]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - arch/sparc64/kernel/smp.c
[SPARC64]: Fix setting of variables in LDOM guest.
[mirror_ubuntu-zesty-kernel.git] / arch / sparc64 / kernel / smp.c
CommitLineData
1da177e4
LT
1/* smp.c: Sparc64 SMP support.
2 *
3 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
4 */
5
6#include <linux/module.h>
7#include <linux/kernel.h>
8#include <linux/sched.h>
9#include <linux/mm.h>
10#include <linux/pagemap.h>
11#include <linux/threads.h>
12#include <linux/smp.h>
1da177e4
LT
13#include <linux/interrupt.h>
14#include <linux/kernel_stat.h>
15#include <linux/delay.h>
16#include <linux/init.h>
17#include <linux/spinlock.h>
18#include <linux/fs.h>
19#include <linux/seq_file.h>
20#include <linux/cache.h>
21#include <linux/jiffies.h>
22#include <linux/profile.h>
23#include <linux/bootmem.h>
24
25#include <asm/head.h>
26#include <asm/ptrace.h>
27#include <asm/atomic.h>
28#include <asm/tlbflush.h>
29#include <asm/mmu_context.h>
30#include <asm/cpudata.h>
31
32#include <asm/irq.h>
6d24c8dc 33#include <asm/irq_regs.h>
1da177e4
LT
34#include <asm/page.h>
35#include <asm/pgtable.h>
36#include <asm/oplib.h>
37#include <asm/uaccess.h>
38#include <asm/timer.h>
39#include <asm/starfire.h>
40#include <asm/tlb.h>
56fb4df6 41#include <asm/sections.h>
07f8e5f3 42#include <asm/prom.h>
5cbc3073 43#include <asm/mdesc.h>
1da177e4 44
1da177e4
LT
45extern void calibrate_delay(void);
46
a2f9f6bb
DM
47int sparc64_multi_core __read_mostly;
48
1da177e4 49/* Please don't make this stuff initdata!!! --DaveM */
777a4475 50unsigned char boot_cpu_id;
1da177e4 51
c12a8289
AM
52cpumask_t cpu_online_map __read_mostly = CPU_MASK_NONE;
53cpumask_t phys_cpu_present_map __read_mostly = CPU_MASK_NONE;
8935dced
DM
54cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly =
55 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
f78eae2e
DM
56cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
57 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
1da177e4
LT
58static cpumask_t smp_commenced_mask;
59static cpumask_t cpu_callout_map;
60
61void smp_info(struct seq_file *m)
62{
63 int i;
64
65 seq_printf(m, "State:\n");
394e3902
AM
66 for_each_online_cpu(i)
67 seq_printf(m, "CPU%d:\t\tonline\n", i);
1da177e4
LT
68}
69
70void smp_bogo(struct seq_file *m)
71{
72 int i;
73
394e3902
AM
74 for_each_online_cpu(i)
75 seq_printf(m,
76 "Cpu%dBogo\t: %lu.%02lu\n"
77 "Cpu%dClkTck\t: %016lx\n",
78 i, cpu_data(i).udelay_val / (500000/HZ),
79 (cpu_data(i).udelay_val / (5000/HZ)) % 100,
80 i, cpu_data(i).clock_tick);
1da177e4
LT
81}
82
112f4871 83extern void setup_sparc64_timer(void);
1da177e4
LT
84
85static volatile unsigned long callin_flag = 0;
86
1da177e4
LT
87void __init smp_callin(void)
88{
89 int cpuid = hard_smp_processor_id();
90
56fb4df6 91 __local_per_cpu_offset = __per_cpu_offset(cpuid);
1da177e4 92
4a07e646 93 if (tlb_type == hypervisor)
490384e7 94 sun4v_ktsb_register();
481295f9 95
56fb4df6 96 __flush_tlb_all();
1da177e4 97
112f4871 98 setup_sparc64_timer();
1da177e4 99
816242da
DM
100 if (cheetah_pcache_forced_on)
101 cheetah_enable_pcache();
102
1da177e4
LT
103 local_irq_enable();
104
105 calibrate_delay();
5cbc3073 106 cpu_data(cpuid).udelay_val = loops_per_jiffy;
1da177e4
LT
107 callin_flag = 1;
108 __asm__ __volatile__("membar #Sync\n\t"
109 "flush %%g6" : : : "memory");
110
111 /* Clear this or we will die instantly when we
112 * schedule back to this idler...
