]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - arch/x86/entry/entry_32.S
x86/entry: Convert Alignment check exception to IDTENTRY
[mirror_ubuntu-hirsute-kernel.git] / arch / x86 / entry / entry_32.S
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4 2/*
a49976d1 3 * Copyright (C) 1991,1992 Linus Torvalds
1da177e4 4 *
a49976d1 5 * entry_32.S contains the system-call and low-level fault and trap handling routines.
1da177e4 6 *
39e8701f 7 * Stack layout while running C code:
a49976d1
IM
8 * ptrace needs to have all registers on the stack.
9 * If the order here is changed, it needs to be
10 * updated in fork.c:copy_process(), signal.c:do_signal(),
1da177e4
LT
11 * ptrace.c and ptrace.h
12 *
13 * 0(%esp) - %ebx
14 * 4(%esp) - %ecx
15 * 8(%esp) - %edx
9b47feb7 16 * C(%esp) - %esi
1da177e4
LT
17 * 10(%esp) - %edi
18 * 14(%esp) - %ebp
19 * 18(%esp) - %eax
20 * 1C(%esp) - %ds
21 * 20(%esp) - %es
464d1a78 22 * 24(%esp) - %fs
ccbeed3a
TH
23 * 28(%esp) - %gs saved iff !CONFIG_X86_32_LAZY_GS
24 * 2C(%esp) - orig_eax
25 * 30(%esp) - %eip
26 * 34(%esp) - %cs
27 * 38(%esp) - %eflags
28 * 3C(%esp) - %oldesp
29 * 40(%esp) - %oldss
1da177e4
LT
30 */
31
1da177e4 32#include <linux/linkage.h>
d7e7528b 33#include <linux/err.h>
1da177e4 34#include <asm/thread_info.h>
55f327fa 35#include <asm/irqflags.h>
1da177e4
LT
36#include <asm/errno.h>
37#include <asm/segment.h>
38#include <asm/smp.h>
be44d2aa 39#include <asm/percpu.h>
ab68ed98 40#include <asm/processor-flags.h>
9b7dc567 41#include <asm/irq_vectors.h>
cd4d09ec 42#include <asm/cpufeatures.h>
b4ca46e4 43#include <asm/alternative-asm.h>
6837a54d 44#include <asm/asm.h>
e59d1b0a 45#include <asm/smap.h>
4d516f41 46#include <asm/frame.h>
60400677 47#include <asm/trapnr.h>
2641f08b 48#include <asm/nospec-branch.h>
1da177e4 49
afaef01c
AP
50#include "calling.h"
51
ea714547
JO
52 .section .entry.text, "ax"
53
139ec7c4
RR
54/*
55 * We use macros for low-level operations which need to be overridden
56 * for paravirtualization. The following will never clobber any registers:
57 * INTERRUPT_RETURN (aka. "iret")
58 * GET_CR0_INTO_EAX (aka. "movl %cr0, %eax")
d75cd22f 59 * ENABLE_INTERRUPTS_SYSEXIT (aka "sti; sysexit").
139ec7c4
RR
60 *
61 * For DISABLE_INTERRUPTS/ENABLE_INTERRUPTS (aka "cli"/"sti"), you must
62 * specify what registers can be overwritten (CLBR_NONE, CLBR_EAX/EDX/ECX/ANY).
63 * Allowing a register to be clobbered can shrink the paravirt replacement
64 * enough to patch inline, increasing performance.
65 */
66
48593975 67#ifdef CONFIG_PREEMPTION
a49976d1 68# define preempt_stop(clobbers) DISABLE_INTERRUPTS(clobbers); TRACE_IRQS_OFF
1da177e4 69#else
a49976d1 70# define preempt_stop(clobbers)
1da177e4
LT
71#endif
72
55f327fa
IM
73.macro TRACE_IRQS_IRET
74#ifdef CONFIG_TRACE_IRQFLAGS
a49976d1
IM
75 testl $X86_EFLAGS_IF, PT_EFLAGS(%esp) # interrupts off?
76 jz 1f
55f327fa
IM
77 TRACE_IRQS_ON
781:
79#endif
80.endm
81
e464fb9f
JR
82#define PTI_SWITCH_MASK (1 << PAGE_SHIFT)
83
ccbeed3a
TH
84/*
85 * User gs save/restore
86 *
87 * %gs is used for userland TLS and kernel only uses it for stack
88 * canary which is required to be at %gs:20 by gcc. Read the comment
89 * at the top of stackprotector.h for more info.
