]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - arch/x86/crypto/camellia-aesni-avx-asm_64.S
Merge git://git.infradead.org/users/willy/linux-nvme
[mirror_ubuntu-zesty-kernel.git] / arch / x86 / crypto / camellia-aesni-avx-asm_64.S
CommitLineData
d9b1d2e7
JK
1/*
2 * x86_64/AVX/AES-NI assembler implementation of Camellia
3 *
b5c5b072 4 * Copyright © 2012-2013 Jussi Kivilinna <jussi.kivilinna@iki.fi>
d9b1d2e7
JK
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 */
12
13/*
14 * Version licensed under 2-clause BSD License is available at:
15 * http://koti.mbnet.fi/axh/crypto/camellia-BSD-1.2.0-aesni1.tar.xz
16 */
17
59990684
JK
18#include <linux/linkage.h>
19
d9b1d2e7
JK
20#define CAMELLIA_TABLE_BYTE_LEN 272
21
22/* struct camellia_ctx: */
23#define key_table 0
24#define key_length CAMELLIA_TABLE_BYTE_LEN
25
26/* register macros */
27#define CTX %rdi
28
29/**********************************************************************
30 16-way camellia
31 **********************************************************************/
32#define filter_8bit(x, lo_t, hi_t, mask4bit, tmp0) \
33 vpand x, mask4bit, tmp0; \
34 vpandn x, mask4bit, x; \
35 vpsrld $4, x, x; \
36 \
37 vpshufb tmp0, lo_t, tmp0; \
38 vpshufb x, hi_t, x; \
39 vpxor tmp0, x, x;
40
41/*
42 * IN:
43 * x0..x7: byte-sliced AB state
44 * mem_cd: register pointer storing CD state
45 * key: index for key material
46 * OUT:
47 * x0..x7: new byte-sliced CD state
48 */
49#define roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, t0, t1, t2, t3, t4, t5, t6, \
50 t7, mem_cd, key) \
51 /* \
52 * S-function with AES subbytes \
53 */ \
54 vmovdqa .Linv_shift_row, t4; \
55 vbroadcastss .L0f0f0f0f, t7; \
56 vmovdqa .Lpre_tf_lo_s1, t0; \
57 vmovdqa .Lpre_tf_hi_s1, t1; \
58 \
59 /* AES inverse shift rows */ \
60 vpshufb t4, x0, x0; \
61 vpshufb t4, x7, x7; \
62 vpshufb t4, x1, x1; \
63 vpshufb t4, x4, x4; \
64 vpshufb t4, x2, x2; \
65 vpshufb t4, x5, x5; \
66 vpshufb t4, x3, x3; \
67 vpshufb t4, x6, x6; \
68 \
69 /* prefilter sboxes 1, 2 and 3 */ \
70 vmovdqa .Lpre_tf_lo_s4, t2; \
71 vmovdqa .Lpre_tf_hi_s4, t3; \
72 filter_8bit(x0, t0, t1, t7, t6); \
73 filter_8bit(x7, t0, t1, t7, t6); \
74 filter_8bit(x1, t0, t1, t7, t6); \
75 filter_8bit(x4, t0, t1, t7, t6); \
76 filter_8bit(x2, t0, t1, t7, t6); \
77 filter_8bit(x5, t0, t1, t7, t6); \
78 \
79 /* prefilter sbox 4 */ \
80 vpxor t4, t4, t4; \
81 filter_8bit(x3, t2, t3, t7, t6); \
82 filter_8bit(x6, t2, t3, t7, t6); \
83 \
84 /* AES subbytes + AES shift rows */ \
85 vmovdqa .Lpost_tf_lo_s1, t0; \
86 vmovdqa .Lpost_tf_hi_s1, t1; \
87 vaesenclast t4, x0, x0; \
88 vaesenclast t4, x7, x7; \
89 vaesenclast t4, x1, x1; \
90 vaesenclast t4, x4, x4; \
91 vaesenclast t4, x2, x2; \
92 vaesenclast t4, x5, x5; \
93 vaesenclast t4, x3, x3; \
94 vaesenclast t4, x6, x6; \
95 \
96 /* postfilter sboxes 1 and 4 */ \
97 vmovdqa .Lpost_tf_lo_s3, t2; \
98 vmovdqa .Lpost_tf_hi_s3, t3; \
99 filter_8bit(x0, t0, t1, t7, t6); \
100 filter_8bit(x7, t0, t1, t7, t6); \
101 filter_8bit(x3, t0, t1, t7, t6); \
102 filter_8bit(x6, t0, t1, t7, t6); \
103 \
104 /* postfilter sbox 3 */ \
105 vmovdqa .Lpost_tf_lo_s2, t4; \
106 vmovdqa .Lpost_tf_hi_s2, t5; \
107 filter_8bit(x2, t2, t3, t7, t6); \
108 filter_8bit(x5, t2, t3, t7, t6); \
109 \
110 vpxor t6, t6, t6; \
111 vmovq key, t0; \
112 \
113 /* postfilter sbox 2 */ \
114 filter_8bit(x1, t4, t5, t7, t2); \
115 filter_8bit(x4, t4, t5, t7, t2); \
116 \
117 vpsrldq $5, t0, t5; \
118 vpsrldq $1, t0, t1; \
119 vpsrldq $2, t0, t2; \
120 vpsrldq $3, t0, t3; \
121 vpsrldq $4, t0, t4; \
122 vpshufb t6, t0, t0; \
123 vpshufb t6, t1, t1; \
124 vpshufb t6, t2, t2; \
125 vpshufb t6, t3, t3; \
126 vpshufb t6, t4, t4; \
127 vpsrldq $2, t5, t7; \
128 vpshufb t6, t7, t7; \
129 \
130 /* \
131 * P-function \
132 */ \
133 vpxor x5, x0, x0; \
134 vpxor x6, x1, x1; \
135 vpxor x7, x2, x2; \
136 vpxor x4, x3, x3; \
137 \
138 vpxor x2, x4, x4; \
139 vpxor x3, x5, x5; \
140 vpxor x0, x6, x6; \
141 vpxor x1, x7, x7; \
142 \
143 vpxor x7, x0, x0; \
144 vpxor x4, x1, x1; \
145 vpxor x5, x2, x2; \
146 vpxor x6, x3, x3; \
147 \
148 vpxor x3, x4, x4; \
149 vpxor x0, x5, x5; \
150 vpxor x1, x6, x6; \
151 vpxor x2, x7, x7; /* note: high and low parts swapped */ \
152 \
153 /* \
154 * Add key material and result to CD (x becomes new CD) \
155 */ \
156 \
157 vpxor t3, x4, x4; \
158 vpxor 0 * 16(mem_cd), x4, x4; \
159 \
160 vpxor t2, x5, x5; \
161 vpxor 1 * 16(mem_cd), x5, x5; \
162 \
163 vpsrldq $1, t5, t3; \
164 vpshufb t6, t5, t5; \
165 vpshufb t6, t3, t6; \
166 \
167 vpxor t1, x6, x6; \
168 vpxor 2 * 16(mem_cd), x6, x6; \
169 \
170 vpxor t0, x7, x7; \
171 vpxor 3 * 16(mem_cd), x7, x7; \
172 \
173 vpxor t7, x0, x0; \
174 vpxor 4 * 16(mem_cd), x0, x0; \
175 \
176 vpxor t6, x1, x1; \
177 vpxor 5 * 16(mem_cd), x1, x1; \
178 \
179 vpxor t5, x2, x2; \
180 vpxor 6 * 16(mem_cd), x2, x2; \
181 \
182 vpxor t4, x3, x3; \
183 vpxor 7 * 16(mem_cd), x3, x3;
184
185/*
186 * Size optimization... with inlined roundsm16, binary would be over 5 times
187 * larger and would only be 0.5% faster (on sandy-bridge).
