]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/tile/kernel/process.c
arch/tile: use 0 for IRQ_RESCHEDULE instead of 1
[mirror_ubuntu-artful-kernel.git] / arch / tile / kernel / process.c
CommitLineData
867e359b
CM
1/*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 */
14
15#include <linux/sched.h>
16#include <linux/preempt.h>
17#include <linux/module.h>
18#include <linux/fs.h>
19#include <linux/kprobes.h>
20#include <linux/elfcore.h>
21#include <linux/tick.h>
22#include <linux/init.h>
23#include <linux/mm.h>
24#include <linux/compat.h>
25#include <linux/hardirq.h>
26#include <linux/syscalls.h>
0707ad30 27#include <linux/kernel.h>
313ce674
CM
28#include <linux/tracehook.h>
29#include <linux/signal.h>
867e359b 30#include <asm/stack.h>
34f2c0ac 31#include <asm/switch_to.h>
867e359b 32#include <asm/homecache.h>
0707ad30 33#include <asm/syscalls.h>
313ce674 34#include <asm/traps.h>
bd119c69 35#include <asm/setup.h>
0707ad30
CM
36#ifdef CONFIG_HARDWALL
37#include <asm/hardwall.h>
38#endif
867e359b
CM
39#include <arch/chip.h>
40#include <arch/abi.h>
bd119c69 41#include <arch/sim_def.h>
867e359b
CM
42
43
44/*
45 * Use the (x86) "idle=poll" option to prefer low latency when leaving the
46 * idle loop over low power while in the idle loop, e.g. if we have
47 * one thread per core and we want to get threads out of futex waits fast.
48 */
49static int no_idle_nap;
50static int __init idle_setup(char *str)
51{
52 if (!str)
53 return -EINVAL;
54
55 if (!strcmp(str, "poll")) {
0707ad30 56 pr_info("using polling idle threads.\n");
867e359b
CM
57 no_idle_nap = 1;
58 } else if (!strcmp(str, "halt"))
59 no_idle_nap = 0;
60 else
61 return -1;
62
63 return 0;
64}
65early_param("idle", idle_setup);
66
67/*
68 * The idle thread. There's no useful work to be
69 * done, so just try to conserve power and have a
70 * low exit latency (ie sit in a loop waiting for
71 * somebody to say that they'd like to reschedule)
72 */
73void cpu_idle(void)
74{
867e359b
CM
75 int cpu = smp_processor_id();
76
77
78 current_thread_info()->status |= TS_POLLING;
79
80 if (no_idle_nap) {
81 while (1) {
82 while (!need_resched())
83 cpu_relax();
84 schedule();
85 }
86 }
87
88 /* endless idle loop with no priority at all */
89 while (1) {
1268fbc7
FW
90 tick_nohz_idle_enter();
91 rcu_idle_enter();
867e359b
CM
92 while (!need_resched()) {
93 if (cpu_is_offline(cpu))
94 BUG(); /* no HOTPLUG_CPU */
95
96 local_irq_disable();
97 __get_cpu_var(irq_stat).idle_timestamp = jiffies;
98 current_thread_info()->status &= ~TS_POLLING;
99 /*
100 * TS_POLLING-cleared state must be visible before we
101 * test NEED_RESCHED:
102 */
103 smp_mb();
104
105 if (!need_resched())
106 _cpu_idle();
107 else
108 local_irq_enable();
109 current_thread_info()->status |= TS_POLLING;
110 }
1268fbc7
FW
111 rcu_idle_exit();
112 tick_nohz_idle_exit();
bd2f5536 113 schedule_preempt_disabled();
867e359b
CM
114 }
115}
116
b6a84016 117struct thread_info *alloc_thread_info_node(struct task_struct *task, int node)
867e359b
CM
118{
119 struct page *page;
0707ad30 120 gfp_t flags = GFP_KERNEL;
867e359b
CM
121
122#ifdef CONFIG_DEBUG_STACK_USAGE
123 flags |= __GFP_ZERO;
124#endif
125
b6a84016 126 page = alloc_pages_node(node, flags, THREAD_SIZE_ORDER);
867e359b 127 if (!page)
0707ad30 128 return NULL;
867e359b
CM
129
130 return (struct thread_info *)page_address(page);
131}
132
133/*
134 * Free a thread_info node, and all of its derivative
135 * data structures.
