]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/sparc64/kernel/smp.c
[SPARC64]: Add 'hypervisor' to ultra_tlb_type enumeration.
[mirror_ubuntu-bionic-kernel.git] / arch / sparc64 / kernel / smp.c
CommitLineData
1da177e4
LT
1/* smp.c: Sparc64 SMP support.
2 *
3 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
4 */
5
6#include <linux/module.h>
7#include <linux/kernel.h>
8#include <linux/sched.h>
9#include <linux/mm.h>
10#include <linux/pagemap.h>
11#include <linux/threads.h>
12#include <linux/smp.h>
13#include <linux/smp_lock.h>
14#include <linux/interrupt.h>
15#include <linux/kernel_stat.h>
16#include <linux/delay.h>
17#include <linux/init.h>
18#include <linux/spinlock.h>
19#include <linux/fs.h>
20#include <linux/seq_file.h>
21#include <linux/cache.h>
22#include <linux/jiffies.h>
23#include <linux/profile.h>
24#include <linux/bootmem.h>
25
26#include <asm/head.h>
27#include <asm/ptrace.h>
28#include <asm/atomic.h>
29#include <asm/tlbflush.h>
30#include <asm/mmu_context.h>
31#include <asm/cpudata.h>
32
33#include <asm/irq.h>
34#include <asm/page.h>
35#include <asm/pgtable.h>
36#include <asm/oplib.h>
37#include <asm/uaccess.h>
38#include <asm/timer.h>
39#include <asm/starfire.h>
40#include <asm/tlb.h>
56fb4df6 41#include <asm/sections.h>
1da177e4 42
1da177e4
LT
43extern void calibrate_delay(void);
44
45/* Please don't make this stuff initdata!!! --DaveM */
46static unsigned char boot_cpu_id;
47
c12a8289
AM
48cpumask_t cpu_online_map __read_mostly = CPU_MASK_NONE;
49cpumask_t phys_cpu_present_map __read_mostly = CPU_MASK_NONE;
1da177e4
LT
50static cpumask_t smp_commenced_mask;
51static cpumask_t cpu_callout_map;
52
53void smp_info(struct seq_file *m)
54{
55 int i;
56
57 seq_printf(m, "State:\n");
58 for (i = 0; i < NR_CPUS; i++) {
59 if (cpu_online(i))
60 seq_printf(m,
61 "CPU%d:\t\tonline\n", i);
62 }
63}
64
65void smp_bogo(struct seq_file *m)
66{
67 int i;
68
69 for (i = 0; i < NR_CPUS; i++)
70 if (cpu_online(i))
71 seq_printf(m,
72 "Cpu%dBogo\t: %lu.%02lu\n"
73 "Cpu%dClkTck\t: %016lx\n",
74 i, cpu_data(i).udelay_val / (500000/HZ),
75 (cpu_data(i).udelay_val / (5000/HZ)) % 100,
76 i, cpu_data(i).clock_tick);
77}
78
79void __init smp_store_cpu_info(int id)
80{
81 int cpu_node;
82
83 /* multiplier and counter set by
84 smp_setup_percpu_timer() */
85 cpu_data(id).udelay_val = loops_per_jiffy;
86
87 cpu_find_by_mid(id, &cpu_node);
88 cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
89 "clock-frequency", 0);
90
1da177e4 91 cpu_data(id).idle_volume = 1;
80dc0d6b
DM
92
93 cpu_data(id).dcache_size = prom_getintdefault(cpu_node, "dcache-size",
94 16 * 1024);
95 cpu_data(id).dcache_line_size =
96 prom_getintdefault(cpu_node, "dcache-line-size", 32);
97 cpu_data(id).icache_size = prom_getintdefault(cpu_node, "icache-size",
98 16 * 1024);
99 cpu_data(id).icache_line_size =
100 prom_getintdefault(cpu_node, "icache-line-size", 32);
101 cpu_data(id).ecache_size = prom_getintdefault(cpu_node, "ecache-size",
102 4 * 1024 * 1024);
103 cpu_data(id).ecache_line_size =
104 prom_getintdefault(cpu_node, "ecache-line-size", 64);
105 printk("CPU[%d]: Caches "
106 "D[sz(%d):line_sz(%d)] "
107 "I[sz(%d):line_sz(%d)] "
108 "E[sz(%d):line_sz(%d)]\n",
109 id,
110 cpu_data(id).dcache_size, cpu_data(id).dcache_line_size,
111 cpu_data(id).icache_size, cpu_data(id).icache_line_size,
112 cpu_data(id).ecache_size, cpu_data(id).ecache_line_size);
1da177e4
LT
113}
114
115static void smp_setup_percpu_timer(void);
116
117static volatile unsigned long callin_flag = 0;
118
1da177e4
LT
119void __init smp_callin(void)
120{
121 int cpuid = hard_smp_processor_id();
122
56fb4df6 123 __local_per_cpu_offset = __per_cpu_offset(cpuid);
1da177e4 124
56fb4df6 125 __flush_tlb_all();
1da177e4
LT
126
127 smp_setup_percpu_timer();
128
816242da
DM
129 if (cheetah_pcache_forced_on)
130 cheetah_enable_pcache();
131
1da177e4
LT
132 local_irq_enable();
133
134 calibrate_delay();
135 smp_store_cpu_info(cpuid);
136 callin_flag = 1;
137 __asm__ __volatile__("membar #Sync\n\t"
138 "flush %%g6" : : : "memory");
139
140 /* Clear this or we will die instantly when we
141 * schedule back to this idler...