188 */
189.align 8
190roundsm16_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd:
191 roundsm16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
192 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, %xmm15,
193 %rcx, (%r9));
194 ret;
59990684 195ENDPROC(roundsm16_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd)
d9b1d2e7
JK
196
197.align 8
198roundsm16_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab:
199 roundsm16(%xmm4, %xmm5, %xmm6, %xmm7, %xmm0, %xmm1, %xmm2, %xmm3,
200 %xmm12, %xmm13, %xmm14, %xmm15, %xmm8, %xmm9, %xmm10, %xmm11,
201 %rax, (%r9));
202 ret;
59990684 203ENDPROC(roundsm16_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab)
d9b1d2e7
JK
204
205/*
206 * IN/OUT:
207 * x0..x7: byte-sliced AB state preloaded
208 * mem_ab: byte-sliced AB state in memory
209 * mem_cb: byte-sliced CD state in memory
210 */
211#define two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
212 y6, y7, mem_ab, mem_cd, i, dir, store_ab) \
213 leaq (key_table + (i) * 8)(CTX), %r9; \
214 call roundsm16_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd; \
215 \
216 vmovdqu x4, 0 * 16(mem_cd); \
217 vmovdqu x5, 1 * 16(mem_cd); \
218 vmovdqu x6, 2 * 16(mem_cd); \
219 vmovdqu x7, 3 * 16(mem_cd); \
220 vmovdqu x0, 4 * 16(mem_cd); \
221 vmovdqu x1, 5 * 16(mem_cd); \
222 vmovdqu x2, 6 * 16(mem_cd); \
223 vmovdqu x3, 7 * 16(mem_cd); \
224 \
225 leaq (key_table + ((i) + (dir)) * 8)(CTX), %r9; \
226 call roundsm16_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab; \
227 \
228 store_ab(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab);
229
230#define dummy_store(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) /* do nothing */
231
232#define store_ab_state(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) \
233 /* Store new AB state */ \
234 vmovdqu x0, 0 * 16(mem_ab); \
235 vmovdqu x1, 1 * 16(mem_ab); \
236 vmovdqu x2, 2 * 16(mem_ab); \
237 vmovdqu x3, 3 * 16(mem_ab); \
238 vmovdqu x4, 4 * 16(mem_ab); \
239 vmovdqu x5, 5 * 16(mem_ab); \
240 vmovdqu x6, 6 * 16(mem_ab); \
241 vmovdqu x7, 7 * 16(mem_ab);
242
243#define enc_rounds16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
244 y6, y7, mem_ab, mem_cd, i) \
245 two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
246 y6, y7, mem_ab, mem_cd, (i) + 2, 1, store_ab_state); \
247 two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
248 y6, y7, mem_ab, mem_cd, (i) + 4, 1, store_ab_state); \
249 two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
250 y6, y7, mem_ab, mem_cd, (i) + 6, 1, dummy_store);
251
252#define dec_rounds16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
253 y6, y7, mem_ab, mem_cd, i) \
254 two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
255 y6, y7, mem_ab, mem_cd, (i) + 7, -1, store_ab_state); \
256 two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
257 y6, y7, mem_ab, mem_cd, (i) + 5, -1, store_ab_state); \
258 two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
259 y6, y7, mem_ab, mem_cd, (i) + 3, -1, dummy_store);
260
261/*
262 * IN:
263 * v0..3: byte-sliced 32-bit integers
264 * OUT:
265 * v0..3: (IN <<< 1)
266 */
267#define rol32_1_16(v0, v1, v2, v3, t0, t1, t2, zero) \
268 vpcmpgtb v0, zero, t0; \
269 vpaddb v0, v0, v0; \
270 vpabsb t0, t0; \
271 \
272 vpcmpgtb v1, zero, t1; \
273 vpaddb v1, v1, v1; \
274 vpabsb t1, t1; \
275 \
276 vpcmpgtb v2, zero, t2; \
277 vpaddb v2, v2, v2; \
278 vpabsb t2, t2; \
279 \
280 vpor t0, v1, v1; \
281 \
282 vpcmpgtb v3, zero, t0; \
283 vpaddb v3, v3, v3; \
284 vpabsb t0, t0; \
285 \
286 vpor t1, v2, v2; \
287 vpor t2, v3, v3; \
288 vpor t0, v0, v0;
289
290/*
291 * IN:
292 * r: byte-sliced AB state in memory
293 * l: byte-sliced CD state in memory
294 * OUT:
295 * x0..x7: new byte-sliced CD state
296 */
297#define fls16(l, l0, l1, l2, l3, l4, l5, l6, l7, r, t0, t1, t2, t3, tt0, \
298 tt1, tt2, tt3, kll, klr, krl, krr) \
299 /* \
300 * t0 = kll; \
301 * t0 &= ll; \
302 * lr ^= rol32(t0, 1); \
303 */ \
304 vpxor tt0, tt0, tt0; \
305 vmovd kll, t0; \
306 vpshufb tt0, t0, t3; \
307 vpsrldq $1, t0, t0; \
308 vpshufb tt0, t0, t2; \
309 vpsrldq $1, t0, t0; \
310 vpshufb tt0, t0, t1; \
311 vpsrldq $1, t0, t0; \
312 vpshufb tt0, t0, t0; \
313 \
314 vpand l0, t0, t0; \
315 vpand l1, t1, t1; \
316 vpand l2, t2, t2; \
317 vpand l3, t3, t3; \
318 \
319 rol32_1_16(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
320 \
321 vpxor l4, t0, l4; \
322 vmovdqu l4, 4 * 16(l); \
323 vpxor l5, t1, l5; \
324 vmovdqu l5, 5 * 16(l); \
325 vpxor l6, t2, l6; \
326 vmovdqu l6, 6 * 16(l); \
327 vpxor l7, t3, l7; \
328 vmovdqu l7, 7 * 16(l); \
329 \
330 /* \
331 * t2 = krr; \
332 * t2 |= rr; \