136 */
137void free_thread_info(struct thread_info *info)
138{
139 struct single_step_state *step_state = info->step_state;
140
0707ad30
CM
141#ifdef CONFIG_HARDWALL
142 /*
143 * We free a thread_info from the context of the task that has
144 * been scheduled next, so the original task is already dead.
145 * Calling deactivate here just frees up the data structures.
146 * If the task we're freeing held the last reference to a
147 * hardwall fd, it would have been released prior to this point
148 * anyway via exit_files(), and "hardwall" would be NULL by now.
149 */
150 if (info->task->thread.hardwall)
151 hardwall_deactivate(info->task);
152#endif
867e359b
CM
153
154 if (step_state) {
155
156 /*
157 * FIXME: we don't munmap step_state->buffer
158 * because the mm_struct for this process (info->task->mm)
159 * has already been zeroed in exit_mm(). Keeping a
160 * reference to it here seems like a bad move, so this
161 * means we can't munmap() the buffer, and therefore if we
162 * ptrace multiple threads in a process, we will slowly
163 * leak user memory. (Note that as soon as the last
164 * thread in a process dies, we will reclaim all user
165 * memory including single-step buffers in the usual way.)
166 * We should either assign a kernel VA to this buffer
167 * somehow, or we should associate the buffer(s) with the
168 * mm itself so we can clean them up that way.
169 */
170 kfree(step_state);
171 }
172
76c567fb 173 free_pages((unsigned long)info, THREAD_SIZE_ORDER);
867e359b
CM
174}
175
176static void save_arch_state(struct thread_struct *t);
177
867e359b
CM
178int copy_thread(unsigned long clone_flags, unsigned long sp,
179 unsigned long stack_size,
180 struct task_struct *p, struct pt_regs *regs)
181{
182 struct pt_regs *childregs;
183 unsigned long ksp;
184
185 /*
186 * When creating a new kernel thread we pass sp as zero.
187 * Assign it to a reasonable value now that we have the stack.
188 */
189 if (sp == 0 && regs->ex1 == PL_ICS_EX1(KERNEL_PL, 0))
190 sp = KSTK_TOP(p);
191
192 /*
193 * Do not clone step state from the parent; each thread
194 * must make its own lazily.
195 */
196 task_thread_info(p)->step_state = NULL;
197
198 /*
199 * Start new thread in ret_from_fork so it schedules properly
200 * and then return from interrupt like the parent.
201 */
202 p->thread.pc = (unsigned long) ret_from_fork;
203
204 /* Save user stack top pointer so we can ID the stack vm area later. */
205 p->thread.usp0 = sp;
206
207 /* Record the pid of the process that created this one. */
208 p->thread.creator_pid = current->pid;
209
210 /*
211 * Copy the registers onto the kernel stack so the
212 * return-from-interrupt code will reload it into registers.
213 */
214 childregs = task_pt_regs(p);
215 *childregs = *regs;
216 childregs->regs[0] = 0; /* return value is zero */
217 childregs->sp = sp; /* override with new user stack pointer */
218
bc4cf2bb
CM
219 /*
220 * If CLONE_SETTLS is set, set "tp" in the new task to "r4",
221 * which is passed in as arg #5 to sys_clone().
222 */
223 if (clone_flags & CLONE_SETTLS)
224 childregs->tp = regs->regs[4];
225
867e359b
CM
226 /*
227 * Copy the callee-saved registers from the passed pt_regs struct
228 * into the context-switch callee-saved registers area.
d6f0f22c
CM
229 * This way when we start the interrupt-return sequence, the
230 * callee-save registers will be correctly in registers, which
231 * is how we assume the compiler leaves them as we start doing
232 * the normal return-from-interrupt path after calling C code.
867e359b
CM
233 * Zero out the C ABI save area to mark the top of the stack.
234 */
235 ksp = (unsigned long) childregs;
236 ksp -= C_ABI_SAVE_AREA_SIZE; /* interrupt-entry save area */
237 ((long *)ksp)[0] = ((long *)ksp)[1] = 0;
238 ksp -= CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long);
239 memcpy((void *)ksp, &regs->regs[CALLEE_SAVED_FIRST_REG],
240 CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long));
241 ksp -= C_ABI_SAVE_AREA_SIZE; /* __switch_to() save area */
242 ((long *)ksp)[0] = ((long *)ksp)[1] = 0;
243 p->thread.ksp = ksp;
244
245#if CHIP_HAS_TILE_DMA()
246 /*
247 * No DMA in the new thread. We model this on the fact that
248 * fork() clears the pending signals, alarms, and aio for the child.
