]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - arch/sparc64/kernel/smp.c
sparc64: Build cpu list and mondo block at top-level xcall_deliver().
[mirror_ubuntu-zesty-kernel.git] / arch / sparc64 / kernel / smp.c
CommitLineData
1da177e4
LT
1/* smp.c: Sparc64 SMP support.
2 *
cf3d7c1e 3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
1da177e4
LT
4 */
5
6#include <linux/module.h>
7#include <linux/kernel.h>
8#include <linux/sched.h>
9#include <linux/mm.h>
10#include <linux/pagemap.h>
11#include <linux/threads.h>
12#include <linux/smp.h>
1da177e4
LT
13#include <linux/interrupt.h>
14#include <linux/kernel_stat.h>
15#include <linux/delay.h>
16#include <linux/init.h>
17#include <linux/spinlock.h>
18#include <linux/fs.h>
19#include <linux/seq_file.h>
20#include <linux/cache.h>
21#include <linux/jiffies.h>
22#include <linux/profile.h>
b9709456 23#include <linux/lmb.h>
1da177e4
LT
24
25#include <asm/head.h>
26#include <asm/ptrace.h>
27#include <asm/atomic.h>
28#include <asm/tlbflush.h>
29#include <asm/mmu_context.h>
30#include <asm/cpudata.h>
27a2ef38
DM
31#include <asm/hvtramp.h>
32#include <asm/io.h>
cf3d7c1e 33#include <asm/timer.h>
1da177e4
LT
34
35#include <asm/irq.h>
6d24c8dc 36#include <asm/irq_regs.h>
1da177e4
LT
37#include <asm/page.h>
38#include <asm/pgtable.h>
39#include <asm/oplib.h>
40#include <asm/uaccess.h>
1da177e4
LT
41#include <asm/starfire.h>
42#include <asm/tlb.h>
56fb4df6 43#include <asm/sections.h>
07f8e5f3 44#include <asm/prom.h>
5cbc3073 45#include <asm/mdesc.h>
4f0234f4 46#include <asm/ldc.h>
e0204409 47#include <asm/hypervisor.h>
1da177e4 48
a2f9f6bb
DM
49int sparc64_multi_core __read_mostly;
50
4f0234f4 51cpumask_t cpu_possible_map __read_mostly = CPU_MASK_NONE;
c12a8289 52cpumask_t cpu_online_map __read_mostly = CPU_MASK_NONE;
d5a7430d 53DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
f78eae2e
DM
54cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
55 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
4f0234f4
DM
56
57EXPORT_SYMBOL(cpu_possible_map);
58EXPORT_SYMBOL(cpu_online_map);
d5a7430d 59EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
4f0234f4
DM
60EXPORT_SYMBOL(cpu_core_map);
61
1da177e4 62static cpumask_t smp_commenced_mask;
1da177e4
LT
63
64void smp_info(struct seq_file *m)
65{
66 int i;
67
68 seq_printf(m, "State:\n");
394e3902
AM
69 for_each_online_cpu(i)
70 seq_printf(m, "CPU%d:\t\tonline\n", i);
1da177e4
LT
71}
72
73void smp_bogo(struct seq_file *m)
74{
75 int i;
76
394e3902
AM
77 for_each_online_cpu(i)
78 seq_printf(m,
394e3902 79 "Cpu%dClkTck\t: %016lx\n",
394e3902 80 i, cpu_data(i).clock_tick);
1da177e4
LT
81}
82
e0204409
DM
83static __cacheline_aligned_in_smp DEFINE_SPINLOCK(call_lock);
84
112f4871 85extern void setup_sparc64_timer(void);
1da177e4
LT
86
87static volatile unsigned long callin_flag = 0;
88
0f7f22d9 89void __cpuinit smp_callin(void)
1da177e4
LT
90{
91 int cpuid = hard_smp_processor_id();
92
56fb4df6 93 __local_per_cpu_offset = __per_cpu_offset(cpuid);
1da177e4 94
4a07e646 95 if (tlb_type == hypervisor)
490384e7 96 sun4v_ktsb_register();
481295f9 97
56fb4df6 98 __flush_tlb_all();
1da177e4 99
112f4871 100 setup_sparc64_timer();
1da177e4 101
816242da
DM
102 if (cheetah_pcache_forced_on)
103 cheetah_enable_pcache();
104
1da177e4
LT
105 local_irq_enable();
106
1da177e4
LT
107 callin_flag = 1;
108 __asm__ __volatile__("membar #Sync\n\t"
109 "flush %%g6" : : : "memory");
110
111 /* Clear this or we will die instantly when we
112 * schedule back to this idler...
113 */
db7d9a4e 114 current_thread_info()->new_child = 0;
1da177e4
LT
115
116 /* Attach to the address space of init_task. */
117 atomic_inc(&init_mm.mm_count);
118 current->active_mm = &init_mm;
119
120 while (!cpu_isset(cpuid, smp_commenced_mask))
4f07118f 121 rmb();
1da177e4 122
e0204409 123 spin_lock(&call_lock);
1da177e4 124 cpu_set(cpuid, cpu_online_map);
e0204409 125 spin_unlock(&call_lock);
5bfb5d69
NP
126
127 /* idle thread is expected to have preempt disabled */
128 preempt_disable();
1da177e4
LT
129}
130
131void cpu_panic(void)
132{
133 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
134 panic("SMP bolixed\n");
135}
136
1da177e4
LT
137/* This tick register synchronization scheme is taken entirely from
138 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
139 *
140 * The only change I've made is to rework it so that the master
141 * initiates the synchonization instead of the slave. -DaveM
142 */
143
144#define MASTER 0
145#define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
146
147#define NUM_ROUNDS 64 /* magic value */
148#define NUM_ITERS 5 /* likewise */
149
150static DEFINE_SPINLOCK(itc_sync_lock);
151static unsigned long go[SLAVE + 1];
152
153#define DEBUG_TICK_SYNC 0
154
155static inline long get_delta (long *rt, long *master)
156{
157 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
158 unsigned long tcenter, t0, t1, tm;
159 unsigned long i;
160
161 for (i = 0; i < NUM_ITERS; i++) {
162 t0 = tick_ops->get_tick();
163 go[MASTER] = 1;
4f07118f 164 membar_storeload();
1da177e4 165 while (!(tm = go[SLAVE]))
4f07118f 166 rmb();
1da177e4 167 go[SLAVE] = 0;
4f07118f 168 wmb();
1da177e4
LT
169 t1 = tick_ops->get_tick();
170
171 if (t1 - t0 < best_t1 - best_t0)
172 best_t0 = t0, best_t1 = t1, best_tm = tm;
173 }
174
175 *rt = best_t1 - best_t0;
176 *master = best_tm - best_t0;
177
178 /* average best_t0 and best_t1 without overflow: */
179 tcenter = (best_t0/2 + best_t1/2);
180 if (best_t0 % 2 + best_t1 % 2 == 2)
181 tcenter++;
182 return tcenter - best_tm;
183}
184
185void smp_synchronize_tick_client(void)
186{
187 long i, delta, adj, adjust_latency = 0, done = 0;
188 unsigned long flags, rt, master_time_stamp, bound;
189#if DEBUG_TICK_SYNC
190 struct {
191 long rt; /* roundtrip time */
192 long master; /* master's timestamp */
193 long diff; /* difference between midpoint and master's timestamp */