333 * rl ^= t2; \
334 */ \
335 \
336 vmovd krr, t0; \
337 vpshufb tt0, t0, t3; \
338 vpsrldq $1, t0, t0; \
339 vpshufb tt0, t0, t2; \
340 vpsrldq $1, t0, t0; \
341 vpshufb tt0, t0, t1; \
342 vpsrldq $1, t0, t0; \
343 vpshufb tt0, t0, t0; \
344 \
345 vpor 4 * 16(r), t0, t0; \
346 vpor 5 * 16(r), t1, t1; \
347 vpor 6 * 16(r), t2, t2; \
348 vpor 7 * 16(r), t3, t3; \
349 \
350 vpxor 0 * 16(r), t0, t0; \
351 vpxor 1 * 16(r), t1, t1; \
352 vpxor 2 * 16(r), t2, t2; \
353 vpxor 3 * 16(r), t3, t3; \
354 vmovdqu t0, 0 * 16(r); \
355 vmovdqu t1, 1 * 16(r); \
356 vmovdqu t2, 2 * 16(r); \
357 vmovdqu t3, 3 * 16(r); \
358 \
359 /* \
360 * t2 = krl; \
361 * t2 &= rl; \
362 * rr ^= rol32(t2, 1); \
363 */ \
364 vmovd krl, t0; \
365 vpshufb tt0, t0, t3; \
366 vpsrldq $1, t0, t0; \
367 vpshufb tt0, t0, t2; \
368 vpsrldq $1, t0, t0; \
369 vpshufb tt0, t0, t1; \
370 vpsrldq $1, t0, t0; \
371 vpshufb tt0, t0, t0; \
372 \
373 vpand 0 * 16(r), t0, t0; \
374 vpand 1 * 16(r), t1, t1; \
375 vpand 2 * 16(r), t2, t2; \
376 vpand 3 * 16(r), t3, t3; \
377 \
378 rol32_1_16(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
379 \
380 vpxor 4 * 16(r), t0, t0; \
381 vpxor 5 * 16(r), t1, t1; \
382 vpxor 6 * 16(r), t2, t2; \
383 vpxor 7 * 16(r), t3, t3; \
384 vmovdqu t0, 4 * 16(r); \
385 vmovdqu t1, 5 * 16(r); \
386 vmovdqu t2, 6 * 16(r); \
387 vmovdqu t3, 7 * 16(r); \
388 \
389 /* \
390 * t0 = klr; \
391 * t0 |= lr; \
392 * ll ^= t0; \
393 */ \
394 \
395 vmovd klr, t0; \
396 vpshufb tt0, t0, t3; \
397 vpsrldq $1, t0, t0; \
398 vpshufb tt0, t0, t2; \
399 vpsrldq $1, t0, t0; \
400 vpshufb tt0, t0, t1; \
401 vpsrldq $1, t0, t0; \
402 vpshufb tt0, t0, t0; \
403 \
404 vpor l4, t0, t0; \
405 vpor l5, t1, t1; \
406 vpor l6, t2, t2; \
407 vpor l7, t3, t3; \
408 \
409 vpxor l0, t0, l0; \
410 vmovdqu l0, 0 * 16(l); \
411 vpxor l1, t1, l1; \
412 vmovdqu l1, 1 * 16(l); \
413 vpxor l2, t2, l2; \
414 vmovdqu l2, 2 * 16(l); \
415 vpxor l3, t3, l3; \
416 vmovdqu l3, 3 * 16(l);
417
418#define transpose_4x4(x0, x1, x2, x3, t1, t2) \
419 vpunpckhdq x1, x0, t2; \
420 vpunpckldq x1, x0, x0; \
421 \
422 vpunpckldq x3, x2, t1; \
423 vpunpckhdq x3, x2, x2; \
424 \
425 vpunpckhqdq t1, x0, x1; \
426 vpunpcklqdq t1, x0, x0; \
427 \
428 vpunpckhqdq x2, t2, x3; \
429 vpunpcklqdq x2, t2, x2;
430
431#define byteslice_16x16b(a0, b0, c0, d0, a1, b1, c1, d1, a2, b2, c2, d2, a3, \
432 b3, c3, d3, st0, st1) \
433 vmovdqu d2, st0; \
434 vmovdqu d3, st1; \
435 transpose_4x4(a0, a1, a2, a3, d2, d3); \
436 transpose_4x4(b0, b1, b2, b3, d2, d3); \
437 vmovdqu st0, d2; \
438 vmovdqu st1, d3; \
439 \
440 vmovdqu a0, st0; \
441 vmovdqu a1, st1; \
442 transpose_4x4(c0, c1, c2, c3, a0, a1); \
443 transpose_4x4(d0, d1, d2, d3, a0, a1); \
444 \
445 vmovdqu .Lshufb_16x16b, a0; \
446 vmovdqu st1, a1; \
447 vpshufb a0, a2, a2; \
448 vpshufb a0, a3, a3; \
449 vpshufb a0, b0, b0; \
450 vpshufb a0, b1, b1; \
451 vpshufb a0, b2, b2; \
452 vpshufb a0, b3, b3; \
453 vpshufb a0, a1, a1; \
454 vpshufb a0, c0, c0; \
455 vpshufb a0, c1, c1; \
456 vpshufb a0, c2, c2; \
457 vpshufb a0, c3, c3; \
458 vpshufb a0, d0, d0; \
459 vpshufb a0, d1, d1; \
460 vpshufb a0, d2, d2; \
461 vpshufb a0, d3, d3; \
462 vmovdqu d3, st1; \
463 vmovdqu st0, d3; \
464 vpshufb a0, d3, a0; \
465 vmovdqu d2, st0; \
466 \
467 transpose_4x4(a0, b0, c0, d0, d2, d3); \
468 transpose_4x4(a1, b1, c1, d1, d2, d3); \
469 vmovdqu st0, d2; \
470 vmovdqu st1, d3; \
471 \
472 vmovdqu b0, st0; \
473 vmovdqu b1, st1; \
474 transpose_4x4(a2, b2, c2, d2, b0, b1); \
475 transpose_4x4(a3, b3, c3, d3, b0, b1); \
476 vmovdqu st0, b0; \
477 vmovdqu st1, b1; \
478 /* does not adjust output bytes inside vectors */
479
480/* load blocks to registers and apply pre-whitening */
481#define inpack16_pre(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
482 y6, y7, rio, key) \
483 vmovq key, x0; \
484 vpshufb .Lpack_bswap, x0, x0; \
485 \
486 vpxor 0 * 16(rio), x0, y7; \
487 vpxor 1 * 16(rio), x0, y6; \
488 vpxor 2 * 16(rio), x0, y5; \
489 vpxor 3 * 16(rio), x0, y4; \
490 vpxor 4 * 16(rio), x0, y3; \
491 vpxor 5 * 16(rio), x0, y2; \
492 vpxor 6 * 16(rio), x0, y1; \
493 vpxor 7 * 16(rio), x0, y0; \
494 vpxor 8 * 16(rio), x0, x7; \
495 vpxor 9 * 16(rio), x0, x6; \
496 vpxor 10 * 16(rio), x0, x5; \
497 vpxor 11 * 16(rio), x0, x4; \
498 vpxor 12 * 16(rio), x0, x3; \
499 vpxor 13 * 16(rio), x0, x2; \
500 vpxor 14 * 16(rio), x0, x1; \
501 vpxor 15 * 16(rio), x0, x0;
502
503/* byteslice pre-whitened blocks and store to temporary memory */
504#define inpack16_post(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
505 y6, y7, mem_ab, mem_cd) \
506 byteslice_16x16b(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, \