249 */
250 memset(&p->thread.tile_dma_state, 0, sizeof(struct tile_dma_state));
251 memset(&p->thread.dma_async_tlb, 0, sizeof(struct async_tlb));
252#endif
253
254#if CHIP_HAS_SN_PROC()
255 /* Likewise, the new thread is not running static processor code. */
256 p->thread.sn_proc_running = 0;
257 memset(&p->thread.sn_async_tlb, 0, sizeof(struct async_tlb));
258#endif
259
260#if CHIP_HAS_PROC_STATUS_SPR()
261 /* New thread has its miscellaneous processor state bits clear. */
262 p->thread.proc_status = 0;
263#endif
264
0707ad30
CM
265#ifdef CONFIG_HARDWALL
266 /* New thread does not own any networks. */
267 p->thread.hardwall = NULL;
268#endif
867e359b
CM
269
270
271 /*
272 * Start the new thread with the current architecture state
273 * (user interrupt masks, etc.).
274 */
275 save_arch_state(&p->thread);
276
277 return 0;
278}
279
280/*
281 * Return "current" if it looks plausible, or else a pointer to a dummy.
282 * This can be helpful if we are just trying to emit a clean panic.
283 */
284struct task_struct *validate_current(void)
285{
286 static struct task_struct corrupt = { .comm = "<corrupt>" };
287 struct task_struct *tsk = current;
288 if (unlikely((unsigned long)tsk < PAGE_OFFSET ||
289 (void *)tsk > high_memory ||
290 ((unsigned long)tsk & (__alignof__(*tsk) - 1)) != 0)) {
0707ad30 291 pr_err("Corrupt 'current' %p (sp %#lx)\n", tsk, stack_pointer);
867e359b
CM
292 tsk = &corrupt;
293 }
294 return tsk;
295}
296
297/* Take and return the pointer to the previous task, for schedule_tail(). */
298struct task_struct *sim_notify_fork(struct task_struct *prev)
299{
300 struct task_struct *tsk = current;
301 __insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK_PARENT |
302 (tsk->thread.creator_pid << _SIM_CONTROL_OPERATOR_BITS));
303 __insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK |
304 (tsk->pid << _SIM_CONTROL_OPERATOR_BITS));
305 return prev;
306}
307
308int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs)
309{
310 struct pt_regs *ptregs = task_pt_regs(tsk);
311 elf_core_copy_regs(regs, ptregs);
312 return 1;
313}
314
315#if CHIP_HAS_TILE_DMA()
316
317/* Allow user processes to access the DMA SPRs */
318void grant_dma_mpls(void)
319{
a78c942d
CM
320#if CONFIG_KERNEL_PL == 2
321 __insn_mtspr(SPR_MPL_DMA_CPL_SET_1, 1);
322 __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1, 1);
323#else
867e359b
CM
324 __insn_mtspr(SPR_MPL_DMA_CPL_SET_0, 1);
325 __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_0, 1);
a78c942d 326#endif
867e359b
CM
327}
328
329/* Forbid user processes from accessing the DMA SPRs */
330void restrict_dma_mpls(void)
331{
a78c942d
CM
332#if CONFIG_KERNEL_PL == 2
333 __insn_mtspr(SPR_MPL_DMA_CPL_SET_2, 1);
334 __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_2, 1);
335#else
867e359b
CM
336 __insn_mtspr(SPR_MPL_DMA_CPL_SET_1, 1);
337 __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1, 1);
a78c942d 338#endif
867e359b
CM
339}
340
341/* Pause the DMA engine, then save off its state registers. */
342static void save_tile_dma_state(struct tile_dma_state *dma)
343{
344 unsigned long state = __insn_mfspr(SPR_DMA_USER_STATUS);
345 unsigned long post_suspend_state;
346
347 /* If we're running, suspend the engine. */
348 if ((state & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK)
349 __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK);
350
351 /*
352 * Wait for the engine to idle, then save regs. Note that we
353 * want to record the "running" bit from before suspension,
354 * and the "done" bit from after, so that we can properly
355 * distinguish a case where the user suspended the engine from
356 * the case where the kernel suspended as part of the context
357 * swap.
