset_k(vstart);
1805 pud_t *pud;
1806 pmd_t *pmd;
1807 pte_t *pte;
1808
ac55c768
DM
1809 if (pgd_none(*pgd)) {
1810 pud_t *new;
1811
1812 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1813 alloc_bytes += PAGE_SIZE;
1814 pgd_populate(&init_mm, pgd, new);
1815 }
56425306
DM
1816 pud = pud_offset(pgd, vstart);
1817 if (pud_none(*pud)) {
1818 pmd_t *new;
1819
0dd5b7b0
DM
1820 if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
1821 vstart = kernel_map_hugepud(vstart, vend, pud);
1822 continue;
1823 }
56425306
DM
1824 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1825 alloc_bytes += PAGE_SIZE;
1826 pud_populate(&init_mm, pud, new);
1827 }
1828
1829 pmd = pmd_offset(pud, vstart);
0dd5b7b0 1830 if (pmd_none(*pmd)) {
56425306
DM
1831 pte_t *new;
1832
0dd5b7b0
DM
1833 if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
1834 vstart = kernel_map_hugepmd(vstart, vend, pmd);
1835 continue;
1836 }
56425306
DM
1837 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1838 alloc_bytes += PAGE_SIZE;
1839 pmd_populate_kernel(&init_mm, pmd, new);
1840 }
1841
1842 pte = pte_offset_kernel(pmd, vstart);
1843 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1844 if (this_end > vend)
1845 this_end = vend;
1846
1847 while (vstart < this_end) {
1848 pte_val(*pte) = (paddr | pgprot_val(prot));
1849
1850 vstart += PAGE_SIZE;
1851 paddr += PAGE_SIZE;
1852 pte++;
1853 }
1854 }
1855
1856 return alloc_bytes;
1857}
1858
0dd5b7b0 1859static void __init flush_all_kernel_tsbs(void)
4f93d21d 1860{
0dd5b7b0 1861 int i;
4f93d21d 1862
0dd5b7b0
DM
1863 for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
1864 struct tsb *ent = &swapper_tsb[i];
4f93d21d 1865
0dd5b7b0 1866 ent->tag = (1UL << TSB_TAG_INVALID_BIT);
4f93d21d 1867 }
0dd5b7b0
DM
1868#ifndef CONFIG_DEBUG_PAGEALLOC
1869 for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
1870 struct tsb *ent = &swapper_4m_tsb[i];
4f93d21d 1871
0dd5b7b0 1872 ent->tag = (1UL << TSB_TAG_INVALID_BIT);
9cc3a1ac 1873 }
0dd5b7b0 1874#endif
9cc3a1ac 1875}
56425306 1876
0dd5b7b0 1877extern unsigned int kvmap_linear_patch[1];
9cc3a1ac 1878
8f361453
DM
1879static void __init kernel_physical_mapping_init(void)
1880{
8f361453 1881 unsigned long i, mem_alloced = 0UL;
0dd5b7b0 1882 bool use_huge = true;
8f361453 1883
0dd5b7b0
DM
1884#ifdef CONFIG_DEBUG_PAGEALLOC
1885 use_huge = false;
1886#endif
8f361453
DM
1887 for (i = 0; i < pall_ents; i++) {
1888 unsigned long phys_start, phys_end;
1889
1890 phys_start = pall[i].phys_addr;
1891 phys_end = phys_start + pall[i].reg_size;
1892
56425306 1893 mem_alloced += kernel_map_range(phys_start, phys_end,
0dd5b7b0 1894 PAGE_KERNEL, use_huge);
56425306
DM
1895 }
1896
1897 printk("Allocated %ld bytes for kernel page tables.\n",
1898 mem_alloced);
1899
1900 kvmap_linear_patch[0] = 0x01000000; /* nop */
1901 flushi(&kvmap_linear_patch[0]);
1902
0dd5b7b0
DM
1903 flush_all_kernel_tsbs();
1904
56425306
DM
1905 __flush_tlb_all();
1906}
1907
9cc3a1ac 1908#ifdef CONFIG_DEBUG_PAGEALLOC
031bc574 1909void __kernel_map_pages(struct page *page, int numpages, int enable)
56425306
DM
1910{
1911 unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1912 unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1913
1914 kernel_map_range(phys_start, phys_end,
0dd5b7b0 1915 (enable ? PAGE_KERNEL : __pgprot(0)), false);
56425306 1916
74bf4312
DM
1917 flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1918 PAGE_OFFSET + phys_end);
1919
56425306
DM
1920 /* we should perform an IPI and flush all tlbs,
1921 * but that can deadlock->flush only current cpu.
1922 */
1923 __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1924 PAGE_OFFSET + phys_end);
1925}
1926#endif
1927
10147570
DM
1928unsigned long __init find_ecache_flush_span(unsigned long size)
1929{
0836a0eb
DM
1930 int i;
1931
13edad7a
DM
1932 for (i = 0; i < pavail_ents; i++) {
1933 if (pavail[i].reg_size >= size)
1934 return pavail[i].phys_addr;
0836a0eb
DM
1935 }
1936
13edad7a 1937 return ~0UL;
0836a0eb
DM
1938}
1939
b2d43834
DM
1940unsigned long PAGE_OFFSET;
1941EXPORT_SYMBOL(PAGE_OFFSET);
1942
bb4e6e85
DM
1943unsigned long VMALLOC_END = 0x0000010000000000UL;
1944EXPORT_SYMBOL(VMALLOC_END);
1945
4397bed0
DM
1946unsigned long sparc64_va_hole_top = 0xfffff80000000000UL;
1947unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
1948
b2d43834
DM
1949static void __init setup_page_offset(void)
1950{
b2d43834 1951 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
4397bed0
DM
1952 /* Cheetah/Panther support a full 64-bit virtual
1953 * address, so we can use all that our page tables
1954 * support.