90 *
91 * Local labels 98 and 99 are used.
92 */
93#ifdef CONFIG_X86_32_LAZY_GS
94
95 /* unfortunately push/pop can't be no-op */
96.macro PUSH_GS
a49976d1 97 pushl $0
ccbeed3a
TH
98.endm
99.macro POP_GS pop=0
a49976d1 100 addl $(4 + \pop), %esp
ccbeed3a
TH
101.endm
102.macro POP_GS_EX
103.endm
104
105 /* all the rest are no-op */
106.macro PTGS_TO_GS
107.endm
108.macro PTGS_TO_GS_EX
109.endm
110.macro GS_TO_REG reg
111.endm
112.macro REG_TO_PTGS reg
113.endm
114.macro SET_KERNEL_GS reg
115.endm
116
117#else /* CONFIG_X86_32_LAZY_GS */
118
119.macro PUSH_GS
a49976d1 120 pushl %gs
ccbeed3a
TH
121.endm
122
123.macro POP_GS pop=0
a49976d1 12498: popl %gs
ccbeed3a 125 .if \pop <> 0
9b47feb7 126 add $\pop, %esp
ccbeed3a
TH
127 .endif
128.endm
129.macro POP_GS_EX
130.pushsection .fixup, "ax"
a49976d1
IM
13199: movl $0, (%esp)
132 jmp 98b
ccbeed3a 133.popsection
a49976d1 134 _ASM_EXTABLE(98b, 99b)
ccbeed3a
TH
135.endm
136
137.macro PTGS_TO_GS
a49976d1 13898: mov PT_GS(%esp), %gs
ccbeed3a
TH
139.endm
140.macro PTGS_TO_GS_EX
141.pushsection .fixup, "ax"
a49976d1
IM
14299: movl $0, PT_GS(%esp)
143 jmp 98b
ccbeed3a 144.popsection
a49976d1 145 _ASM_EXTABLE(98b, 99b)
ccbeed3a
TH
146.endm
147
148.macro GS_TO_REG reg
a49976d1 149 movl %gs, \reg
ccbeed3a
TH
150.endm
151.macro REG_TO_PTGS reg
a49976d1 152 movl \reg, PT_GS(%esp)
ccbeed3a
TH
153.endm
154.macro SET_KERNEL_GS reg
a49976d1
IM
155 movl $(__KERNEL_STACK_CANARY), \reg
156 movl \reg, %gs
ccbeed3a
TH
157.endm
158
a49976d1 159#endif /* CONFIG_X86_32_LAZY_GS */
ccbeed3a 160
e464fb9f
JR
161/* Unconditionally switch to user cr3 */
162.macro SWITCH_TO_USER_CR3 scratch_reg:req
163 ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
164
165 movl %cr3, \scratch_reg
166 orl $PTI_SWITCH_MASK, \scratch_reg
167 movl \scratch_reg, %cr3
168.Lend_\@:
169.endm
170
97193702
JR
171.macro BUG_IF_WRONG_CR3 no_user_check=0
172#ifdef CONFIG_DEBUG_ENTRY
173 ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
174 .if \no_user_check == 0
175 /* coming from usermode? */
81ff2c37 176 testl $USER_SEGMENT_RPL_MASK, PT_CS(%esp)
97193702
JR
177 jz .Lend_\@
178 .endif
179 /* On user-cr3? */
180 movl %cr3, %eax
181 testl $PTI_SWITCH_MASK, %eax
182 jnz .Lend_\@
183 /* From userspace with kernel cr3 - BUG */
184 ud2
185.Lend_\@:
186#endif
187.endm
188
e464fb9f
JR
189/*
190 * Switch to kernel cr3 if not already loaded and return current cr3 in
191 * \scratch_reg
192 */
193.macro SWITCH_TO_KERNEL_CR3 scratch_reg:req
194 ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
195 movl %cr3, \scratch_reg
196 /* Test if we are already on kernel CR3 */
197 testl $PTI_SWITCH_MASK, \scratch_reg
198 jz .Lend_\@
199 andl $(~PTI_SWITCH_MASK), \scratch_reg
200 movl \scratch_reg, %cr3
201 /* Return original CR3 in \scratch_reg */
202 orl $PTI_SWITCH_MASK, \scratch_reg
203.Lend_\@:
204.endm
205
3c88c692
PZ
206#define CS_FROM_ENTRY_STACK (1 << 31)
207#define CS_FROM_USER_CR3 (1 << 30)
208#define CS_FROM_KERNEL (1 << 29)
89542907 209#define CS_FROM_ESPFIX (1 << 28)
3c88c692
PZ
210
211.macro FIXUP_FRAME
212 /*
213 * The high bits of the CS dword (__csh) are used for CS_FROM_*.