194 long lat; /* estimate of itc adjustment latency */
195 } t[NUM_ROUNDS];
196#endif
197
198 go[MASTER] = 1;
199
200 while (go[MASTER])
4f07118f 201 rmb();
1da177e4
LT
202
203 local_irq_save(flags);
204 {
205 for (i = 0; i < NUM_ROUNDS; i++) {
206 delta = get_delta(&rt, &master_time_stamp);
207 if (delta == 0) {
208 done = 1; /* let's lock on to this... */
209 bound = rt;
210 }
211
212 if (!done) {
213 if (i > 0) {
214 adjust_latency += -delta;
215 adj = -delta + adjust_latency/4;
216 } else
217 adj = -delta;
218
112f4871 219 tick_ops->add_tick(adj);
1da177e4
LT
220 }
221#if DEBUG_TICK_SYNC
222 t[i].rt = rt;
223 t[i].master = master_time_stamp;
224 t[i].diff = delta;
225 t[i].lat = adjust_latency/4;
226#endif
227 }
228 }
229 local_irq_restore(flags);
230
231#if DEBUG_TICK_SYNC
232 for (i = 0; i < NUM_ROUNDS; i++)
233 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
234 t[i].rt, t[i].master, t[i].diff, t[i].lat);
235#endif
236
519c4d2d
JP
237 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
238 "(last diff %ld cycles, maxerr %lu cycles)\n",
239 smp_processor_id(), delta, rt);
1da177e4
LT
240}
241
242static void smp_start_sync_tick_client(int cpu);
243
244static void smp_synchronize_one_tick(int cpu)
245{
246 unsigned long flags, i;
247
248 go[MASTER] = 0;
249
250 smp_start_sync_tick_client(cpu);
251
252 /* wait for client to be ready */
253 while (!go[MASTER])
4f07118f 254 rmb();
1da177e4
LT
255
256 /* now let the client proceed into his loop */
257 go[MASTER] = 0;
4f07118f 258 membar_storeload();
1da177e4
LT
259
260 spin_lock_irqsave(&itc_sync_lock, flags);
261 {
262 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
263 while (!go[MASTER])
4f07118f 264 rmb();
1da177e4 265 go[MASTER] = 0;
4f07118f 266 wmb();
1da177e4 267 go[SLAVE] = tick_ops->get_tick();
4f07118f 268 membar_storeload();
1da177e4
LT
269 }
270 }
271 spin_unlock_irqrestore(&itc_sync_lock, flags);
272}
273
b14f5c10 274#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
27a2ef38
DM
275/* XXX Put this in some common place. XXX */
276static unsigned long kimage_addr_to_ra(void *p)
277{
278 unsigned long val = (unsigned long) p;
279
280 return kern_base + (val - KERNBASE);
281}
282
b14f5c10
DM
283static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg)
284{
285 extern unsigned long sparc64_ttable_tl0;
286 extern unsigned long kern_locked_tte_data;
b14f5c10
DM
287 struct hvtramp_descr *hdesc;
288 unsigned long trampoline_ra;
289 struct trap_per_cpu *tb;
290 u64 tte_vaddr, tte_data;
291 unsigned long hv_err;
64658743 292 int i;
b14f5c10 293
64658743
DM
294 hdesc = kzalloc(sizeof(*hdesc) +
295 (sizeof(struct hvtramp_mapping) *
296 num_kernel_image_mappings - 1),
297 GFP_KERNEL);
b14f5c10 298 if (!hdesc) {
27a2ef38 299 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
b14f5c10
DM
300 "hvtramp_descr.\n");
301 return;
302 }
303
304 hdesc->cpu = cpu;
64658743 305 hdesc->num_mappings = num_kernel_image_mappings;
b14f5c10
DM
306
307 tb = &trap_block[cpu];
308 tb->hdesc = hdesc;
309
310 hdesc->fault_info_va = (unsigned long) &tb->fault_info;
311 hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
312
313 hdesc->thread_reg = thread_reg;
314
315 tte_vaddr = (unsigned long) KERNBASE;
316 tte_data = kern_locked_tte_data;
317
64658743
DM
318 for (i = 0; i < hdesc->num_mappings; i++) {
319 hdesc->maps[i].vaddr = tte_vaddr;
320 hdesc->maps[i].tte = tte_data;
b14f5c10
DM
321 tte_vaddr += 0x400000;
322 tte_data += 0x400000;
b14f5c10
DM
323 }
324
325 trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
326
327 hv_err = sun4v_cpu_start(cpu, trampoline_ra,
328 kimage_addr_to_ra(&sparc64_ttable_tl0),
329 __pa(hdesc));
e0204409
DM
330 if (hv_err)
331 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
332 "gives error %lu\n", hv_err);
b14f5c10
DM
333}
334#endif
335
1da177e4
LT
336extern unsigned long sparc64_cpu_startup;
337
338/* The OBP cpu startup callback truncates the 3rd arg cookie to
339 * 32-bits (I think) so to be safe we have it read the pointer
340 * contained here so we work on >4GB machines. -DaveM
341 */
342static struct thread_info *cpu_new_thread = NULL;
343
344static int __devinit smp_boot_one_cpu(unsigned int cpu)
345{
b37d40d1 346 struct trap_per_cpu *tb = &trap_block[cpu];
1da177e4
LT
347 unsigned long entry =
348 (unsigned long)(&sparc64_cpu_startup);
349 unsigned long cookie =
350 (unsigned long)(&cpu_new_thread);
351 struct task_struct *p;
7890f794 352 int timeout, ret;
1da177e4
LT
353
354 p = fork_idle(cpu);
1177bf97
AM
355 if (IS_ERR(p))
356 return PTR_ERR(p);
1da177e4 357 callin_flag = 0;
f3169641 358 cpu_new_thread = task_thread_info(p);
1da177e4 359
7890f794 360 if (tlb_type == hypervisor) {
b14f5c10 361#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
4f0234f4
DM
362 if (ldom_domaining_enabled)
363 ldom_startcpu_cpuid(cpu,
364 (unsigned long) cpu_new_thread);
365 else
366#endif
367 prom_startcpu_cpuid(cpu, entry, cookie);
7890f794 368 } else {
5cbc3073 369 struct device_node *dp = of_find_node_by_cpuid(cpu);
7890f794 370
07f8e5f3 371 prom_startcpu(dp->node, entry, cookie);
7890f794 372 }
1da177e4 373
4f0234f4 374 for (timeout = 0; timeout < 50000; timeout++) {
1da177e4
LT
375 if (callin_flag)
376 break;
377 udelay(100);
378 }
72aff53f 379
1da177e4
LT
380 if (callin_flag) {
381 ret = 0;
382 } else {
383 printk("Processor %d is stuck.\n", cpu);
1da177e4
LT
384 ret = -ENODEV;
385 }
386 cpu_new_thread = NULL;
387
b37d40d1
DM
388 if (tb->hdesc) {
389 kfree(tb->hdesc);
390 tb->hdesc = NULL;
391 }
392
1da177e4
LT
393 return ret;
394}
395
396static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
397{
398 u64 result, target;
399 int stuck, tmp;
400
401 if (this_is_starfire) {
402 /* map to real upaid */
403 cpu = (((cpu & 0x3c) << 1) |
404 ((cpu & 0x40) >> 4) |
405 (cpu & 0x3));
406 }
407
408 target = (cpu << 14) | 0x70;
409again:
410 /* Ok, this is the real Spitfire Errata #54.