1955 */
1956 sparc64_va_hole_top = 0xfff0000000000000UL;
1957 sparc64_va_hole_bottom = 0x0010000000000000UL;
1958
b2d43834
DM
1959 max_phys_bits = 42;
1960 } else if (tlb_type == hypervisor) {
1961 switch (sun4v_chip_type) {
1962 case SUN4V_CHIP_NIAGARA1:
1963 case SUN4V_CHIP_NIAGARA2:
4397bed0
DM
1964 /* T1 and T2 support 48-bit virtual addresses. */
1965 sparc64_va_hole_top = 0xffff800000000000UL;
1966 sparc64_va_hole_bottom = 0x0000800000000000UL;
1967
b2d43834
DM
1968 max_phys_bits = 39;
1969 break;
1970 case SUN4V_CHIP_NIAGARA3:
4397bed0
DM
1971 /* T3 supports 48-bit virtual addresses. */
1972 sparc64_va_hole_top = 0xffff800000000000UL;
1973 sparc64_va_hole_bottom = 0x0000800000000000UL;
1974
b2d43834
DM
1975 max_phys_bits = 43;
1976 break;
1977 case SUN4V_CHIP_NIAGARA4:
1978 case SUN4V_CHIP_NIAGARA5:
1979 case SUN4V_CHIP_SPARC64X:
7c0fa0f2 1980 case SUN4V_CHIP_SPARC_M6:
4397bed0
DM
1981 /* T4 and later support 52-bit virtual addresses. */
1982 sparc64_va_hole_top = 0xfff8000000000000UL;
1983 sparc64_va_hole_bottom = 0x0008000000000000UL;
b2d43834
DM
1984 max_phys_bits = 47;
1985 break;
7c0fa0f2 1986 case SUN4V_CHIP_SPARC_M7:
c5b8b5be 1987 case SUN4V_CHIP_SPARC_SN:
7c0fa0f2
DM
1988 /* M7 and later support 52-bit virtual addresses. */
1989 sparc64_va_hole_top = 0xfff8000000000000UL;
1990 sparc64_va_hole_bottom = 0x0008000000000000UL;
1991 max_phys_bits = 49;
1992 break;
fdaccf74
VK
1993 case SUN4V_CHIP_SPARC_M8:
1994 default:
1995 /* M8 and later support 54-bit virtual addresses.
1996 * However, restricting M8 and above VA bits to 53
1997 * as 4-level page table cannot support more than
1998 * 53 VA bits.
1999 */
2000 sparc64_va_hole_top = 0xfff0000000000000UL;
2001 sparc64_va_hole_bottom = 0x0010000000000000UL;
2002 max_phys_bits = 51;
2003 break;
b2d43834
DM
2004 }
2005 }
2006
2007 if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
2008 prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
2009 max_phys_bits);
2010 prom_halt();
2011 }
2012
bb4e6e85
DM
2013 PAGE_OFFSET = sparc64_va_hole_top;
2014 VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
2015 (sparc64_va_hole_bottom >> 2));
b2d43834 2016
bb4e6e85 2017 pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
b2d43834 2018 PAGE_OFFSET, max_phys_bits);
bb4e6e85
DM
2019 pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
2020 VMALLOC_START, VMALLOC_END);
2021 pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
2022 VMEMMAP_BASE, VMEMMAP_BASE << 1);
b2d43834
DM
2023}
2024
517af332
DM
2025static void __init tsb_phys_patch(void)
2026{
d257d5da 2027 struct tsb_ldquad_phys_patch_entry *pquad;
517af332
DM
2028 struct tsb_phys_patch_entry *p;
2029
d257d5da
DM
2030 pquad = &__tsb_ldquad_phys_patch;
2031 while (pquad < &__tsb_ldquad_phys_patch_end) {
2032 unsigned long addr = pquad->addr;
2033
2034 if (tlb_type == hypervisor)
2035 *(unsigned int *) addr = pquad->sun4v_insn;
2036 else
2037 *(unsigned int *) addr = pquad->sun4u_insn;
2038 wmb();
2039 __asm__ __volatile__("flush %0"
2040 : /* no outputs */
2041 : "r" (addr));
2042
2043 pquad++;
2044 }
2045
517af332
DM
2046 p = &__tsb_phys_patch;
2047 while (p < &__tsb_phys_patch_end) {
2048 unsigned long addr = p->addr;
2049
2050 *(unsigned int *) addr = p->insn;
2051 wmb();
2052 __asm__ __volatile__("flush %0"
2053 : /* no outputs */
2054 : "r" (addr));
2055
2056 p++;
2057 }
2058}
2059
490384e7 2060/* Don't mark as init, we give this to the Hypervisor. */
d1acb421
DM
2061#ifndef CONFIG_DEBUG_PAGEALLOC
2062#define NUM_KTSB_DESCR 2
2063#else
2064#define NUM_KTSB_DESCR 1
2065#endif
2066static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
490384e7 2067
8c82dc0e
DM
2068/* The swapper TSBs are loaded with a base sequence of:
2069 *
2070 * sethi %uhi(SYMBOL), REG1
2071 * sethi %hi(SYMBOL), REG2
2072 * or REG1, %ulo(SYMBOL), REG1
2073 * or REG2, %lo(SYMBOL), REG2
2074 * sllx REG1, 32, REG1
2075 * or REG1, REG2, REG1
2076 *
2077 * When we use physical addressing for the TSB accesses, we patch the
2078 * first four instructions in the above sequence.