113 */
db7d9a4e 114 current_thread_info()->new_child = 0;
1da177e4
LT
115
116 /* Attach to the address space of init_task. */
117 atomic_inc(&init_mm.mm_count);
118 current->active_mm = &init_mm;
119
120 while (!cpu_isset(cpuid, smp_commenced_mask))
4f07118f 121 rmb();
1da177e4
LT
122
123 cpu_set(cpuid, cpu_online_map);
5bfb5d69
NP
124
125 /* idle thread is expected to have preempt disabled */
126 preempt_disable();
1da177e4
LT
127}
128
129void cpu_panic(void)
130{
131 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
132 panic("SMP bolixed\n");
133}
134
1da177e4
LT
135/* This tick register synchronization scheme is taken entirely from
136 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
137 *
138 * The only change I've made is to rework it so that the master
139 * initiates the synchonization instead of the slave. -DaveM
140 */
141
142#define MASTER 0
143#define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
144
145#define NUM_ROUNDS 64 /* magic value */
146#define NUM_ITERS 5 /* likewise */
147
148static DEFINE_SPINLOCK(itc_sync_lock);
149static unsigned long go[SLAVE + 1];
150
151#define DEBUG_TICK_SYNC 0
152
153static inline long get_delta (long *rt, long *master)
154{
155 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
156 unsigned long tcenter, t0, t1, tm;
157 unsigned long i;
158
159 for (i = 0; i < NUM_ITERS; i++) {
160 t0 = tick_ops->get_tick();
161 go[MASTER] = 1;
4f07118f 162 membar_storeload();
1da177e4 163 while (!(tm = go[SLAVE]))
4f07118f 164 rmb();
1da177e4 165 go[SLAVE] = 0;
4f07118f 166 wmb();
1da177e4
LT
167 t1 = tick_ops->get_tick();
168
169 if (t1 - t0 < best_t1 - best_t0)
170 best_t0 = t0, best_t1 = t1, best_tm = tm;
171 }
172
173 *rt = best_t1 - best_t0;
174 *master = best_tm - best_t0;
175
176 /* average best_t0 and best_t1 without overflow: */
177 tcenter = (best_t0/2 + best_t1/2);
178 if (best_t0 % 2 + best_t1 % 2 == 2)
179 tcenter++;
180 return tcenter - best_tm;
181}
182
183void smp_synchronize_tick_client(void)
184{
185 long i, delta, adj, adjust_latency = 0, done = 0;
186 unsigned long flags, rt, master_time_stamp, bound;
187#if DEBUG_TICK_SYNC
188 struct {
189 long rt; /* roundtrip time */
190 long master; /* master's timestamp */
191 long diff; /* difference between midpoint and master's timestamp */
192 long lat; /* estimate of itc adjustment latency */
193 } t[NUM_ROUNDS];
194#endif
195
196 go[MASTER] = 1;
197
198 while (go[MASTER])
4f07118f 199 rmb();
1da177e4
LT
200
201 local_irq_save(flags);
202 {
203 for (i = 0; i < NUM_ROUNDS; i++) {
204 delta = get_delta(&rt, &master_time_stamp);
205 if (delta == 0) {
206 done = 1; /* let's lock on to this... */
207 bound = rt;
208 }
209
210 if (!done) {
211 if (i > 0) {
212 adjust_latency += -delta;
213 adj = -delta + adjust_latency/4;
214 } else
215 adj = -delta;
216
112f4871 217 tick_ops->add_tick(adj);
1da177e4
LT
218 }
219#if DEBUG_TICK_SYNC
220 t[i].rt = rt;
221 t[i].master = master_time_stamp;
222 t[i].diff = delta;
223 t[i].lat = adjust_latency/4;
224#endif
225 }
226 }
227 local_irq_restore(flags);
228
229#if DEBUG_TICK_SYNC
230 for (i = 0; i < NUM_ROUNDS; i++)
231 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
232 t[i].rt, t[i].master, t[i].diff, t[i].lat);
233#endif
234
235 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU (last diff %ld cycles,"
236 "maxerr %lu cycles)\n", smp_processor_id(), delta, rt);
237}
238
239static void smp_start_sync_tick_client(int cpu);
240
241static void smp_synchronize_one_tick(int cpu)
242{
243 unsigned long flags, i;
244
245 go[MASTER] = 0;
246
247 smp_start_sync_tick_client(cpu);
248
249 /* wait for client to be ready */
250 while (!go[MASTER])
4f07118f 251 rmb();
1da177e4
LT
252
253 /* now let the client proceed into his loop */
254 go[MASTER] = 0;
4f07118f 255 membar_storeload();
1da177e4
LT
256
257 spin_lock_irqsave(&itc_sync_lock, flags);
258 {
259 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
260 while (!go[MASTER])
4f07118f 261 rmb();
1da177e4 262 go[MASTER] = 0;
4f07118f 263 wmb();
1da177e4 264 go[SLAVE] = tick_ops->get_tick();
4f07118f 265 membar_storeload();
1da177e4
LT
266 }
267 }
268 spin_unlock_irqrestore(&itc_sync_lock, flags);
269}
270
72aff53f
DM
271extern void sun4v_init_mondo_queues(int use_bootmem, int cpu, int alloc, int load);
272
1da177e4
LT
273extern unsigned long sparc64_cpu_startup;
274
275/* The OBP cpu startup callback truncates the 3rd arg cookie to
276 * 32-bits (I think) so to be safe we have it read the pointer
277 * contained here so we work on >4GB machines. -DaveM
278 */
279static struct thread_info *cpu_new_thread = NULL;
280
281static int __devinit smp_boot_one_cpu(unsigned int cpu)
282{
283 unsigned long entry =
284 (unsigned long)(&sparc64_cpu_startup);
285 unsigned long cookie =
286 (unsigned long)(&cpu_new_thread);
287 struct task_struct *p;
7890f794 288 int timeout, ret;
1da177e4
LT
289
290 p = fork_idle(cpu);
291 callin_flag = 0;
f3169641 292 cpu_new_thread = task_thread_info(p);
1da177e4
LT
293 cpu_set(cpu, cpu_callout_map);
294
7890f794 295 if (tlb_type == hypervisor) {
72aff53f
DM
296 /* Alloc the mondo queues, cpu will load them. */
297 sun4v_init_mondo_queues(0, cpu, 1, 0);
298
7890f794
DM
299 prom_startcpu_cpuid(cpu, entry, cookie);
300 } else {
5cbc3073 301 struct device_node *dp = of_find_node_by_cpuid(cpu);
7890f794 302
07f8e5f3 303 prom_startcpu(dp->node, entry, cookie);
7890f794 304 }
1da177e4
LT
305
306 for (timeout = 0; timeout < 5000000; timeout++) {
307 if (callin_flag)
308 break;
309 udelay(100);
310 }
72aff53f 311
1da177e4
LT
312 if (callin_flag) {
313 ret = 0;
314 } else {
315 printk("Processor %d is stuck.\n", cpu);
316 cpu_clear(cpu, cpu_callout_map);
317 ret = -ENODEV;
318 }
319 cpu_new_thread = NULL;
320
321 return ret;
322}
323
324static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
325{
326 u64 result, target;
327 int stuck, tmp;
328
329 if (this_is_starfire) {
330 /* map to real upaid */
331 cpu = (((cpu & 0x3c) << 1) |
332 ((cpu & 0x40) >> 4) |
333 (cpu & 0x3));
334 }
335
336 target = (cpu << 14) | 0x70;
337again:
338 /* Ok, this is the real Spitfire Errata #54.
