]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/sparc64/kernel/smp.c
arch/sparc64/kernel/signal.c: removed duplicated #include
[mirror_ubuntu-bionic-kernel.git] / arch / sparc64 / kernel / smp.c
CommitLineData
1da177e4
LT
1/* smp.c: Sparc64 SMP support.
2 *
cf3d7c1e 3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
1da177e4
LT
4 */
5
6#include <linux/module.h>
7#include <linux/kernel.h>
8#include <linux/sched.h>
9#include <linux/mm.h>
10#include <linux/pagemap.h>
11#include <linux/threads.h>
12#include <linux/smp.h>
1da177e4
LT
13#include <linux/interrupt.h>
14#include <linux/kernel_stat.h>
15#include <linux/delay.h>
16#include <linux/init.h>
17#include <linux/spinlock.h>
18#include <linux/fs.h>
19#include <linux/seq_file.h>
20#include <linux/cache.h>
21#include <linux/jiffies.h>
22#include <linux/profile.h>
b9709456 23#include <linux/lmb.h>
1da177e4
LT
24
25#include <asm/head.h>
26#include <asm/ptrace.h>
27#include <asm/atomic.h>
28#include <asm/tlbflush.h>
29#include <asm/mmu_context.h>
30#include <asm/cpudata.h>
27a2ef38
DM
31#include <asm/hvtramp.h>
32#include <asm/io.h>
cf3d7c1e 33#include <asm/timer.h>
1da177e4
LT
34
35#include <asm/irq.h>
6d24c8dc 36#include <asm/irq_regs.h>
1da177e4
LT
37#include <asm/page.h>
38#include <asm/pgtable.h>
39#include <asm/oplib.h>
40#include <asm/uaccess.h>
1da177e4
LT
41#include <asm/starfire.h>
42#include <asm/tlb.h>
56fb4df6 43#include <asm/sections.h>
07f8e5f3 44#include <asm/prom.h>
5cbc3073 45#include <asm/mdesc.h>
4f0234f4 46#include <asm/ldc.h>
e0204409 47#include <asm/hypervisor.h>
1da177e4 48
a2f9f6bb
DM
49int sparc64_multi_core __read_mostly;
50
4f0234f4 51cpumask_t cpu_possible_map __read_mostly = CPU_MASK_NONE;
c12a8289 52cpumask_t cpu_online_map __read_mostly = CPU_MASK_NONE;
d5a7430d 53DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
f78eae2e
DM
54cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
55 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
4f0234f4
DM
56
57EXPORT_SYMBOL(cpu_possible_map);
58EXPORT_SYMBOL(cpu_online_map);
d5a7430d 59EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
4f0234f4
DM
60EXPORT_SYMBOL(cpu_core_map);
61
1da177e4 62static cpumask_t smp_commenced_mask;
1da177e4
LT
63
64void smp_info(struct seq_file *m)
65{
66 int i;
67
68 seq_printf(m, "State:\n");
394e3902
AM
69 for_each_online_cpu(i)
70 seq_printf(m, "CPU%d:\t\tonline\n", i);
1da177e4
LT
71}
72
73void smp_bogo(struct seq_file *m)
74{
75 int i;
76
394e3902
AM
77 for_each_online_cpu(i)
78 seq_printf(m,
394e3902 79 "Cpu%dClkTck\t: %016lx\n",
394e3902 80 i, cpu_data(i).clock_tick);
1da177e4
LT
81}
82
e0204409
DM
83static __cacheline_aligned_in_smp DEFINE_SPINLOCK(call_lock);
84
112f4871 85extern void setup_sparc64_timer(void);
1da177e4
LT
86
87static volatile unsigned long callin_flag = 0;
88
0f7f22d9 89void __cpuinit smp_callin(void)
1da177e4
LT
90{
91 int cpuid = hard_smp_processor_id();
92
56fb4df6 93 __local_per_cpu_offset = __per_cpu_offset(cpuid);
1da177e4 94
4a07e646 95 if (tlb_type == hypervisor)
490384e7 96 sun4v_ktsb_register();
481295f9 97
56fb4df6 98 __flush_tlb_all();
1da177e4 99
112f4871 100 setup_sparc64_timer();
1da177e4 101
816242da
DM
102 if (cheetah_pcache_forced_on)
103 cheetah_enable_pcache();
104
1da177e4
LT
105 local_irq_enable();
106
1da177e4
LT
107 callin_flag = 1;
108 __asm__ __volatile__("membar #Sync\n\t"
109 "flush %%g6" : : : "memory");
110
111 /* Clear this or we will die instantly when we
112 * schedule back to this idler...