2079 */
2080
9076d0e7
DM
2081static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
2082{
8c82dc0e
DM
2083 unsigned long high_bits, low_bits;
2084
2085 high_bits = (pa >> 32) & 0xffffffff;
2086 low_bits = (pa >> 0) & 0xffffffff;
9076d0e7
DM
2087
2088 while (start < end) {
2089 unsigned int *ia = (unsigned int *)(unsigned long)*start;
2090
8c82dc0e 2091 ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
9076d0e7
DM
2092 __asm__ __volatile__("flush %0" : : "r" (ia));
2093
8c82dc0e 2094 ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
9076d0e7
DM
2095 __asm__ __volatile__("flush %0" : : "r" (ia + 1));
2096
8c82dc0e
DM
2097 ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
2098 __asm__ __volatile__("flush %0" : : "r" (ia + 2));
2099
2100 ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
2101 __asm__ __volatile__("flush %0" : : "r" (ia + 3));
2102
9076d0e7
DM
2103 start++;
2104 }
2105}
2106
2107static void ktsb_phys_patch(void)
2108{
2109 extern unsigned int __swapper_tsb_phys_patch;
2110 extern unsigned int __swapper_tsb_phys_patch_end;
9076d0e7
DM
2111 unsigned long ktsb_pa;
2112
2113 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2114 patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
2115 &__swapper_tsb_phys_patch_end, ktsb_pa);
2116#ifndef CONFIG_DEBUG_PAGEALLOC
0785a8e8
DM
2117 {
2118 extern unsigned int __swapper_4m_tsb_phys_patch;
2119 extern unsigned int __swapper_4m_tsb_phys_patch_end;
9076d0e7
DM
2120 ktsb_pa = (kern_base +
2121 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2122 patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
2123 &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
0785a8e8 2124 }
9076d0e7
DM
2125#endif
2126}
2127
490384e7
DM
2128static void __init sun4v_ktsb_init(void)
2129{
2130 unsigned long ktsb_pa;
2131
d7744a09 2132 /* First KTSB for PAGE_SIZE mappings. */
490384e7
DM
2133 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2134
2135 switch (PAGE_SIZE) {
2136 case 8 * 1024:
2137 default:
2138 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
2139 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
2140 break;
2141
2142 case 64 * 1024:
2143 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
2144 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
2145 break;
2146
2147 case 512 * 1024:
2148 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
2149 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
2150 break;
2151
2152 case 4 * 1024 * 1024:
2153 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
2154 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
2155 break;
6cb79b3f 2156 }
490384e7 2157
3f19a84e 2158 ktsb_descr[0].assoc = 1;
490384e7
DM
2159 ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
2160 ktsb_descr[0].ctx_idx = 0;
2161 ktsb_descr[0].tsb_base = ktsb_pa;
2162 ktsb_descr[0].resv = 0;
2163
d1acb421 2164#ifndef CONFIG_DEBUG_PAGEALLOC
4f93d21d 2165 /* Second KTSB for 4MB/256MB/2GB/16GB mappings. */
d7744a09
DM
2166 ktsb_pa = (kern_base +
2167 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2168
2169 ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
c69ad0a3
DM
2170 ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
2171 HV_PGSZ_MASK_256MB |
2172 HV_PGSZ_MASK_2GB |
2173 HV_PGSZ_MASK_16GB) &
2174 cpu_pgsz_mask);
d7744a09
DM
2175 ktsb_descr[1].assoc = 1;
2176 ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
2177 ktsb_descr[1].ctx_idx = 0;
2178 ktsb_descr[1].tsb_base = ktsb_pa;
2179 ktsb_descr[1].resv = 0;
d1acb421 2180#endif
490384e7
DM
2181}
2182
2066aadd 2183void sun4v_ktsb_register(void)
490384e7 2184{
7db35f31 2185 unsigned long pa, ret;
490384e7
DM
2186
2187 pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
2188
7db35f31
DM
2189 ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
2190 if (ret != 0) {
2191 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
2192 "errors with %lx\n", pa, ret);
2193 prom_halt();
2194 }
490384e7
DM
2195}
2196
c69ad0a3
DM
2197static void __init sun4u_linear_pte_xor_finalize(void)
2198{
2199#ifndef CONFIG_DEBUG_PAGEALLOC
2200 /* This is where we would add Panther support for
2201 * 32MB and 256MB pages.
2202 */
2203#endif
2204}
2205
2206static void __init sun4v_linear_pte_xor_finalize(void)
2207{
494e5b6f
KA
2208 unsigned long pagecv_flag;
2209
2210 /* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
2211 * enables MCD error. Do not set bit 9 on M7 processor.
2212 */
2213 switch (sun4v_chip_type) {
2214 case SUN4V_CHIP_SPARC_M7:
7d484acb 2215 case SUN4V_CHIP_SPARC_M8:
c5b8b5be 2216 case SUN4V_CHIP_SPARC_SN:
494e5b6f
KA
2217 pagecv_flag = 0x00;
2218 break;
2219 default:
2220 pagecv_flag = _PAGE_CV_4V;
2221 break;
2222 }
c69ad0a3
DM
2223#ifndef CONFIG_DEBUG_PAGEALLOC
2224 if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
2225 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
922631b9 2226 PAGE_OFFSET;
494e5b6f 2227 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag |
c69ad0a3
DM
2228 _PAGE_P_4V | _PAGE_W_4V);
2229 } else {
2230 kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2231 }
2232
2233 if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
2234 kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
922631b9 2235 PAGE_OFFSET;
494e5b6f 2236 kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag |
c69ad0a3
DM
2237 _PAGE_P_4V | _PAGE_W_4V);
2238 } else {
2239 kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
2240 }
2241
2242 if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
2243 kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
922631b9 2244 PAGE_OFFSET;
494e5b6f 2245 kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag |
c69ad0a3
DM
2246 _PAGE_P_4V | _PAGE_W_4V);
2247 } else {
2248 kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
2249 }
2250#endif
2251}
2252
1da177e4
LT
2253/* paging_init() sets up the page tables */
2254
1da177e4 2255static unsigned long last_valid_pfn;
ac55c768 2256
c4bce90e
DM
2257static void sun4u_pgprot_init(void);
2258static void sun4v_pgprot_init(void);
2259
7c21d533 2260static phys_addr_t __init available_memory(void)
2261{
2262 phys_addr_t available = 0ULL;
2263 phys_addr_t pa_start, pa_end;
2264 u64 i;
2265
fc6daaf9
TL
2266 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
2267 &pa_end, NULL)
7c21d533 2268 available = available + (pa_end - pa_start);
2269
2270 return available;
2271}
2272
494e5b6f
KA
2273#define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
2274#define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
2275#define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2276#define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2277#define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2278#define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2279
7c21d533 2280/* We need to exclude reserved regions. This exclusion will include
2281 * vmlinux and initrd. To be more precise the initrd size could be used to
2282 * compute a new lower limit because it is freed later during initialization.