411 * One must read back from a UDB internal register
412 * after writes to the UDB interrupt dispatch, but
413 * before the membar Sync for that write.
414 * So we use the high UDB control register (ASI 0x7f,
415 * ADDR 0x20) for the dummy read. -DaveM
416 */
417 tmp = 0x40;
418 __asm__ __volatile__(
419 "wrpr %1, %2, %%pstate\n\t"
420 "stxa %4, [%0] %3\n\t"
421 "stxa %5, [%0+%8] %3\n\t"
422 "add %0, %8, %0\n\t"
423 "stxa %6, [%0+%8] %3\n\t"
424 "membar #Sync\n\t"
425 "stxa %%g0, [%7] %3\n\t"
426 "membar #Sync\n\t"
427 "mov 0x20, %%g1\n\t"
428 "ldxa [%%g1] 0x7f, %%g0\n\t"
429 "membar #Sync"
430 : "=r" (tmp)
431 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
432 "r" (data0), "r" (data1), "r" (data2), "r" (target),
433 "r" (0x10), "0" (tmp)
434 : "g1");
435
436 /* NOTE: PSTATE_IE is still clear. */
437 stuck = 100000;
438 do {
439 __asm__ __volatile__("ldxa [%%g0] %1, %0"
440 : "=r" (result)
441 : "i" (ASI_INTR_DISPATCH_STAT));
442 if (result == 0) {
443 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
444 : : "r" (pstate));
445 return;
446 }
447 stuck -= 1;
448 if (stuck == 0)
449 break;
450 } while (result & 0x1);
451 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
452 : : "r" (pstate));
453 if (stuck == 0) {
454 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
455 smp_processor_id(), result);
456 } else {
457 udelay(2);
458 goto again;
459 }
460}
461
90f7ae8a 462static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
1da177e4 463{
90f7ae8a
DM
464 u64 *mondo, data0, data1, data2;
465 u16 *cpu_list;
1da177e4
LT
466 u64 pstate;
467 int i;
468
469 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
90f7ae8a
DM
470 cpu_list = __va(tb->cpu_list_pa);
471 mondo = __va(tb->cpu_mondo_block_pa);
472 data0 = mondo[0];
473 data1 = mondo[1];
474 data2 = mondo[2];
475 for (i = 0; i < cnt; i++)
476 spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
1da177e4
LT
477}
478
479/* Cheetah now allows to send the whole 64-bytes of data in the interrupt
480 * packet, but we have no use for that. However we do take advantage of
481 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
482 */
90f7ae8a 483static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
1da177e4 484{
22adb358 485 int nack_busy_id, is_jbus, need_more;
90f7ae8a
DM
486 u64 *mondo, pstate, ver, busy_mask;
487 u16 *cpu_list;
1da177e4 488
90f7ae8a
DM
489 cpu_list = __va(tb->cpu_list_pa);
490 mondo = __va(tb->cpu_mondo_block_pa);
cd5bc89d 491
1da177e4
LT
492 /* Unfortunately, someone at Sun had the brilliant idea to make the
493 * busy/nack fields hard-coded by ITID number for this Ultra-III
494 * derivative processor.
495 */
496 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
92704a1c
DM
497 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
498 (ver >> 32) == __SERRANO_ID);
1da177e4
LT
499
500 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
501
502retry:
22adb358 503 need_more = 0;
1da177e4
LT
504 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
505 : : "r" (pstate), "i" (PSTATE_IE));
506
507 /* Setup the dispatch data registers. */
508 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
509 "stxa %1, [%4] %6\n\t"
510 "stxa %2, [%5] %6\n\t"
511 "membar #Sync\n\t"
512 : /* no outputs */
90f7ae8a 513 : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
1da177e4
LT
514 "r" (0x40), "r" (0x50), "r" (0x60),
515 "i" (ASI_INTR_W));
516
517 nack_busy_id = 0;
0de56d1a 518 busy_mask = 0;
1da177e4
LT
519 {
520 int i;
521
90f7ae8a
DM
522 for (i = 0; i < cnt; i++) {
523 u64 target, nr;
524
525 nr = cpu_list[i];
526 if (nr == 0xffff)
527 continue;
1da177e4 528
90f7ae8a 529 target = (nr << 14) | 0x70;
0de56d1a 530 if (is_jbus) {
90f7ae8a 531 busy_mask |= (0x1UL << (nr * 2));
0de56d1a 532 } else {
1da177e4 533 target |= (nack_busy_id << 24);
0de56d1a
DM
534 busy_mask |= (0x1UL <<
535 (nack_busy_id * 2));
536 }
1da177e4
LT
537 __asm__ __volatile__(
538 "stxa %%g0, [%0] %1\n\t"
539 "membar #Sync\n\t"
540 : /* no outputs */
541 : "r" (target), "i" (ASI_INTR_W));
542 nack_busy_id++;
22adb358
DM
543 if (nack_busy_id == 32) {
544 need_more = 1;
545 break;
546 }
1da177e4
LT
547 }
548 }
549
550 /* Now, poll for completion. */
551 {
0de56d1a 552 u64 dispatch_stat, nack_mask;
1da177e4
LT
553 long stuck;
554
555 stuck = 100000 * nack_busy_id;
0de56d1a 556 nack_mask = busy_mask << 1;
1da177e4
LT
557 do {
558 __asm__ __volatile__("ldxa [%%g0] %1, %0"
559 : "=r" (dispatch_stat)
560 : "i" (ASI_INTR_DISPATCH_STAT));
0de56d1a 561 if (!(dispatch_stat & (busy_mask | nack_mask))) {
1da177e4
LT
562 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
563 : : "r" (pstate));
22adb358 564 if (unlikely(need_more)) {
90f7ae8a
DM
565 int i, this_cnt = 0;
566 for (i = 0; i < cnt; i++) {
567 if (cpu_list[i] == 0xffff)
568 continue;
569 cpu_list[i] = 0xffff;
570 this_cnt++;
571 if (this_cnt == 32)
22adb358
DM
572 break;
573 }
574 goto retry;
575 }
1da177e4
LT
576 return;
577 }
578 if (!--stuck)
579 break;
0de56d1a 580 } while (dispatch_stat & busy_mask);
1da177e4
LT
581
582 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
583 : : "r" (pstate));
584
0de56d1a 585 if (dispatch_stat & busy_mask) {
1da177e4
LT
586 /* Busy bits will not clear, continue instead
587 * of freezing up on this cpu.