507 y5, y6, y7, (mem_ab), (mem_cd)); \
508 \
509 vmovdqu x0, 0 * 16(mem_ab); \
510 vmovdqu x1, 1 * 16(mem_ab); \
511 vmovdqu x2, 2 * 16(mem_ab); \
512 vmovdqu x3, 3 * 16(mem_ab); \
513 vmovdqu x4, 4 * 16(mem_ab); \
514 vmovdqu x5, 5 * 16(mem_ab); \
515 vmovdqu x6, 6 * 16(mem_ab); \
516 vmovdqu x7, 7 * 16(mem_ab); \
517 vmovdqu y0, 0 * 16(mem_cd); \
518 vmovdqu y1, 1 * 16(mem_cd); \
519 vmovdqu y2, 2 * 16(mem_cd); \
520 vmovdqu y3, 3 * 16(mem_cd); \
521 vmovdqu y4, 4 * 16(mem_cd); \
522 vmovdqu y5, 5 * 16(mem_cd); \
523 vmovdqu y6, 6 * 16(mem_cd); \
524 vmovdqu y7, 7 * 16(mem_cd);
525
526/* de-byteslice, apply post-whitening and store blocks */
527#define outunpack16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, \
528 y5, y6, y7, key, stack_tmp0, stack_tmp1) \
529 byteslice_16x16b(y0, y4, x0, x4, y1, y5, x1, x5, y2, y6, x2, x6, y3, \
530 y7, x3, x7, stack_tmp0, stack_tmp1); \
531 \
532 vmovdqu x0, stack_tmp0; \
533 \
534 vmovq key, x0; \
535 vpshufb .Lpack_bswap, x0, x0; \
536 \
537 vpxor x0, y7, y7; \
538 vpxor x0, y6, y6; \
539 vpxor x0, y5, y5; \
540 vpxor x0, y4, y4; \
541 vpxor x0, y3, y3; \
542 vpxor x0, y2, y2; \
543 vpxor x0, y1, y1; \
544 vpxor x0, y0, y0; \
545 vpxor x0, x7, x7; \
546 vpxor x0, x6, x6; \
547 vpxor x0, x5, x5; \
548 vpxor x0, x4, x4; \
549 vpxor x0, x3, x3; \
550 vpxor x0, x2, x2; \
551 vpxor x0, x1, x1; \
552 vpxor stack_tmp0, x0, x0;
553
554#define write_output(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
555 y6, y7, rio) \
556 vmovdqu x0, 0 * 16(rio); \
557 vmovdqu x1, 1 * 16(rio); \
558 vmovdqu x2, 2 * 16(rio); \
559 vmovdqu x3, 3 * 16(rio); \
560 vmovdqu x4, 4 * 16(rio); \
561 vmovdqu x5, 5 * 16(rio); \
562 vmovdqu x6, 6 * 16(rio); \
563 vmovdqu x7, 7 * 16(rio); \
564 vmovdqu y0, 8 * 16(rio); \
565 vmovdqu y1, 9 * 16(rio); \
566 vmovdqu y2, 10 * 16(rio); \
567 vmovdqu y3, 11 * 16(rio); \
568 vmovdqu y4, 12 * 16(rio); \
569 vmovdqu y5, 13 * 16(rio); \
570 vmovdqu y6, 14 * 16(rio); \
571 vmovdqu y7, 15 * 16(rio);
572
573.data
574.align 16
575
576#define SHUFB_BYTES(idx) \
577 0 + (idx), 4 + (idx), 8 + (idx), 12 + (idx)
578
579.Lshufb_16x16b:
580 .byte SHUFB_BYTES(0), SHUFB_BYTES(1), SHUFB_BYTES(2), SHUFB_BYTES(3);
581
582.Lpack_bswap:
583 .long 0x00010203
584 .long 0x04050607
585 .long 0x80808080
586 .long 0x80808080
587
588/* For CTR-mode IV byteswap */
589.Lbswap128_mask:
590 .byte 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
591
b5c5b072
JK
592/* For XTS mode IV generation */
593.Lxts_gf128mul_and_shl1_mask:
594 .byte 0x87, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
595
d9b1d2e7
JK
596/*
597 * pre-SubByte transform
598 *
599 * pre-lookup for sbox1, sbox2, sbox3:
600 * swap_bitendianness(
601 * isom_map_camellia_to_aes(
602 * camellia_f(
603 * swap_bitendianess(in)
604 * )
605 * )
606 * )
607 *
608 * (note: '⊕ 0xc5' inside camellia_f())
609 */
610.Lpre_tf_lo_s1:
611 .byte 0x45, 0xe8, 0x40, 0xed, 0x2e, 0x83, 0x2b, 0x86
612 .byte 0x4b, 0xe6, 0x4e, 0xe3, 0x20, 0x8d, 0x25, 0x88
613.Lpre_tf_hi_s1:
614 .byte 0x00, 0x51, 0xf1, 0xa0, 0x8a, 0xdb, 0x7b, 0x2a
615 .byte 0x09, 0x58, 0xf8, 0xa9, 0x83, 0xd2, 0x72, 0x23
616
617/*
618 * pre-SubByte transform
619 *
620 * pre-lookup for sbox4:
621 * swap_bitendianness(
622 * isom_map_camellia_to_aes(
623 * camellia_f(
624 * swap_bitendianess(in <<< 1)
625 * )
626 * )
627 * )
628 *
629 * (note: '⊕ 0xc5' inside camellia_f())
630 */
631.Lpre_tf_lo_s4:
632 .byte 0x45, 0x40, 0x2e, 0x2b, 0x4b, 0x4e, 0x20, 0x25
633 .byte 0x14, 0x11, 0x7f, 0x7a, 0x1a, 0x1f, 0x71, 0x74
634.Lpre_tf_hi_s4:
635 .byte 0x00, 0xf1, 0x8a, 0x7b, 0x09, 0xf8, 0x83, 0x72
636 .byte 0xad, 0x5c, 0x27, 0xd6, 0xa4, 0x55, 0x2e, 0xdf
637
638/*
639 * post-SubByte transform
640 *
641 * post-lookup for sbox1, sbox4:
642 * swap_bitendianness(
643 * camellia_h(
644 * isom_map_aes_to_camellia(
645 * swap_bitendianness(
646 * aes_inverse_affine_transform(in)
647 * )
648 * )
649 * )
650 * )
651 *
652 * (note: '⊕ 0x6e' inside camellia_h())
653 */
654.Lpost_tf_lo_s1:
655 .byte 0x3c, 0xcc, 0xcf, 0x3f, 0x32, 0xc2, 0xc1, 0x31
656 .byte 0xdc, 0x2c, 0x2f, 0xdf, 0xd2, 0x22, 0x21, 0xd1
657.Lpost_tf_hi_s1:
658 .byte 0x00, 0xf9, 0x86, 0x7f, 0xd7, 0x2e, 0x51, 0xa8
659 .byte 0xa4, 0x5d, 0x22, 0xdb, 0x73, 0x8a, 0xf5, 0x0c
660
661/*
662 * post-SubByte transform
663 *
664 * post-lookup for sbox2:
665 * swap_bitendianness(
666 * camellia_h(
667 * isom_map_aes_to_camellia(
668 * swap_bitendianness(
669 * aes_inverse_affine_transform(in)
670 * )
671 * )
672 * )
673 * ) <<< 1
674 *
675 * (note: '⊕ 0x6e' inside camellia_h())
676 */
677.Lpost_tf_lo_s2:
678 .byte 0x78, 0x99, 0x9f, 0x7e, 0x64, 0x85, 0x83, 0x62