113 */
db7d9a4e 114 current_thread_info()->new_child = 0;
1da177e4
LT
115
116 /* Attach to the address space of init_task. */
117 atomic_inc(&init_mm.mm_count);
118 current->active_mm = &init_mm;
119
120 while (!cpu_isset(cpuid, smp_commenced_mask))
4f07118f 121 rmb();
1da177e4 122
e0204409 123 spin_lock(&call_lock);
1da177e4 124 cpu_set(cpuid, cpu_online_map);
e0204409 125 spin_unlock(&call_lock);
5bfb5d69
NP
126
127 /* idle thread is expected to have preempt disabled */
128 preempt_disable();
1da177e4
LT
129}
130
131void cpu_panic(void)
132{
133 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
134 panic("SMP bolixed\n");
135}
136
1da177e4
LT
137/* This tick register synchronization scheme is taken entirely from
138 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
139 *
140 * The only change I've made is to rework it so that the master
141 * initiates the synchonization instead of the slave. -DaveM
142 */
143
144#define MASTER 0
145#define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
146
147#define NUM_ROUNDS 64 /* magic value */
148#define NUM_ITERS 5 /* likewise */
149
150static DEFINE_SPINLOCK(itc_sync_lock);
151static unsigned long go[SLAVE + 1];
152
153#define DEBUG_TICK_SYNC 0
154
155static inline long get_delta (long *rt, long *master)
156{
157 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
158 unsigned long tcenter, t0, t1, tm;
159 unsigned long i;
160
161 for (i = 0; i < NUM_ITERS; i++) {
162 t0 = tick_ops->get_tick();
163 go[MASTER] = 1;
4f07118f 164 membar_storeload();
1da177e4 165 while (!(tm = go[SLAVE]))
4f07118f 166 rmb();
1da177e4 167 go[SLAVE] = 0;
4f07118f 168 wmb();
1da177e4
LT
169 t1 = tick_ops->get_tick();
170
171 if (t1 - t0 < best_t1 - best_t0)
172 best_t0 = t0, best_t1 = t1, best_tm = tm;
173 }
174
175 *rt = best_t1 - best_t0;
176 *master = best_tm - best_t0;
177
178 /* average best_t0 and best_t1 without overflow: */
179 tcenter = (best_t0/2 + best_t1/2);
180 if (best_t0 % 2 + best_t1 % 2 == 2)
181 tcenter++;
182 return tcenter - best_tm;
183}
184
185void smp_synchronize_tick_client(void)
186{
187 long i, delta, adj, adjust_latency = 0, done = 0;
188 unsigned long flags, rt, master_time_stamp, bound;
189#if DEBUG_TICK_SYNC
190 struct {
191 long rt; /* roundtrip time */
192 long master; /* master's timestamp */
193 long diff; /* difference between midpoint and master's timestamp */
194 long lat; /* estimate of itc adjustment latency */
195 } t[NUM_ROUNDS];
196#endif
197
198 go[MASTER] = 1;
199
200 while (go[MASTER])
4f07118f 201 rmb();
1da177e4
LT
202
203 local_irq_save(flags);
204 {
205 for (i = 0; i < NUM_ROUNDS; i++) {
206 delta = get_delta(&rt, &master_time_stamp);
207 if (delta == 0) {
208 done = 1; /* let's lock on to this... */
209 bound = rt;
210 }
211
212 if (!done) {
213 if (i > 0) {
214 adjust_latency += -delta;
215 adj = -delta + adjust_latency/4;
216 } else
217 adj = -delta;
218
112f4871 219 tick_ops->add_tick(adj);
1da177e4
LT
220 }
221#if DEBUG_TICK_SYNC
222 t[i].rt = rt;
223 t[i].master = master_time_stamp;
224 t[i].diff = delta;
225 t[i].lat = adjust_latency/4;
226#endif
227 }
228 }
229 local_irq_restore(flags);
230
231#if DEBUG_TICK_SYNC
232 for (i = 0; i < NUM_ROUNDS; i++)
233 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
234 t[i].rt, t[i].master, t[i].diff, t[i].lat);
235#endif
236
519c4d2d
JP
237 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
238 "(last diff %ld cycles, maxerr %lu cycles)\n",
239 smp_processor_id(), delta, rt);
1da177e4
LT
240}
241
242static void smp_start_sync_tick_client(int cpu);
243
244static void smp_synchronize_one_tick(int cpu)
245{
246 unsigned long flags, i;
247
248 go[MASTER] = 0;
249
250 smp_start_sync_tick_client(cpu);
251
252 /* wait for client to be ready */
253 while (!go[MASTER])
4f07118f 254 rmb();
1da177e4
LT
255
256 /* now let the client proceed into his loop */
257 go[MASTER] = 0;
4f07118f 258 membar_storeload();
1da177e4
LT
259
260 spin_lock_irqsave(&itc_sync_lock, flags);
261 {
262 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
263 while (!go[MASTER])
4f07118f 264 rmb();
1da177e4 265 go[MASTER] = 0;
4f07118f 266 wmb();
1da177e4 267 go[SLAVE] = tick_ops->get_tick();
4f07118f 268 membar_storeload();
1da177e4
LT
269 }
270 }
271 spin_unlock_irqrestore(&itc_sync_lock, flags);
272}
273
b14f5c10 274#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
27a2ef38
DM
275/* XXX Put this in some common place. XXX */
276static unsigned long kimage_addr_to_ra(void *p)
277{
278 unsigned long val = (unsigned long) p;
279
280 return kern_base + (val - KERNBASE);
281}
282
b14f5c10
DM
283static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg)
284{
285 extern unsigned long sparc64_ttable_tl0;
286 extern unsigned long kern_locked_tte_data;
b14f5c10
DM
287 struct hvtramp_descr *hdesc;
288 unsigned long trampoline_ra;
289 struct trap_per_cpu *tb;
290 u64 tte_vaddr, tte_data;
291 unsigned long hv_err;
64658743 292 int i;
b14f5c10 293
64658743
DM
294 hdesc = kzalloc(sizeof(*hdesc) +
295 (sizeof(struct hvtramp_mapping) *
296 num_kernel_image_mappings - 1),
297 GFP_KERNEL);
b14f5c10 298 if (!hdesc) {
27a2ef38 299 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
b14f5c10
DM
300 "hvtramp_descr.\n");
301 return;
302 }
303
304 hdesc->cpu = cpu;
64658743 305 hdesc->num_mappings = num_kernel_image_mappings;
b14f5c10
DM
306
307 tb = &trap_block[cpu];
308 tb->hdesc = hdesc;
309
310 hdesc->fault_info_va = (unsigned long) &tb->fault_info;
311 hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
312
313 hdesc->thread_reg = thread_reg;
314
315 tte_vaddr = (unsigned long) KERNBASE;
316 tte_data = kern_locked_tte_data;
317
64658743
DM
318 for (i = 0; i < hdesc->num_mappings; i++) {
319 hdesc->maps[i].vaddr = tte_vaddr;
320 hdesc->maps[i].tte = tte_data;
b14f5c10
DM
321 tte_vaddr += 0x400000;
322 tte_data += 0x400000;
b14f5c10
DM
323 }
324
325 trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
326
327 hv_err = sun4v_cpu_start(cpu, trampoline_ra,
328 kimage_addr_to_ra(&sparc64_ttable_tl0),
329 __pa(hdesc));
e0204409
DM
330 if (hv_err)
331 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
332 "gives error %lu\n", hv_err);
b14f5c10
DM
333}
334#endif
335
1da177e4
LT
336extern unsigned long sparc64_cpu_startup;
337
338/* The OBP cpu startup callback truncates the 3rd arg cookie to
339 * 32-bits (I think) so to be safe we have it read the pointer
340 * contained here so we work on >4GB machines. -DaveM
341 */
342static struct thread_info *cpu_new_thread = NULL;