339 * One must read back from a UDB internal register
340 * after writes to the UDB interrupt dispatch, but
341 * before the membar Sync for that write.
342 * So we use the high UDB control register (ASI 0x7f,
343 * ADDR 0x20) for the dummy read. -DaveM
344 */
345 tmp = 0x40;
346 __asm__ __volatile__(
347 "wrpr %1, %2, %%pstate\n\t"
348 "stxa %4, [%0] %3\n\t"
349 "stxa %5, [%0+%8] %3\n\t"
350 "add %0, %8, %0\n\t"
351 "stxa %6, [%0+%8] %3\n\t"
352 "membar #Sync\n\t"
353 "stxa %%g0, [%7] %3\n\t"
354 "membar #Sync\n\t"
355 "mov 0x20, %%g1\n\t"
356 "ldxa [%%g1] 0x7f, %%g0\n\t"
357 "membar #Sync"
358 : "=r" (tmp)
359 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
360 "r" (data0), "r" (data1), "r" (data2), "r" (target),
361 "r" (0x10), "0" (tmp)
362 : "g1");
363
364 /* NOTE: PSTATE_IE is still clear. */
365 stuck = 100000;
366 do {
367 __asm__ __volatile__("ldxa [%%g0] %1, %0"
368 : "=r" (result)
369 : "i" (ASI_INTR_DISPATCH_STAT));
370 if (result == 0) {
371 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
372 : : "r" (pstate));
373 return;
374 }
375 stuck -= 1;
376 if (stuck == 0)
377 break;
378 } while (result & 0x1);
379 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
380 : : "r" (pstate));
381 if (stuck == 0) {
382 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
383 smp_processor_id(), result);
384 } else {
385 udelay(2);
386 goto again;
387 }
388}
389
390static __inline__ void spitfire_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
391{
392 u64 pstate;
393 int i;
394
395 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
396 for_each_cpu_mask(i, mask)
397 spitfire_xcall_helper(data0, data1, data2, pstate, i);
398}
399
400/* Cheetah now allows to send the whole 64-bytes of data in the interrupt
401 * packet, but we have no use for that. However we do take advantage of
402 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
403 */
404static void cheetah_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
405{
406 u64 pstate, ver;
22adb358 407 int nack_busy_id, is_jbus, need_more;
1da177e4
LT
408
409 if (cpus_empty(mask))
410 return;
411
412 /* Unfortunately, someone at Sun had the brilliant idea to make the
413 * busy/nack fields hard-coded by ITID number for this Ultra-III
414 * derivative processor.
415 */
416 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
92704a1c
DM
417 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
418 (ver >> 32) == __SERRANO_ID);
1da177e4
LT
419
420 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
421
422retry:
22adb358 423 need_more = 0;
1da177e4
LT
424 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
425 : : "r" (pstate), "i" (PSTATE_IE));
426
427 /* Setup the dispatch data registers. */
428 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
429 "stxa %1, [%4] %6\n\t"
430 "stxa %2, [%5] %6\n\t"
431 "membar #Sync\n\t"
432 : /* no outputs */
433 : "r" (data0), "r" (data1), "r" (data2),
434 "r" (0x40), "r" (0x50), "r" (0x60),
435 "i" (ASI_INTR_W));
436
437 nack_busy_id = 0;
438 {
439 int i;
440
441 for_each_cpu_mask(i, mask) {
442 u64 target = (i << 14) | 0x70;
443
92704a1c 444 if (!is_jbus)
1da177e4
LT
445 target |= (nack_busy_id << 24);
446 __asm__ __volatile__(
447 "stxa %%g0, [%0] %1\n\t"
448 "membar #Sync\n\t"
449 : /* no outputs */
450 : "r" (target), "i" (ASI_INTR_W));
451 nack_busy_id++;
22adb358
DM
452 if (nack_busy_id == 32) {
453 need_more = 1;
454 break;
455 }
1da177e4
LT
456 }
457 }
458
459 /* Now, poll for completion. */
460 {
461 u64 dispatch_stat;
462 long stuck;
463
464 stuck = 100000 * nack_busy_id;
465 do {
466 __asm__ __volatile__("ldxa [%%g0] %1, %0"
467 : "=r" (dispatch_stat)
468 : "i" (ASI_INTR_DISPATCH_STAT));
469 if (dispatch_stat == 0UL) {
470 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
471 : : "r" (pstate));
22adb358
DM
472 if (unlikely(need_more)) {
473 int i, cnt = 0;
474 for_each_cpu_mask(i, mask) {
475 cpu_clear(i, mask);
476 cnt++;
477 if (cnt == 32)
478 break;
479 }
480 goto retry;
481 }
1da177e4
LT
482 return;
483 }
484 if (!--stuck)
485 break;
486 } while (dispatch_stat & 0x5555555555555555UL);
487
488 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
489 : : "r" (pstate));
490
491 if ((dispatch_stat & ~(0x5555555555555555UL)) == 0) {
492 /* Busy bits will not clear, continue instead
493 * of freezing up on this cpu.
494 */
495 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
496 smp_processor_id(), dispatch_stat);
497 } else {
498 int i, this_busy_nack = 0;
499
500 /* Delay some random time with interrupts enabled
501 * to prevent deadlock.