142 */
db7d9a4e 143 current_thread_info()->new_child = 0;
1da177e4
LT
144
145 /* Attach to the address space of init_task. */
146 atomic_inc(&init_mm.mm_count);
147 current->active_mm = &init_mm;
148
149 while (!cpu_isset(cpuid, smp_commenced_mask))
4f07118f 150 rmb();
1da177e4
LT
151
152 cpu_set(cpuid, cpu_online_map);
5bfb5d69
NP
153
154 /* idle thread is expected to have preempt disabled */
155 preempt_disable();
1da177e4
LT
156}
157
158void cpu_panic(void)
159{
160 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
161 panic("SMP bolixed\n");
162}
163
d369ddd2 164static unsigned long current_tick_offset __read_mostly;
1da177e4
LT
165
166/* This tick register synchronization scheme is taken entirely from
167 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
168 *
169 * The only change I've made is to rework it so that the master
170 * initiates the synchonization instead of the slave. -DaveM
171 */
172
173#define MASTER 0
174#define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
175
176#define NUM_ROUNDS 64 /* magic value */
177#define NUM_ITERS 5 /* likewise */
178
179static DEFINE_SPINLOCK(itc_sync_lock);
180static unsigned long go[SLAVE + 1];
181
182#define DEBUG_TICK_SYNC 0
183
184static inline long get_delta (long *rt, long *master)
185{
186 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
187 unsigned long tcenter, t0, t1, tm;
188 unsigned long i;
189
190 for (i = 0; i < NUM_ITERS; i++) {
191 t0 = tick_ops->get_tick();
192 go[MASTER] = 1;
4f07118f 193 membar_storeload();
1da177e4 194 while (!(tm = go[SLAVE]))
4f07118f 195 rmb();
1da177e4 196 go[SLAVE] = 0;
4f07118f 197 wmb();
1da177e4
LT
198 t1 = tick_ops->get_tick();
199
200 if (t1 - t0 < best_t1 - best_t0)
201 best_t0 = t0, best_t1 = t1, best_tm = tm;
202 }
203
204 *rt = best_t1 - best_t0;
205 *master = best_tm - best_t0;
206
207 /* average best_t0 and best_t1 without overflow: */
208 tcenter = (best_t0/2 + best_t1/2);
209 if (best_t0 % 2 + best_t1 % 2 == 2)
210 tcenter++;
211 return tcenter - best_tm;
212}
213
214void smp_synchronize_tick_client(void)
215{
216 long i, delta, adj, adjust_latency = 0, done = 0;
217 unsigned long flags, rt, master_time_stamp, bound;
218#if DEBUG_TICK_SYNC
219 struct {
220 long rt; /* roundtrip time */
221 long master; /* master's timestamp */
222 long diff; /* difference between midpoint and master's timestamp */
223 long lat; /* estimate of itc adjustment latency */
224 } t[NUM_ROUNDS];
225#endif
226
227 go[MASTER] = 1;
228
229 while (go[MASTER])
4f07118f 230 rmb();
1da177e4
LT
231
232 local_irq_save(flags);
233 {
234 for (i = 0; i < NUM_ROUNDS; i++) {
235 delta = get_delta(&rt, &master_time_stamp);
236 if (delta == 0) {
237 done = 1; /* let's lock on to this... */
238 bound = rt;
239 }
240
241 if (!done) {
242 if (i > 0) {
243 adjust_latency += -delta;
244 adj = -delta + adjust_latency/4;
245 } else
246 adj = -delta;
247
248 tick_ops->add_tick(adj, current_tick_offset);
249 }
250#if DEBUG_TICK_SYNC
251 t[i].rt = rt;
252 t[i].master = master_time_stamp;
253 t[i].diff = delta;
254 t[i].lat = adjust_latency/4;
255#endif
256 }
257 }
258 local_irq_restore(flags);
259
260#if DEBUG_TICK_SYNC
261 for (i = 0; i < NUM_ROUNDS; i++)
262 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
263 t[i].rt, t[i].master, t[i].diff, t[i].lat);
264#endif
265
266 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU (last diff %ld cycles,"
267 "maxerr %lu cycles)\n", smp_processor_id(), delta, rt);
268}
269
270static void smp_start_sync_tick_client(int cpu);
271
272static void smp_synchronize_one_tick(int cpu)
273{
274 unsigned long flags, i;
275
276 go[MASTER] = 0;
277
278 smp_start_sync_tick_client(cpu);
279
280 /* wait for client to be ready */
281 while (!go[MASTER])
4f07118f 282 rmb();
1da177e4
LT
283
284 /* now let the client proceed into his loop */
285 go[MASTER] = 0;
4f07118f 286 membar_storeload();
1da177e4
LT
287
288 spin_lock_irqsave(&itc_sync_lock, flags);
289 {
290 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