343
344static int __devinit smp_boot_one_cpu(unsigned int cpu)
345{
b37d40d1 346 struct trap_per_cpu *tb = &trap_block[cpu];
1da177e4
LT
347 unsigned long entry =
348 (unsigned long)(&sparc64_cpu_startup);
349 unsigned long cookie =
350 (unsigned long)(&cpu_new_thread);
351 struct task_struct *p;
7890f794 352 int timeout, ret;
1da177e4
LT
353
354 p = fork_idle(cpu);
1177bf97
AM
355 if (IS_ERR(p))
356 return PTR_ERR(p);
1da177e4 357 callin_flag = 0;
f3169641 358 cpu_new_thread = task_thread_info(p);
1da177e4 359
7890f794 360 if (tlb_type == hypervisor) {
b14f5c10 361#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
4f0234f4
DM
362 if (ldom_domaining_enabled)
363 ldom_startcpu_cpuid(cpu,
364 (unsigned long) cpu_new_thread);
365 else
366#endif
367 prom_startcpu_cpuid(cpu, entry, cookie);
7890f794 368 } else {
5cbc3073 369 struct device_node *dp = of_find_node_by_cpuid(cpu);
7890f794 370
07f8e5f3 371 prom_startcpu(dp->node, entry, cookie);
7890f794 372 }
1da177e4 373
4f0234f4 374 for (timeout = 0; timeout < 50000; timeout++) {
1da177e4
LT
375 if (callin_flag)
376 break;
377 udelay(100);
378 }
72aff53f 379
1da177e4
LT
380 if (callin_flag) {
381 ret = 0;
382 } else {
383 printk("Processor %d is stuck.\n", cpu);
1da177e4
LT
384 ret = -ENODEV;
385 }
386 cpu_new_thread = NULL;
387
b37d40d1
DM
388 if (tb->hdesc) {
389 kfree(tb->hdesc);
390 tb->hdesc = NULL;
391 }
392
1da177e4
LT
393 return ret;
394}
395
396static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
397{
398 u64 result, target;
399 int stuck, tmp;
400
401 if (this_is_starfire) {
402 /* map to real upaid */
403 cpu = (((cpu & 0x3c) << 1) |
404 ((cpu & 0x40) >> 4) |
405 (cpu & 0x3));
406 }
407
408 target = (cpu << 14) | 0x70;
409again:
410 /* Ok, this is the real Spitfire Errata #54.
411 * One must read back from a UDB internal register
412 * after writes to the UDB interrupt dispatch, but
413 * before the membar Sync for that write.
414 * So we use the high UDB control register (ASI 0x7f,
415 * ADDR 0x20) for the dummy read. -DaveM
416 */
417 tmp = 0x40;
418 __asm__ __volatile__(
419 "wrpr %1, %2, %%pstate\n\t"
420 "stxa %4, [%0] %3\n\t"
421 "stxa %5, [%0+%8] %3\n\t"
422 "add %0, %8, %0\n\t"
423 "stxa %6, [%0+%8] %3\n\t"
424 "membar #Sync\n\t"
425 "stxa %%g0, [%7] %3\n\t"
426 "membar #Sync\n\t"
427 "mov 0x20, %%g1\n\t"
428 "ldxa [%%g1] 0x7f, %%g0\n\t"
429 "membar #Sync"
430 : "=r" (tmp)
431 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
432 "r" (data0), "r" (data1), "r" (data2), "r" (target),
433 "r" (0x10), "0" (tmp)
434 : "g1");
435
436 /* NOTE: PSTATE_IE is still clear. */
437 stuck = 100000;
438 do {
439 __asm__ __volatile__("ldxa [%%g0] %1, %0"
440 : "=r" (result)
441 : "i" (ASI_INTR_DISPATCH_STAT));
442 if (result == 0) {
443 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
444 : : "r" (pstate));
445 return;
446 }
447 stuck -= 1;
448 if (stuck == 0)
449 break;
450 } while (result & 0x1);
451 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
452 : : "r" (pstate));
453 if (stuck == 0) {
454 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
455 smp_processor_id(), result);
456 } else {
457 udelay(2);
458 goto again;
459 }
460}
461
d979f179 462static inline void spitfire_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
1da177e4
LT
463{
464 u64 pstate;
465 int i;
466
467 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
468 for_each_cpu_mask(i, mask)
469 spitfire_xcall_helper(data0, data1, data2, pstate, i);
470}
471
472/* Cheetah now allows to send the whole 64-bytes of data in the interrupt
473 * packet, but we have no use for that. However we do take advantage of
474 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
475 */
476static void cheetah_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
477{
0de56d1a 478 u64 pstate, ver, busy_mask;
22adb358 479 int nack_busy_id, is_jbus, need_more;
1da177e4
LT
480
481 if (cpus_empty(mask))
482 return;
483
484 /* Unfortunately, someone at Sun had the brilliant idea to make the
485 * busy/nack fields hard-coded by ITID number for this Ultra-III
486 * derivative processor.
487 */
488 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
92704a1c
DM
489 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
490 (ver >> 32) == __SERRANO_ID);
1da177e4
LT
491
492 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
493
494retry:
22adb358 495 need_more = 0;
1da177e4
LT
496 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
497 : : "r" (pstate), "i" (PSTATE_IE));
498
499 /* Setup the dispatch data registers. */
500 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
501 "stxa %1, [%4] %6\n\t"
502 "stxa %2, [%5] %6\n\t"
503 "membar #Sync\n\t"
504 : /* no outputs */
505 : "r" (data0), "r" (data1), "r" (data2),
506 "r" (0x40), "r" (0x50), "r" (0x60),
507 "i" (ASI_INTR_W));
508
509 nack_busy_id = 0;
0de56d1a 510 busy_mask = 0;
1da177e4
LT
511 {
512 int i;
513
514 for_each_cpu_mask(i, mask) {
515 u64 target = (i << 14) | 0x70;
516
0de56d1a
DM
517 if (is_jbus) {
518 busy_mask |= (0x1UL << (i * 2));
519 } else {
1da177e4 520 target |= (nack_busy_id << 24);
0de56d1a
DM
521 busy_mask |= (0x1UL <<
522 (nack_busy_id * 2));
523 }
1da177e4
LT
524 __asm__ __volatile__(
525 "stxa %%g0, [%0] %1\n\t"
526 "membar #Sync\n\t"
527 : /* no outputs */
528 : "r" (target), "i" (ASI_INTR_W));
529 nack_busy_id++;
22adb358
DM
530 if (nack_busy_id == 32) {
531 need_more = 1;
532 break;
533 }
1da177e4
LT
534 }
535 }
536
537 /* Now, poll for completion. */
538 {
0de56d1a 539 u64 dispatch_stat, nack_mask;
1da177e4
LT
540 long stuck;
541
542 stuck = 100000 * nack_busy_id;
0de56d1a 543 nack_mask = busy_mask << 1;
1da177e4
LT
544 do {
545 __asm__ __volatile__("ldxa [%%g0] %1, %0"
546 : "=r" (dispatch_stat)
547 : "i" (ASI_INTR_DISPATCH_STAT));
0de56d1a 548 if (!(dispatch_stat & (busy_mask | nack_mask))) {
1da177e4
LT
549 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
550 : : "r" (pstate));
22adb358
DM
551 if (unlikely(need_more)) {
552 int i, cnt = 0;
553 for_each_cpu_mask(i, mask) {
554 cpu_clear(i, mask);
555 cnt++;
556 if (cnt == 32)
557 break;
558 }
559 goto retry;
560 }
1da177e4
LT
561 return;
562 }
563 if (!--stuck)
564 break;
0de56d1a 565 } while (dispatch_stat & busy_mask);
1da177e4
LT
566
567 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
568 : : "r" (pstate));
569
0de56d1a 570 if (dispatch_stat & busy_mask) {
1da177e4
LT
571 /* Busy bits will not clear, continue instead
572 * of freezing up on this cpu.