2283 */
2284static void __init reduce_memory(phys_addr_t limit_ram)
2285{
2286 phys_addr_t avail_ram = available_memory();
2287 phys_addr_t pa_start, pa_end;
2288 u64 i;
2289
2290 if (limit_ram >= avail_ram)
2291 return;
2292
fc6daaf9
TL
2293 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
2294 &pa_end, NULL) {
7c21d533 2295 phys_addr_t region_size = pa_end - pa_start;
2296 phys_addr_t clip_start = pa_start;
2297
2298 avail_ram = avail_ram - region_size;
2299 /* Are we consuming too much? */
2300 if (avail_ram < limit_ram) {
2301 phys_addr_t give_back = limit_ram - avail_ram;
2302
2303 region_size = region_size - give_back;
2304 clip_start = clip_start + give_back;
2305 }
2306
2307 memblock_remove(clip_start, region_size);
2308
2309 if (avail_ram <= limit_ram)
2310 break;
2311 i = 0UL;
2312 }
2313}
2314
1da177e4
LT
2315void __init paging_init(void)
2316{
919ee677 2317 unsigned long end_pfn, shift, phys_base;
0836a0eb
DM
2318 unsigned long real_end, i;
2319
b2d43834
DM
2320 setup_page_offset();
2321
22adb358
DM
2322 /* These build time checkes make sure that the dcache_dirty_cpu()
2323 * page->flags usage will work.
2324 *
2325 * When a page gets marked as dcache-dirty, we store the
2326 * cpu number starting at bit 32 in the page->flags. Also,
2327 * functions like clear_dcache_dirty_cpu use the cpu mask
2328 * in 13-bit signed-immediate instruction fields.
2329 */
9223b419
CL
2330
2331 /*
2332 * Page flags must not reach into upper 32 bits that are used
2333 * for the cpu number
2334 */
2335 BUILD_BUG_ON(NR_PAGEFLAGS > 32);
2336
2337 /*
2338 * The bit fields placed in the high range must not reach below
2339 * the 32 bit boundary. Otherwise we cannot place the cpu field
2340 * at the 32 bit boundary.
2341 */
22adb358 2342 BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
9223b419
CL
2343 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
2344
22adb358
DM
2345 BUILD_BUG_ON(NR_CPUS > 4096);
2346
0eef331a 2347 kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
481295f9
DM
2348 kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
2349
d7744a09 2350 /* Invalidate both kernel TSBs. */
8b234274 2351 memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
d1acb421 2352#ifndef CONFIG_DEBUG_PAGEALLOC
d7744a09 2353 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
d1acb421 2354#endif
8b234274 2355
494e5b6f
KA
2356 /* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
2357 * bit on M7 processor. This is a conflicting usage of the same
2358 * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
2359 * Detection error on all pages and this will lead to problems
2360 * later. Kernel does not run with MCD enabled and hence rest
2361 * of the required steps to fully configure memory corruption
2362 * detection are not taken. We need to ensure TTE.mcde is not
2363 * set on M7 processor. Compute the value of cacheability
2364 * flag for use later taking this into consideration.
2365 */
2366 switch (sun4v_chip_type) {
2367 case SUN4V_CHIP_SPARC_M7:
7d484acb 2368 case SUN4V_CHIP_SPARC_M8:
c5b8b5be 2369 case SUN4V_CHIP_SPARC_SN:
494e5b6f
KA
2370 page_cache4v_flag = _PAGE_CP_4V;
2371 break;
2372 default:
2373 page_cache4v_flag = _PAGE_CACHE_4V;
2374 break;
2375 }
2376
c4bce90e
DM
2377 if (tlb_type == hypervisor)
2378 sun4v_pgprot_init();
2379 else
2380 sun4u_pgprot_init();
2381
d257d5da 2382 if (tlb_type == cheetah_plus ||
9076d0e7 2383 tlb_type == hypervisor) {
517af332 2384 tsb_phys_patch();
9076d0e7
DM
2385 ktsb_phys_patch();
2386 }
517af332 2387
c69ad0a3 2388 if (tlb_type == hypervisor)
d257d5da
DM
2389 sun4v_patch_tlb_handlers();
2390
a94a172d
DM
2391 /* Find available physical memory...
2392 *
2393 * Read it twice in order to work around a bug in openfirmware.
2394 * The call to grab this table itself can cause openfirmware to
2395 * allocate memory, which in turn can take away some space from
2396 * the list of available memory. Reading it twice makes sure
2397 * we really do get the final value.
2398 */
2399 read_obp_translations();
2400 read_obp_memory("reg", &pall[0], &pall_ents);
2401 read_obp_memory("available", &pavail[0], &pavail_ents);
13edad7a 2402 read_obp_memory("available", &pavail[0], &pavail_ents);
0836a0eb
DM
2403
2404 phys_base = 0xffffffffffffffffUL;
3b2a7e23 2405 for (i = 0; i < pavail_ents; i++) {
13edad7a 2406 phys_base = min(phys_base, pavail[i].phys_addr);
95f72d1e 2407 memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
3b2a7e23
DM
2408 }
2409
95f72d1e 2410 memblock_reserve(kern_base, kern_size);
0836a0eb 2411
4e82c9a6
DM
2412 find_ramdisk(phys_base);
2413
7c21d533 2414 if (cmdline_memory_size)
2415 reduce_memory(cmdline_memory_size);
25b0c659 2416
1aadc056 2417 memblock_allow_resize();
95f72d1e 2418 memblock_dump_all();
3b2a7e23 2419
1da177e4
LT
2420 set_bit(0, mmu_context_bmap);
2421
2bdb3cb2
DM
2422 shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
2423
1da177e4 2424 real_end = (unsigned long)_end;
0eef331a 2425 num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
64658743
DM
2426 printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2427 num_kernel_image_mappings);
2bdb3cb2
DM
2428
2429 /* Set kernel pgd to upper alias so physical page computations
1da177e4
LT
2430 * work.