291 while (!go[MASTER])
4f07118f 292 rmb();
1da177e4 293 go[MASTER] = 0;
4f07118f 294 wmb();
1da177e4 295 go[SLAVE] = tick_ops->get_tick();
4f07118f 296 membar_storeload();
1da177e4
LT
297 }
298 }
299 spin_unlock_irqrestore(&itc_sync_lock, flags);
300}
301
302extern unsigned long sparc64_cpu_startup;
303
304/* The OBP cpu startup callback truncates the 3rd arg cookie to
305 * 32-bits (I think) so to be safe we have it read the pointer
306 * contained here so we work on >4GB machines. -DaveM
307 */
308static struct thread_info *cpu_new_thread = NULL;
309
310static int __devinit smp_boot_one_cpu(unsigned int cpu)
311{
312 unsigned long entry =
313 (unsigned long)(&sparc64_cpu_startup);
314 unsigned long cookie =
315 (unsigned long)(&cpu_new_thread);
316 struct task_struct *p;
317 int timeout, ret, cpu_node;
318
319 p = fork_idle(cpu);
320 callin_flag = 0;
f3169641 321 cpu_new_thread = task_thread_info(p);
1da177e4
LT
322 cpu_set(cpu, cpu_callout_map);
323
324 cpu_find_by_mid(cpu, &cpu_node);
325 prom_startcpu(cpu_node, entry, cookie);
326
327 for (timeout = 0; timeout < 5000000; timeout++) {
328 if (callin_flag)
329 break;
330 udelay(100);
331 }
332 if (callin_flag) {
333 ret = 0;
334 } else {
335 printk("Processor %d is stuck.\n", cpu);
336 cpu_clear(cpu, cpu_callout_map);
337 ret = -ENODEV;
338 }
339 cpu_new_thread = NULL;
340
341 return ret;
342}
343
344static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
345{
346 u64 result, target;
347 int stuck, tmp;
348
349 if (this_is_starfire) {
350 /* map to real upaid */
351 cpu = (((cpu & 0x3c) << 1) |
352 ((cpu & 0x40) >> 4) |
353 (cpu & 0x3));
354 }
355
356 target = (cpu << 14) | 0x70;
357again:
358 /* Ok, this is the real Spitfire Errata #54.
359 * One must read back from a UDB internal register
360 * after writes to the UDB interrupt dispatch, but
361 * before the membar Sync for that write.
362 * So we use the high UDB control register (ASI 0x7f,
363 * ADDR 0x20) for the dummy read. -DaveM
364 */
365 tmp = 0x40;
366 __asm__ __volatile__(
367 "wrpr %1, %2, %%pstate\n\t"
368 "stxa %4, [%0] %3\n\t"
369 "stxa %5, [%0+%8] %3\n\t"
370 "add %0, %8, %0\n\t"
371 "stxa %6, [%0+%8] %3\n\t"
372 "membar #Sync\n\t"
373 "stxa %%g0, [%7] %3\n\t"
374 "membar #Sync\n\t"
375 "mov 0x20, %%g1\n\t"
376 "ldxa [%%g1] 0x7f, %%g0\n\t"
377 "membar #Sync"
378 : "=r" (tmp)
379 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
380 "r" (data0), "r" (data1), "r" (data2), "r" (target),
381 "r" (0x10), "0" (tmp)
382 : "g1");
383
384 /* NOTE: PSTATE_IE is still clear. */
385 stuck = 100000;
386 do {
387 __asm__ __volatile__("ldxa [%%g0] %1, %0"
388 : "=r" (result)
389 : "i" (ASI_INTR_DISPATCH_STAT));
390 if (result == 0) {
391 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
392 : : "r" (pstate));
393 return;
394 }
395 stuck -= 1;
396 if (stuck == 0)
397 break;
398 } while (result & 0x1);
399 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
400 : : "r" (pstate));
401 if (stuck == 0) {
402 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
403 smp_processor_id(), result);
404 } else {
405 udelay(2);
406 goto again;
407 }
408}
409
410static __inline__ void spitfire_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
411{
412 u64 pstate;
413 int i;
414
415 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
416 for_each_cpu_mask(i, mask)
417 spitfire_xcall_helper(data0, data1, data2, pstate, i);
418}
419
420/* Cheetah now allows to send the whole 64-bytes of data in the interrupt
421 * packet, but we have no use for that. However we do take advantage of
422 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
423 */
424static void cheetah_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
425{
426 u64 pstate, ver;
92704a1c 427 int nack_busy_id, is_jbus;
1da177e4
LT
428
429 if (cpus_empty(mask))
430 return;
431
432 /* Unfortunately, someone at Sun had the brilliant idea to make the
433 * busy/nack fields hard-coded by ITID number for this Ultra-III
434 * derivative processor.