573 */
574 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
575 smp_processor_id(), dispatch_stat);
576 } else {
577 int i, this_busy_nack = 0;
578
579 /* Delay some random time with interrupts enabled
580 * to prevent deadlock.
581 */
582 udelay(2 * nack_busy_id);
583
584 /* Clear out the mask bits for cpus which did not
585 * NACK us.
586 */
587 for_each_cpu_mask(i, mask) {
588 u64 check_mask;
589
92704a1c 590 if (is_jbus)
1da177e4
LT
591 check_mask = (0x2UL << (2*i));
592 else
593 check_mask = (0x2UL <<
594 this_busy_nack);
595 if ((dispatch_stat & check_mask) == 0)
596 cpu_clear(i, mask);
597 this_busy_nack += 2;
22adb358
DM
598 if (this_busy_nack == 64)
599 break;
1da177e4
LT
600 }
601
602 goto retry;
603 }
604 }
605}
606
1d2f1f90 607/* Multi-cpu list version. */
a43fe0e7
DM
608static void hypervisor_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
609{
b830ab66
DM
610 struct trap_per_cpu *tb;
611 u16 *cpu_list;
612 u64 *mondo;
613 cpumask_t error_mask;
614 unsigned long flags, status;
3cab0c3e 615 int cnt, retries, this_cpu, prev_sent, i;
b830ab66 616
17f34f0e
DM
617 if (cpus_empty(mask))
618 return;
619
b830ab66
DM
620 /* We have to do this whole thing with interrupts fully disabled.
621 * Otherwise if we send an xcall from interrupt context it will
622 * corrupt both our mondo block and cpu list state.
623 *
624 * One consequence of this is that we cannot use timeout mechanisms
625 * that depend upon interrupts being delivered locally. So, for
626 * example, we cannot sample jiffies and expect it to advance.
627 *
628 * Fortunately, udelay() uses %stick/%tick so we can use that.
629 */
630 local_irq_save(flags);
631
632 this_cpu = smp_processor_id();
633 tb = &trap_block[this_cpu];
1d2f1f90 634
b830ab66 635 mondo = __va(tb->cpu_mondo_block_pa);
1d2f1f90
DM
636 mondo[0] = data0;
637 mondo[1] = data1;
638 mondo[2] = data2;
639 wmb();
640
b830ab66
DM
641 cpu_list = __va(tb->cpu_list_pa);
642
643 /* Setup the initial cpu list. */
644 cnt = 0;
645 for_each_cpu_mask(i, mask)
646 cpu_list[cnt++] = i;
647
648 cpus_clear(error_mask);
1d2f1f90 649 retries = 0;
3cab0c3e 650 prev_sent = 0;
1d2f1f90 651 do {
3cab0c3e 652 int forward_progress, n_sent;
1d2f1f90 653
b830ab66
DM
654 status = sun4v_cpu_mondo_send(cnt,
655 tb->cpu_list_pa,
656 tb->cpu_mondo_block_pa);
657
658 /* HV_EOK means all cpus received the xcall, we're done. */
659 if (likely(status == HV_EOK))
1d2f1f90 660 break;
b830ab66 661
3cab0c3e
DM
662 /* First, see if we made any forward progress.
663 *
664 * The hypervisor indicates successful sends by setting
665 * cpu list entries to the value 0xffff.
b830ab66 666 */
3cab0c3e 667 n_sent = 0;
b830ab66 668 for (i = 0; i < cnt; i++) {
3cab0c3e
DM
669 if (likely(cpu_list[i] == 0xffff))
670 n_sent++;
1d2f1f90
DM
671 }
672
3cab0c3e
DM
673 forward_progress = 0;
674 if (n_sent > prev_sent)
675 forward_progress = 1;
676
677 prev_sent = n_sent;
678
b830ab66
DM
679 /* If we get a HV_ECPUERROR, then one or more of the cpus
680 * in the list are in error state. Use the cpu_state()
681 * hypervisor call to find out which cpus are in error state.
682 */
683 if (unlikely(status == HV_ECPUERROR)) {
684 for (i = 0; i < cnt; i++) {
685 long err;
686 u16 cpu;
687
688 cpu = cpu_list[i];
689 if (cpu == 0xffff)
690 continue;
691
692 err = sun4v_cpu_state(cpu);
693 if (err >= 0 &&
694 err == HV_CPU_STATE_ERROR) {
3cab0c3e 695 cpu_list[i] = 0xffff;
b830ab66
DM
696 cpu_set(cpu, error_mask);
697 }
698 }
699 } else if (unlikely(status != HV_EWOULDBLOCK))
700 goto fatal_mondo_error;
701
3cab0c3e
DM
702 /* Don't bother rewriting the CPU list, just leave the
703 * 0xffff and non-0xffff entries in there and the
704 * hypervisor will do the right thing.
705 *
706 * Only advance timeout state if we didn't make any
707 * forward progress.
708 */
b830ab66
DM
709 if (unlikely(!forward_progress)) {
710 if (unlikely(++retries > 10000))
711 goto fatal_mondo_timeout;
712
713 /* Delay a little bit to let other cpus catch up
714 * on their cpu mondo queue work.