502 */
503 udelay(2 * nack_busy_id);
504
505 /* Clear out the mask bits for cpus which did not
506 * NACK us.
507 */
508 for_each_cpu_mask(i, mask) {
509 u64 check_mask;
510
92704a1c 511 if (is_jbus)
1da177e4
LT
512 check_mask = (0x2UL << (2*i));
513 else
514 check_mask = (0x2UL <<
515 this_busy_nack);
516 if ((dispatch_stat & check_mask) == 0)
517 cpu_clear(i, mask);
518 this_busy_nack += 2;
22adb358
DM
519 if (this_busy_nack == 64)
520 break;
1da177e4
LT
521 }
522
523 goto retry;
524 }
525 }
526}
527
1d2f1f90 528/* Multi-cpu list version. */
a43fe0e7
DM
529static void hypervisor_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
530{
b830ab66
DM
531 struct trap_per_cpu *tb;
532 u16 *cpu_list;
533 u64 *mondo;
534 cpumask_t error_mask;
535 unsigned long flags, status;
3cab0c3e 536 int cnt, retries, this_cpu, prev_sent, i;
b830ab66 537
17f34f0e
DM
538 if (cpus_empty(mask))
539 return;
540
b830ab66
DM
541 /* We have to do this whole thing with interrupts fully disabled.
542 * Otherwise if we send an xcall from interrupt context it will
543 * corrupt both our mondo block and cpu list state.
544 *
545 * One consequence of this is that we cannot use timeout mechanisms
546 * that depend upon interrupts being delivered locally. So, for
547 * example, we cannot sample jiffies and expect it to advance.
548 *
549 * Fortunately, udelay() uses %stick/%tick so we can use that.
550 */
551 local_irq_save(flags);
552
553 this_cpu = smp_processor_id();
554 tb = &trap_block[this_cpu];
1d2f1f90 555
b830ab66 556 mondo = __va(tb->cpu_mondo_block_pa);
1d2f1f90
DM
557 mondo[0] = data0;
558 mondo[1] = data1;
559 mondo[2] = data2;
560 wmb();
561
b830ab66
DM
562 cpu_list = __va(tb->cpu_list_pa);
563
564 /* Setup the initial cpu list. */
565 cnt = 0;
566 for_each_cpu_mask(i, mask)
567 cpu_list[cnt++] = i;
568
569 cpus_clear(error_mask);
1d2f1f90 570 retries = 0;
3cab0c3e 571 prev_sent = 0;
1d2f1f90 572 do {
3cab0c3e 573 int forward_progress, n_sent;
1d2f1f90 574
b830ab66
DM
575 status = sun4v_cpu_mondo_send(cnt,
576 tb->cpu_list_pa,
577 tb->cpu_mondo_block_pa);
578
579 /* HV_EOK means all cpus received the xcall, we're done. */
580 if (likely(status == HV_EOK))
1d2f1f90 581 break;
b830ab66 582
3cab0c3e
DM
583 /* First, see if we made any forward progress.
584 *
585 * The hypervisor indicates successful sends by setting
586 * cpu list entries to the value 0xffff.
b830ab66 587 */
3cab0c3e 588 n_sent = 0;
b830ab66 589 for (i = 0; i < cnt; i++) {
3cab0c3e
DM
590 if (likely(cpu_list[i] == 0xffff))
591 n_sent++;
1d2f1f90
DM
592 }
593
3cab0c3e
DM
594 forward_progress = 0;
595 if (n_sent > prev_sent)
596 forward_progress = 1;
597
598 prev_sent = n_sent;
599
b830ab66
DM
600 /* If we get a HV_ECPUERROR, then one or more of the cpus
601 * in the list are in error state. Use the cpu_state()
602 * hypervisor call to find out which cpus are in error state.
603 */
604 if (unlikely(status == HV_ECPUERROR)) {
605 for (i = 0; i < cnt; i++) {
606 long err;
607 u16 cpu;
608
609 cpu = cpu_list[i];
610 if (cpu == 0xffff)
611 continue;
612
613 err = sun4v_cpu_state(cpu);
614 if (err >= 0 &&
615 err == HV_CPU_STATE_ERROR) {
3cab0c3e 616 cpu_list[i] = 0xffff;
b830ab66
DM
617 cpu_set(cpu, error_mask);
618 }
619 }
620 } else if (unlikely(status != HV_EWOULDBLOCK))
621 goto fatal_mondo_error;
622
3cab0c3e
DM
623 /* Don't bother rewriting the CPU list, just leave the
624 * 0xffff and non-0xffff entries in there and the
625 * hypervisor will do the right thing.
626 *
627 * Only advance timeout state if we didn't make any
628 * forward progress.
629 */
b830ab66
DM
630 if (unlikely(!forward_progress)) {
631 if (unlikely(++retries > 10000))
632 goto fatal_mondo_timeout;
633
634 /* Delay a little bit to let other cpus catch up
635 * on their cpu mondo queue work.
636 */
637 udelay(2 * cnt);
638 }
1d2f1f90
DM
639 } while (1);
640
b830ab66
DM
641 local_irq_restore(flags);
642
643 if (unlikely(!cpus_empty(error_mask)))
644 goto fatal_mondo_cpu_error;
645
646 return;
647
648fatal_mondo_cpu_error:
649 printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
650 "were in error state\n",
651 this_cpu);
652 printk(KERN_CRIT "CPU[%d]: Error mask [ ", this_cpu);
653 for_each_cpu_mask(i, error_mask)
654 printk("%d ", i);
655 printk("]\n");
656 return;
657
658fatal_mondo_timeout:
659 local_irq_restore(flags);
660 printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
661 " progress after %d retries.\n",
662 this_cpu, retries);
663 goto dump_cpu_list_and_out;
664
665fatal_mondo_error:
666 local_irq_restore(flags);
667 printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
668 this_cpu, status);
669 printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
670 "mondo_block_pa(%lx)\n",
671 this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
672
673dump_cpu_list_and_out:
674 printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
675 for (i = 0; i < cnt; i++)
676 printk("%u ", cpu_list[i]);
677 printk("]\n");
1d2f1f90 678}
a43fe0e7 679
1da177e4
LT
680/* Send cross call to all processors mentioned in MASK
681 * except self.