358 */
359 do {
360 post_suspend_state = __insn_mfspr(SPR_DMA_USER_STATUS);
361 } while (post_suspend_state & SPR_DMA_STATUS__BUSY_MASK);
362
363 dma->src = __insn_mfspr(SPR_DMA_SRC_ADDR);
364 dma->src_chunk = __insn_mfspr(SPR_DMA_SRC_CHUNK_ADDR);
365 dma->dest = __insn_mfspr(SPR_DMA_DST_ADDR);
366 dma->dest_chunk = __insn_mfspr(SPR_DMA_DST_CHUNK_ADDR);
367 dma->strides = __insn_mfspr(SPR_DMA_STRIDE);
368 dma->chunk_size = __insn_mfspr(SPR_DMA_CHUNK_SIZE);
369 dma->byte = __insn_mfspr(SPR_DMA_BYTE);
370 dma->status = (state & SPR_DMA_STATUS__RUNNING_MASK) |
371 (post_suspend_state & SPR_DMA_STATUS__DONE_MASK);
372}
373
374/* Restart a DMA that was running before we were context-switched out. */
375static void restore_tile_dma_state(struct thread_struct *t)
376{
377 const struct tile_dma_state *dma = &t->tile_dma_state;
378
379 /*
380 * The only way to restore the done bit is to run a zero
381 * length transaction.
382 */
383 if ((dma->status & SPR_DMA_STATUS__DONE_MASK) &&
384 !(__insn_mfspr(SPR_DMA_USER_STATUS) & SPR_DMA_STATUS__DONE_MASK)) {
385 __insn_mtspr(SPR_DMA_BYTE, 0);
386 __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
387 while (__insn_mfspr(SPR_DMA_USER_STATUS) &
388 SPR_DMA_STATUS__BUSY_MASK)
389 ;
390 }
391
392 __insn_mtspr(SPR_DMA_SRC_ADDR, dma->src);
393 __insn_mtspr(SPR_DMA_SRC_CHUNK_ADDR, dma->src_chunk);
394 __insn_mtspr(SPR_DMA_DST_ADDR, dma->dest);
395 __insn_mtspr(SPR_DMA_DST_CHUNK_ADDR, dma->dest_chunk);
396 __insn_mtspr(SPR_DMA_STRIDE, dma->strides);
397 __insn_mtspr(SPR_DMA_CHUNK_SIZE, dma->chunk_size);
398 __insn_mtspr(SPR_DMA_BYTE, dma->byte);
399
400 /*
401 * Restart the engine if we were running and not done.
402 * Clear a pending async DMA fault that we were waiting on return
403 * to user space to execute, since we expect the DMA engine
404 * to regenerate those faults for us now. Note that we don't
405 * try to clear the TIF_ASYNC_TLB flag, since it's relatively
406 * harmless if set, and it covers both DMA and the SN processor.