2431 */
2432 init_mm.pgd += ((shift) / (sizeof(pgd_t)));
2433
d195b71b 2434 memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
0dd5b7b0 2435
c9c10830 2436 inherit_prom_mappings();
5085b4a5 2437
a8b900d8
DM
2438 /* Ok, we can use our TLB miss and window trap handlers safely. */
2439 setup_tba();
1da177e4 2440
c9c10830 2441 __flush_tlb_all();
9ad98c5b 2442
ad072004 2443 prom_build_devicetree();
b696fdc2 2444 of_populate_present_mask();
b99c6ebe
DM
2445#ifndef CONFIG_SMP
2446 of_fill_in_cpu_data();
2447#endif
ad072004 2448
890db403 2449 if (tlb_type == hypervisor) {
4a283339 2450 sun4v_mdesc_init();
6ac5c610 2451 mdesc_populate_present_mask(cpu_all_mask);
b99c6ebe
DM
2452#ifndef CONFIG_SMP
2453 mdesc_fill_in_cpu_data(cpu_all_mask);
2454#endif
ce33fdc5 2455 mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
c69ad0a3
DM
2456
2457 sun4v_linear_pte_xor_finalize();
2458
2459 sun4v_ktsb_init();
2460 sun4v_ktsb_register();
ce33fdc5
DM
2461 } else {
2462 unsigned long impl, ver;
2463
2464 cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
2465 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
2466
2467 __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
2468 impl = ((ver >> 32) & 0xffff);
2469 if (impl == PANTHER_IMPL)
2470 cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
2471 HV_PGSZ_MASK_256MB);
c69ad0a3
DM
2472
2473 sun4u_linear_pte_xor_finalize();
890db403 2474 }
4a283339 2475
c69ad0a3
DM
2476 /* Flush the TLBs and the 4M TSB so that the updated linear
2477 * pte XOR settings are realized for all mappings.
2478 */
2479 __flush_tlb_all();
2480#ifndef CONFIG_DEBUG_PAGEALLOC
2481 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2482#endif
2483 __flush_tlb_all();
2484
5ed56f1a
DM
2485 /* Setup bootmem... */
2486 last_valid_pfn = end_pfn = bootmem_init(phys_base);
2487
56425306 2488 kernel_physical_mapping_init();
56425306 2489
1da177e4 2490 {
919ee677 2491 unsigned long max_zone_pfns[MAX_NR_ZONES];
1da177e4 2492
919ee677 2493 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1da177e4 2494
919ee677 2495 max_zone_pfns[ZONE_NORMAL] = end_pfn;
1da177e4 2496
919ee677 2497 free_area_init_nodes(max_zone_pfns);
1da177e4
LT
2498 }
2499
3c62a2d3 2500 printk("Booting Linux...\n");
1da177e4
LT
2501}
2502
7c9503b8 2503int page_in_phys_avail(unsigned long paddr)
919ee677
DM
2504{
2505 int i;
2506
2507 paddr &= PAGE_MASK;
2508
2509 for (i = 0; i < pavail_ents; i++) {
2510 unsigned long start, end;
2511
2512 start = pavail[i].phys_addr;
2513 end = start + pavail[i].reg_size;
2514
2515 if (paddr >= start && paddr < end)
2516 return 1;
2517 }
2518 if (paddr >= kern_base && paddr < (kern_base + kern_size))
2519 return 1;
2520#ifdef CONFIG_BLK_DEV_INITRD
2521 if (paddr >= __pa(initrd_start) &&
2522 paddr < __pa(PAGE_ALIGN(initrd_end)))
2523 return 1;
2524#endif
2525
2526 return 0;
2527}
2528
961f8fa0
YL
2529static void __init register_page_bootmem_info(void)
2530{
2531#ifdef CONFIG_NEED_MULTIPLE_NODES
2532 int i;
2533
2534 for_each_online_node(i)
2535 if (NODE_DATA(i)->node_spanned_pages)
2536 register_page_bootmem_info_node(NODE_DATA(i));
2537#endif
2538}
1da177e4
LT
2539void __init mem_init(void)
2540{
1da177e4
LT
2541 high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2542
961f8fa0 2543 register_page_bootmem_info();
0c988534 2544 free_all_bootmem();
919ee677 2545
1da177e4
LT
2546 /*
2547 * Set up the zero page, mark it reserved, so that page count
2548 * is not manipulated when freeing the page from user ptes.
2549 */
2550 mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2551 if (mem_map_zero == NULL) {
2552 prom_printf("paging_init: Cannot alloc zero page.\n");
2553 prom_halt();
2554 }
70affe45 2555 mark_page_reserved(mem_map_zero);
1da177e4 2556
dceccbe9 2557 mem_init_print_info(NULL);
1da177e4
LT
2558
2559 if (tlb_type == cheetah || tlb_type == cheetah_plus)
2560 cheetah_ecache_flush_init();
2561}
2562
898cf0ec 2563void free_initmem(void)
1da177e4
LT
2564{
2565 unsigned long addr, initend;
f2b60794
DM
2566 int do_free = 1;
2567
2568 /* If the physical memory maps were trimmed by kernel command
2569 * line options, don't even try freeing this initmem stuff up.
2570 * The kernel image could have been in the trimmed out region
2571 * and if so the freeing below will free invalid page structs.
2572 */
2573 if (cmdline_memory_size)
2574 do_free = 0;
1da177e4
LT
2575
2576 /*
2577 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2578 */
2579 addr = PAGE_ALIGN((unsigned long)(__init_begin));
2580 initend = (unsigned long)(__init_end) & PAGE_MASK;
2581 for (; addr < initend; addr += PAGE_SIZE) {
2582 unsigned long page;
1da177e4
LT
2583
2584 page = (addr +
2585 ((unsigned long) __va(kern_base)) -
2586 ((unsigned long) KERNBASE));
c9cf5528 2587 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
1da177e4 2588
70affe45
JL
2589 if (do_free)
2590 free_reserved_page(virt_to_page(page));
1da177e4
LT
2591 }
2592}
2593
2594#ifdef CONFIG_BLK_DEV_INITRD
2595void free_initrd_mem(unsigned long start, unsigned long end)
2596{
dceccbe9
JL
2597 free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM,
2598 "initrd");
1da177e4
LT
2599}
2600#endif
c4bce90e 2601
c4bce90e
DM
2602pgprot_t PAGE_KERNEL __read_mostly;
2603EXPORT_SYMBOL(PAGE_KERNEL);
2604
2605pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2606pgprot_t PAGE_COPY __read_mostly;
0f15952a
DM
2607
2608pgprot_t PAGE_SHARED __read_mostly;
2609EXPORT_SYMBOL(PAGE_SHARED);
2610
c4bce90e
DM
2611unsigned long pg_iobits __read_mostly;
2612
2613unsigned long _PAGE_IE __read_mostly;
987c74fc 2614EXPORT_SYMBOL(_PAGE_IE);
b2bef442 2615
c4bce90e 2616unsigned long _PAGE_E __read_mostly;
b2bef442
DM
2617EXPORT_SYMBOL(_PAGE_E);
2618
c4bce90e 2619unsigned long _PAGE_CACHE __read_mostly;
b2bef442 2620EXPORT_SYMBOL(_PAGE_CACHE);
c4bce90e 2621