682 */
683static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, cpumask_t mask)
684{
685 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
686 int this_cpu = get_cpu();
687
688 cpus_and(mask, mask, cpu_online_map);
689 cpu_clear(this_cpu, mask);
690
691 if (tlb_type == spitfire)
692 spitfire_xcall_deliver(data0, data1, data2, mask);
a43fe0e7 693 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1da177e4 694 cheetah_xcall_deliver(data0, data1, data2, mask);
a43fe0e7
DM
695 else
696 hypervisor_xcall_deliver(data0, data1, data2, mask);
1da177e4
LT
697 /* NOTE: Caller runs local copy on master. */
698
699 put_cpu();
700}
701
702extern unsigned long xcall_sync_tick;
703
704static void smp_start_sync_tick_client(int cpu)
705{
706 cpumask_t mask = cpumask_of_cpu(cpu);
707
708 smp_cross_call_masked(&xcall_sync_tick,
709 0, 0, 0, mask);
710}
711
712/* Send cross call to all processors except self. */
713#define smp_cross_call(func, ctx, data1, data2) \
714 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_map)
715
716struct call_data_struct {
717 void (*func) (void *info);
718 void *info;
719 atomic_t finished;
720 int wait;
721};
722
aa1d1a0a 723static __cacheline_aligned_in_smp DEFINE_SPINLOCK(call_lock);
1da177e4
LT
724static struct call_data_struct *call_data;
725
726extern unsigned long xcall_call_function;
727
aa1d1a0a
DM
728/**
729 * smp_call_function(): Run a function on all other CPUs.
730 * @func: The function to run. This must be fast and non-blocking.
731 * @info: An arbitrary pointer to pass to the function.
732 * @nonatomic: currently unused.
733 * @wait: If true, wait (atomically) until function has completed on other CPUs.
734 *
735 * Returns 0 on success, else a negative status code. Does not return until
736 * remote CPUs are nearly ready to execute <<func>> or are or have executed.
737 *
1da177e4
LT
738 * You must not call this function with disabled interrupts or from a
739 * hardware interrupt handler or from a bottom half handler.
740 */
bd40791e
DM
741static int smp_call_function_mask(void (*func)(void *info), void *info,
742 int nonatomic, int wait, cpumask_t mask)
1da177e4
LT
743{
744 struct call_data_struct data;
ee29074d 745 int cpus;
1da177e4 746
1da177e4
LT
747 /* Can deadlock when called with interrupts disabled */
748 WARN_ON(irqs_disabled());
749
750 data.func = func;
751 data.info = info;
752 atomic_set(&data.finished, 0);
753 data.wait = wait;
754
755 spin_lock(&call_lock);
756
ee29074d
DM
757 cpu_clear(smp_processor_id(), mask);
758 cpus = cpus_weight(mask);
759 if (!cpus)
760 goto out_unlock;
761
1da177e4 762 call_data = &data;
aa1d1a0a 763 mb();
1da177e4 764
bd40791e 765 smp_cross_call_masked(&xcall_call_function, 0, 0, 0, mask);
1da177e4 766
aa1d1a0a
DM
767 /* Wait for response */
768 while (atomic_read(&data.finished) != cpus)
769 cpu_relax();
1da177e4 770
ee29074d 771out_unlock:
1da177e4
LT
772 spin_unlock(&call_lock);
773
774 return 0;
1da177e4
LT
775}
776
bd40791e
DM
777int smp_call_function(void (*func)(void *info), void *info,
778 int nonatomic, int wait)
779{
780 return smp_call_function_mask(func, info, nonatomic, wait,
781 cpu_online_map);
782}
783
1da177e4
LT
784void smp_call_function_client(int irq, struct pt_regs *regs)
785{
786 void (*func) (void *info) = call_data->func;
787 void *info = call_data->info;
788
789 clear_softint(1 << irq);
790 if (call_data->wait) {
791 /* let initiator proceed only after completion */
792 func(info);
793 atomic_inc(&call_data->finished);
794 } else {
795 /* let initiator proceed after getting data */
796 atomic_inc(&call_data->finished);
797 func(info);
798 }
799}
800
bd40791e
DM
801static void tsb_sync(void *info)
802{
6f25f398 803 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
bd40791e
DM
804 struct mm_struct *mm = info;
805
6f25f398
DM
806 /* It is not valid to test "currrent->active_mm == mm" here.
807 *
808 * The value of "current" is not changed atomically with
809 * switch_mm(). But that's OK, we just need to check the
810 * current cpu's trap block PGD physical address.