214 * Clear them in case hardware didn't do this for us.
215 */
82cb8a0b 216 andl $0x0000ffff, 4*4(%esp)
3c88c692
PZ
217
218#ifdef CONFIG_VM86
82cb8a0b 219 testl $X86_EFLAGS_VM, 5*4(%esp)
3c88c692
PZ
220 jnz .Lfrom_usermode_no_fixup_\@
221#endif
82cb8a0b 222 testl $USER_SEGMENT_RPL_MASK, 4*4(%esp)
3c88c692
PZ
223 jnz .Lfrom_usermode_no_fixup_\@
224
82cb8a0b 225 orl $CS_FROM_KERNEL, 4*4(%esp)
3c88c692
PZ
226
227 /*
228 * When we're here from kernel mode; the (exception) stack looks like:
229 *
82cb8a0b
AL
230 * 6*4(%esp) - <previous context>
231 * 5*4(%esp) - flags
232 * 4*4(%esp) - cs
233 * 3*4(%esp) - ip
234 * 2*4(%esp) - orig_eax
235 * 1*4(%esp) - gs / function
236 * 0*4(%esp) - fs
3c88c692
PZ
237 *
238 * Lets build a 5 entry IRET frame after that, such that struct pt_regs
239 * is complete and in particular regs->sp is correct. This gives us
82cb8a0b 240 * the original 6 enties as gap:
3c88c692 241 *
82cb8a0b
AL
242 * 14*4(%esp) - <previous context>
243 * 13*4(%esp) - gap / flags
244 * 12*4(%esp) - gap / cs
245 * 11*4(%esp) - gap / ip
246 * 10*4(%esp) - gap / orig_eax
247 * 9*4(%esp) - gap / gs / function
248 * 8*4(%esp) - gap / fs
249 * 7*4(%esp) - ss
250 * 6*4(%esp) - sp
251 * 5*4(%esp) - flags
252 * 4*4(%esp) - cs
253 * 3*4(%esp) - ip
254 * 2*4(%esp) - orig_eax
255 * 1*4(%esp) - gs / function
256 * 0*4(%esp) - fs
3c88c692
PZ
257 */
258
259 pushl %ss # ss
260 pushl %esp # sp (points at ss)
82cb8a0b
AL
261 addl $7*4, (%esp) # point sp back at the previous context
262 pushl 7*4(%esp) # flags
263 pushl 7*4(%esp) # cs
264 pushl 7*4(%esp) # ip
265 pushl 7*4(%esp) # orig_eax
266 pushl 7*4(%esp) # gs / function
267 pushl 7*4(%esp) # fs
3c88c692
PZ
268.Lfrom_usermode_no_fixup_\@:
269.endm
270
271.macro IRET_FRAME
4c4fd55d
AL
272 /*
273 * We're called with %ds, %es, %fs, and %gs from the interrupted
274 * frame, so we shouldn't use them. Also, we may be in ESPFIX
275 * mode and therefore have a nonzero SS base and an offset ESP,
276 * so any attempt to access the stack needs to use SS. (except for
277 * accesses through %esp, which automatically use SS.)
278 */
3c88c692
PZ
279 testl $CS_FROM_KERNEL, 1*4(%esp)
280 jz .Lfinished_frame_\@
281
282 /*
283 * Reconstruct the 3 entry IRET frame right after the (modified)
284 * regs->sp without lowering %esp in between, such that an NMI in the
285 * middle doesn't scribble our stack.