588 */
589 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
590 smp_processor_id(), dispatch_stat);
591 } else {
592 int i, this_busy_nack = 0;
593
594 /* Delay some random time with interrupts enabled
595 * to prevent deadlock.
596 */
597 udelay(2 * nack_busy_id);
598
599 /* Clear out the mask bits for cpus which did not
600 * NACK us.
601 */
90f7ae8a
DM
602 for (i = 0; i < cnt; i++) {
603 u64 check_mask, nr;
604
605 nr = cpu_list[i];
606 if (nr == 0xffff)
607 continue;
1da177e4 608
92704a1c 609 if (is_jbus)
90f7ae8a 610 check_mask = (0x2UL << (2*nr));
1da177e4
LT
611 else
612 check_mask = (0x2UL <<
613 this_busy_nack);
614 if ((dispatch_stat & check_mask) == 0)
90f7ae8a 615 cpu_list[i] = 0xffff;
1da177e4 616 this_busy_nack += 2;
22adb358
DM
617 if (this_busy_nack == 64)
618 break;
1da177e4
LT
619 }
620
621 goto retry;
622 }
623 }
624}
625
1d2f1f90 626/* Multi-cpu list version. */
90f7ae8a 627static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
a43fe0e7 628{
90f7ae8a 629 int retries, this_cpu, prev_sent, i;
c02a5119 630 unsigned long status;
cd5bc89d 631 cpumask_t error_mask;
b830ab66 632 u16 *cpu_list;
17f34f0e 633
b830ab66 634 this_cpu = smp_processor_id();
1d2f1f90 635
b830ab66
DM
636 cpu_list = __va(tb->cpu_list_pa);
637
b830ab66 638 cpus_clear(error_mask);
1d2f1f90 639 retries = 0;
3cab0c3e 640 prev_sent = 0;
1d2f1f90 641 do {
3cab0c3e 642 int forward_progress, n_sent;
1d2f1f90 643
b830ab66
DM
644 status = sun4v_cpu_mondo_send(cnt,
645 tb->cpu_list_pa,
646 tb->cpu_mondo_block_pa);
647
648 /* HV_EOK means all cpus received the xcall, we're done. */
649 if (likely(status == HV_EOK))
1d2f1f90 650 break;
b830ab66 651
3cab0c3e
DM
652 /* First, see if we made any forward progress.
653 *
654 * The hypervisor indicates successful sends by setting
655 * cpu list entries to the value 0xffff.
b830ab66 656 */
3cab0c3e 657 n_sent = 0;
b830ab66 658 for (i = 0; i < cnt; i++) {
3cab0c3e
DM
659 if (likely(cpu_list[i] == 0xffff))
660 n_sent++;
1d2f1f90
DM
661 }
662
3cab0c3e
DM
663 forward_progress = 0;
664 if (n_sent > prev_sent)
665 forward_progress = 1;
666
667 prev_sent = n_sent;
668
b830ab66
DM
669 /* If we get a HV_ECPUERROR, then one or more of the cpus
670 * in the list are in error state. Use the cpu_state()
671 * hypervisor call to find out which cpus are in error state.
672 */
673 if (unlikely(status == HV_ECPUERROR)) {
674 for (i = 0; i < cnt; i++) {
675 long err;
676 u16 cpu;
677
678 cpu = cpu_list[i];
679 if (cpu == 0xffff)
680 continue;
681
682 err = sun4v_cpu_state(cpu);
683 if (err >= 0 &&
684 err == HV_CPU_STATE_ERROR) {
3cab0c3e 685 cpu_list[i] = 0xffff;
b830ab66
DM
686 cpu_set(cpu, error_mask);
687 }
688 }
689 } else if (unlikely(status != HV_EWOULDBLOCK))
690 goto fatal_mondo_error;
691
3cab0c3e
DM
692 /* Don't bother rewriting the CPU list, just leave the
693 * 0xffff and non-0xffff entries in there and the
694 * hypervisor will do the right thing.
695 *
696 * Only advance timeout state if we didn't make any
697 * forward progress.
698 */
b830ab66
DM
699 if (unlikely(!forward_progress)) {
700 if (unlikely(++retries > 10000))
701 goto fatal_mondo_timeout;
702
703 /* Delay a little bit to let other cpus catch up
704 * on their cpu mondo queue work.
705 */
706 udelay(2 * cnt);
707 }
1d2f1f90
DM
708 } while (1);
709
b830ab66
DM
710 if (unlikely(!cpus_empty(error_mask)))
711 goto fatal_mondo_cpu_error;
712
713 return;
714
715fatal_mondo_cpu_error:
716 printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
717 "were in error state\n",
718 this_cpu);
719 printk(KERN_CRIT "CPU[%d]: Error mask [ ", this_cpu);
cd5bc89d 720 for_each_cpu_mask_nr(i, error_mask)
b830ab66
DM
721 printk("%d ", i);
722 printk("]\n");
723 return;
724
725fatal_mondo_timeout:
b830ab66
DM
726 printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
727 " progress after %d retries.\n",
728 this_cpu, retries);
729 goto dump_cpu_list_and_out;
730
731fatal_mondo_error:
b830ab66
DM
732 printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
733 this_cpu, status);
734 printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
735 "mondo_block_pa(%lx)\n",
736 this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
737
738dump_cpu_list_and_out:
739 printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
740 for (i = 0; i < cnt; i++)
741 printk("%u ", cpu_list[i]);
742 printk("]\n");
1d2f1f90 743}
a43fe0e7 744
90f7ae8a 745static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
deb16999
DM
746
747static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
748{
90f7ae8a
DM
749 struct trap_per_cpu *tb;
750 int this_cpu, i, cnt;
c02a5119 751 unsigned long flags;
90f7ae8a
DM
752 u16 *cpu_list;
753 u64 *mondo;
c02a5119
DM
754
755 /* We have to do this whole thing with interrupts fully disabled.
