]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/tile/include/asm/pgtable.h
Disintegrate asm/system.h for Tile
[mirror_ubuntu-artful-kernel.git] / arch / tile / include / asm / pgtable.h
CommitLineData
867e359b
CM
1/*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 *
14 * This file contains the functions and defines necessary to modify and use
15 * the TILE page table tree.
16 */
17
18#ifndef _ASM_TILE_PGTABLE_H
19#define _ASM_TILE_PGTABLE_H
20
21#include <hv/hypervisor.h>
22
23#ifndef __ASSEMBLY__
24
25#include <linux/bitops.h>
26#include <linux/threads.h>
27#include <linux/slab.h>
28#include <linux/list.h>
29#include <linux/spinlock.h>
30#include <asm/processor.h>
31#include <asm/fixmap.h>
867e359b
CM
32
33struct mm_struct;
34struct vm_area_struct;
35
36/*
37 * ZERO_PAGE is a global shared page that is always zero: used
38 * for zero-mapped memory areas etc..
39 */
40extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)];
41#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
42
43extern pgd_t swapper_pg_dir[];
44extern pgprot_t swapper_pgprot;
45extern struct kmem_cache *pgd_cache;
46extern spinlock_t pgd_lock;
47extern struct list_head pgd_list;
48
49/*
50 * The very last slots in the pgd_t are for addresses unusable by Linux
51 * (pgd_addr_invalid() returns true). So we use them for the list structure.
52 * The x86 code we are modelled on uses the page->private/index fields
53 * (older 2.6 kernels) or the lru list (newer 2.6 kernels), but since
54 * our pgds are so much smaller than a page, it seems a waste to
55 * spend a whole page on each pgd.
56 */
57#define PGD_LIST_OFFSET \
58 ((PTRS_PER_PGD * sizeof(pgd_t)) - sizeof(struct list_head))
59#define pgd_to_list(pgd) \
60 ((struct list_head *)((char *)(pgd) + PGD_LIST_OFFSET))
61#define list_to_pgd(list) \
62 ((pgd_t *)((char *)(list) - PGD_LIST_OFFSET))
63
64extern void pgtable_cache_init(void);
65extern void paging_init(void);
66extern void set_page_homes(void);
67
68#define FIRST_USER_ADDRESS 0
69
70#define _PAGE_PRESENT HV_PTE_PRESENT
71#define _PAGE_HUGE_PAGE HV_PTE_PAGE
72#define _PAGE_READABLE HV_PTE_READABLE
73#define _PAGE_WRITABLE HV_PTE_WRITABLE
74#define _PAGE_EXECUTABLE HV_PTE_EXECUTABLE
75#define _PAGE_ACCESSED HV_PTE_ACCESSED
76#define _PAGE_DIRTY HV_PTE_DIRTY
77#define _PAGE_GLOBAL HV_PTE_GLOBAL
78#define _PAGE_USER HV_PTE_USER
79
80/*
81 * All the "standard" bits. Cache-control bits are managed elsewhere.
82 * This is used to test for valid level-2 page table pointers by checking
83 * all the bits, and to mask away the cache control bits for mprotect.
84 */
85#define _PAGE_ALL (\
86 _PAGE_PRESENT | \
87 _PAGE_HUGE_PAGE | \
88 _PAGE_READABLE | \
89 _PAGE_WRITABLE | \
90 _PAGE_EXECUTABLE | \
91 _PAGE_ACCESSED | \
92 _PAGE_DIRTY | \
93 _PAGE_GLOBAL | \
94 _PAGE_USER \
95)
96
97#define PAGE_NONE \
98 __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED)
99#define PAGE_SHARED \
100 __pgprot(_PAGE_PRESENT | _PAGE_READABLE | _PAGE_WRITABLE | \
101 _PAGE_USER | _PAGE_ACCESSED)
102
103#define PAGE_SHARED_EXEC \
104 __pgprot(_PAGE_PRESENT | _PAGE_READABLE | _PAGE_WRITABLE | \
105 _PAGE_EXECUTABLE | _PAGE_USER | _PAGE_ACCESSED)
106#define PAGE_COPY_NOEXEC \
107 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_READABLE)
108#define PAGE_COPY_EXEC \
109 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | \
110 _PAGE_READABLE | _PAGE_EXECUTABLE)
111#define PAGE_COPY \
112 PAGE_COPY_NOEXEC
113#define PAGE_READONLY \
114 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_READABLE)
115#define PAGE_READONLY_EXEC \
116 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | \
117 _PAGE_READABLE | _PAGE_EXECUTABLE)
118
119#define _PAGE_KERNEL_RO \
120 (_PAGE_PRESENT | _PAGE_GLOBAL | _PAGE_READABLE | _PAGE_ACCESSED)
121#define _PAGE_KERNEL \
122 (_PAGE_KERNEL_RO | _PAGE_WRITABLE | _PAGE_DIRTY)
123#define _PAGE_KERNEL_EXEC (_PAGE_KERNEL_RO | _PAGE_EXECUTABLE)
124
125#define PAGE_KERNEL __pgprot(_PAGE_KERNEL)
126#define PAGE_KERNEL_RO __pgprot(_PAGE_KERNEL_RO)
127#define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL_EXEC)
128
129#define page_to_kpgprot(p) PAGE_KERNEL
130
131/*
132 * We could tighten these up, but for now writable or executable
133 * implies readable.