286 */
287 pushl %eax
288 pushl %ecx
289 movl 5*4(%esp), %eax # (modified) regs->sp
290
291 movl 4*4(%esp), %ecx # flags
4c4fd55d 292 movl %ecx, %ss:-1*4(%eax)
3c88c692
PZ
293
294 movl 3*4(%esp), %ecx # cs
295 andl $0x0000ffff, %ecx
4c4fd55d 296 movl %ecx, %ss:-2*4(%eax)
3c88c692
PZ
297
298 movl 2*4(%esp), %ecx # ip
4c4fd55d 299 movl %ecx, %ss:-3*4(%eax)
3c88c692
PZ
300
301 movl 1*4(%esp), %ecx # eax
4c4fd55d 302 movl %ecx, %ss:-4*4(%eax)
3c88c692
PZ
303
304 popl %ecx
4c4fd55d 305 lea -4*4(%eax), %esp
3c88c692
PZ
306 popl %eax
307.Lfinished_frame_\@:
308.endm
309
a1a338e5 310.macro SAVE_ALL pt_regs_ax=%eax switch_stacks=0 skip_gs=0 unwind_espfix=0
f0d96110 311 cld
e67f1c11 312.if \skip_gs == 0
ccbeed3a 313 PUSH_GS
e67f1c11 314.endif
a49976d1 315 pushl %fs
a1a338e5
AL
316
317 pushl %eax
318 movl $(__KERNEL_PERCPU), %eax
319 movl %eax, %fs
320.if \unwind_espfix > 0
321 UNWIND_ESPFIX_STACK
322.endif
323 popl %eax
324
82cb8a0b 325 FIXUP_FRAME
a49976d1
IM
326 pushl %es
327 pushl %ds
150ac78d 328 pushl \pt_regs_ax
a49976d1
IM
329 pushl %ebp
330 pushl %edi
331 pushl %esi
332 pushl %edx
333 pushl %ecx
334 pushl %ebx
335 movl $(__USER_DS), %edx
336 movl %edx, %ds
337 movl %edx, %es
e67f1c11 338.if \skip_gs == 0
ccbeed3a 339 SET_KERNEL_GS %edx
e67f1c11 340.endif
45d7b255
JR
341 /* Switch to kernel stack if necessary */
342.if \switch_stacks > 0
343 SWITCH_TO_KERNEL_STACK
344.endif
f0d96110 345.endm
1da177e4 346
89542907
PZ
347.macro SAVE_ALL_NMI cr3_reg:req unwind_espfix=0
348 SAVE_ALL unwind_espfix=\unwind_espfix
b65bef40 349
97193702
JR
350 BUG_IF_WRONG_CR3
351
b65bef40
JR
352 /*
353 * Now switch the CR3 when PTI is enabled.
354 *
355 * We can enter with either user or kernel cr3, the code will
356 * store the old cr3 in \cr3_reg and switches to the kernel cr3
357 * if necessary.
358 */
359 SWITCH_TO_KERNEL_CR3 scratch_reg=\cr3_reg
360
361.Lend_\@:
8b376fae 362.endm
97193702 363
f0d96110 364.macro RESTORE_INT_REGS
a49976d1
IM
365 popl %ebx
366 popl %ecx
367 popl %edx
368 popl %esi
369 popl %edi
370 popl %ebp
371 popl %eax
f0d96110 372.endm
1da177e4 373
ccbeed3a 374.macro RESTORE_REGS pop=0
f0d96110 375 RESTORE_INT_REGS
a49976d1
IM
3761: popl %ds
3772: popl %es
3783: popl %fs
ccbeed3a 379 POP_GS \pop
40ad2199 380 IRET_FRAME
f0d96110 381.pushsection .fixup, "ax"
a49976d1
IM
3824: movl $0, (%esp)
383 jmp 1b
3845: movl $0, (%esp)
385 jmp 2b
3866: movl $0, (%esp)
387 jmp 3b
f95d47ca 388.popsection
a49976d1
IM
389 _ASM_EXTABLE(1b, 4b)
390 _ASM_EXTABLE(2b, 5b)
391 _ASM_EXTABLE(3b, 6b)
ccbeed3a 392 POP_GS_EX
f0d96110 393.endm
1da177e4 394
b65bef40
JR
395.macro RESTORE_ALL_NMI cr3_reg:req pop=0
396 /*
397 * Now switch the CR3 when PTI is enabled.
398 *
399 * We enter with kernel cr3 and switch the cr3 to the value
400 * stored on \cr3_reg, which is either a user or a kernel cr3.
401 */
402 ALTERNATIVE "jmp .Lswitched_\@", "", X86_FEATURE_PTI
403
404 testl $PTI_SWITCH_MASK, \cr3_reg
405 jz .Lswitched_\@
406
407 /* User cr3 in \cr3_reg - write it to hardware cr3 */
408 movl \cr3_reg, %cr3
409
410.Lswitched_\@:
411
97193702
JR
412 BUG_IF_WRONG_CR3
413
8b376fae
JR
414 RESTORE_REGS pop=\pop
415.endm
416
46eabca2
JR
417.macro CHECK_AND_APPLY_ESPFIX
418#ifdef CONFIG_X86_ESPFIX32
4a13b0e3
AL
419#define GDT_ESPFIX_OFFSET (GDT_ENTRY_ESPFIX_SS * 8)
420#define GDT_ESPFIX_SS PER_CPU_VAR(gdt_page) + GDT_ESPFIX_OFFSET
46eabca2
JR
421
422 ALTERNATIVE "jmp .Lend_\@", "", X86_BUG_ESPFIX
423
424 movl PT_EFLAGS(%esp), %eax # mix EFLAGS, SS and CS
425 /*
426 * Warning: PT_OLDSS(%esp) contains the wrong/random values if we
427 * are returning to the kernel.