679 .byte 0xb9, 0x58, 0x5e, 0xbf, 0xa5, 0x44, 0x42, 0xa3
680.Lpost_tf_hi_s2:
681 .byte 0x00, 0xf3, 0x0d, 0xfe, 0xaf, 0x5c, 0xa2, 0x51
682 .byte 0x49, 0xba, 0x44, 0xb7, 0xe6, 0x15, 0xeb, 0x18
683
684/*
685 * post-SubByte transform
686 *
687 * post-lookup for sbox3:
688 * swap_bitendianness(
689 * camellia_h(
690 * isom_map_aes_to_camellia(
691 * swap_bitendianness(
692 * aes_inverse_affine_transform(in)
693 * )
694 * )
695 * )
696 * ) >>> 1
697 *
698 * (note: '⊕ 0x6e' inside camellia_h())
699 */
700.Lpost_tf_lo_s3:
701 .byte 0x1e, 0x66, 0xe7, 0x9f, 0x19, 0x61, 0xe0, 0x98
702 .byte 0x6e, 0x16, 0x97, 0xef, 0x69, 0x11, 0x90, 0xe8
703.Lpost_tf_hi_s3:
704 .byte 0x00, 0xfc, 0x43, 0xbf, 0xeb, 0x17, 0xa8, 0x54
705 .byte 0x52, 0xae, 0x11, 0xed, 0xb9, 0x45, 0xfa, 0x06
706
707/* For isolating SubBytes from AESENCLAST, inverse shift row */
708.Linv_shift_row:
709 .byte 0x00, 0x0d, 0x0a, 0x07, 0x04, 0x01, 0x0e, 0x0b
710 .byte 0x08, 0x05, 0x02, 0x0f, 0x0c, 0x09, 0x06, 0x03
711
712/* 4-bit mask */
713.align 4
714.L0f0f0f0f:
715 .long 0x0f0f0f0f
716
717.text
718
719.align 8
d9b1d2e7
JK
720__camellia_enc_blk16:
721 /* input:
722 * %rdi: ctx, CTX
723 * %rax: temporary storage, 256 bytes
724 * %xmm0..%xmm15: 16 plaintext blocks
725 * output:
726 * %xmm0..%xmm15: 16 encrypted blocks, order swapped:
727 * 7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
728 */
729
730 leaq 8 * 16(%rax), %rcx;
731
732 inpack16_post(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
733 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
734 %xmm15, %rax, %rcx);
735
736 enc_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
737 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
738 %xmm15, %rax, %rcx, 0);
739
740 fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
741 %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
742 %xmm15,
743 ((key_table + (8) * 8) + 0)(CTX),
744 ((key_table + (8) * 8) + 4)(CTX),
745 ((key_table + (8) * 8) + 8)(CTX),
746 ((key_table + (8) * 8) + 12)(CTX));
747
748 enc_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
749 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
750 %xmm15, %rax, %rcx, 8);
751
752 fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
753 %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
754 %xmm15,
755 ((key_table + (16) * 8) + 0)(CTX),
756 ((key_table + (16) * 8) + 4)(CTX),
757 ((key_table + (16) * 8) + 8)(CTX),
758 ((key_table + (16) * 8) + 12)(CTX));
759
760 enc_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
761 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
762 %xmm15, %rax, %rcx, 16);
763
764 movl $24, %r8d;
765 cmpl $16, key_length(CTX);
766 jne .Lenc_max32;
767
768.Lenc_done:
769 /* load CD for output */
770 vmovdqu 0 * 16(%rcx), %xmm8;
771 vmovdqu 1 * 16(%rcx), %xmm9;
772 vmovdqu 2 * 16(%rcx), %xmm10;
773 vmovdqu 3 * 16(%rcx), %xmm11;
774 vmovdqu 4 * 16(%rcx), %xmm12;
775 vmovdqu 5 * 16(%rcx), %xmm13;
776 vmovdqu 6 * 16(%rcx), %xmm14;
777 vmovdqu 7 * 16(%rcx), %xmm15;
778
779 outunpack16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
780 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
781 %xmm15, (key_table)(CTX, %r8, 8), (%rax), 1 * 16(%rax));
782
783 ret;
784
785.align 8
786.Lenc_max32:
787 movl $32, %r8d;
788
789 fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
790 %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
791 %xmm15,
792 ((key_table + (24) * 8) + 0)(CTX),
793 ((key_table + (24) * 8) + 4)(CTX),
794 ((key_table + (24) * 8) + 8)(CTX),
795 ((key_table + (24) * 8) + 12)(CTX));
796
797 enc_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
798 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
799 %xmm15, %rax, %rcx, 24);
800
801 jmp .Lenc_done;
59990684 802ENDPROC(__camellia_enc_blk16)
d9b1d2e7
JK
803
804.align 8
d9b1d2e7
JK
805__camellia_dec_blk16:
806 /* input:
807 * %rdi: ctx, CTX
808 * %rax: temporary storage, 256 bytes
809 * %r8d: 24 for 16 byte key, 32 for larger
810 * %xmm0..%xmm15: 16 encrypted blocks
811 * output:
812 * %xmm0..%xmm15: 16 plaintext blocks, order swapped:
813 * 7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
814 */
815
816 leaq 8 * 16(%rax), %rcx;
817
818 inpack16_post(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
819 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
820 %xmm15, %rax, %rcx);
821
822 cmpl $32, %r8d;
823 je .Ldec_max32;
824
825.Ldec_max24:
826 dec_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
827 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
828 %xmm15, %rax, %rcx, 16);
829
830 fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