407 */
408 if ((dma->status & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK) {
409 t->dma_async_tlb.fault_num = 0;
410 __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
411 }
412}
413
414#endif
415
416static void save_arch_state(struct thread_struct *t)
417{
418#if CHIP_HAS_SPLIT_INTR_MASK()
419 t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0_0) |
420 ((u64)__insn_mfspr(SPR_INTERRUPT_MASK_0_1) << 32);
421#else
422 t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0);
423#endif
424 t->ex_context[0] = __insn_mfspr(SPR_EX_CONTEXT_0_0);
425 t->ex_context[1] = __insn_mfspr(SPR_EX_CONTEXT_0_1);
426 t->system_save[0] = __insn_mfspr(SPR_SYSTEM_SAVE_0_0);
427 t->system_save[1] = __insn_mfspr(SPR_SYSTEM_SAVE_0_1);
428 t->system_save[2] = __insn_mfspr(SPR_SYSTEM_SAVE_0_2);
429 t->system_save[3] = __insn_mfspr(SPR_SYSTEM_SAVE_0_3);
430 t->intctrl_0 = __insn_mfspr(SPR_INTCTRL_0_STATUS);
431#if CHIP_HAS_PROC_STATUS_SPR()
432 t->proc_status = __insn_mfspr(SPR_PROC_STATUS);
433#endif
a802fc68
CM
434#if !CHIP_HAS_FIXED_INTVEC_BASE()
435 t->interrupt_vector_base = __insn_mfspr(SPR_INTERRUPT_VECTOR_BASE_0);
436#endif
437#if CHIP_HAS_TILE_RTF_HWM()
438 t->tile_rtf_hwm = __insn_mfspr(SPR_TILE_RTF_HWM);
439#endif
440#if CHIP_HAS_DSTREAM_PF()
441 t->dstream_pf = __insn_mfspr(SPR_DSTREAM_PF);
442#endif
867e359b
CM
443}
444
445static void restore_arch_state(const struct thread_struct *t)
446{
447#if CHIP_HAS_SPLIT_INTR_MASK()
448 __insn_mtspr(SPR_INTERRUPT_MASK_0_0, (u32) t->interrupt_mask);
449 __insn_mtspr(SPR_INTERRUPT_MASK_0_1, t->interrupt_mask >> 32);
450#else
451 __insn_mtspr(SPR_INTERRUPT_MASK_0, t->interrupt_mask);
452#endif
453 __insn_mtspr(SPR_EX_CONTEXT_0_0, t->ex_context[0]);
454 __insn_mtspr(SPR_EX_CONTEXT_0_1, t->ex_context[1]);
455 __insn_mtspr(SPR_SYSTEM_SAVE_0_0, t->system_save[0]);
456 __insn_mtspr(SPR_SYSTEM_SAVE_0_1, t->system_save[1]);
457 __insn_mtspr(SPR_SYSTEM_SAVE_0_2, t->system_save[2]);
458 __insn_mtspr(SPR_SYSTEM_SAVE_0_3, t->system_save[3]);
459 __insn_mtspr(SPR_INTCTRL_0_STATUS, t->intctrl_0);
460#if CHIP_HAS_PROC_STATUS_SPR()
461 __insn_mtspr(SPR_PROC_STATUS, t->proc_status);
462#endif
a802fc68
CM
463#if !CHIP_HAS_FIXED_INTVEC_BASE()
464 __insn_mtspr(SPR_INTERRUPT_VECTOR_BASE_0, t->interrupt_vector_base);
465#endif
867e359b 466#if CHIP_HAS_TILE_RTF_HWM()
a802fc68
CM
467 __insn_mtspr(SPR_TILE_RTF_HWM, t->tile_rtf_hwm);
468#endif
469#if CHIP_HAS_DSTREAM_PF()
470 __insn_mtspr(SPR_DSTREAM_PF, t->dstream_pf);
867e359b
CM
471#endif
472}
473
474
475void _prepare_arch_switch(struct task_struct *next)
476{
477#if CHIP_HAS_SN_PROC()
478 int snctl;
479#endif
480#if CHIP_HAS_TILE_DMA()
481 struct tile_dma_state *dma = &current->thread.tile_dma_state;
482 if (dma->enabled)
483 save_tile_dma_state(dma);
484#endif
485#if CHIP_HAS_SN_PROC()
486 /*
487 * Suspend the static network processor if it was running.
488 * We do not suspend the fabric itself, just like we don't
489 * try to suspend the UDN.
490 */
491 snctl = __insn_mfspr(SPR_SNCTL);
492 current->thread.sn_proc_running =
493 (snctl & SPR_SNCTL__FRZPROC_MASK) == 0;
494 if (current->thread.sn_proc_running)
495 __insn_mtspr(SPR_SNCTL, snctl | SPR_SNCTL__FRZPROC_MASK);
496#endif
497}
498
499
867e359b
CM
500struct task_struct *__sched _switch_to(struct task_struct *prev,
501 struct task_struct *next)
502{
503 /* DMA state is already saved; save off other arch state. */
504 save_arch_state(&prev->thread);
505
506#if CHIP_HAS_TILE_DMA()
507 /*
508 * Restore DMA in new task if desired.
509 * Note that it is only safe to restart here since interrupts
510 * are disabled, so we can't take any DMATLB miss or access
511 * interrupts before we have finished switching stacks.