435 */
436 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
92704a1c
DM
437 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
438 (ver >> 32) == __SERRANO_ID);
1da177e4
LT
439
440 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
441
442retry:
443 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
444 : : "r" (pstate), "i" (PSTATE_IE));
445
446 /* Setup the dispatch data registers. */
447 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
448 "stxa %1, [%4] %6\n\t"
449 "stxa %2, [%5] %6\n\t"
450 "membar #Sync\n\t"
451 : /* no outputs */
452 : "r" (data0), "r" (data1), "r" (data2),
453 "r" (0x40), "r" (0x50), "r" (0x60),
454 "i" (ASI_INTR_W));
455
456 nack_busy_id = 0;
457 {
458 int i;
459
460 for_each_cpu_mask(i, mask) {
461 u64 target = (i << 14) | 0x70;
462
92704a1c 463 if (!is_jbus)
1da177e4
LT
464 target |= (nack_busy_id << 24);
465 __asm__ __volatile__(
466 "stxa %%g0, [%0] %1\n\t"
467 "membar #Sync\n\t"
468 : /* no outputs */
469 : "r" (target), "i" (ASI_INTR_W));
470 nack_busy_id++;
471 }
472 }
473
474 /* Now, poll for completion. */
475 {
476 u64 dispatch_stat;
477 long stuck;
478
479 stuck = 100000 * nack_busy_id;
480 do {
481 __asm__ __volatile__("ldxa [%%g0] %1, %0"
482 : "=r" (dispatch_stat)
483 : "i" (ASI_INTR_DISPATCH_STAT));
484 if (dispatch_stat == 0UL) {
485 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
486 : : "r" (pstate));
487 return;
488 }
489 if (!--stuck)
490 break;
491 } while (dispatch_stat & 0x5555555555555555UL);
492
493 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
494 : : "r" (pstate));
495
496 if ((dispatch_stat & ~(0x5555555555555555UL)) == 0) {
497 /* Busy bits will not clear, continue instead
498 * of freezing up on this cpu.
499 */
500 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
501 smp_processor_id(), dispatch_stat);
502 } else {
503 int i, this_busy_nack = 0;
504
505 /* Delay some random time with interrupts enabled
506 * to prevent deadlock.
507 */
508 udelay(2 * nack_busy_id);
509
510 /* Clear out the mask bits for cpus which did not
511 * NACK us.
512 */
513 for_each_cpu_mask(i, mask) {
514 u64 check_mask;
515
92704a1c 516 if (is_jbus)
1da177e4
LT
517 check_mask = (0x2UL << (2*i));
518 else
519 check_mask = (0x2UL <<
520 this_busy_nack);
521 if ((dispatch_stat & check_mask) == 0)
522 cpu_clear(i, mask);
523 this_busy_nack += 2;
524 }
525
526 goto retry;
527 }
528 }
529}
530
531/* Send cross call to all processors mentioned in MASK
532 * except self.
533 */
534static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, cpumask_t mask)
535{
536 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
537 int this_cpu = get_cpu();
538
539 cpus_and(mask, mask, cpu_online_map);
540 cpu_clear(this_cpu, mask);
541
542 if (tlb_type == spitfire)
543 spitfire_xcall_deliver(data0, data1, data2, mask);
544 else
545 cheetah_xcall_deliver(data0, data1, data2, mask);
546 /* NOTE: Caller runs local copy on master. */
547
548 put_cpu();
549}
550
551extern unsigned long xcall_sync_tick;
552
553static void smp_start_sync_tick_client(int cpu)
554{
555 cpumask_t mask = cpumask_of_cpu(cpu);
556
557 smp_cross_call_masked(&xcall_sync_tick,
558 0, 0, 0, mask);
559}
560
561/* Send cross call to all processors except self. */
562#define smp_cross_call(func, ctx, data1, data2) \
563 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_map)
564
565struct call_data_struct {
566 void (*func) (void *info);
567 void *info;
568 atomic_t finished;
569 int wait;
570};
571
572static DEFINE_SPINLOCK(call_lock);
573static struct call_data_struct *call_data;
574
575extern unsigned long xcall_call_function;
576
577/*
578 * You must not call this function with disabled interrupts or from a
579 * hardware interrupt handler or from a bottom half handler.
580 */
bd40791e
DM
581static int smp_call_function_mask(void (*func)(void *info), void *info,
582 int nonatomic, int wait, cpumask_t mask)
1da177e4
LT
583{
584 struct call_data_struct data;
bd40791e 585 int cpus = cpus_weight(mask) - 1;
1da177e4
LT
586 long timeout;
587
588 if (!cpus)
589 return 0;
590
591 /* Can deadlock when called with interrupts disabled */
592 WARN_ON(irqs_disabled());
593
594 data.func = func;
595 data.info = info;
596 atomic_set(&data.finished, 0);
597 data.wait = wait;
598
599 spin_lock(&call_lock);
600
601 call_data = &data;
602
bd40791e 603 smp_cross_call_masked(&xcall_call_function, 0, 0, 0, mask);
1da177e4
LT
604
605 /*
606 * Wait for other cpus to complete function or at
607 * least snap the call data.