831 %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
832 %xmm15,
833 ((key_table + (16) * 8) + 8)(CTX),
834 ((key_table + (16) * 8) + 12)(CTX),
835 ((key_table + (16) * 8) + 0)(CTX),
836 ((key_table + (16) * 8) + 4)(CTX));
837
838 dec_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
839 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
840 %xmm15, %rax, %rcx, 8);
841
842 fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
843 %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
844 %xmm15,
845 ((key_table + (8) * 8) + 8)(CTX),
846 ((key_table + (8) * 8) + 12)(CTX),
847 ((key_table + (8) * 8) + 0)(CTX),
848 ((key_table + (8) * 8) + 4)(CTX));
849
850 dec_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
851 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
852 %xmm15, %rax, %rcx, 0);
853
854 /* load CD for output */
855 vmovdqu 0 * 16(%rcx), %xmm8;
856 vmovdqu 1 * 16(%rcx), %xmm9;
857 vmovdqu 2 * 16(%rcx), %xmm10;
858 vmovdqu 3 * 16(%rcx), %xmm11;
859 vmovdqu 4 * 16(%rcx), %xmm12;
860 vmovdqu 5 * 16(%rcx), %xmm13;
861 vmovdqu 6 * 16(%rcx), %xmm14;
862 vmovdqu 7 * 16(%rcx), %xmm15;
863
864 outunpack16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
865 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
866 %xmm15, (key_table)(CTX), (%rax), 1 * 16(%rax));
867
868 ret;
869
870.align 8
871.Ldec_max32:
872 dec_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
873 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
874 %xmm15, %rax, %rcx, 24);
875
876 fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
877 %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
878 %xmm15,
879 ((key_table + (24) * 8) + 8)(CTX),
880 ((key_table + (24) * 8) + 12)(CTX),
881 ((key_table + (24) * 8) + 0)(CTX),
882 ((key_table + (24) * 8) + 4)(CTX));
883
884 jmp .Ldec_max24;
59990684 885ENDPROC(__camellia_dec_blk16)
d9b1d2e7 886
59990684 887ENTRY(camellia_ecb_enc_16way)
d9b1d2e7
JK
888 /* input:
889 * %rdi: ctx, CTX
890 * %rsi: dst (16 blocks)
891 * %rdx: src (16 blocks)
892 */
893
894 inpack16_pre(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
895 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
896 %xmm15, %rdx, (key_table)(CTX));
897
898 /* now dst can be used as temporary buffer (even in src == dst case) */
899 movq %rsi, %rax;
900
901 call __camellia_enc_blk16;
902
903 write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0,
904 %xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9,
905 %xmm8, %rsi);
906
907 ret;
59990684 908ENDPROC(camellia_ecb_enc_16way)
d9b1d2e7 909
59990684 910ENTRY(camellia_ecb_dec_16way)
d9b1d2e7
JK
911 /* input:
912 * %rdi: ctx, CTX
913 * %rsi: dst (16 blocks)
914 * %rdx: src (16 blocks)
915 */
916
917 cmpl $16, key_length(CTX);
918 movl $32, %r8d;
919 movl $24, %eax;
920 cmovel %eax, %r8d; /* max */
921
922 inpack16_pre(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
923 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
924 %xmm15, %rdx, (key_table)(CTX, %r8, 8));
925
926 /* now dst can be used as temporary buffer (even in src == dst case) */
927 movq %rsi, %rax;
928
929 call __camellia_dec_blk16;
930
931 write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0,
932 %xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9,
933 %xmm8, %rsi);
934
935 ret;
59990684 936ENDPROC(camellia_ecb_dec_16way)
d9b1d2e7 937
59990684 938ENTRY(camellia_cbc_dec_16way)
d9b1d2e7
JK
939 /* input:
940 * %rdi: ctx, CTX
941 * %rsi: dst (16 blocks)
942 * %rdx: src (16 blocks)
943 */
944
945 cmpl $16, key_length(CTX);
946 movl $32, %r8d;
947 movl $24, %eax;
948 cmovel %eax, %r8d; /* max */
949
950 inpack16_pre(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
951 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
952 %xmm15, %rdx, (key_table)(CTX, %r8, 8));
953
954 /*
955 * dst might still be in-use (in case dst == src), so use stack for
956 * temporary storage.
957 */
958 subq $(16 * 16), %rsp;
959 movq %rsp, %rax;
960
961 call __camellia_dec_blk16;
962
963 addq $(16 * 16), %rsp;
964
965 vpxor (0 * 16)(%rdx), %xmm6, %xmm6;
966 vpxor (1 * 16)(%rdx), %xmm5, %xmm5;
967 vpxor (2 * 16)(%rdx), %xmm4, %xmm4;
968 vpxor (3 * 16)(%rdx), %xmm3, %xmm3;
969 vpxor (4 * 16)(%rdx), %xmm2, %xmm2;
970 vpxor (5 * 16)(%rdx), %xmm1, %xmm1;
971 vpxor (6 * 16)(%rdx), %xmm0, %xmm0;
972 vpxor (7 * 16)(%rdx), %xmm15, %xmm15;
973 vpxor (8 * 16)(%rdx), %xmm14, %xmm14;
974 vpxor (9 * 16)(%rdx), %xmm13, %xmm13;
975 vpxor (10 * 16)(%rdx), %xmm12, %xmm12;
976 vpxor (11 * 16)(%rdx), %xmm11, %xmm11;
977 vpxor (12 * 16)(%rdx), %xmm10, %xmm10;
978 vpxor (13 * 16)(%rdx), %xmm9, %xmm9;
979 vpxor (14 * 16)(%rdx), %xmm8, %xmm8;