428 * See comments in process.c:copy_thread() for details.
429 */
430 movb PT_OLDSS(%esp), %ah
431 movb PT_CS(%esp), %al
432 andl $(X86_EFLAGS_VM | (SEGMENT_TI_MASK << 8) | SEGMENT_RPL_MASK), %eax
433 cmpl $((SEGMENT_LDT << 8) | USER_RPL), %eax
434 jne .Lend_\@ # returning to user-space with LDT SS
435
436 /*
437 * Setup and switch to ESPFIX stack
438 *
439 * We're returning to userspace with a 16 bit stack. The CPU will not
440 * restore the high word of ESP for us on executing iret... This is an
441 * "official" bug of all the x86-compatible CPUs, which we can work
442 * around to make dosemu and wine happy. We do this by preloading the
443 * high word of ESP with the high word of the userspace ESP while
444 * compensating for the offset by changing to the ESPFIX segment with
445 * a base address that matches for the difference.
446 */
447 mov %esp, %edx /* load kernel esp */
448 mov PT_OLDESP(%esp), %eax /* load userspace esp */
449 mov %dx, %ax /* eax: new kernel esp */
450 sub %eax, %edx /* offset (low word is 0) */
451 shr $16, %edx
452 mov %dl, GDT_ESPFIX_SS + 4 /* bits 16..23 */
453 mov %dh, GDT_ESPFIX_SS + 7 /* bits 24..31 */
454 pushl $__ESPFIX_SS
455 pushl %eax /* new kernel esp */
456 /*
457 * Disable interrupts, but do not irqtrace this section: we
458 * will soon execute iret and the tracer was already set to
459 * the irqstate after the IRET:
460 */
461 DISABLE_INTERRUPTS(CLBR_ANY)
462 lss (%esp), %esp /* switch to espfix segment */
463.Lend_\@:
464#endif /* CONFIG_X86_ESPFIX32 */
465.endm
45d7b255 466
45d7b255
JR
467/*
468 * Called with pt_regs fully populated and kernel segments loaded,
469 * so we can access PER_CPU and use the integer registers.
470 *
471 * We need to be very careful here with the %esp switch, because an NMI
472 * can happen everywhere. If the NMI handler finds itself on the
473 * entry-stack, it will overwrite the task-stack and everything we
474 * copied there. So allocate the stack-frame on the task-stack and
475 * switch to it before we do any copying.
476 */
b92a165d 477
45d7b255
JR
478.macro SWITCH_TO_KERNEL_STACK
479
480 ALTERNATIVE "", "jmp .Lend_\@", X86_FEATURE_XENPV
481
97193702
JR
482 BUG_IF_WRONG_CR3
483
e464fb9f
JR
484 SWITCH_TO_KERNEL_CR3 scratch_reg=%eax
485
486 /*
487 * %eax now contains the entry cr3 and we carry it forward in
488 * that register for the time this macro runs
489 */
490
45d7b255
JR
491 /* Are we on the entry stack? Bail out if not! */
492 movl PER_CPU_VAR(cpu_entry_area), %ecx
493 addl $CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
494 subl %esp, %ecx /* ecx = (end of entry_stack) - esp */
495 cmpl $SIZEOF_entry_stack, %ecx
496 jae .Lend_\@
497
498 /* Load stack pointer into %esi and %edi */
499 movl %esp, %esi
500 movl %esi, %edi
501
502 /* Move %edi to the top of the entry stack */
503 andl $(MASK_entry_stack), %edi
504 addl $(SIZEOF_entry_stack), %edi
505
506 /* Load top of task-stack into %edi */
507 movl TSS_entry2task_stack(%edi), %edi
508
b92a165d 509 /* Special case - entry from kernel mode via entry stack */
d5e84c21
JR
510#ifdef CONFIG_VM86
511 movl PT_EFLAGS(%esp), %ecx # mix EFLAGS and CS
512 movb PT_CS(%esp), %cl
513 andl $(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %ecx
514#else
515 movl PT_CS(%esp), %ecx
516 andl $SEGMENT_RPL_MASK, %ecx
517#endif
518 cmpl $USER_RPL, %ecx
519 jb .Lentry_from_kernel_\@
b92a165d 520
45d7b255
JR
521 /* Bytes to copy */
522 movl $PTREGS_SIZE, %ecx
523
524#ifdef CONFIG_VM86
525 testl $X86_EFLAGS_VM, PT_EFLAGS(%esi)
526 jz .Lcopy_pt_regs_\@
527
528 /*