811 */
812 if (tp->pgd_paddr == __pa(mm->pgd))
bd40791e
DM
813 tsb_context_switch(mm);
814}
815
816void smp_tsb_sync(struct mm_struct *mm)
817{
818 smp_call_function_mask(tsb_sync, mm, 0, 1, mm->cpu_vm_mask);
819}
820
1da177e4
LT
821extern unsigned long xcall_flush_tlb_mm;
822extern unsigned long xcall_flush_tlb_pending;
823extern unsigned long xcall_flush_tlb_kernel_range;
1da177e4
LT
824extern unsigned long xcall_report_regs;
825extern unsigned long xcall_receive_signal;
ee29074d 826extern unsigned long xcall_new_mmu_context_version;
1da177e4
LT
827
828#ifdef DCACHE_ALIASING_POSSIBLE
829extern unsigned long xcall_flush_dcache_page_cheetah;
830#endif
831extern unsigned long xcall_flush_dcache_page_spitfire;
832
833#ifdef CONFIG_DEBUG_DCFLUSH
834extern atomic_t dcpage_flushes;
835extern atomic_t dcpage_flushes_xcall;
836#endif
837
838static __inline__ void __local_flush_dcache_page(struct page *page)
839{
840#ifdef DCACHE_ALIASING_POSSIBLE
841 __flush_dcache_page(page_address(page),
842 ((tlb_type == spitfire) &&
843 page_mapping(page) != NULL));
844#else
845 if (page_mapping(page) != NULL &&
846 tlb_type == spitfire)
847 __flush_icache_page(__pa(page_address(page)));
848#endif
849}
850
851void smp_flush_dcache_page_impl(struct page *page, int cpu)
852{
853 cpumask_t mask = cpumask_of_cpu(cpu);
a43fe0e7
DM
854 int this_cpu;
855
856 if (tlb_type == hypervisor)
857 return;
1da177e4
LT
858
859#ifdef CONFIG_DEBUG_DCFLUSH
860 atomic_inc(&dcpage_flushes);
861#endif
a43fe0e7
DM
862
863 this_cpu = get_cpu();
864
1da177e4
LT
865 if (cpu == this_cpu) {
866 __local_flush_dcache_page(page);
867 } else if (cpu_online(cpu)) {
868 void *pg_addr = page_address(page);
869 u64 data0;
870
871 if (tlb_type == spitfire) {
872 data0 =
873 ((u64)&xcall_flush_dcache_page_spitfire);
874 if (page_mapping(page) != NULL)
875 data0 |= ((u64)1 << 32);
876 spitfire_xcall_deliver(data0,
877 __pa(pg_addr),
878 (u64) pg_addr,
879 mask);
a43fe0e7 880 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1da177e4
LT
881#ifdef DCACHE_ALIASING_POSSIBLE
882 data0 =
883 ((u64)&xcall_flush_dcache_page_cheetah);
884 cheetah_xcall_deliver(data0,
885 __pa(pg_addr),
886 0, mask);
887#endif
888 }
889#ifdef CONFIG_DEBUG_DCFLUSH
890 atomic_inc(&dcpage_flushes_xcall);
891#endif
892 }
893
894 put_cpu();
895}
896
897void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
898{
899 void *pg_addr = page_address(page);
900 cpumask_t mask = cpu_online_map;
901 u64 data0;
a43fe0e7
DM
902 int this_cpu;
903
904 if (tlb_type == hypervisor)
905 return;
906
907 this_cpu = get_cpu();
1da177e4
LT
908
909 cpu_clear(this_cpu, mask);
910
911#ifdef CONFIG_DEBUG_DCFLUSH
912 atomic_inc(&dcpage_flushes);
913#endif
914 if (cpus_empty(mask))
915 goto flush_self;
916 if (tlb_type == spitfire) {
917 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
918 if (page_mapping(page) != NULL)
919 data0 |= ((u64)1 << 32);
920 spitfire_xcall_deliver(data0,
921 __pa(pg_addr),
922 (u64) pg_addr,
923 mask);
a43fe0e7 924 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1da177e4
LT
925#ifdef DCACHE_ALIASING_POSSIBLE
926 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
927 cheetah_xcall_deliver(data0,
928 __pa(pg_addr),
929 0, mask);
930#endif
931 }
932#ifdef CONFIG_DEBUG_DCFLUSH
933 atomic_inc(&dcpage_flushes_xcall);
934#endif
935 flush_self:
936 __local_flush_dcache_page(page);
937
938 put_cpu();
939}
940
a0663a79
DM
941static void __smp_receive_signal_mask(cpumask_t mask)
942{
943 smp_cross_call_masked(&xcall_receive_signal, 0, 0, 0, mask);
944}
945
1da177e4
LT
946void smp_receive_signal(int cpu)
947{
948 cpumask_t mask = cpumask_of_cpu(cpu);
949
a0663a79
DM
950 if (cpu_online(cpu))
951 __smp_receive_signal_mask(mask);
1da177e4
LT
952}
953
954void smp_receive_signal_client(int irq, struct pt_regs *regs)
ee29074d
DM
955{
956 clear_softint(1 << irq);
957}
958
959void smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
1da177e4 960{
a0663a79 961 struct mm_struct *mm;
ee29074d 962 unsigned long flags;
a0663a79 963
1da177e4 964 clear_softint(1 << irq);
a0663a79
DM
965
966 /* See if we need to allocate a new TLB context because
967 * the version of the one we are using is now out of date.
968 */
969 mm = current->active_mm;
ee29074d
DM
970 if (unlikely(!mm || (mm == &init_mm)))
971 return;
a0663a79 972
ee29074d 973 spin_lock_irqsave(&mm->context.lock, flags);
aac0aadf 974
ee29074d
DM
975 if (unlikely(!CTX_VALID(mm->context)))
976 get_new_mmu_context(mm);
aac0aadf 977
ee29074d 978 spin_unlock_irqrestore(&mm->context.lock, flags);
aac0aadf 979
ee29074d
DM
980 load_secondary_context(mm);
981 __flush_tlb_mm(CTX_HWBITS(mm->context),
982 SECONDARY_CONTEXT);
a0663a79
DM
983}
984
985void smp_new_mmu_context_version(void)
986{
ee29074d 987 smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
1da177e4
LT
988}
989
990void smp_report_regs(void)
991{
992 smp_cross_call(&xcall_report_regs, 0, 0, 0);
993}
994
1da177e4
LT
995/* We know that the window frames of the user have been flushed
996 * to the stack before we get here because all callers of us
997 * are flush_tlb_*() routines, and these run after flush_cache_*()
998 * which performs the flushw.