980 write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0,
981 %xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9,
982 %xmm8, %rsi);
983
984 ret;
59990684 985ENDPROC(camellia_cbc_dec_16way)
d9b1d2e7
JK
986
987#define inc_le128(x, minus_one, tmp) \
988 vpcmpeqq minus_one, x, tmp; \
989 vpsubq minus_one, x, x; \
990 vpslldq $8, tmp, tmp; \
991 vpsubq tmp, x, x;
992
59990684 993ENTRY(camellia_ctr_16way)
d9b1d2e7
JK
994 /* input:
995 * %rdi: ctx, CTX
996 * %rsi: dst (16 blocks)
997 * %rdx: src (16 blocks)
998 * %rcx: iv (little endian, 128bit)
999 */
1000
1001 subq $(16 * 16), %rsp;
1002 movq %rsp, %rax;
1003
1004 vmovdqa .Lbswap128_mask, %xmm14;
1005
1006 /* load IV and byteswap */
1007 vmovdqu (%rcx), %xmm0;
1008 vpshufb %xmm14, %xmm0, %xmm15;
1009 vmovdqu %xmm15, 15 * 16(%rax);
1010
1011 vpcmpeqd %xmm15, %xmm15, %xmm15;
1012 vpsrldq $8, %xmm15, %xmm15; /* low: -1, high: 0 */
1013
1014 /* construct IVs */
1015 inc_le128(%xmm0, %xmm15, %xmm13);
1016 vpshufb %xmm14, %xmm0, %xmm13;
1017 vmovdqu %xmm13, 14 * 16(%rax);
1018 inc_le128(%xmm0, %xmm15, %xmm13);
1019 vpshufb %xmm14, %xmm0, %xmm13;
1020 vmovdqu %xmm13, 13 * 16(%rax);
1021 inc_le128(%xmm0, %xmm15, %xmm13);
1022 vpshufb %xmm14, %xmm0, %xmm12;
1023 inc_le128(%xmm0, %xmm15, %xmm13);
1024 vpshufb %xmm14, %xmm0, %xmm11;
1025 inc_le128(%xmm0, %xmm15, %xmm13);
1026 vpshufb %xmm14, %xmm0, %xmm10;
1027 inc_le128(%xmm0, %xmm15, %xmm13);
1028 vpshufb %xmm14, %xmm0, %xmm9;
1029 inc_le128(%xmm0, %xmm15, %xmm13);
1030 vpshufb %xmm14, %xmm0, %xmm8;
1031 inc_le128(%xmm0, %xmm15, %xmm13);
1032 vpshufb %xmm14, %xmm0, %xmm7;
1033 inc_le128(%xmm0, %xmm15, %xmm13);
1034 vpshufb %xmm14, %xmm0, %xmm6;
1035 inc_le128(%xmm0, %xmm15, %xmm13);
1036 vpshufb %xmm14, %xmm0, %xmm5;
1037 inc_le128(%xmm0, %xmm15, %xmm13);
1038 vpshufb %xmm14, %xmm0, %xmm4;
1039 inc_le128(%xmm0, %xmm15, %xmm13);
1040 vpshufb %xmm14, %xmm0, %xmm3;
1041 inc_le128(%xmm0, %xmm15, %xmm13);
1042 vpshufb %xmm14, %xmm0, %xmm2;
1043 inc_le128(%xmm0, %xmm15, %xmm13);
1044 vpshufb %xmm14, %xmm0, %xmm1;
1045 inc_le128(%xmm0, %xmm15, %xmm13);
1046 vmovdqa %xmm0, %xmm13;
1047 vpshufb %xmm14, %xmm0, %xmm0;
1048 inc_le128(%xmm13, %xmm15, %xmm14);
1049 vmovdqu %xmm13, (%rcx);
1050
1051 /* inpack16_pre: */
1052 vmovq (key_table)(CTX), %xmm15;
1053 vpshufb .Lpack_bswap, %xmm15, %xmm15;
1054 vpxor %xmm0, %xmm15, %xmm0;
1055 vpxor %xmm1, %xmm15, %xmm1;
1056 vpxor %xmm2, %xmm15, %xmm2;
1057 vpxor %xmm3, %xmm15, %xmm3;
1058 vpxor %xmm4, %xmm15, %xmm4;
1059 vpxor %xmm5, %xmm15, %xmm5;
1060 vpxor %xmm6, %xmm15, %xmm6;
1061 vpxor %xmm7, %xmm15, %xmm7;
1062 vpxor %xmm8, %xmm15, %xmm8;
1063 vpxor %xmm9, %xmm15, %xmm9;
1064 vpxor %xmm10, %xmm15, %xmm10;
1065 vpxor %xmm11, %xmm15, %xmm11;
1066 vpxor %xmm12, %xmm15, %xmm12;
1067 vpxor 13 * 16(%rax), %xmm15, %xmm13;
1068 vpxor 14 * 16(%rax), %xmm15, %xmm14;
1069 vpxor 15 * 16(%rax), %xmm15, %xmm15;
1070
1071 call __camellia_enc_blk16;
1072
1073 addq $(16 * 16), %rsp;
1074
1075 vpxor 0 * 16(%rdx), %xmm7, %xmm7;
1076 vpxor 1 * 16(%rdx), %xmm6, %xmm6;
1077 vpxor 2 * 16(%rdx), %xmm5, %xmm5;
1078 vpxor 3 * 16(%rdx), %xmm4, %xmm4;
1079 vpxor 4 * 16(%rdx), %xmm3, %xmm3;
1080 vpxor 5 * 16(%rdx), %xmm2, %xmm2;
1081 vpxor 6 * 16(%rdx), %xmm1, %xmm1;
1082 vpxor 7 * 16(%rdx), %xmm0, %xmm0;
1083 vpxor 8 * 16(%rdx), %xmm15, %xmm15;
1084 vpxor 9 * 16(%rdx), %xmm14, %xmm14;
1085 vpxor 10 * 16(%rdx), %xmm13, %xmm13;
1086 vpxor 11 * 16(%rdx), %xmm12, %xmm12;
1087 vpxor 12 * 16(%rdx), %xmm11, %xmm11;
1088 vpxor 13 * 16(%rdx), %xmm10, %xmm10;
1089 vpxor 14 * 16(%rdx), %xmm9, %xmm9;
1090 vpxor 15 * 16(%rdx), %xmm8, %xmm8;
1091 write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0,
1092 %xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9,
1093 %xmm8, %rsi);
1094
1095 ret;
59990684 1096ENDPROC(camellia_ctr_16way)
b5c5b072
JK
1097
1098#define gf128mul_x_ble(iv, mask, tmp) \
1099 vpsrad $31, iv, tmp; \
1100 vpaddq iv, iv, iv; \
1101 vpshufd $0x13, tmp, tmp; \
1102 vpand mask, tmp, tmp; \
1103 vpxor tmp, iv, iv;
1104
1105.align 8
1106camellia_xts_crypt_16way:
1107 /* input:
1108 * %rdi: ctx, CTX
1109 * %rsi: dst (16 blocks)
1110 * %rdx: src (16 blocks)
1111 * %rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸))
1112 * %r8: index for input whitening key
1113 * %r9: pointer to __camellia_enc_blk16 or __camellia_dec_blk16
1114 */
1115
1116 subq $(16 * 16), %rsp;
1117 movq %rsp, %rax;
1118
1119 vmovdqa .Lxts_gf128mul_and_shl1_mask, %xmm14;
1120
1121 /* load IV */
1122 vmovdqu (%rcx), %xmm0;
1123 vpxor 0 * 16(%rdx), %xmm0, %xmm15;
1124 vmovdqu %xmm15, 15 * 16(%rax);
1125 vmovdqu %xmm0, 0 * 16(%rsi);
1126
1127 /* construct IVs */