46644c24 2622#ifdef CONFIG_SPARSEMEM_VMEMMAP
0aad818b
JW
2623int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2624 int node)
46644c24 2625{
46644c24
DM
2626 unsigned long pte_base;
2627
2628 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2629 _PAGE_CP_4U | _PAGE_CV_4U |
2630 _PAGE_P_4U | _PAGE_W_4U);
2631 if (tlb_type == hypervisor)
2632 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
494e5b6f 2633 page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V);
46644c24 2634
c06240c7 2635 pte_base |= _PAGE_PMD_HUGE;
46644c24 2636
c06240c7
DM
2637 vstart = vstart & PMD_MASK;
2638 vend = ALIGN(vend, PMD_SIZE);
2639 for (; vstart < vend; vstart += PMD_SIZE) {
2640 pgd_t *pgd = pgd_offset_k(vstart);
2641 unsigned long pte;
2642 pud_t *pud;
2643 pmd_t *pmd;
2644
2645 if (pgd_none(*pgd)) {
2646 pud_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2647
2648 if (!new)
46644c24 2649 return -ENOMEM;
c06240c7
DM
2650 pgd_populate(&init_mm, pgd, new);
2651 }
46644c24 2652
c06240c7
DM
2653 pud = pud_offset(pgd, vstart);
2654 if (pud_none(*pud)) {
2655 pmd_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
46644c24 2656
c06240c7
DM
2657 if (!new)
2658 return -ENOMEM;
2659 pud_populate(&init_mm, pud, new);
46644c24 2660 }
2856cc2e 2661
c06240c7
DM
2662 pmd = pmd_offset(pud, vstart);
2663
2664 pte = pmd_val(*pmd);
2665 if (!(pte & _PAGE_VALID)) {
2666 void *block = vmemmap_alloc_block(PMD_SIZE, node);
2667
2668 if (!block)
2669 return -ENOMEM;
2670
2671 pmd_val(*pmd) = pte_base | __pa(block);
2672 }
2856cc2e 2673 }
c06240c7
DM
2674
2675 return 0;
2856cc2e 2676}
46723bfa 2677
0aad818b 2678void vmemmap_free(unsigned long start, unsigned long end)
0197518c
TC
2679{
2680}
46644c24
DM
2681#endif /* CONFIG_SPARSEMEM_VMEMMAP */
2682
c4bce90e
DM
2683static void prot_init_common(unsigned long page_none,
2684 unsigned long page_shared,
2685 unsigned long page_copy,
2686 unsigned long page_readonly,
2687 unsigned long page_exec_bit)
2688{
2689 PAGE_COPY = __pgprot(page_copy);
0f15952a 2690 PAGE_SHARED = __pgprot(page_shared);
c4bce90e
DM
2691
2692 protection_map[0x0] = __pgprot(page_none);
2693 protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2694 protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2695 protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2696 protection_map[0x4] = __pgprot(page_readonly);
2697 protection_map[0x5] = __pgprot(page_readonly);
2698 protection_map[0x6] = __pgprot(page_copy);
2699 protection_map[0x7] = __pgprot(page_copy);
2700 protection_map[0x8] = __pgprot(page_none);
2701 protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2702 protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2703 protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2704 protection_map[0xc] = __pgprot(page_readonly);
2705 protection_map[0xd] = __pgprot(page_readonly);
2706 protection_map[0xe] = __pgprot(page_shared);
2707 protection_map[0xf] = __pgprot(page_shared);
2708}
2709
2710static void __init sun4u_pgprot_init(void)
2711{
2712 unsigned long page_none, page_shared, page_copy, page_readonly;
2713 unsigned long page_exec_bit;
4f93d21d 2714 int i;
c4bce90e
DM
2715
2716 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2717 _PAGE_CACHE_4U | _PAGE_P_4U |
2718 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2719 _PAGE_EXEC_4U);
2720 PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2721 _PAGE_CACHE_4U | _PAGE_P_4U |
2722 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2723 _PAGE_EXEC_4U | _PAGE_L_4U);
c4bce90e
DM
2724
2725 _PAGE_IE = _PAGE_IE_4U;
2726 _PAGE_E = _PAGE_E_4U;
2727 _PAGE_CACHE = _PAGE_CACHE_4U;
2728
2729 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2730 __ACCESS_BITS_4U | _PAGE_E_4U);
2731
d1acb421 2732#ifdef CONFIG_DEBUG_PAGEALLOC
922631b9 2733 kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
d1acb421 2734#else
9cc3a1ac 2735 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
922631b9 2736 PAGE_OFFSET;
d1acb421 2737#endif
9cc3a1ac
DM
2738 kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2739 _PAGE_P_4U | _PAGE_W_4U);
2740
4f93d21d
DM
2741 for (i = 1; i < 4; i++)
2742 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
c4bce90e 2743
c4bce90e
DM
2744 _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2745 _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2746 _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2747
2748
2749 page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2750 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2751 __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2752 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2753 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2754 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2755 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2756
2757 page_exec_bit = _PAGE_EXEC_4U;
2758
2759 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2760 page_exec_bit);
2761}
2762
2763static void __init sun4v_pgprot_init(void)
2764{
2765 unsigned long page_none, page_shared, page_copy, page_readonly;
2766 unsigned long page_exec_bit;
4f93d21d 2767 int i;
c4bce90e
DM
2768
2769 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
494e5b6f 2770 page_cache4v_flag | _PAGE_P_4V |
c4bce90e
DM
2771 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2772 _PAGE_EXEC_4V);
2773 PAGE_KERNEL_LOCKED = PAGE_KERNEL;
c4bce90e
DM
2774
2775 _PAGE_IE = _PAGE_IE_4V;
2776 _PAGE_E = _PAGE_E_4V;
494e5b6f 2777 _PAGE_CACHE = page_cache4v_flag;
c4bce90e 2778
d1acb421 2779#ifdef CONFIG_DEBUG_PAGEALLOC
922631b9 2780 kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
d1acb421 2781#else
9cc3a1ac 2782 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
922631b9 2783 PAGE_OFFSET;
d1acb421 2784#endif
494e5b6f
KA