608 */
609 timeout = 1000000;
610 while (atomic_read(&data.finished) != cpus) {
611 if (--timeout <= 0)
612 goto out_timeout;
613 barrier();
614 udelay(1);
615 }
616
617 spin_unlock(&call_lock);
618
619 return 0;
620
621out_timeout:
622 spin_unlock(&call_lock);
623 printk("XCALL: Remote cpus not responding, ncpus=%ld finished=%ld\n",
624 (long) num_online_cpus() - 1L,
625 (long) atomic_read(&data.finished));
626 return 0;
627}
628
bd40791e
DM
629int smp_call_function(void (*func)(void *info), void *info,
630 int nonatomic, int wait)
631{
632 return smp_call_function_mask(func, info, nonatomic, wait,
633 cpu_online_map);
634}
635
1da177e4
LT
636void smp_call_function_client(int irq, struct pt_regs *regs)
637{
638 void (*func) (void *info) = call_data->func;
639 void *info = call_data->info;
640
641 clear_softint(1 << irq);
642 if (call_data->wait) {
643 /* let initiator proceed only after completion */
644 func(info);
645 atomic_inc(&call_data->finished);
646 } else {
647 /* let initiator proceed after getting data */
648 atomic_inc(&call_data->finished);
649 func(info);
650 }
651}
652
bd40791e
DM
653static void tsb_sync(void *info)
654{
655 struct mm_struct *mm = info;
656
657 if (current->active_mm == mm)
658 tsb_context_switch(mm);
659}
660
661void smp_tsb_sync(struct mm_struct *mm)
662{
663 smp_call_function_mask(tsb_sync, mm, 0, 1, mm->cpu_vm_mask);
664}
665
1da177e4
LT
666extern unsigned long xcall_flush_tlb_mm;
667extern unsigned long xcall_flush_tlb_pending;
668extern unsigned long xcall_flush_tlb_kernel_range;
1da177e4
LT
669extern unsigned long xcall_report_regs;
670extern unsigned long xcall_receive_signal;
671
672#ifdef DCACHE_ALIASING_POSSIBLE
673extern unsigned long xcall_flush_dcache_page_cheetah;
674#endif
675extern unsigned long xcall_flush_dcache_page_spitfire;
676
677#ifdef CONFIG_DEBUG_DCFLUSH
678extern atomic_t dcpage_flushes;
679extern atomic_t dcpage_flushes_xcall;
680#endif
681
682static __inline__ void __local_flush_dcache_page(struct page *page)
683{
684#ifdef DCACHE_ALIASING_POSSIBLE
685 __flush_dcache_page(page_address(page),
686 ((tlb_type == spitfire) &&
687 page_mapping(page) != NULL));
688#else
689 if (page_mapping(page) != NULL &&
690 tlb_type == spitfire)
691 __flush_icache_page(__pa(page_address(page)));
692#endif
693}
694
695void smp_flush_dcache_page_impl(struct page *page, int cpu)
696{
697 cpumask_t mask = cpumask_of_cpu(cpu);
698 int this_cpu = get_cpu();
699
700#ifdef CONFIG_DEBUG_DCFLUSH
701 atomic_inc(&dcpage_flushes);
702#endif
703 if (cpu == this_cpu) {
704 __local_flush_dcache_page(page);
705 } else if (cpu_online(cpu)) {
706 void *pg_addr = page_address(page);
707 u64 data0;
708
709 if (tlb_type == spitfire) {
710 data0 =
711 ((u64)&xcall_flush_dcache_page_spitfire);
712 if (page_mapping(page) != NULL)
713 data0 |= ((u64)1 << 32);
714 spitfire_xcall_deliver(data0,
715 __pa(pg_addr),
716 (u64) pg_addr,
717 mask);
718 } else {
719#ifdef DCACHE_ALIASING_POSSIBLE
720 data0 =
721 ((u64)&xcall_flush_dcache_page_cheetah);
722 cheetah_xcall_deliver(data0,
723 __pa(pg_addr),
724 0, mask);
725#endif
726 }
727#ifdef CONFIG_DEBUG_DCFLUSH
728 atomic_inc(&dcpage_flushes_xcall);
729#endif
730 }
731
732 put_cpu();
733}
734
735void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
736{
737 void *pg_addr = page_address(page);
738 cpumask_t mask = cpu_online_map;
739 u64 data0;
740 int this_cpu = get_cpu();
741
742 cpu_clear(this_cpu, mask);
743
744#ifdef CONFIG_DEBUG_DCFLUSH
745 atomic_inc(&dcpage_flushes);
746#endif
747 if (cpus_empty(mask))
748 goto flush_self;
749 if (tlb_type == spitfire) {
750 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
751 if (page_mapping(page) != NULL)
752 data0 |= ((u64)1 << 32);
753 spitfire_xcall_deliver(data0,
754 __pa(pg_addr),
755 (u64) pg_addr,
756 mask);
757 } else {
758#ifdef DCACHE_ALIASING_POSSIBLE
759 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
760 cheetah_xcall_deliver(data0,
761 __pa(pg_addr),
762 0, mask);
763#endif
764 }
765#ifdef CONFIG_DEBUG_DCFLUSH
766 atomic_inc(&dcpage_flushes_xcall);
767#endif
768 flush_self:
769 __local_flush_dcache_page(page);
770
771 put_cpu();
772}
773
774void smp_receive_signal(int cpu)
775{
776 cpumask_t mask = cpumask_of_cpu(cpu);
777
778 if (cpu_online(cpu)) {
779 u64 data0 = (((u64)&xcall_receive_signal) & 0xffffffff);
780
781 if (tlb_type == spitfire)
782 spitfire_xcall_deliver(data0, 0, 0, mask);
783 else
784 cheetah_xcall_deliver(data0, 0, 0, mask);
785 }
786}
787
788void smp_receive_signal_client(int irq, struct pt_regs *regs)
789{
790 /* Just return, rtrap takes care of the rest. */
791 clear_softint(1 << irq);
792}
793
794void smp_report_regs(void)
795{
796 smp_cross_call(&xcall_report_regs, 0, 0, 0);
797}
798
1da177e4
LT
799/* We know that the window frames of the user have been flushed
800 * to the stack before we get here because all callers of us
801 * are flush_tlb_*() routines, and these run after flush_cache_*()
802 * which performs the flushw.