715 */
716 udelay(2 * cnt);
717 }
1d2f1f90
DM
718 } while (1);
719
b830ab66
DM
720 local_irq_restore(flags);
721
722 if (unlikely(!cpus_empty(error_mask)))
723 goto fatal_mondo_cpu_error;
724
725 return;
726
727fatal_mondo_cpu_error:
728 printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
729 "were in error state\n",
730 this_cpu);
731 printk(KERN_CRIT "CPU[%d]: Error mask [ ", this_cpu);
732 for_each_cpu_mask(i, error_mask)
733 printk("%d ", i);
734 printk("]\n");
735 return;
736
737fatal_mondo_timeout:
738 local_irq_restore(flags);
739 printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
740 " progress after %d retries.\n",
741 this_cpu, retries);
742 goto dump_cpu_list_and_out;
743
744fatal_mondo_error:
745 local_irq_restore(flags);
746 printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
747 this_cpu, status);
748 printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
749 "mondo_block_pa(%lx)\n",
750 this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
751
752dump_cpu_list_and_out:
753 printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
754 for (i = 0; i < cnt; i++)
755 printk("%u ", cpu_list[i]);
756 printk("]\n");
1d2f1f90 757}
a43fe0e7 758
1da177e4
LT
759/* Send cross call to all processors mentioned in MASK
760 * except self.
761 */
762static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, cpumask_t mask)
763{
764 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
765 int this_cpu = get_cpu();
766
767 cpus_and(mask, mask, cpu_online_map);
768 cpu_clear(this_cpu, mask);
769
770 if (tlb_type == spitfire)
771 spitfire_xcall_deliver(data0, data1, data2, mask);
a43fe0e7 772 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1da177e4 773 cheetah_xcall_deliver(data0, data1, data2, mask);
a43fe0e7
DM
774 else
775 hypervisor_xcall_deliver(data0, data1, data2, mask);
1da177e4
LT
776 /* NOTE: Caller runs local copy on master. */
777
778 put_cpu();
779}
780
781extern unsigned long xcall_sync_tick;
782
783static void smp_start_sync_tick_client(int cpu)
784{
785 cpumask_t mask = cpumask_of_cpu(cpu);
786
787 smp_cross_call_masked(&xcall_sync_tick,
788 0, 0, 0, mask);
789}
790
1da177e4
LT
791extern unsigned long xcall_call_function;
792
d172ad18 793void arch_send_call_function_ipi(cpumask_t mask)
1da177e4 794{
bd40791e 795 smp_cross_call_masked(&xcall_call_function, 0, 0, 0, mask);
d172ad18 796}
1da177e4 797
d172ad18 798extern unsigned long xcall_call_function_single;
1da177e4 799
d172ad18
DM
800void arch_send_call_function_single_ipi(int cpu)
801{
802 cpumask_t mask = cpumask_of_cpu(cpu);
1da177e4 803
d172ad18 804 smp_cross_call_masked(&xcall_call_function_single, 0, 0, 0, mask);
1da177e4
LT
805}
806
d172ad18
DM
807/* Send cross call to all processors except self. */
808#define smp_cross_call(func, ctx, data1, data2) \
809 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_map)
bd40791e 810
1da177e4
LT
811void smp_call_function_client(int irq, struct pt_regs *regs)
812{
d172ad18
DM
813 clear_softint(1 << irq);
814 generic_smp_call_function_interrupt();
815}
1da177e4 816
d172ad18
DM
817void smp_call_function_single_client(int irq, struct pt_regs *regs)
818{
1da177e4 819 clear_softint(1 << irq);
d172ad18 820 generic_smp_call_function_single_interrupt();
1da177e4
LT
821}
822
bd40791e
DM
823static void tsb_sync(void *info)
824{
6f25f398 825 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
bd40791e
DM
826 struct mm_struct *mm = info;
827
6f25f398
DM
828 /* It is not valid to test "currrent->active_mm == mm" here.
829 *
830 * The value of "current" is not changed atomically with
831 * switch_mm(). But that's OK, we just need to check the
832 * current cpu's trap block PGD physical address.
833 */
834 if (tp->pgd_paddr == __pa(mm->pgd))
bd40791e
DM
835 tsb_context_switch(mm);
836}
837
838void smp_tsb_sync(struct mm_struct *mm)
839{
d172ad18 840 smp_call_function_mask(mm->cpu_vm_mask, tsb_sync, mm, 1);
bd40791e
DM
841}
842
1da177e4
LT
843extern unsigned long xcall_flush_tlb_mm;
844extern unsigned long xcall_flush_tlb_pending;
845extern unsigned long xcall_flush_tlb_kernel_range;
93dae5b7
DM
846#ifdef CONFIG_MAGIC_SYSRQ
847extern unsigned long xcall_fetch_glob_regs;
848#endif
1da177e4 849extern unsigned long xcall_receive_signal;
ee29074d 850extern unsigned long xcall_new_mmu_context_version;
e2fdd7fd
DM
851#ifdef CONFIG_KGDB
852extern unsigned long xcall_kgdb_capture;
853#endif
1da177e4
LT
854
855#ifdef DCACHE_ALIASING_POSSIBLE
856extern unsigned long xcall_flush_dcache_page_cheetah;
857#endif
858extern unsigned long xcall_flush_dcache_page_spitfire;
859
860#ifdef CONFIG_DEBUG_DCFLUSH
861extern atomic_t dcpage_flushes;
862extern atomic_t dcpage_flushes_xcall;
863#endif
864
d979f179 865static inline void __local_flush_dcache_page(struct page *page)
1da177e4
LT
866{
867#ifdef DCACHE_ALIASING_POSSIBLE
868 __flush_dcache_page(page_address(page),
869 ((tlb_type == spitfire) &&
870 page_mapping(page) != NULL));
871#else
872 if (page_mapping(page) != NULL &&
873 tlb_type == spitfire)
874 __flush_icache_page(__pa(page_address(page)));
875#endif
876}
877
878void smp_flush_dcache_page_impl(struct page *page, int cpu)
879{
880 cpumask_t mask = cpumask_of_cpu(cpu);
a43fe0e7
DM
881 int this_cpu;
882
883 if (tlb_type == hypervisor)
884 return;
1da177e4
LT
885
886#ifdef CONFIG_DEBUG_DCFLUSH
887 atomic_inc(&dcpage_flushes);
888#endif