512 */
513 if (next->thread.tile_dma_state.enabled) {
514 restore_tile_dma_state(&next->thread);
515 grant_dma_mpls();
516 } else {
517 restrict_dma_mpls();
518 }
519#endif
520
521 /* Restore other arch state. */
522 restore_arch_state(&next->thread);
523
524#if CHIP_HAS_SN_PROC()
525 /*
526 * Restart static network processor in the new process
527 * if it was running before.
528 */
529 if (next->thread.sn_proc_running) {
530 int snctl = __insn_mfspr(SPR_SNCTL);
531 __insn_mtspr(SPR_SNCTL, snctl & ~SPR_SNCTL__FRZPROC_MASK);
532 }
533#endif
534
0707ad30
CM
535#ifdef CONFIG_HARDWALL
536 /* Enable or disable access to the network registers appropriately. */
537 if (prev->thread.hardwall != NULL) {
538 if (next->thread.hardwall == NULL)
539 restrict_network_mpls();
540 } else if (next->thread.hardwall != NULL) {
541 grant_network_mpls();
542 }
543#endif
867e359b
CM
544
545 /*
546 * Switch kernel SP, PC, and callee-saved registers.
547 * In the context of the new task, return the old task pointer
548 * (i.e. the task that actually called __switch_to).
a78c942d 549 * Pass the value to use for SYSTEM_SAVE_K_0 when we reset our sp.
867e359b
CM
550 */
551 return __switch_to(prev, next, next_current_ksp0(next));
552}
553
313ce674
CM
554/*
555 * This routine is called on return from interrupt if any of the
556 * TIF_WORK_MASK flags are set in thread_info->flags. It is
557 * entered with interrupts disabled so we don't miss an event
558 * that modified the thread_info flags. If any flag is set, we
559 * handle it and return, and the calling assembly code will
560 * re-disable interrupts, reload the thread flags, and call back
561 * if more flags need to be handled.
562 *
563 * We return whether we need to check the thread_info flags again
564 * or not. Note that we don't clear TIF_SINGLESTEP here, so it's
565 * important that it be tested last, and then claim that we don't
566 * need to recheck the flags.
567 */
568int do_work_pending(struct pt_regs *regs, u32 thread_info_flags)
569{
570 if (thread_info_flags & _TIF_NEED_RESCHED) {
571 schedule();
572 return 1;
573 }
574#if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
575 if (thread_info_flags & _TIF_ASYNC_TLB) {
576 do_async_page_fault(regs);
577 return 1;
578 }
579#endif
580 if (thread_info_flags & _TIF_SIGPENDING) {
581 do_signal(regs);
582 return 1;
583 }
584 if (thread_info_flags & _TIF_NOTIFY_RESUME) {
585 clear_thread_flag(TIF_NOTIFY_RESUME);
586 tracehook_notify_resume(regs);
587 if (current->replacement_session_keyring)
588 key_replace_session_keyring();
589 return 1;
590 }
591 if (thread_info_flags & _TIF_SINGLESTEP) {
592 if ((regs->ex1 & SPR_EX_CONTEXT_1_1__PL_MASK) == 0)
593 single_step_once(regs);
594 return 0;
595 }
596 panic("work_pending: bad flags %#x\n", thread_info_flags);
597}
598
bc4cf2bb 599/* Note there is an implicit fifth argument if (clone_flags & CLONE_SETTLS). */
d929b6ae
CM
600SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
601 void __user *, parent_tidptr, void __user *, child_tidptr,
602 struct pt_regs *, regs)
867e359b
CM
603{
604 if (!newsp)
605 newsp = regs->sp;
606 return do_fork(clone_flags, newsp, regs, 0,
607 parent_tidptr, child_tidptr);
608}
609
867e359b
CM
610/*
611 * sys_execve() executes a new program.