803 *
804 * The SMP TLB coherency scheme we use works as follows:
805 *
806 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
807 * space has (potentially) executed on, this is the heuristic
808 * we use to avoid doing cross calls.
809 *
810 * Also, for flushing from kswapd and also for clones, we
811 * use cpu_vm_mask as the list of cpus to make run the TLB.
812 *
813 * 2) TLB context numbers are shared globally across all processors
814 * in the system, this allows us to play several games to avoid
815 * cross calls.
816 *
817 * One invariant is that when a cpu switches to a process, and
818 * that processes tsk->active_mm->cpu_vm_mask does not have the
819 * current cpu's bit set, that tlb context is flushed locally.
820 *
821 * If the address space is non-shared (ie. mm->count == 1) we avoid
822 * cross calls when we want to flush the currently running process's
823 * tlb state. This is done by clearing all cpu bits except the current
824 * processor's in current->active_mm->cpu_vm_mask and performing the
825 * flush locally only. This will force any subsequent cpus which run
826 * this task to flush the context from the local tlb if the process
827 * migrates to another cpu (again).
828 *
829 * 3) For shared address spaces (threads) and swapping we bite the
830 * bullet for most cases and perform the cross call (but only to
831 * the cpus listed in cpu_vm_mask).
832 *
833 * The performance gain from "optimizing" away the cross call for threads is
834 * questionable (in theory the big win for threads is the massive sharing of
835 * address space state across processors).
836 */
62dbec78
DM
837
838/* This currently is only used by the hugetlb arch pre-fault
839 * hook on UltraSPARC-III+ and later when changing the pagesize
840 * bits of the context register for an address space.
841 */
1da177e4
LT
842void smp_flush_tlb_mm(struct mm_struct *mm)
843{
62dbec78
DM
844 u32 ctx = CTX_HWBITS(mm->context);
845 int cpu = get_cpu();
1da177e4 846
62dbec78
DM
847 if (atomic_read(&mm->mm_users) == 1) {
848 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
849 goto local_flush_and_out;
850 }
1da177e4 851
62dbec78
DM
852 smp_cross_call_masked(&xcall_flush_tlb_mm,
853 ctx, 0, 0,
854 mm->cpu_vm_mask);
1da177e4 855
62dbec78
DM
856local_flush_and_out:
857 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1da177e4 858
62dbec78 859 put_cpu();
1da177e4
LT
860}
861
862void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
863{
864 u32 ctx = CTX_HWBITS(mm->context);
865 int cpu = get_cpu();
866
dedeb002 867 if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1)
1da177e4 868 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
dedeb002
HD
869 else
870 smp_cross_call_masked(&xcall_flush_tlb_pending,
871 ctx, nr, (unsigned long) vaddrs,
872 mm->cpu_vm_mask);
1da177e4 873
1da177e4
LT
874 __flush_tlb_pending(ctx, nr, vaddrs);
875
876 put_cpu();
877}
878
879void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
880{
881 start &= PAGE_MASK;
882 end = PAGE_ALIGN(end);
883 if (start != end) {
884 smp_cross_call(&xcall_flush_tlb_kernel_range,
885 0, start, end);
886
887 __flush_tlb_kernel_range(start, end);
888 }
889}
890
891/* CPU capture. */
892/* #define CAPTURE_DEBUG */
893extern unsigned long xcall_capture;
894
895static atomic_t smp_capture_depth = ATOMIC_INIT(0);
896static atomic_t smp_capture_registry = ATOMIC_INIT(0);
897static unsigned long penguins_are_doing_time;
898
899void smp_capture(void)
900{
901 int result = atomic_add_ret(1, &smp_capture_depth);
902
903 if (result == 1) {
904 int ncpus = num_online_cpus();
905
906#ifdef CAPTURE_DEBUG
907 printk("CPU[%d]: Sending penguins to jail...",
908 smp_processor_id());
909#endif
910 penguins_are_doing_time = 1;
4f07118f 911 membar_storestore_loadstore();
1da177e4
LT
912 atomic_inc(&smp_capture_registry);
913 smp_cross_call(&xcall_capture, 0, 0, 0);
914 while (atomic_read(&smp_capture_registry) != ncpus)
4f07118f 915 rmb();
1da177e4
LT
916#ifdef CAPTURE_DEBUG
917 printk("done\n");
918#endif
919 }
920}
921
922void smp_release(void)
923{
924 if (atomic_dec_and_test(&smp_capture_depth)) {
925#ifdef CAPTURE_DEBUG
926 printk("CPU[%d]: Giving pardon to "
927 "imprisoned penguins\n",
928 smp_processor_id());
929#endif
930 penguins_are_doing_time = 0;
4f07118f 931 membar_storeload_storestore();
1da177e4
LT
932 atomic_dec(&smp_capture_registry);
933 }
934}
935
936/* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
937 * can service tlb flush xcalls...