756 * Otherwise if we send an xcall from interrupt context it will
757 * corrupt both our mondo block and cpu list state.
758 *
759 * One consequence of this is that we cannot use timeout mechanisms
760 * that depend upon interrupts being delivered locally. So, for
761 * example, we cannot sample jiffies and expect it to advance.
762 *
763 * Fortunately, udelay() uses %stick/%tick so we can use that.
764 */
765 local_irq_save(flags);
90f7ae8a
DM
766
767 this_cpu = smp_processor_id();
768 tb = &trap_block[this_cpu];
769
770 mondo = __va(tb->cpu_mondo_block_pa);
771 mondo[0] = data0;
772 mondo[1] = data1;
773 mondo[2] = data2;
774 wmb();
775
776 cpu_list = __va(tb->cpu_list_pa);
777
778 /* Setup the initial cpu list. */
779 cnt = 0;
780 for_each_cpu_mask_nr(i, *mask) {
781 if (i == this_cpu || !cpu_online(i))
782 continue;
783 cpu_list[cnt++] = i;
784 }
785
786 if (cnt)
787 xcall_deliver_impl(tb, cnt);
788
c02a5119 789 local_irq_restore(flags);
deb16999 790}
5e0797e5 791
91a4231c
DM
792/* Send cross call to all processors mentioned in MASK_P
793 * except self. Really, there are only two cases currently,
794 * "&cpu_online_map" and "&mm->cpu_vm_mask".
1da177e4 795 */
91a4231c 796static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask_p)
1da177e4
LT
797{
798 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
799 int this_cpu = get_cpu();
91a4231c 800 cpumask_t mask;
1da177e4 801
91a4231c
DM
802 mask = *mask_p;
803 if (mask_p != &cpu_online_map)
804 cpus_and(mask, mask, cpu_online_map);
1da177e4
LT
805 cpu_clear(this_cpu, mask);
806
cd5bc89d 807 xcall_deliver(data0, data1, data2, &mask);
1da177e4
LT
808 /* NOTE: Caller runs local copy on master. */
809
810 put_cpu();
811}
812
813extern unsigned long xcall_sync_tick;
814
815static void smp_start_sync_tick_client(int cpu)
816{
24445a4a
DM
817 xcall_deliver((u64) &xcall_sync_tick, 0, 0,
818 &cpumask_of_cpu(cpu));
1da177e4
LT
819}
820
1da177e4
LT
821extern unsigned long xcall_call_function;
822
d172ad18 823void arch_send_call_function_ipi(cpumask_t mask)
1da177e4 824{
19926630 825 xcall_deliver((u64) &xcall_call_function, 0, 0, &mask);
d172ad18 826}
1da177e4 827
d172ad18 828extern unsigned long xcall_call_function_single;
1da177e4 829
d172ad18
DM
830void arch_send_call_function_single_ipi(int cpu)
831{
19926630
DM
832 xcall_deliver((u64) &xcall_call_function_single, 0, 0,
833 &cpumask_of_cpu(cpu));
1da177e4
LT
834}
835
d172ad18
DM
836/* Send cross call to all processors except self. */
837#define smp_cross_call(func, ctx, data1, data2) \
91a4231c 838 smp_cross_call_masked(func, ctx, data1, data2, &cpu_online_map)
bd40791e 839
1da177e4
LT
840void smp_call_function_client(int irq, struct pt_regs *regs)
841{
d172ad18
DM
842 clear_softint(1 << irq);
843 generic_smp_call_function_interrupt();
844}
1da177e4 845
d172ad18
DM
846void smp_call_function_single_client(int irq, struct pt_regs *regs)
847{
1da177e4 848 clear_softint(1 << irq);
d172ad18 849 generic_smp_call_function_single_interrupt();
1da177e4
LT
850}
851
bd40791e
DM
852static void tsb_sync(void *info)
853{
6f25f398 854 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
bd40791e
DM
855 struct mm_struct *mm = info;
856
6f25f398
DM
857 /* It is not valid to test "currrent->active_mm == mm" here.
858 *
859 * The value of "current" is not changed atomically with
860 * switch_mm(). But that's OK, we just need to check the
861 * current cpu's trap block PGD physical address.