1128 gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1129 vpxor 1 * 16(%rdx), %xmm0, %xmm15;
1130 vmovdqu %xmm15, 14 * 16(%rax);
1131 vmovdqu %xmm0, 1 * 16(%rsi);
1132
1133 gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1134 vpxor 2 * 16(%rdx), %xmm0, %xmm13;
1135 vmovdqu %xmm0, 2 * 16(%rsi);
1136
1137 gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1138 vpxor 3 * 16(%rdx), %xmm0, %xmm12;
1139 vmovdqu %xmm0, 3 * 16(%rsi);
1140
1141 gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1142 vpxor 4 * 16(%rdx), %xmm0, %xmm11;
1143 vmovdqu %xmm0, 4 * 16(%rsi);
1144
1145 gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1146 vpxor 5 * 16(%rdx), %xmm0, %xmm10;
1147 vmovdqu %xmm0, 5 * 16(%rsi);
1148
1149 gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1150 vpxor 6 * 16(%rdx), %xmm0, %xmm9;
1151 vmovdqu %xmm0, 6 * 16(%rsi);
1152
1153 gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1154 vpxor 7 * 16(%rdx), %xmm0, %xmm8;
1155 vmovdqu %xmm0, 7 * 16(%rsi);
1156
1157 gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1158 vpxor 8 * 16(%rdx), %xmm0, %xmm7;
1159 vmovdqu %xmm0, 8 * 16(%rsi);
1160
1161 gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1162 vpxor 9 * 16(%rdx), %xmm0, %xmm6;
1163 vmovdqu %xmm0, 9 * 16(%rsi);
1164
1165 gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1166 vpxor 10 * 16(%rdx), %xmm0, %xmm5;
1167 vmovdqu %xmm0, 10 * 16(%rsi);
1168
1169 gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1170 vpxor 11 * 16(%rdx), %xmm0, %xmm4;
1171 vmovdqu %xmm0, 11 * 16(%rsi);
1172
1173 gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1174 vpxor 12 * 16(%rdx), %xmm0, %xmm3;
1175 vmovdqu %xmm0, 12 * 16(%rsi);
1176
1177 gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1178 vpxor 13 * 16(%rdx), %xmm0, %xmm2;
1179 vmovdqu %xmm0, 13 * 16(%rsi);
1180
1181 gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1182 vpxor 14 * 16(%rdx), %xmm0, %xmm1;
1183 vmovdqu %xmm0, 14 * 16(%rsi);
1184
1185 gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1186 vpxor 15 * 16(%rdx), %xmm0, %xmm15;
1187 vmovdqu %xmm15, 0 * 16(%rax);
1188 vmovdqu %xmm0, 15 * 16(%rsi);
1189
1190 gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1191 vmovdqu %xmm0, (%rcx);
1192
1193 /* inpack16_pre: */
1194 vmovq (key_table)(CTX, %r8, 8), %xmm15;
1195 vpshufb .Lpack_bswap, %xmm15, %xmm15;
1196 vpxor 0 * 16(%rax), %xmm15, %xmm0;
1197 vpxor %xmm1, %xmm15, %xmm1;
1198 vpxor %xmm2, %xmm15, %xmm2;
1199 vpxor %xmm3, %xmm15, %xmm3;
1200 vpxor %xmm4, %xmm15, %xmm4;
1201 vpxor %xmm5, %xmm15, %xmm5;
1202 vpxor %xmm6, %xmm15, %xmm6;
1203 vpxor %xmm7, %xmm15, %xmm7;
1204 vpxor %xmm8, %xmm15, %xmm8;
1205 vpxor %xmm9, %xmm15, %xmm9;
1206 vpxor %xmm10, %xmm15, %xmm10;
1207 vpxor %xmm11, %xmm15, %xmm11;
1208 vpxor %xmm12, %xmm15, %xmm12;
1209 vpxor %xmm13, %xmm15, %xmm13;
1210 vpxor 14 * 16(%rax), %xmm15, %xmm14;
1211 vpxor 15 * 16(%rax), %xmm15, %xmm15;
1212
1213 call *%r9;
1214
1215 addq $(16 * 16), %rsp;
1216
1217 vpxor 0 * 16(%rsi), %xmm7, %xmm7;
1218 vpxor 1 * 16(%rsi), %xmm6, %xmm6;
1219 vpxor 2 * 16(%rsi), %xmm5, %xmm5;
1220 vpxor 3 * 16(%rsi), %xmm4, %xmm4;
1221 vpxor 4 * 16(%rsi), %xmm3, %xmm3;
1222 vpxor 5 * 16(%rsi), %xmm2, %xmm2;
1223 vpxor 6 * 16(%rsi), %xmm1, %xmm1;
1224 vpxor 7 * 16(%rsi), %xmm0, %xmm0;
1225 vpxor 8 * 16(%rsi), %xmm15, %xmm15;
1226 vpxor 9 * 16(%rsi), %xmm14, %xmm14;
1227 vpxor 10 * 16(%rsi), %xmm13, %xmm13;
1228 vpxor 11 * 16(%rsi), %xmm12, %xmm12;
1229 vpxor 12 * 16(%rsi), %xmm11, %xmm11;
1230 vpxor 13 * 16(%rsi), %xmm10, %xmm10;
1231 vpxor 14 * 16(%rsi), %xmm9, %xmm9;
1232 vpxor 15 * 16(%rsi), %xmm8, %xmm8;
1233 write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0,
1234 %xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9,
1235 %xmm8, %rsi);
1236
1237 ret;
1238ENDPROC(camellia_xts_crypt_16way)
1239
1240ENTRY(camellia_xts_enc_16way)
1241 /* input:
1242 * %rdi: ctx, CTX
1243 * %rsi: dst (16 blocks)
1244 * %rdx: src (16 blocks)
1245 * %rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸))
1246 */
1247 xorl %r8d, %r8d; /* input whitening key, 0 for enc */
1248
1249 leaq __camellia_enc_blk16, %r9;
1250
1251 jmp camellia_xts_crypt_16way;
1252ENDPROC(camellia_xts_enc_16way)
1253
1254ENTRY(camellia_xts_dec_16way)
1255 /* input:
1256 * %rdi: ctx, CTX
1257 * %rsi: dst (16 blocks)
1258 * %rdx: src (16 blocks)
1259 * %rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸))
1260 */
1261
1262 cmpl $16, key_length(CTX);
1263 movl $32, %r8d;
1264 movl $24, %eax;
1265 cmovel %eax, %r8d; /* input whitening key, last for dec */
1266
1267 leaq __camellia_dec_blk16, %r9;
1268
1269 jmp camellia_xts_crypt_16way;
1270ENDPROC(camellia_xts_dec_16way)