938 */
939extern void prom_world(int);
96c6e0d8 940
1da177e4
LT
941void smp_penguin_jailcell(int irq, struct pt_regs *regs)
942{
1da177e4
LT
943 clear_softint(1 << irq);
944
945 preempt_disable();
946
947 __asm__ __volatile__("flushw");
1da177e4
LT
948 prom_world(1);
949 atomic_inc(&smp_capture_registry);
4f07118f 950 membar_storeload_storestore();
1da177e4 951 while (penguins_are_doing_time)
4f07118f 952 rmb();
1da177e4
LT
953 atomic_dec(&smp_capture_registry);
954 prom_world(0);
955
956 preempt_enable();
957}
958
1da177e4
LT
959#define prof_multiplier(__cpu) cpu_data(__cpu).multiplier
960#define prof_counter(__cpu) cpu_data(__cpu).counter
961
962void smp_percpu_timer_interrupt(struct pt_regs *regs)
963{
964 unsigned long compare, tick, pstate;
965 int cpu = smp_processor_id();
966 int user = user_mode(regs);
967
968 /*
969 * Check for level 14 softint.
970 */
971 {
972 unsigned long tick_mask = tick_ops->softint_mask;
973
974 if (!(get_softint() & tick_mask)) {
975 extern void handler_irq(int, struct pt_regs *);
976
977 handler_irq(14, regs);
978 return;
979 }
980 clear_softint(tick_mask);
981 }
982
983 do {
984 profile_tick(CPU_PROFILING, regs);
985 if (!--prof_counter(cpu)) {
986 irq_enter();
987
988 if (cpu == boot_cpu_id) {
989 kstat_this_cpu.irqs[0]++;
990 timer_tick_interrupt(regs);
991 }
992
993 update_process_times(user);
994
995 irq_exit();
996
997 prof_counter(cpu) = prof_multiplier(cpu);
998 }
999
1000 /* Guarantee that the following sequences execute
1001 * uninterrupted.
1002 */
1003 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
1004 "wrpr %0, %1, %%pstate"
1005 : "=r" (pstate)
1006 : "i" (PSTATE_IE));
1007
1008 compare = tick_ops->add_compare(current_tick_offset);
1009 tick = tick_ops->get_tick();
1010
1011 /* Restore PSTATE_IE. */
1012 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
1013 : /* no outputs */
1014 : "r" (pstate));
1015 } while (time_after_eq(tick, compare));
1016}
1017
1018static void __init smp_setup_percpu_timer(void)
1019{
1020 int cpu = smp_processor_id();
1021 unsigned long pstate;
1022
1023 prof_counter(cpu) = prof_multiplier(cpu) = 1;
1024
1025 /* Guarantee that the following sequences execute
1026 * uninterrupted.