612 */
d929b6ae
CM
613SYSCALL_DEFINE4(execve, const char __user *, path,
614 const char __user *const __user *, argv,
615 const char __user *const __user *, envp,
616 struct pt_regs *, regs)
867e359b 617{
0707ad30 618 long error;
867e359b
CM
619 char *filename;
620
621 filename = getname(path);
622 error = PTR_ERR(filename);
623 if (IS_ERR(filename))
624 goto out;
625 error = do_execve(filename, argv, envp, regs);
626 putname(filename);
04f7a3f1
CM
627 if (error == 0)
628 single_step_execve();
867e359b
CM
629out:
630 return error;
631}
632
633#ifdef CONFIG_COMPAT
d929b6ae 634long compat_sys_execve(const char __user *path,
18aecc2b
CM
635 compat_uptr_t __user *argv,
636 compat_uptr_t __user *envp,
d929b6ae 637 struct pt_regs *regs)
867e359b 638{
0707ad30 639 long error;
867e359b
CM
640 char *filename;
641
642 filename = getname(path);
643 error = PTR_ERR(filename);
644 if (IS_ERR(filename))
645 goto out;
646 error = compat_do_execve(filename, argv, envp, regs);
647 putname(filename);
04f7a3f1
CM
648 if (error == 0)
649 single_step_execve();
867e359b
CM
650out:
651 return error;
652}
653#endif
654
655unsigned long get_wchan(struct task_struct *p)
656{
657 struct KBacktraceIterator kbt;
658
659 if (!p || p == current || p->state == TASK_RUNNING)
660 return 0;
661
662 for (KBacktraceIterator_init(&kbt, p, NULL);
663 !KBacktraceIterator_end(&kbt);
664 KBacktraceIterator_next(&kbt)) {
665 if (!in_sched_functions(kbt.it.pc))
666 return kbt.it.pc;
667 }
668
669 return 0;
670}
671
672/*
673 * We pass in lr as zero (cleared in kernel_thread) and the caller
674 * part of the backtrace ABI on the stack also zeroed (in copy_thread)
675 * so that backtraces will stop with this function.
676 * Note that we don't use r0, since copy_thread() clears it.
677 */
678static void start_kernel_thread(int dummy, int (*fn)(int), int arg)
679{
680 do_exit(fn(arg));
681}
682
683/*
684 * Create a kernel thread
685 */
686int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
687{
688 struct pt_regs regs;
689
690 memset(&regs, 0, sizeof(regs));
691 regs.ex1 = PL_ICS_EX1(KERNEL_PL, 0); /* run at kernel PL, no ICS */
692 regs.pc = (long) start_kernel_thread;
693 regs.flags = PT_FLAGS_CALLER_SAVES; /* need to restore r1 and r2 */
694 regs.regs[1] = (long) fn; /* function pointer */
695 regs.regs[2] = (long) arg; /* parameter register */
696
697 /* Ok, create the new process.. */
698 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs,
699 0, NULL, NULL);
700}
701EXPORT_SYMBOL(kernel_thread);
702
703/* Flush thread state. */
704void flush_thread(void)
705{
706 /* Nothing */
707}
708
709/*
710 * Free current thread data structures etc..
711 */
712void exit_thread(void)
713{
714 /* Nothing */
715}
716
867e359b
CM
717void show_regs(struct pt_regs *regs)
718{
719 struct task_struct *tsk = validate_current();
0707ad30
CM
720 int i;
721
722 pr_err("\n");
723 pr_err(" Pid: %d, comm: %20s, CPU: %d\n",
867e359b 724 tsk->pid, tsk->comm, smp_processor_id());
0707ad30
CM
725#ifdef __tilegx__
726 for (i = 0; i < 51; i += 3)
727 pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT" r%-2d: "REGFMT"\n",
728 i, regs->regs[i], i+1, regs->regs[i+1],
729 i+2, regs->regs[i+2]);
730 pr_err(" r51: "REGFMT" r52: "REGFMT" tp : "REGFMT"\n",
731 regs->regs[51], regs->regs[52], regs->tp);
732 pr_err(" sp : "REGFMT" lr : "REGFMT"\n", regs->sp, regs->lr);
733#else
7040dea4 734 for (i = 0; i < 52; i += 4)
0707ad30
CM
735 pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT
736 " r%-2d: "REGFMT" r%-2d: "REGFMT"\n",
737 i, regs->regs[i], i+1, regs->regs[i+1],
738 i+2, regs->regs[i+2], i+3, regs->regs[i+3]);
739 pr_err(" r52: "REGFMT" tp : "REGFMT" sp : "REGFMT" lr : "REGFMT"\n",
740 regs->regs[52], regs->tp, regs->sp, regs->lr);
741#endif
742 pr_err(" pc : "REGFMT" ex1: %ld faultnum: %ld\n",
867e359b
CM
743 regs->pc, regs->ex1, regs->faultnum);
744
745 dump_stack_regs(regs);
746}