134 */
135#define __P000 PAGE_NONE
136#define __P001 PAGE_READONLY
137#define __P010 PAGE_COPY /* this is write-only, which we won't support */
138#define __P011 PAGE_COPY
139#define __P100 PAGE_READONLY_EXEC
140#define __P101 PAGE_READONLY_EXEC
141#define __P110 PAGE_COPY_EXEC
142#define __P111 PAGE_COPY_EXEC
143
144#define __S000 PAGE_NONE
145#define __S001 PAGE_READONLY
146#define __S010 PAGE_SHARED
147#define __S011 PAGE_SHARED
148#define __S100 PAGE_READONLY_EXEC
149#define __S101 PAGE_READONLY_EXEC
150#define __S110 PAGE_SHARED_EXEC
151#define __S111 PAGE_SHARED_EXEC
152
153/*
154 * All the normal _PAGE_ALL bits are ignored for PMDs, except PAGE_PRESENT
155 * and PAGE_HUGE_PAGE, which must be one and zero, respectively.
156 * We set the ignored bits to zero.
157 */
158#define _PAGE_TABLE _PAGE_PRESENT
159
160/* Inherit the caching flags from the old protection bits. */
161#define pgprot_modify(oldprot, newprot) \
162 (pgprot_t) { ((oldprot).val & ~_PAGE_ALL) | (newprot).val }
163
164/* Just setting the PFN to zero suffices. */
165#define pte_pgprot(x) hv_pte_set_pfn((x), 0)
166
167/*
168 * For PTEs and PDEs, we must clear the Present bit first when
169 * clearing a page table entry, so clear the bottom half first and
170 * enforce ordering with a barrier.
171 */
172static inline void __pte_clear(pte_t *ptep)
173{
174#ifdef __tilegx__
175 ptep->val = 0;
176#else
177 u32 *tmp = (u32 *)ptep;
178 tmp[0] = 0;
179 barrier();
180 tmp[1] = 0;
181#endif
182}
183#define pte_clear(mm, addr, ptep) __pte_clear(ptep)
184
185/*
186 * The following only work if pte_present() is true.
187 * Undefined behaviour if not..
188 */
189#define pte_present hv_pte_get_present
190#define pte_user hv_pte_get_user
191#define pte_read hv_pte_get_readable
192#define pte_dirty hv_pte_get_dirty
193#define pte_young hv_pte_get_accessed
194#define pte_write hv_pte_get_writable
195#define pte_exec hv_pte_get_executable
196#define pte_huge hv_pte_get_page
197#define pte_rdprotect hv_pte_clear_readable
198#define pte_exprotect hv_pte_clear_executable
199#define pte_mkclean hv_pte_clear_dirty
200#define pte_mkold hv_pte_clear_accessed
201#define pte_wrprotect hv_pte_clear_writable
202#define pte_mksmall hv_pte_clear_page
203#define pte_mkread hv_pte_set_readable
204#define pte_mkexec hv_pte_set_executable
205#define pte_mkdirty hv_pte_set_dirty
206#define pte_mkyoung hv_pte_set_accessed
207#define pte_mkwrite hv_pte_set_writable
208#define pte_mkhuge hv_pte_set_page
209
210#define pte_special(pte) 0
211#define pte_mkspecial(pte) (pte)
212
213/*
214 * Use some spare bits in the PTE for user-caching tags.
215 */
216#define pte_set_forcecache hv_pte_set_client0
217#define pte_get_forcecache hv_pte_get_client0
218#define pte_clear_forcecache hv_pte_clear_client0
219#define pte_set_anyhome hv_pte_set_client1
220#define pte_get_anyhome hv_pte_get_client1
221#define pte_clear_anyhome hv_pte_clear_client1
222
223/*
224 * A migrating PTE has PAGE_PRESENT clear but all the other bits preserved.