1027 */
1028 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
1029 "wrpr %0, %1, %%pstate"
1030 : "=r" (pstate)
1031 : "i" (PSTATE_IE));
1032
1033 tick_ops->init_tick(current_tick_offset);
1034
1035 /* Restore PSTATE_IE. */
1036 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
1037 : /* no outputs */
1038 : "r" (pstate));
1039}
1040
1041void __init smp_tick_init(void)
1042{
1043 boot_cpu_id = hard_smp_processor_id();
1044 current_tick_offset = timer_tick_offset;
1045
1046 cpu_set(boot_cpu_id, cpu_online_map);
1047 prof_counter(boot_cpu_id) = prof_multiplier(boot_cpu_id) = 1;
1048}
1049
1050/* /proc/profile writes can call this, don't __init it please. */
1051static DEFINE_SPINLOCK(prof_setup_lock);
1052
1053int setup_profiling_timer(unsigned int multiplier)
1054{
1055 unsigned long flags;
1056 int i;
1057
1058 if ((!multiplier) || (timer_tick_offset / multiplier) < 1000)
1059 return -EINVAL;
1060
1061 spin_lock_irqsave(&prof_setup_lock, flags);
1062 for (i = 0; i < NR_CPUS; i++)
1063 prof_multiplier(i) = multiplier;
1064 current_tick_offset = (timer_tick_offset / multiplier);
1065 spin_unlock_irqrestore(&prof_setup_lock, flags);
1066
1067 return 0;
1068}
1069
7abea921 1070/* Constrain the number of cpus to max_cpus. */
1da177e4
LT
1071void __init smp_prepare_cpus(unsigned int max_cpus)
1072{
1da177e4 1073 if (num_possible_cpus() > max_cpus) {
7abea921
DM
1074 int instance, mid;
1075
1da177e4
LT
1076 instance = 0;
1077 while (!cpu_find_by_instance(instance, NULL, &mid)) {
1078 if (mid != boot_cpu_id) {
1079 cpu_clear(mid, phys_cpu_present_map);
1080 if (num_possible_cpus() <= max_cpus)
1081 break;
1082 }
1083 instance++;
1084 }
1085 }
1086
1087 smp_store_cpu_info(boot_cpu_id);
1088}
1089
7abea921
DM
1090/* Set this up early so that things like the scheduler can init
1091 * properly. We use the same cpu mask for both the present and
1092 * possible cpu map.
1093 */
1094void __init smp_setup_cpu_possible_map(void)
1095{
1096 int instance, mid;
1097
1098 instance = 0;
1099 while (!cpu_find_by_instance(instance, NULL, &mid)) {
1100 if (mid < NR_CPUS)
1101 cpu_set(mid, phys_cpu_present_map);
1102 instance++;
1103 }
1104}
1105
1da177e4
LT
1106void __devinit smp_prepare_boot_cpu(void)
1107{
56fb4df6
DM
1108 int cpu = hard_smp_processor_id();
1109
1110 if (cpu >= NR_CPUS) {
1da177e4
LT
1111 prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
1112 prom_halt();
1113 }
1114
56fb4df6
DM
1115 current_thread_info()->cpu = cpu;
1116 __local_per_cpu_offset = __per_cpu_offset(cpu);
1da177e4
LT
1117
1118 cpu_set(smp_processor_id(), cpu_online_map);
1119 cpu_set(smp_processor_id(), phys_cpu_present_map);
1120}
1121
1122int __devinit __cpu_up(unsigned int cpu)
1123{
1124 int ret = smp_boot_one_cpu(cpu);
1125
1126 if (!ret) {
1127 cpu_set(cpu, smp_commenced_mask);
1128 while (!cpu_isset(cpu, cpu_online_map))
1129 mb();
1130 if (!cpu_isset(cpu, cpu_online_map)) {
1131 ret = -ENODEV;
1132 } else {
1133 smp_synchronize_one_tick(cpu);
1134 }
1135 }
1136 return ret;
1137}
1138
1139void __init smp_cpus_done(unsigned int max_cpus)
1140{
1141 unsigned long bogosum = 0;
1142 int i;
1143
1144 for (i = 0; i < NR_CPUS; i++) {
1145 if (cpu_online(i))
1146 bogosum += cpu_data(i).udelay_val;
1147 }
1148 printk("Total of %ld processors activated "
1149 "(%lu.%02lu BogoMIPS).\n",
1150 (long) num_online_cpus(),
1151 bogosum/(500000/HZ),
1152 (bogosum/(5000/HZ))%100);
1153}
1154
1da177e4
LT
1155void smp_send_reschedule(int cpu)
1156{
64c7c8f8 1157 smp_receive_signal(cpu);
1da177e4
LT
1158}
1159
1160/* This is a nop because we capture all other cpus
1161 * anyways when making the PROM active.
1162 */
1163void smp_send_stop(void)
1164{
1165}
1166
d369ddd2
DM
1167unsigned long __per_cpu_base __read_mostly;
1168unsigned long __per_cpu_shift __read_mostly;
1da177e4
LT
1169
1170EXPORT_SYMBOL(__per_cpu_base);
1171EXPORT_SYMBOL(__per_cpu_shift);
1172
1173void __init setup_per_cpu_areas(void)
1174{
1175 unsigned long goal, size, i;
1176 char *ptr;
1da177e4
LT
1177
1178 /* Copy section for each CPU (we discard the original) */
56fb4df6 1179 goal = ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES);
1da177e4
LT
1180#ifdef CONFIG_MODULES
1181 if (goal < PERCPU_ENOUGH_ROOM)
1182 goal = PERCPU_ENOUGH_ROOM;
1183#endif
1184 __per_cpu_shift = 0;
1185 for (size = 1UL; size < goal; size <<= 1UL)
1186 __per_cpu_shift++;
1187
56fb4df6 1188 ptr = alloc_bootmem(size * NR_CPUS);
1da177e4
LT
1189
1190 __per_cpu_base = ptr - __per_cpu_start;
1191
1da177e4
LT
1192 for (i = 0; i < NR_CPUS; i++, ptr += size)
1193 memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
1da177e4 1194}