a43fe0e7
DM
889
890 this_cpu = get_cpu();
891
1da177e4
LT
892 if (cpu == this_cpu) {
893 __local_flush_dcache_page(page);
894 } else if (cpu_online(cpu)) {
895 void *pg_addr = page_address(page);
896 u64 data0;
897
898 if (tlb_type == spitfire) {
899 data0 =
900 ((u64)&xcall_flush_dcache_page_spitfire);
901 if (page_mapping(page) != NULL)
902 data0 |= ((u64)1 << 32);
903 spitfire_xcall_deliver(data0,
904 __pa(pg_addr),
905 (u64) pg_addr,
906 mask);
a43fe0e7 907 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1da177e4
LT
908#ifdef DCACHE_ALIASING_POSSIBLE
909 data0 =
910 ((u64)&xcall_flush_dcache_page_cheetah);
911 cheetah_xcall_deliver(data0,
912 __pa(pg_addr),
913 0, mask);
914#endif
915 }
916#ifdef CONFIG_DEBUG_DCFLUSH
917 atomic_inc(&dcpage_flushes_xcall);
918#endif
919 }
920
921 put_cpu();
922}
923
924void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
925{
926 void *pg_addr = page_address(page);
927 cpumask_t mask = cpu_online_map;
928 u64 data0;
a43fe0e7
DM
929 int this_cpu;
930
931 if (tlb_type == hypervisor)
932 return;
933
934 this_cpu = get_cpu();
1da177e4
LT
935
936 cpu_clear(this_cpu, mask);
937
938#ifdef CONFIG_DEBUG_DCFLUSH
939 atomic_inc(&dcpage_flushes);
940#endif
941 if (cpus_empty(mask))
942 goto flush_self;
943 if (tlb_type == spitfire) {
944 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
945 if (page_mapping(page) != NULL)
946 data0 |= ((u64)1 << 32);
947 spitfire_xcall_deliver(data0,
948 __pa(pg_addr),
949 (u64) pg_addr,
950 mask);
a43fe0e7 951 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1da177e4
LT
952#ifdef DCACHE_ALIASING_POSSIBLE
953 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
954 cheetah_xcall_deliver(data0,
955 __pa(pg_addr),
956 0, mask);
957#endif
958 }
959#ifdef CONFIG_DEBUG_DCFLUSH
960 atomic_inc(&dcpage_flushes_xcall);
961#endif
962 flush_self:
963 __local_flush_dcache_page(page);
964
965 put_cpu();
966}
967
a0663a79
DM
968static void __smp_receive_signal_mask(cpumask_t mask)
969{
970 smp_cross_call_masked(&xcall_receive_signal, 0, 0, 0, mask);
971}
972
1da177e4
LT
973void smp_receive_signal(int cpu)
974{
975 cpumask_t mask = cpumask_of_cpu(cpu);
976
a0663a79
DM
977 if (cpu_online(cpu))
978 __smp_receive_signal_mask(mask);
1da177e4
LT
979}
980
981void smp_receive_signal_client(int irq, struct pt_regs *regs)
ee29074d
DM
982{
983 clear_softint(1 << irq);
984}
985
986void smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
1da177e4 987{
a0663a79 988 struct mm_struct *mm;
ee29074d 989 unsigned long flags;
a0663a79 990
1da177e4 991 clear_softint(1 << irq);
a0663a79
DM
992
993 /* See if we need to allocate a new TLB context because
994 * the version of the one we are using is now out of date.
995 */
996 mm = current->active_mm;
ee29074d
DM
997 if (unlikely(!mm || (mm == &init_mm)))
998 return;
a0663a79 999
ee29074d 1000 spin_lock_irqsave(&mm->context.lock, flags);
aac0aadf 1001
ee29074d
DM
1002 if (unlikely(!CTX_VALID(mm->context)))
1003 get_new_mmu_context(mm);
aac0aadf 1004
ee29074d 1005 spin_unlock_irqrestore(&mm->context.lock, flags);
aac0aadf 1006
ee29074d
DM
1007 load_secondary_context(mm);
1008 __flush_tlb_mm(CTX_HWBITS(mm->context),
1009 SECONDARY_CONTEXT);
a0663a79
DM
1010}
1011
1012void smp_new_mmu_context_version(void)
1013{
ee29074d 1014 smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
1da177e4
LT
1015}
1016
e2fdd7fd
DM
1017#ifdef CONFIG_KGDB
1018void kgdb_roundup_cpus(unsigned long flags)
1019{
1020 smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1021}
1022#endif
1023
93dae5b7
DM
1024#ifdef CONFIG_MAGIC_SYSRQ
1025void smp_fetch_global_regs(void)
1026{
1027 smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1028}
1029#endif
1030
1da177e4
LT
1031/* We know that the window frames of the user have been flushed
1032 * to the stack before we get here because all callers of us
1033 * are flush_tlb_*() routines, and these run after flush_cache_*()
1034 * which performs the flushw.
1035 *
1036 * The SMP TLB coherency scheme we use works as follows:
1037 *
1038 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1039 * space has (potentially) executed on, this is the heuristic
1040 * we use to avoid doing cross calls.
1041 *
1042 * Also, for flushing from kswapd and also for clones, we
1043 * use cpu_vm_mask as the list of cpus to make run the TLB.
1044 *
1045 * 2) TLB context numbers are shared globally across all processors
1046 * in the system, this allows us to play several games to avoid
1047 * cross calls.
1048 *
1049 * One invariant is that when a cpu switches to a process, and
1050 * that processes tsk->active_mm->cpu_vm_mask does not have the
1051 * current cpu's bit set, that tlb context is flushed locally.
1052 *
1053 * If the address space is non-shared (ie. mm->count == 1) we avoid
1054 * cross calls when we want to flush the currently running process's
1055 * tlb state. This is done by clearing all cpu bits except the current
1056 * processor's in current->active_mm->cpu_vm_mask and performing the
1057 * flush locally only. This will force any subsequent cpus which run
1058 * this task to flush the context from the local tlb if the process
1059 * migrates to another cpu (again).
1060 *
1061 * 3) For shared address spaces (threads) and swapping we bite the
1062 * bullet for most cases and perform the cross call (but only to
1063 * the cpus listed in cpu_vm_mask).