225 */
226#define pte_migrating hv_pte_get_migrating
227#define pte_mkmigrate(x) hv_pte_set_migrating(hv_pte_clear_present(x))
228#define pte_donemigrate(x) hv_pte_set_present(hv_pte_clear_migrating(x))
229
230#define pte_ERROR(e) \
0707ad30 231 pr_err("%s:%d: bad pte 0x%016llx.\n", __FILE__, __LINE__, pte_val(e))
867e359b 232#define pgd_ERROR(e) \
0707ad30 233 pr_err("%s:%d: bad pgd 0x%016llx.\n", __FILE__, __LINE__, pgd_val(e))
867e359b 234
76c567fb
CM
235/* Return PA and protection info for a given kernel VA. */
236int va_to_cpa_and_pte(void *va, phys_addr_t *cpa, pte_t *pte);
237
238/*
239 * __set_pte() ensures we write the 64-bit PTE with 32-bit words in
240 * the right order on 32-bit platforms and also allows us to write
241 * hooks to check valid PTEs, etc., if we want.
242 */
243void __set_pte(pte_t *ptep, pte_t pte);
244
867e359b 245/*
76c567fb 246 * set_pte() sets the given PTE and also sanity-checks the
867e359b
CM
247 * requested PTE against the page homecaching. Unspecified parts
248 * of the PTE are filled in when it is written to memory, i.e. all
249 * caching attributes if "!forcecache", or the home cpu if "anyhome".
250 */
76c567fb 251extern void set_pte(pte_t *ptep, pte_t pte);
867e359b
CM
252#define set_pte_at(mm, addr, ptep, pteval) set_pte(ptep, pteval)
253#define set_pte_atomic(pteptr, pteval) set_pte(pteptr, pteval)
254
255#define pte_page(x) pfn_to_page(pte_pfn(x))
256
257static inline int pte_none(pte_t pte)
258{
259 return !pte.val;
260}
261
262static inline unsigned long pte_pfn(pte_t pte)
263{
264 return hv_pte_get_pfn(pte);
265}
266
267/* Set or get the remote cache cpu in a pgprot with remote caching. */
268extern pgprot_t set_remote_cache_cpu(pgprot_t prot, int cpu);
269extern int get_remote_cache_cpu(pgprot_t prot);
270
271static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot)
272{
273 return hv_pte_set_pfn(prot, pfn);
274}
275
276/* Support for priority mappings. */
277extern void start_mm_caching(struct mm_struct *mm);
278extern void check_mm_caching(struct mm_struct *prev, struct mm_struct *next);
279
280/*
281 * Support non-linear file mappings (see sys_remap_file_pages).
282 * This is defined by CLIENT1 set but CLIENT0 and _PAGE_PRESENT clear, and the
283 * file offset in the 32 high bits.
284 */
285#define _PAGE_FILE HV_PTE_CLIENT1
286#define PTE_FILE_MAX_BITS 32
287#define pte_file(pte) (hv_pte_get_client1(pte) && !hv_pte_get_client0(pte))
288#define pte_to_pgoff(pte) ((pte).val >> 32)
289#define pgoff_to_pte(off) ((pte_t) { (((long long)(off)) << 32) | _PAGE_FILE })
290
291/*
292 * Encode and de-code a swap entry (see <linux/swapops.h>).
293 * We put the swap file type+offset in the 32 high bits;
294 * I believe we can just leave the low bits clear.
295 */
296#define __swp_type(swp) ((swp).val & 0x1f)
297#define __swp_offset(swp) ((swp).val >> 5)
298#define __swp_entry(type, off) ((swp_entry_t) { (type) | ((off) << 5) })
299#define __pte_to_swp_entry(pte) ((swp_entry_t) { (pte).val >> 32 })
300#define __swp_entry_to_pte(swp) ((pte_t) { (((long long) ((swp).val)) << 32) })
301
867e359b
CM
302/*
303 * Conversion functions: convert a page and protection to a page entry,
304 * and a page entry and page directory to the page they refer to.
305 */
306
307#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
308
309/*
310 * If we are doing an mprotect(), just accept the new vma->vm_page_prot
311 * value and combine it with the PFN from the old PTE to get a new PTE.
312 */
313static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
314{
315 return pfn_pte(hv_pte_get_pfn(pte), newprot);
316}
317
318/*
319 * The pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
320 *
321 * This macro returns the index of the entry in the pgd page which would
322 * control the given virtual address.
323 */
324#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
325
326/*
327 * pgd_offset() returns a (pgd_t *)
328 * pgd_index() is used get the offset into the pgd page's array of pgd_t's.