2785 kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V |
2786 _PAGE_W_4V);
9cc3a1ac 2787
c69ad0a3
DM
2788 for (i = 1; i < 4; i++)
2789 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
4f93d21d 2790
c4bce90e
DM
2791 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2792 __ACCESS_BITS_4V | _PAGE_E_4V);
2793
c4bce90e
DM
2794 _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2795 _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2796 _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2797 _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2798
494e5b6f
KA
2799 page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag;
2800 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
c4bce90e 2801 __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
494e5b6f 2802 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
c4bce90e 2803 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
494e5b6f 2804 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
c4bce90e
DM
2805 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2806
2807 page_exec_bit = _PAGE_EXEC_4V;
2808
2809 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2810 page_exec_bit);
2811}
2812
2813unsigned long pte_sz_bits(unsigned long sz)
2814{
2815 if (tlb_type == hypervisor) {
2816 switch (sz) {
2817 case 8 * 1024:
2818 default:
2819 return _PAGE_SZ8K_4V;
2820 case 64 * 1024:
2821 return _PAGE_SZ64K_4V;
2822 case 512 * 1024:
2823 return _PAGE_SZ512K_4V;
2824 case 4 * 1024 * 1024:
2825 return _PAGE_SZ4MB_4V;
6cb79b3f 2826 }
c4bce90e
DM
2827 } else {
2828 switch (sz) {
2829 case 8 * 1024:
2830 default:
2831 return _PAGE_SZ8K_4U;
2832 case 64 * 1024:
2833 return _PAGE_SZ64K_4U;
2834 case 512 * 1024:
2835 return _PAGE_SZ512K_4U;
2836 case 4 * 1024 * 1024:
2837 return _PAGE_SZ4MB_4U;
6cb79b3f 2838 }
c4bce90e
DM
2839 }
2840}
2841
2842pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2843{
2844 pte_t pte;
cf627156
DM
2845
2846 pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
c4bce90e
DM
2847 pte_val(pte) |= (((unsigned long)space) << 32);
2848 pte_val(pte) |= pte_sz_bits(page_size);
c4bce90e 2849
cf627156 2850 return pte;
c4bce90e
DM
2851}
2852
2853static unsigned long kern_large_tte(unsigned long paddr)
2854{
2855 unsigned long val;
2856
2857 val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2858 _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2859 _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2860 if (tlb_type == hypervisor)
2861 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
494e5b6f 2862 page_cache4v_flag | _PAGE_P_4V |
c4bce90e
DM
2863 _PAGE_EXEC_4V | _PAGE_W_4V);
2864
2865 return val | paddr;
2866}
2867
c4bce90e
DM
2868/* If not locked, zap it. */
2869void __flush_tlb_all(void)
2870{
2871 unsigned long pstate;
2872 int i;
2873
2874 __asm__ __volatile__("flushw\n\t"
2875 "rdpr %%pstate, %0\n\t"
2876 "wrpr %0, %1, %%pstate"
2877 : "=r" (pstate)
2878 : "i" (PSTATE_IE));
8f361453
DM
2879 if (tlb_type == hypervisor) {
2880 sun4v_mmu_demap_all();
2881 } else if (tlb_type == spitfire) {
c4bce90e
DM
2882 for (i = 0; i < 64; i++) {
2883 /* Spitfire Errata #32 workaround */
2884 /* NOTE: Always runs on spitfire, so no
2885 * cheetah+ page size encodings.
2886 */
2887 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2888 "flush %%g6"
2889 : /* No outputs */
2890 : "r" (0),
2891 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2892
2893 if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2894 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2895 "membar #Sync"
2896 : /* no outputs */
2897 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2898 spitfire_put_dtlb_data(i, 0x0UL);
2899 }
2900
2901 /* Spitfire Errata #32 workaround */
2902 /* NOTE: Always runs on spitfire, so no
2903 * cheetah+ page size encodings.
2904 */
2905 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2906 "flush %%g6"
2907 : /* No outputs */
2908 : "r" (0),
2909 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2910
2911 if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2912 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2913 "membar #Sync"
2914 : /* no outputs */
2915 : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2916 spitfire_put_itlb_data(i, 0x0UL);
2917 }
2918 }
2919 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2920 cheetah_flush_dtlb_all();
2921 cheetah_flush_itlb_all();
2922 }
2923 __asm__ __volatile__("wrpr %0, 0, %%pstate"
2924 : : "r" (pstate));
2925}
c460bec7 2926
c460bec7
DM
2927pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
2928 unsigned long address)
2929{
32d6bd90 2930 struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO);
37b3a8ff 2931 pte_t *pte = NULL;
c460bec7 2932
c460bec7
DM
2933 if (page)
2934 pte = (pte_t *) page_address(page);
2935
2936 return pte;
2937}
2938
2939pgtable_t pte_alloc_one(struct mm_struct *mm,
2940 unsigned long address)
2941{
32d6bd90 2942 struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO);
1ae9ae5f
KS
2943 if (!page)
2944 return NULL;
2945 if (!pgtable_page_ctor(page)) {
2946 free_hot_cold_page(page, 0);
2947 return NULL;
c460bec7 2948 }
1ae9ae5f 2949 return (pte_t *) page_address(page);
c460bec7
DM
2950}
2951
2952void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2953{
37b3a8ff 2954 free_page((unsigned long)pte);
c460bec7
DM
2955}
2956
2957static void __pte_free(pgtable_t pte)
2958{
2959 struct page *page = virt_to_page(pte);
37b3a8ff
DM
2960
2961 pgtable_page_dtor(page);
2962 __free_page(page);
c460bec7
DM
2963}
2964
2965void pte_free(struct mm_struct *mm, pgtable_t pte)
2966{
2967 __pte_free(pte);
2968}
2969
2970void pgtable_free(void *table, bool is_page)
2971{
2972 if (is_page)
2973 __pte_free(table);
2974 else
2975 kmem_cache_free(pgtable_cache, table);
2976}
9e695d2e
DM
2977
2978#ifdef CONFIG_TRANSPARENT_HUGEPAGE