1064 *
1065 * The performance gain from "optimizing" away the cross call for threads is
1066 * questionable (in theory the big win for threads is the massive sharing of
1067 * address space state across processors).
1068 */
62dbec78
DM
1069
1070/* This currently is only used by the hugetlb arch pre-fault
1071 * hook on UltraSPARC-III+ and later when changing the pagesize
1072 * bits of the context register for an address space.
1073 */
1da177e4
LT
1074void smp_flush_tlb_mm(struct mm_struct *mm)
1075{
62dbec78
DM
1076 u32 ctx = CTX_HWBITS(mm->context);
1077 int cpu = get_cpu();
1da177e4 1078
62dbec78
DM
1079 if (atomic_read(&mm->mm_users) == 1) {
1080 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1081 goto local_flush_and_out;
1082 }
1da177e4 1083
62dbec78
DM
1084 smp_cross_call_masked(&xcall_flush_tlb_mm,
1085 ctx, 0, 0,
1086 mm->cpu_vm_mask);
1da177e4 1087
62dbec78
DM
1088local_flush_and_out:
1089 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1da177e4 1090
62dbec78 1091 put_cpu();
1da177e4
LT
1092}
1093
1094void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1095{
1096 u32 ctx = CTX_HWBITS(mm->context);
1097 int cpu = get_cpu();
1098
dedeb002 1099 if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1)
1da177e4 1100 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
dedeb002
HD
1101 else
1102 smp_cross_call_masked(&xcall_flush_tlb_pending,
1103 ctx, nr, (unsigned long) vaddrs,
1104 mm->cpu_vm_mask);
1da177e4 1105
1da177e4
LT
1106 __flush_tlb_pending(ctx, nr, vaddrs);
1107
1108 put_cpu();
1109}
1110
1111void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1112{
1113 start &= PAGE_MASK;
1114 end = PAGE_ALIGN(end);
1115 if (start != end) {
1116 smp_cross_call(&xcall_flush_tlb_kernel_range,
1117 0, start, end);
1118
1119 __flush_tlb_kernel_range(start, end);
1120 }
1121}
1122
1123/* CPU capture. */
1124/* #define CAPTURE_DEBUG */
1125extern unsigned long xcall_capture;
1126
1127static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1128static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1129static unsigned long penguins_are_doing_time;
1130
1131void smp_capture(void)
1132{
1133 int result = atomic_add_ret(1, &smp_capture_depth);
1134
1135 if (result == 1) {
1136 int ncpus = num_online_cpus();
1137
1138#ifdef CAPTURE_DEBUG
1139 printk("CPU[%d]: Sending penguins to jail...",
1140 smp_processor_id());
1141#endif
1142 penguins_are_doing_time = 1;
4f07118f 1143 membar_storestore_loadstore();
1da177e4
LT
1144 atomic_inc(&smp_capture_registry);
1145 smp_cross_call(&xcall_capture, 0, 0, 0);
1146 while (atomic_read(&smp_capture_registry) != ncpus)
4f07118f 1147 rmb();
1da177e4
LT
1148#ifdef CAPTURE_DEBUG
1149 printk("done\n");
1150#endif
1151 }
1152}
1153
1154void smp_release(void)
1155{
1156 if (atomic_dec_and_test(&smp_capture_depth)) {
1157#ifdef CAPTURE_DEBUG
1158 printk("CPU[%d]: Giving pardon to "
1159 "imprisoned penguins\n",
1160 smp_processor_id());
1161#endif
1162 penguins_are_doing_time = 0;
4f07118f 1163 membar_storeload_storestore();
1da177e4
LT
1164 atomic_dec(&smp_capture_registry);
1165 }
1166}
1167
1168/* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
1169 * can service tlb flush xcalls...
1170 */
1171extern void prom_world(int);
96c6e0d8 1172
1da177e4
LT
1173void smp_penguin_jailcell(int irq, struct pt_regs *regs)
1174{
1da177e4
LT
1175 clear_softint(1 << irq);
1176
1177 preempt_disable();
1178
1179 __asm__ __volatile__("flushw");
1da177e4
LT
1180 prom_world(1);
1181 atomic_inc(&smp_capture_registry);
4f07118f 1182 membar_storeload_storestore();
1da177e4 1183 while (penguins_are_doing_time)
4f07118f 1184 rmb();
1da177e4
LT
1185 atomic_dec(&smp_capture_registry);
1186 prom_world(0);
1187
1188 preempt_enable();
1189}
1190
1da177e4 1191/* /proc/profile writes can call this, don't __init it please. */
1da177e4
LT
1192int setup_profiling_timer(unsigned int multiplier)
1193{
777a4475 1194 return -EINVAL;
1da177e4
LT
1195}
1196
1197void __init smp_prepare_cpus(unsigned int max_cpus)
1198{
1da177e4
LT
1199}
1200
5cbc3073 1201void __devinit smp_prepare_boot_cpu(void)
7abea921 1202{
7abea921
DM
1203}
1204
5cbc3073 1205void __devinit smp_fill_in_sib_core_maps(void)
1da177e4 1206{
5cbc3073
DM
1207 unsigned int i;
1208
e0204409 1209 for_each_present_cpu(i) {
5cbc3073
DM
1210 unsigned int j;
1211
39dd992a 1212 cpus_clear(cpu_core_map[i]);
5cbc3073 1213 if (cpu_data(i).core_id == 0) {
f78eae2e 1214 cpu_set(i, cpu_core_map[i]);
5cbc3073
DM
1215 continue;
1216 }
1217
e0204409 1218 for_each_present_cpu(j) {
5cbc3073
DM
1219 if (cpu_data(i).core_id ==
1220 cpu_data(j).core_id)
f78eae2e
DM
1221 cpu_set(j, cpu_core_map[i]);
1222 }
1223 }
1224
e0204409 1225 for_each_present_cpu(i) {
f78eae2e
DM
1226 unsigned int j;
1227
d5a7430d 1228 cpus_clear(per_cpu(cpu_sibling_map, i));
f78eae2e 1229 if (cpu_data(i).proc_id == -1) {
d5a7430d 1230 cpu_set(i, per_cpu(cpu_sibling_map, i));
f78eae2e
DM
1231 continue;
1232 }
1233
e0204409 1234 for_each_present_cpu(j) {
f78eae2e
DM
1235 if (cpu_data(i).proc_id ==
1236 cpu_data(j).proc_id)
d5a7430d 1237 cpu_set(j, per_cpu(cpu_sibling_map, i));
5cbc3073
DM
1238 }
1239 }
1da177e4
LT
1240}
1241
b282b6f8 1242int __cpuinit __cpu_up(unsigned int cpu)
1da177e4
LT
1243{
1244 int ret = smp_boot_one_cpu(cpu);
1245
1246 if (!ret) {
1247 cpu_set(cpu, smp_commenced_mask);
1248 while (!cpu_isset(cpu, cpu_online_map))
1249 mb();
1250 if (!cpu_isset(cpu, cpu_online_map)) {
1251 ret = -ENODEV;
1252 } else {
02fead75
DM
1253 /* On SUN4V, writes to %tick and %stick are
1254 * not allowed.