862 */
863 if (tp->pgd_paddr == __pa(mm->pgd))
bd40791e
DM
864 tsb_context_switch(mm);
865}
866
867void smp_tsb_sync(struct mm_struct *mm)
868{
d172ad18 869 smp_call_function_mask(mm->cpu_vm_mask, tsb_sync, mm, 1);
bd40791e
DM
870}
871
1da177e4
LT
872extern unsigned long xcall_flush_tlb_mm;
873extern unsigned long xcall_flush_tlb_pending;
874extern unsigned long xcall_flush_tlb_kernel_range;
93dae5b7
DM
875#ifdef CONFIG_MAGIC_SYSRQ
876extern unsigned long xcall_fetch_glob_regs;
877#endif
1da177e4 878extern unsigned long xcall_receive_signal;
ee29074d 879extern unsigned long xcall_new_mmu_context_version;
e2fdd7fd
DM
880#ifdef CONFIG_KGDB
881extern unsigned long xcall_kgdb_capture;
882#endif
1da177e4
LT
883
884#ifdef DCACHE_ALIASING_POSSIBLE
885extern unsigned long xcall_flush_dcache_page_cheetah;
886#endif
887extern unsigned long xcall_flush_dcache_page_spitfire;
888
889#ifdef CONFIG_DEBUG_DCFLUSH
890extern atomic_t dcpage_flushes;
891extern atomic_t dcpage_flushes_xcall;
892#endif
893
d979f179 894static inline void __local_flush_dcache_page(struct page *page)
1da177e4
LT
895{
896#ifdef DCACHE_ALIASING_POSSIBLE
897 __flush_dcache_page(page_address(page),
898 ((tlb_type == spitfire) &&
899 page_mapping(page) != NULL));
900#else
901 if (page_mapping(page) != NULL &&
902 tlb_type == spitfire)
903 __flush_icache_page(__pa(page_address(page)));
904#endif
905}
906
907void smp_flush_dcache_page_impl(struct page *page, int cpu)
908{
909 cpumask_t mask = cpumask_of_cpu(cpu);
a43fe0e7
DM
910 int this_cpu;
911
912 if (tlb_type == hypervisor)
913 return;
1da177e4
LT
914
915#ifdef CONFIG_DEBUG_DCFLUSH
916 atomic_inc(&dcpage_flushes);
917#endif
a43fe0e7
DM
918
919 this_cpu = get_cpu();
920
1da177e4
LT
921 if (cpu == this_cpu) {
922 __local_flush_dcache_page(page);
923 } else if (cpu_online(cpu)) {
924 void *pg_addr = page_address(page);
622824db 925 u64 data0 = 0;
1da177e4
LT
926
927 if (tlb_type == spitfire) {
622824db 928 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
1da177e4
LT
929 if (page_mapping(page) != NULL)
930 data0 |= ((u64)1 << 32);
a43fe0e7 931 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1da177e4 932#ifdef DCACHE_ALIASING_POSSIBLE
622824db 933 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
1da177e4
LT
934#endif
935 }
622824db
DM
936 if (data0) {
937 xcall_deliver(data0, __pa(pg_addr),
cd5bc89d 938 (u64) pg_addr, &mask);
1da177e4 939#ifdef CONFIG_DEBUG_DCFLUSH
622824db 940 atomic_inc(&dcpage_flushes_xcall);
1da177e4 941#endif
622824db 942 }
1da177e4
LT
943 }
944
945 put_cpu();
946}
947
948void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
949{
1da177e4 950 cpumask_t mask = cpu_online_map;
622824db 951 void *pg_addr;
a43fe0e7 952 int this_cpu;
622824db 953 u64 data0;
a43fe0e7
DM
954
955 if (tlb_type == hypervisor)
956 return;
957
958 this_cpu = get_cpu();
1da177e4
LT
959
960 cpu_clear(this_cpu, mask);
961
962#ifdef CONFIG_DEBUG_DCFLUSH
963 atomic_inc(&dcpage_flushes);
964#endif
965 if (cpus_empty(mask))
966 goto flush_self;
622824db
DM
967 data0 = 0;
968 pg_addr = page_address(page);
1da177e4
LT
969 if (tlb_type == spitfire) {
970 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
971 if (page_mapping(page) != NULL)
972 data0 |= ((u64)1 << 32);
a43fe0e7 973 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1da177e4
LT
974#ifdef DCACHE_ALIASING_POSSIBLE
975 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
1da177e4
LT
976#endif
977 }
622824db
DM
978 if (data0) {
979 xcall_deliver(data0, __pa(pg_addr),
cd5bc89d 980 (u64) pg_addr, &mask);
1da177e4 981#ifdef CONFIG_DEBUG_DCFLUSH
622824db 982 atomic_inc(&dcpage_flushes_xcall);
1da177e4 983#endif
622824db 984 }
1da177e4
LT
985 flush_self:
986 __local_flush_dcache_page(page);
987
988 put_cpu();
989}
990
ee29074d 991void smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
1da177e4 992{
a0663a79 993 struct mm_struct *mm;
ee29074d 994 unsigned long flags;
a0663a79 995
1da177e4 996 clear_softint(1 << irq);
a0663a79
DM
997
998 /* See if we need to allocate a new TLB context because
999 * the version of the one we are using is now out of date.
1000 */
1001 mm = current->active_mm;
ee29074d
DM
1002 if (unlikely(!mm || (mm == &init_mm)))
1003 return;
a0663a79 1004
ee29074d 1005 spin_lock_irqsave(&mm->context.lock, flags);
aac0aadf 1006
ee29074d
DM
1007 if (unlikely(!CTX_VALID(mm->context)))
1008 get_new_mmu_context(mm);
aac0aadf 1009
ee29074d 1010 spin_unlock_irqrestore(&mm->context.lock, flags);
aac0aadf 1011
ee29074d
DM
1012 load_secondary_context(mm);
1013 __flush_tlb_mm(CTX_HWBITS(mm->context),
1014 SECONDARY_CONTEXT);
a0663a79
DM
1015}
1016
1017void smp_new_mmu_context_version(void)
1018{
ee29074d 1019 smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
1da177e4
LT
1020}
1021
e2fdd7fd
DM
1022#ifdef CONFIG_KGDB
1023void kgdb_roundup_cpus(unsigned long flags)
1024{
1025 smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1026}
1027#endif
1028
93dae5b7
DM
1029#ifdef CONFIG_MAGIC_SYSRQ
1030void smp_fetch_global_regs(void)
1031{
1032 smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1033}
1034#endif
1035
1da177e4
LT
1036/* We know that the window frames of the user have been flushed
1037 * to the stack before we get here because all callers of us
1038 * are flush_tlb_*() routines, and these run after flush_cache_*()
1039 * which performs the flushw.
1040 *
1041 * The SMP TLB coherency scheme we use works as follows:
1042 *
1043 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1044 * space has (potentially) executed on, this is the heuristic
1045 * we use to avoid doing cross calls.
1046 *
1047 * Also, for flushing from kswapd and also for clones, we
1048 * use cpu_vm_mask as the list of cpus to make run the TLB.
1049 *
1050 * 2) TLB context numbers are shared globally across all processors
1051 * in the system, this allows us to play several games to avoid
1052 * cross calls.
1053 *
1054 * One invariant is that when a cpu switches to a process, and
1055 * that processes tsk->active_mm->cpu_vm_mask does not have the
1056 * current cpu's bit set, that tlb context is flushed locally.
1057 *
1058 * If the address space is non-shared (ie. mm->count == 1) we avoid
1059 * cross calls when we want to flush the currently running process's
1060 * tlb state. This is done by clearing all cpu bits except the current
1061 * processor's in current->active_mm->cpu_vm_mask and performing the
1062 * flush locally only. This will force any subsequent cpus which run
1063 * this task to flush the context from the local tlb if the process
1064 * migrates to another cpu (again).
1065 *
1066 * 3) For shared address spaces (threads) and swapping we bite the
1067 * bullet for most cases and perform the cross call (but only to
1068 * the cpus listed in cpu_vm_mask).
1069 *
1070 * The performance gain from "optimizing" away the cross call for threads is
1071 * questionable (in theory the big win for threads is the massive sharing of
1072 * address space state across processors).