329 */
330#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
331
332/*
333 * A shortcut which implies the use of the kernel's pgd, instead
334 * of a process's.
335 */
336#define pgd_offset_k(address) pgd_offset(&init_mm, address)
337
338#if defined(CONFIG_HIGHPTE)
38a6f426
CM
339extern pte_t *pte_offset_map(pmd_t *, unsigned long address);
340#define pte_unmap(pte) kunmap_atomic(pte)
867e359b
CM
341#else
342#define pte_offset_map(dir, address) pte_offset_kernel(dir, address)
867e359b 343#define pte_unmap(pte) do { } while (0)
867e359b
CM
344#endif
345
346/* Clear a non-executable kernel PTE and flush it from the TLB. */
347#define kpte_clear_flush(ptep, vaddr) \
348do { \
349 pte_clear(&init_mm, (vaddr), (ptep)); \
350 local_flush_tlb_page(FLUSH_NONEXEC, (vaddr), PAGE_SIZE); \
351} while (0)
352
353/*
354 * The kernel page tables contain what we need, and we flush when we
355 * change specific page table entries.
356 */
357#define update_mmu_cache(vma, address, pte) do { } while (0)
358
359#ifdef CONFIG_FLATMEM
360#define kern_addr_valid(addr) (1)
361#endif /* CONFIG_FLATMEM */
362
363#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
364 remap_pfn_range(vma, vaddr, pfn, size, prot)
365
366extern void vmalloc_sync_all(void);
367
368#endif /* !__ASSEMBLY__ */
369
370#ifdef __tilegx__
371#include <asm/pgtable_64.h>
372#else
373#include <asm/pgtable_32.h>
374#endif
375
376#ifndef __ASSEMBLY__
377
378static inline int pmd_none(pmd_t pmd)
379{
380 /*
381 * Only check low word on 32-bit platforms, since it might be
382 * out of sync with upper half.
383 */
384 return (unsigned long)pmd_val(pmd) == 0;
385}
386
387static inline int pmd_present(pmd_t pmd)
388{
389 return pmd_val(pmd) & _PAGE_PRESENT;
390}
391
392static inline int pmd_bad(pmd_t pmd)
393{
394 return ((pmd_val(pmd) & _PAGE_ALL) != _PAGE_TABLE);
395}
396
397static inline unsigned long pages_to_mb(unsigned long npg)
398{
399 return npg >> (20 - PAGE_SHIFT);
400}
401
402/*
403 * The pmd can be thought of an array like this: pmd_t[PTRS_PER_PMD]
404 *
405 * This function returns the index of the entry in the pmd which would
406 * control the given virtual address.
407 */
408static inline unsigned long pmd_index(unsigned long address)
409{
410 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
411}
412
413/*
414 * A given kernel pmd_t maps to a specific virtual address (either a
415 * kernel huge page or a kernel pte_t table). Since kernel pte_t
416 * tables can be aligned at sub-page granularity, this function can
417 * return non-page-aligned pointers, despite its name.
418 */
419static inline unsigned long pmd_page_vaddr(pmd_t pmd)
420{
421 phys_addr_t pa =
422 (phys_addr_t)pmd_ptfn(pmd) << HV_LOG2_PAGE_TABLE_ALIGN;
423 return (unsigned long)__va(pa);
424}
425
426/*
427 * A pmd_t points to the base of a huge page or to a pte_t array.
428 * If a pte_t array, since we can have multiple per page, we don't
429 * have a one-to-one mapping of pmd_t's to pages. However, this is
430 * OK for pte_lockptr(), since we just end up with potentially one
431 * lock being used for several pte_t arrays.
432 */
433#define pmd_page(pmd) pfn_to_page(HV_PTFN_TO_PFN(pmd_ptfn(pmd)))
434
435/*
436 * The pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
437 *
438 * This macro returns the index of the entry in the pte page which would
439 * control the given virtual address.
440 */
441static inline unsigned long pte_index(unsigned long address)
442{
443 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
444}
445
446static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
447{
448 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
449}
450
451static inline int pmd_huge_page(pmd_t pmd)
452{
453 return pmd_val(pmd) & _PAGE_HUGE_PAGE;
454}
455
456#include <asm-generic/pgtable.h>
457
0707ad30
CM
458/* Support /proc/NN/pgtable API. */
459struct seq_file;
460int arch_proc_pgtable_show(struct seq_file *m, struct mm_struct *mm,
461 unsigned long vaddr, pte_t *ptep, void **datap);
462
867e359b
CM
463#endif /* !__ASSEMBLY__ */
464
465#endif /* _ASM_TILE_PGTABLE_H */