1255 */
1256 if (tlb_type != hypervisor)
1257 smp_synchronize_one_tick(cpu);
1da177e4
LT
1258 }
1259 }
1260 return ret;
1261}
1262
4f0234f4 1263#ifdef CONFIG_HOTPLUG_CPU
e0204409
DM
1264void cpu_play_dead(void)
1265{
1266 int cpu = smp_processor_id();
1267 unsigned long pstate;
1268
1269 idle_task_exit();
1270
1271 if (tlb_type == hypervisor) {
1272 struct trap_per_cpu *tb = &trap_block[cpu];
1273
1274 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1275 tb->cpu_mondo_pa, 0);
1276 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1277 tb->dev_mondo_pa, 0);
1278 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1279 tb->resum_mondo_pa, 0);
1280 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1281 tb->nonresum_mondo_pa, 0);
1282 }
1283
1284 cpu_clear(cpu, smp_commenced_mask);
1285 membar_safe("#Sync");
1286
1287 local_irq_disable();
1288
1289 __asm__ __volatile__(
1290 "rdpr %%pstate, %0\n\t"
1291 "wrpr %0, %1, %%pstate"
1292 : "=r" (pstate)
1293 : "i" (PSTATE_IE));
1294
1295 while (1)
1296 barrier();
1297}
1298
4f0234f4
DM
1299int __cpu_disable(void)
1300{
e0204409
DM
1301 int cpu = smp_processor_id();
1302 cpuinfo_sparc *c;
1303 int i;
1304
1305 for_each_cpu_mask(i, cpu_core_map[cpu])
1306 cpu_clear(cpu, cpu_core_map[i]);
1307 cpus_clear(cpu_core_map[cpu]);
1308
d5a7430d
MT
1309 for_each_cpu_mask(i, per_cpu(cpu_sibling_map, cpu))
1310 cpu_clear(cpu, per_cpu(cpu_sibling_map, i));
1311 cpus_clear(per_cpu(cpu_sibling_map, cpu));
e0204409
DM
1312
1313 c = &cpu_data(cpu);
1314
1315 c->core_id = 0;
1316 c->proc_id = -1;
1317
1318 spin_lock(&call_lock);
1319 cpu_clear(cpu, cpu_online_map);
1320 spin_unlock(&call_lock);
1321
1322 smp_wmb();
1323
1324 /* Make sure no interrupts point to this cpu. */
1325 fixup_irqs();
1326
1327 local_irq_enable();
1328 mdelay(1);
1329 local_irq_disable();
1330
1331 return 0;
4f0234f4
DM
1332}
1333
1334void __cpu_die(unsigned int cpu)
1335{
e0204409
DM
1336 int i;
1337
1338 for (i = 0; i < 100; i++) {
1339 smp_rmb();
1340 if (!cpu_isset(cpu, smp_commenced_mask))
1341 break;
1342 msleep(100);
1343 }
1344 if (cpu_isset(cpu, smp_commenced_mask)) {
1345 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1346 } else {
1347#if defined(CONFIG_SUN_LDOMS)
1348 unsigned long hv_err;
1349 int limit = 100;
1350
1351 do {
1352 hv_err = sun4v_cpu_stop(cpu);
1353 if (hv_err == HV_EOK) {
1354 cpu_clear(cpu, cpu_present_map);
1355 break;
1356 }
1357 } while (--limit > 0);
1358 if (limit <= 0) {
1359 printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1360 hv_err);
1361 }
1362#endif
1363 }
4f0234f4
DM
1364}
1365#endif
1366
1da177e4
LT
1367void __init smp_cpus_done(unsigned int max_cpus)
1368{
1da177e4
LT
1369}
1370
1da177e4
LT
1371void smp_send_reschedule(int cpu)
1372{
64c7c8f8 1373 smp_receive_signal(cpu);
1da177e4
LT
1374}
1375
1376/* This is a nop because we capture all other cpus
1377 * anyways when making the PROM active.
1378 */
1379void smp_send_stop(void)
1380{
1381}
1382
d369ddd2
DM
1383unsigned long __per_cpu_base __read_mostly;
1384unsigned long __per_cpu_shift __read_mostly;
1da177e4
LT
1385
1386EXPORT_SYMBOL(__per_cpu_base);
1387EXPORT_SYMBOL(__per_cpu_shift);
1388
5cbc3073 1389void __init real_setup_per_cpu_areas(void)
1da177e4 1390{
b9709456 1391 unsigned long paddr, goal, size, i;
1da177e4 1392 char *ptr;
1da177e4
LT
1393
1394 /* Copy section for each CPU (we discard the original) */
5a089006
DM
1395 goal = PERCPU_ENOUGH_ROOM;
1396
b6e3590f
JF
1397 __per_cpu_shift = PAGE_SHIFT;
1398 for (size = PAGE_SIZE; size < goal; size <<= 1UL)
1da177e4
LT
1399 __per_cpu_shift++;
1400
b9709456
DM
1401 paddr = lmb_alloc(size * NR_CPUS, PAGE_SIZE);
1402 if (!paddr) {
1403 prom_printf("Cannot allocate per-cpu memory.\n");
1404 prom_halt();
1405 }
1da177e4 1406
b9709456 1407 ptr = __va(paddr);
1da177e4
LT
1408 __per_cpu_base = ptr - __per_cpu_start;
1409
1da177e4
LT
1410 for (i = 0; i < NR_CPUS; i++, ptr += size)
1411 memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
951bc82c
DM
1412
1413 /* Setup %g5 for the boot cpu. */
1414 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1da177e4 1415}