1073 */
62dbec78
DM
1074
1075/* This currently is only used by the hugetlb arch pre-fault
1076 * hook on UltraSPARC-III+ and later when changing the pagesize
1077 * bits of the context register for an address space.
1078 */
1da177e4
LT
1079void smp_flush_tlb_mm(struct mm_struct *mm)
1080{
62dbec78
DM
1081 u32 ctx = CTX_HWBITS(mm->context);
1082 int cpu = get_cpu();
1da177e4 1083
62dbec78
DM
1084 if (atomic_read(&mm->mm_users) == 1) {
1085 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1086 goto local_flush_and_out;
1087 }
1da177e4 1088
62dbec78
DM
1089 smp_cross_call_masked(&xcall_flush_tlb_mm,
1090 ctx, 0, 0,
91a4231c 1091 &mm->cpu_vm_mask);
1da177e4 1092
62dbec78
DM
1093local_flush_and_out:
1094 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1da177e4 1095
62dbec78 1096 put_cpu();
1da177e4
LT
1097}
1098
1099void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1100{
1101 u32 ctx = CTX_HWBITS(mm->context);
1102 int cpu = get_cpu();
1103
dedeb002 1104 if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1)
1da177e4 1105 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
dedeb002
HD
1106 else
1107 smp_cross_call_masked(&xcall_flush_tlb_pending,
1108 ctx, nr, (unsigned long) vaddrs,
91a4231c 1109 &mm->cpu_vm_mask);
1da177e4 1110
1da177e4
LT
1111 __flush_tlb_pending(ctx, nr, vaddrs);
1112
1113 put_cpu();
1114}
1115
1116void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1117{
1118 start &= PAGE_MASK;
1119 end = PAGE_ALIGN(end);
1120 if (start != end) {
1121 smp_cross_call(&xcall_flush_tlb_kernel_range,
1122 0, start, end);
1123
1124 __flush_tlb_kernel_range(start, end);
1125 }
1126}
1127
1128/* CPU capture. */
1129/* #define CAPTURE_DEBUG */
1130extern unsigned long xcall_capture;
1131
1132static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1133static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1134static unsigned long penguins_are_doing_time;
1135
1136void smp_capture(void)
1137{
1138 int result = atomic_add_ret(1, &smp_capture_depth);
1139
1140 if (result == 1) {
1141 int ncpus = num_online_cpus();
1142
1143#ifdef CAPTURE_DEBUG
1144 printk("CPU[%d]: Sending penguins to jail...",
1145 smp_processor_id());
1146#endif
1147 penguins_are_doing_time = 1;
4f07118f 1148 membar_storestore_loadstore();
1da177e4
LT
1149 atomic_inc(&smp_capture_registry);
1150 smp_cross_call(&xcall_capture, 0, 0, 0);
1151 while (atomic_read(&smp_capture_registry) != ncpus)
4f07118f 1152 rmb();
1da177e4
LT
1153#ifdef CAPTURE_DEBUG
1154 printk("done\n");
1155#endif
1156 }
1157}
1158
1159void smp_release(void)
1160{
1161 if (atomic_dec_and_test(&smp_capture_depth)) {
1162#ifdef CAPTURE_DEBUG
1163 printk("CPU[%d]: Giving pardon to "
1164 "imprisoned penguins\n",
1165 smp_processor_id());
1166#endif
1167 penguins_are_doing_time = 0;
4f07118f 1168 membar_storeload_storestore();
1da177e4
LT
1169 atomic_dec(&smp_capture_registry);
1170 }
1171}
1172
1173/* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
1174 * can service tlb flush xcalls...
1175 */
1176extern void prom_world(int);
96c6e0d8 1177
1da177e4
LT
1178void smp_penguin_jailcell(int irq, struct pt_regs *regs)
1179{
1da177e4
LT
1180 clear_softint(1 << irq);
1181
1182 preempt_disable();
1183
1184 __asm__ __volatile__("flushw");
1da177e4
LT
1185 prom_world(1);
1186 atomic_inc(&smp_capture_registry);
4f07118f 1187 membar_storeload_storestore();
1da177e4 1188 while (penguins_are_doing_time)
4f07118f 1189 rmb();
1da177e4
LT
1190 atomic_dec(&smp_capture_registry);
1191 prom_world(0);
1192
1193 preempt_enable();
1194}
1195
1da177e4 1196/* /proc/profile writes can call this, don't __init it please. */
1da177e4
LT
1197int setup_profiling_timer(unsigned int multiplier)
1198{
777a4475 1199 return -EINVAL;
1da177e4
LT
1200}
1201
1202void __init smp_prepare_cpus(unsigned int max_cpus)
1203{
1da177e4
LT
1204}
1205
5cbc3073 1206void __devinit smp_prepare_boot_cpu(void)
7abea921 1207{
7abea921
DM
1208}
1209
5e0797e5
DM
1210void __init smp_setup_processor_id(void)
1211{
1212 if (tlb_type == spitfire)
deb16999 1213 xcall_deliver_impl = spitfire_xcall_deliver;
5e0797e5 1214 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
deb16999 1215 xcall_deliver_impl = cheetah_xcall_deliver;
5e0797e5 1216 else
deb16999 1217 xcall_deliver_impl = hypervisor_xcall_deliver;
5e0797e5
DM
1218}
1219
5cbc3073 1220void __devinit smp_fill_in_sib_core_maps(void)
1da177e4 1221{
5cbc3073
DM
1222 unsigned int i;
1223
e0204409 1224 for_each_present_cpu(i) {
5cbc3073
DM
1225 unsigned int j;
1226
39dd992a 1227 cpus_clear(cpu_core_map[i]);
5cbc3073 1228 if (cpu_data(i).core_id == 0) {
f78eae2e 1229 cpu_set(i, cpu_core_map[i]);
5cbc3073
DM
1230 continue;
1231 }
1232
e0204409 1233 for_each_present_cpu(j) {
5cbc3073
DM
1234 if (cpu_data(i).core_id ==
1235 cpu_data(j).core_id)
f78eae2e
DM
1236 cpu_set(j, cpu_core_map[i]);
1237 }
1238 }
1239
e0204409 1240 for_each_present_cpu(i) {
f78eae2e
DM
1241 unsigned int j;
1242
d5a7430d 1243 cpus_clear(per_cpu(cpu_sibling_map, i));
f78eae2e 1244 if (cpu_data(i).proc_id == -1) {
d5a7430d 1245 cpu_set(i, per_cpu(cpu_sibling_map, i));
f78eae2e
DM
1246 continue;
1247 }
1248
e0204409 1249 for_each_present_cpu(j) {
f78eae2e
DM
1250 if (cpu_data(i).proc_id ==
1251 cpu_data(j).proc_id)
d5a7430d 1252 cpu_set(j, per_cpu(cpu_sibling_map, i));
5cbc3073
DM
1253 }
1254 }
1da177e4
LT
1255}
1256
b282b6f8 1257int __cpuinit __cpu_up(unsigned int cpu)
1da177e4
LT
1258{
1259 int ret = smp_boot_one_cpu(cpu);
1260
1261 if (!ret) {
1262 cpu_set(cpu, smp_commenced_mask);
1263 while (!cpu_isset(cpu, cpu_online_map))
1264 mb();
1265 if (!cpu_isset(cpu, cpu_online_map)) {
1266 ret = -ENODEV;
1267 } else {
02fead75
DM
1268 /* On SUN4V, writes to %tick and %stick are
1269 * not allowed.