999 *
1000 * The SMP TLB coherency scheme we use works as follows:
1001 *
1002 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1003 * space has (potentially) executed on, this is the heuristic
1004 * we use to avoid doing cross calls.
1005 *
1006 * Also, for flushing from kswapd and also for clones, we
1007 * use cpu_vm_mask as the list of cpus to make run the TLB.
1008 *
1009 * 2) TLB context numbers are shared globally across all processors
1010 * in the system, this allows us to play several games to avoid
1011 * cross calls.
1012 *
1013 * One invariant is that when a cpu switches to a process, and
1014 * that processes tsk->active_mm->cpu_vm_mask does not have the
1015 * current cpu's bit set, that tlb context is flushed locally.
1016 *
1017 * If the address space is non-shared (ie. mm->count == 1) we avoid
1018 * cross calls when we want to flush the currently running process's
1019 * tlb state. This is done by clearing all cpu bits except the current
1020 * processor's in current->active_mm->cpu_vm_mask and performing the
1021 * flush locally only. This will force any subsequent cpus which run
1022 * this task to flush the context from the local tlb if the process
1023 * migrates to another cpu (again).
1024 *
1025 * 3) For shared address spaces (threads) and swapping we bite the
1026 * bullet for most cases and perform the cross call (but only to
1027 * the cpus listed in cpu_vm_mask).
1028 *
1029 * The performance gain from "optimizing" away the cross call for threads is
1030 * questionable (in theory the big win for threads is the massive sharing of
1031 * address space state across processors).
1032 */
62dbec78
DM
1033
1034/* This currently is only used by the hugetlb arch pre-fault
1035 * hook on UltraSPARC-III+ and later when changing the pagesize
1036 * bits of the context register for an address space.
1037 */
1da177e4
LT
1038void smp_flush_tlb_mm(struct mm_struct *mm)
1039{
62dbec78
DM
1040 u32 ctx = CTX_HWBITS(mm->context);
1041 int cpu = get_cpu();
1da177e4 1042
62dbec78
DM
1043 if (atomic_read(&mm->mm_users) == 1) {
1044 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1045 goto local_flush_and_out;
1046 }
1da177e4 1047
62dbec78
DM
1048 smp_cross_call_masked(&xcall_flush_tlb_mm,
1049 ctx, 0, 0,
1050 mm->cpu_vm_mask);
1da177e4 1051
62dbec78
DM
1052local_flush_and_out:
1053 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1da177e4 1054
62dbec78 1055 put_cpu();
1da177e4
LT
1056}
1057
1058void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1059{
1060 u32 ctx = CTX_HWBITS(mm->context);
1061 int cpu = get_cpu();
1062
dedeb002 1063 if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1)
1da177e4 1064 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
dedeb002
HD
1065 else
1066 smp_cross_call_masked(&xcall_flush_tlb_pending,
1067 ctx, nr, (unsigned long) vaddrs,
1068 mm->cpu_vm_mask);
1da177e4 1069
1da177e4
LT
1070 __flush_tlb_pending(ctx, nr, vaddrs);
1071
1072 put_cpu();
1073}
1074
1075void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1076{
1077 start &= PAGE_MASK;
1078 end = PAGE_ALIGN(end);
1079 if (start != end) {
1080 smp_cross_call(&xcall_flush_tlb_kernel_range,
1081 0, start, end);
1082
1083 __flush_tlb_kernel_range(start, end);
1084 }
1085}
1086
1087/* CPU capture. */
1088/* #define CAPTURE_DEBUG */
1089extern unsigned long xcall_capture;
1090
1091static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1092static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1093static unsigned long penguins_are_doing_time;
1094
1095void smp_capture(void)
1096{
1097 int result = atomic_add_ret(1, &smp_capture_depth);
1098
1099 if (result == 1) {
1100 int ncpus = num_online_cpus();
1101
1102#ifdef CAPTURE_DEBUG
1103 printk("CPU[%d]: Sending penguins to jail...",
1104 smp_processor_id());
1105#endif
1106 penguins_are_doing_time = 1;
4f07118f 1107 membar_storestore_loadstore();
1da177e4
LT
1108 atomic_inc(&smp_capture_registry);
1109 smp_cross_call(&xcall_capture, 0, 0, 0);
1110 while (atomic_read(&smp_capture_registry) != ncpus)
4f07118f 1111 rmb();
1da177e4
LT
1112#ifdef CAPTURE_DEBUG
1113 printk("done\n");
1114#endif
1115 }
1116}
1117
1118void smp_release(void)
1119{
1120 if (atomic_dec_and_test(&smp_capture_depth)) {
1121#ifdef CAPTURE_DEBUG
1122 printk("CPU[%d]: Giving pardon to "
1123 "imprisoned penguins\n",
1124 smp_processor_id());
1125#endif
1126 penguins_are_doing_time = 0;
4f07118f 1127 membar_storeload_storestore();
1da177e4
LT
1128 atomic_dec(&smp_capture_registry);
1129 }
1130}
1131
1132/* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
1133 * can service tlb flush xcalls...