9e695d2e
DM
2979void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2980 pmd_t *pmd)
2981{
2982 unsigned long pte, flags;
2983 struct mm_struct *mm;
2984 pmd_t entry = *pmd;
9e695d2e
DM
2985
2986 if (!pmd_large(entry) || !pmd_young(entry))
2987 return;
2988
a7b9403f 2989 pte = pmd_val(entry);
9e695d2e 2990
18f38132
DM
2991 /* Don't insert a non-valid PMD into the TSB, we'll deadlock. */
2992 if (!(pte & _PAGE_VALID))
2993 return;
2994
37b3a8ff
DM
2995 /* We are fabricating 8MB pages using 4MB real hw pages. */
2996 pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
9e695d2e
DM
2997
2998 mm = vma->vm_mm;
2999
3000 spin_lock_irqsave(&mm->context.lock, flags);
3001
3002 if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
37b3a8ff 3003 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
9e695d2e
DM
3004 addr, pte);
3005
3006 spin_unlock_irqrestore(&mm->context.lock, flags);
3007}
3008#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3009
3010#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
3011static void context_reload(void *__data)
3012{
3013 struct mm_struct *mm = __data;
3014
3015 if (mm == current->mm)
3016 load_secondary_context(mm);
3017}
3018
0fbebed6 3019void hugetlb_setup(struct pt_regs *regs)
9e695d2e 3020{
0fbebed6
DM
3021 struct mm_struct *mm = current->mm;
3022 struct tsb_config *tp;
9e695d2e 3023
70ffdb93 3024 if (faulthandler_disabled() || !mm) {
0fbebed6
DM
3025 const struct exception_table_entry *entry;
3026
3027 entry = search_exception_tables(regs->tpc);
3028 if (entry) {
3029 regs->tpc = entry->fixup;
3030 regs->tnpc = regs->tpc + 4;
3031 return;
3032 }
3033 pr_alert("Unexpected HugeTLB setup in atomic context.\n");
3034 die_if_kernel("HugeTSB in atomic", regs);
3035 }
3036
3037 tp = &mm->context.tsb_block[MM_TSB_HUGE];
3038 if (likely(tp->tsb == NULL))
3039 tsb_grow(mm, MM_TSB_HUGE, 0);
9e695d2e 3040
9e695d2e
DM
3041 tsb_context_switch(mm);
3042 smp_tsb_sync(mm);
3043
3044 /* On UltraSPARC-III+ and later, configure the second half of
3045 * the Data-TLB for huge pages.
3046 */
3047 if (tlb_type == cheetah_plus) {
9ea46abe 3048 bool need_context_reload = false;
9e695d2e
DM
3049 unsigned long ctx;
3050
9ea46abe 3051 spin_lock_irq(&ctx_alloc_lock);
9e695d2e
DM
3052 ctx = mm->context.sparc64_ctx_val;
3053 ctx &= ~CTX_PGSZ_MASK;
3054 ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
3055 ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
3056
3057 if (ctx != mm->context.sparc64_ctx_val) {
3058 /* When changing the page size fields, we
3059 * must perform a context flush so that no
3060 * stale entries match. This flush must
3061 * occur with the original context register
3062 * settings.
3063 */
3064 do_flush_tlb_mm(mm);
3065
3066 /* Reload the context register of all processors
3067 * also executing in this address space.
3068 */
3069 mm->context.sparc64_ctx_val = ctx;
9ea46abe 3070 need_context_reload = true;
9e695d2e 3071 }
9ea46abe
DM
3072 spin_unlock_irq(&ctx_alloc_lock);
3073
3074 if (need_context_reload)
3075 on_each_cpu(context_reload, mm, 0);
9e695d2e
DM
3076 }
3077}
3078#endif
f6d4fb5c 3079
3080static struct resource code_resource = {
3081 .name = "Kernel code",
35d98e93 3082 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
f6d4fb5c 3083};
3084
3085static struct resource data_resource = {
3086 .name = "Kernel data",
35d98e93 3087 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
f6d4fb5c 3088};
3089
3090static struct resource bss_resource = {
3091 .name = "Kernel bss",
35d98e93 3092 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
f6d4fb5c 3093};
3094
3095static inline resource_size_t compute_kern_paddr(void *addr)
3096{
3097 return (resource_size_t) (addr - KERNBASE + kern_base);
3098}
3099
3100static void __init kernel_lds_init(void)
3101{
3102 code_resource.start = compute_kern_paddr(_text);
3103 code_resource.end = compute_kern_paddr(_etext - 1);
3104 data_resource.start = compute_kern_paddr(_etext);
3105 data_resource.end = compute_kern_paddr(_edata - 1);
3106 bss_resource.start = compute_kern_paddr(__bss_start);
3107 bss_resource.end = compute_kern_paddr(_end - 1);
3108}
3109
3110static int __init report_memory(void)
3111{
3112 int i;
3113 struct resource *res;
3114
3115 kernel_lds_init();
3116
3117 for (i = 0; i < pavail_ents; i++) {
3118 res = kzalloc(sizeof(struct resource), GFP_KERNEL);
3119
3120 if (!res) {
3121 pr_warn("Failed to allocate source.\n");
3122 break;
3123 }
3124
3125 res->name = "System RAM";
3126 res->start = pavail[i].phys_addr;
3127 res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
35d98e93 3128 res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
f6d4fb5c 3129
3130 if (insert_resource(&iomem_resource, res) < 0) {
3131 pr_warn("Resource insertion failed.\n");
3132 break;
3133 }
3134
3135 insert_resource(res, &code_resource);
3136 insert_resource(res, &data_resource);
3137 insert_resource(res, &bss_resource);
3138 }
3139
3140 return 0;
3141}
3c08158e 3142arch_initcall(report_memory);
e9011d08 3143
4ca9a237
DM
3144#ifdef CONFIG_SMP
3145#define do_flush_tlb_kernel_range smp_flush_tlb_kernel_range
3146#else
3147#define do_flush_tlb_kernel_range __flush_tlb_kernel_range
3148#endif
3149
3150void flush_tlb_kernel_range(unsigned long start, unsigned long end)
3151{
3152 if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
3153 if (start < LOW_OBP_ADDRESS) {
3154 flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
3155 do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
3156 }
3157 if (end > HI_OBP_ADDRESS) {
473ad7f4
DM
3158 flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
3159 do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
4ca9a237
DM
3160 }
3161 } else {
3162 flush_tsb_kernel_range(start, end);
3163 do_flush_tlb_kernel_range(start, end);
3164 }
3165}