1270 */
1271 if (tlb_type != hypervisor)
1272 smp_synchronize_one_tick(cpu);
1da177e4
LT
1273 }
1274 }
1275 return ret;
1276}
1277
4f0234f4 1278#ifdef CONFIG_HOTPLUG_CPU
e0204409
DM
1279void cpu_play_dead(void)
1280{
1281 int cpu = smp_processor_id();
1282 unsigned long pstate;
1283
1284 idle_task_exit();
1285
1286 if (tlb_type == hypervisor) {
1287 struct trap_per_cpu *tb = &trap_block[cpu];
1288
1289 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1290 tb->cpu_mondo_pa, 0);
1291 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1292 tb->dev_mondo_pa, 0);
1293 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1294 tb->resum_mondo_pa, 0);
1295 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1296 tb->nonresum_mondo_pa, 0);
1297 }
1298
1299 cpu_clear(cpu, smp_commenced_mask);
1300 membar_safe("#Sync");
1301
1302 local_irq_disable();
1303
1304 __asm__ __volatile__(
1305 "rdpr %%pstate, %0\n\t"
1306 "wrpr %0, %1, %%pstate"
1307 : "=r" (pstate)
1308 : "i" (PSTATE_IE));
1309
1310 while (1)
1311 barrier();
1312}
1313
4f0234f4
DM
1314int __cpu_disable(void)
1315{
e0204409
DM
1316 int cpu = smp_processor_id();
1317 cpuinfo_sparc *c;
1318 int i;
1319
1320 for_each_cpu_mask(i, cpu_core_map[cpu])
1321 cpu_clear(cpu, cpu_core_map[i]);
1322 cpus_clear(cpu_core_map[cpu]);
1323
d5a7430d
MT
1324 for_each_cpu_mask(i, per_cpu(cpu_sibling_map, cpu))
1325 cpu_clear(cpu, per_cpu(cpu_sibling_map, i));
1326 cpus_clear(per_cpu(cpu_sibling_map, cpu));
e0204409
DM
1327
1328 c = &cpu_data(cpu);
1329
1330 c->core_id = 0;
1331 c->proc_id = -1;
1332
1333 spin_lock(&call_lock);
1334 cpu_clear(cpu, cpu_online_map);
1335 spin_unlock(&call_lock);
1336
1337 smp_wmb();
1338
1339 /* Make sure no interrupts point to this cpu. */
1340 fixup_irqs();
1341
1342 local_irq_enable();
1343 mdelay(1);
1344 local_irq_disable();
1345
1346 return 0;
4f0234f4
DM
1347}
1348
1349void __cpu_die(unsigned int cpu)
1350{
e0204409
DM
1351 int i;
1352
1353 for (i = 0; i < 100; i++) {
1354 smp_rmb();
1355 if (!cpu_isset(cpu, smp_commenced_mask))
1356 break;
1357 msleep(100);
1358 }
1359 if (cpu_isset(cpu, smp_commenced_mask)) {
1360 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1361 } else {
1362#if defined(CONFIG_SUN_LDOMS)
1363 unsigned long hv_err;
1364 int limit = 100;
1365
1366 do {
1367 hv_err = sun4v_cpu_stop(cpu);
1368 if (hv_err == HV_EOK) {
1369 cpu_clear(cpu, cpu_present_map);
1370 break;
1371 }
1372 } while (--limit > 0);
1373 if (limit <= 0) {
1374 printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1375 hv_err);
1376 }
1377#endif
1378 }
4f0234f4
DM
1379}
1380#endif
1381
1da177e4
LT
1382void __init smp_cpus_done(unsigned int max_cpus)
1383{
1da177e4
LT
1384}
1385
1da177e4
LT
1386void smp_send_reschedule(int cpu)
1387{
19926630
DM
1388 xcall_deliver((u64) &xcall_receive_signal, 0, 0,
1389 &cpumask_of_cpu(cpu));
1390}
1391
1392void smp_receive_signal_client(int irq, struct pt_regs *regs)
1393{
1394 clear_softint(1 << irq);
1da177e4
LT
1395}
1396
1397/* This is a nop because we capture all other cpus
1398 * anyways when making the PROM active.
1399 */
1400void smp_send_stop(void)
1401{
1402}
1403
d369ddd2
DM
1404unsigned long __per_cpu_base __read_mostly;
1405unsigned long __per_cpu_shift __read_mostly;
1da177e4
LT
1406
1407EXPORT_SYMBOL(__per_cpu_base);
1408EXPORT_SYMBOL(__per_cpu_shift);
1409
5cbc3073 1410void __init real_setup_per_cpu_areas(void)
1da177e4 1411{
b9709456 1412 unsigned long paddr, goal, size, i;
1da177e4 1413 char *ptr;
1da177e4
LT
1414
1415 /* Copy section for each CPU (we discard the original) */
5a089006
DM
1416 goal = PERCPU_ENOUGH_ROOM;
1417
b6e3590f
JF
1418 __per_cpu_shift = PAGE_SHIFT;
1419 for (size = PAGE_SIZE; size < goal; size <<= 1UL)
1da177e4
LT
1420 __per_cpu_shift++;
1421
b9709456
DM
1422 paddr = lmb_alloc(size * NR_CPUS, PAGE_SIZE);
1423 if (!paddr) {
1424 prom_printf("Cannot allocate per-cpu memory.\n");
1425 prom_halt();
1426 }
1da177e4 1427
b9709456 1428 ptr = __va(paddr);
1da177e4
LT
1429 __per_cpu_base = ptr - __per_cpu_start;
1430
1da177e4
LT
1431 for (i = 0; i < NR_CPUS; i++, ptr += size)
1432 memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
951bc82c
DM
1433
1434 /* Setup %g5 for the boot cpu. */
1435 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1da177e4 1436}