1134 */
1135extern void prom_world(int);
96c6e0d8 1136
1da177e4
LT
1137void smp_penguin_jailcell(int irq, struct pt_regs *regs)
1138{
1da177e4
LT
1139 clear_softint(1 << irq);
1140
1141 preempt_disable();
1142
1143 __asm__ __volatile__("flushw");
1da177e4
LT
1144 prom_world(1);
1145 atomic_inc(&smp_capture_registry);
4f07118f 1146 membar_storeload_storestore();
1da177e4 1147 while (penguins_are_doing_time)
4f07118f 1148 rmb();
1da177e4
LT
1149 atomic_dec(&smp_capture_registry);
1150 prom_world(0);
1151
1152 preempt_enable();
1153}
1154
1da177e4
LT
1155void __init smp_tick_init(void)
1156{
1157 boot_cpu_id = hard_smp_processor_id();
1da177e4
LT
1158}
1159
1160/* /proc/profile writes can call this, don't __init it please. */
1da177e4
LT
1161int setup_profiling_timer(unsigned int multiplier)
1162{
777a4475 1163 return -EINVAL;
1da177e4
LT
1164}
1165
7abea921 1166/* Constrain the number of cpus to max_cpus. */
1da177e4
LT
1167void __init smp_prepare_cpus(unsigned int max_cpus)
1168{
8935dced
DM
1169 int i;
1170
1da177e4 1171 if (num_possible_cpus() > max_cpus) {
5cbc3073
DM
1172 for_each_possible_cpu(i) {
1173 if (i != boot_cpu_id) {
1174 cpu_clear(i, phys_cpu_present_map);
1175 cpu_clear(i, cpu_present_map);
1da177e4
LT
1176 if (num_possible_cpus() <= max_cpus)
1177 break;
1178 }
8935dced
DM
1179 }
1180 }
1181
5cbc3073 1182 cpu_data(boot_cpu_id).udelay_val = loops_per_jiffy;
1da177e4
LT
1183}
1184
5cbc3073 1185void __devinit smp_prepare_boot_cpu(void)
7abea921 1186{
7abea921
DM
1187}
1188
5cbc3073 1189void __devinit smp_fill_in_sib_core_maps(void)
1da177e4 1190{
5cbc3073
DM
1191 unsigned int i;
1192
1193 for_each_possible_cpu(i) {
1194 unsigned int j;
1195
1196 if (cpu_data(i).core_id == 0) {
f78eae2e 1197 cpu_set(i, cpu_core_map[i]);
5cbc3073
DM
1198 continue;
1199 }
1200
1201 for_each_possible_cpu(j) {
1202 if (cpu_data(i).core_id ==
1203 cpu_data(j).core_id)
f78eae2e
DM
1204 cpu_set(j, cpu_core_map[i]);
1205 }
1206 }
1207
1208 for_each_possible_cpu(i) {
1209 unsigned int j;
1210
1211 if (cpu_data(i).proc_id == -1) {
1212 cpu_set(i, cpu_sibling_map[i]);
1213 continue;
1214 }
1215
1216 for_each_possible_cpu(j) {
1217 if (cpu_data(i).proc_id ==
1218 cpu_data(j).proc_id)
5cbc3073
DM
1219 cpu_set(j, cpu_sibling_map[i]);
1220 }
1221 }
1da177e4
LT
1222}
1223
b282b6f8 1224int __cpuinit __cpu_up(unsigned int cpu)
1da177e4
LT
1225{
1226 int ret = smp_boot_one_cpu(cpu);
1227
1228 if (!ret) {
1229 cpu_set(cpu, smp_commenced_mask);
1230 while (!cpu_isset(cpu, cpu_online_map))
1231 mb();
1232 if (!cpu_isset(cpu, cpu_online_map)) {
1233 ret = -ENODEV;
1234 } else {
02fead75
DM
1235 /* On SUN4V, writes to %tick and %stick are
1236 * not allowed.
1237 */
1238 if (tlb_type != hypervisor)
1239 smp_synchronize_one_tick(cpu);
1da177e4
LT
1240 }
1241 }
1242 return ret;
1243}
1244
1245void __init smp_cpus_done(unsigned int max_cpus)
1246{
1247 unsigned long bogosum = 0;
1248 int i;
1249
394e3902
AM
1250 for_each_online_cpu(i)
1251 bogosum += cpu_data(i).udelay_val;
1da177e4
LT
1252 printk("Total of %ld processors activated "
1253 "(%lu.%02lu BogoMIPS).\n",
1254 (long) num_online_cpus(),
1255 bogosum/(500000/HZ),
1256 (bogosum/(5000/HZ))%100);
1257}
1258
1da177e4
LT
1259void smp_send_reschedule(int cpu)
1260{
64c7c8f8 1261 smp_receive_signal(cpu);
1da177e4
LT
1262}
1263
1264/* This is a nop because we capture all other cpus
1265 * anyways when making the PROM active.
1266 */
1267void smp_send_stop(void)
1268{
1269}
1270
d369ddd2
DM
1271unsigned long __per_cpu_base __read_mostly;
1272unsigned long __per_cpu_shift __read_mostly;
1da177e4
LT
1273
1274EXPORT_SYMBOL(__per_cpu_base);
1275EXPORT_SYMBOL(__per_cpu_shift);
1276
5cbc3073 1277void __init real_setup_per_cpu_areas(void)
1da177e4
LT
1278{
1279 unsigned long goal, size, i;
1280 char *ptr;
1da177e4
LT
1281
1282 /* Copy section for each CPU (we discard the original) */
5a089006
DM
1283 goal = PERCPU_ENOUGH_ROOM;
1284
b6e3590f
JF
1285 __per_cpu_shift = PAGE_SHIFT;
1286 for (size = PAGE_SIZE; size < goal; size <<= 1UL)
1da177e4
LT
1287 __per_cpu_shift++;
1288
b6e3590f 1289 ptr = alloc_bootmem_pages(size * NR_CPUS);
1da177e4
LT
1290
1291 __per_cpu_base = ptr - __per_cpu_start;
1292
1da177e4
LT
1293 for (i = 0; i < NR_CPUS; i++, ptr += size)
1294 memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
951bc82c
DM
1295
1296 /* Setup %g5 for the boot cpu. */
1297 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1da177e4 1298}