529 * Stack-frame contains 4 additional segment registers when
530 * coming from VM86 mode
531 */
532 addl $(4 * 4), %ecx
533
45d7b255 534#endif
b92a165d 535.Lcopy_pt_regs_\@:
45d7b255
JR
536
537 /* Allocate frame on task-stack */
538 subl %ecx, %edi
539
540 /* Switch to task-stack */
541 movl %edi, %esp
542
543 /*
544 * We are now on the task-stack and can safely copy over the
545 * stack-frame
546 */
547 shrl $2, %ecx
548 cld
549 rep movsl
550
b92a165d
JR
551 jmp .Lend_\@
552
553.Lentry_from_kernel_\@:
554
555 /*
556 * This handles the case when we enter the kernel from
557 * kernel-mode and %esp points to the entry-stack. When this
558 * happens we need to switch to the task-stack to run C code,
559 * but switch back to the entry-stack again when we approach
560 * iret and return to the interrupted code-path. This usually
561 * happens when we hit an exception while restoring user-space
e464fb9f
JR
562 * segment registers on the way back to user-space or when the
563 * sysenter handler runs with eflags.tf set.
b92a165d
JR
564 *
565 * When we switch to the task-stack here, we can't trust the
566 * contents of the entry-stack anymore, as the exception handler
567 * might be scheduled out or moved to another CPU. Therefore we
568 * copy the complete entry-stack to the task-stack and set a
569 * marker in the iret-frame (bit 31 of the CS dword) to detect
570 * what we've done on the iret path.
571 *
572 * On the iret path we copy everything back and switch to the
573 * entry-stack, so that the interrupted kernel code-path
574 * continues on the same stack it was interrupted with.
575 *
576 * Be aware that an NMI can happen anytime in this code.
577 *
578 * %esi: Entry-Stack pointer (same as %esp)
579 * %edi: Top of the task stack
e464fb9f 580 * %eax: CR3 on kernel entry
b92a165d
JR
581 */
582
583 /* Calculate number of bytes on the entry stack in %ecx */
584 movl %esi, %ecx
585
586 /* %ecx to the top of entry-stack */
587 andl $(MASK_entry_stack), %ecx
588 addl $(SIZEOF_entry_stack), %ecx
589
590 /* Number of bytes on the entry stack to %ecx */
591 sub %esi, %ecx
592
593 /* Mark stackframe as coming from entry stack */
594 orl $CS_FROM_ENTRY_STACK, PT_CS(%esp)
595
e464fb9f
JR
596 /*
597 * Test the cr3 used to enter the kernel and add a marker
598 * so that we can switch back to it before iret.
599 */
600 testl $PTI_SWITCH_MASK, %eax
601 jz .Lcopy_pt_regs_\@
602 orl $CS_FROM_USER_CR3, PT_CS(%esp)
603
b92a165d
JR
604 /*
605 * %esi and %edi are unchanged, %ecx contains the number of
606 * bytes to copy. The code at .Lcopy_pt_regs_\@ will allocate
607 * the stack-frame on task-stack and copy everything over
608 */
609 jmp .Lcopy_pt_regs_\@
610
45d7b255
JR
611.Lend_\@:
612.endm
613
e5862d05
JR
614/*
615 * Switch back from the kernel stack to the entry stack.
616 *
617 * The %esp register must point to pt_regs on the task stack. It will
618 * first calculate the size of the stack-frame to copy, depending on
619 * whether we return to VM86 mode or not. With that it uses 'rep movsl'
620 * to copy the contents of the stack over to the entry stack.
621 *
622 * We must be very careful here, as we can't trust the contents of the
623 * task-stack once we switched to the entry-stack. When an NMI happens
624 * while on the entry-stack, the NMI handler will switch back to the top
625 * of the task stack, overwriting our stack-frame we are about to copy.
626 * Therefore we switch the stack only after everything is copied over.
627 */
628.macro SWITCH_TO_ENTRY_STACK
629
630 ALTERNATIVE "", "jmp .Lend_\@", X86_FEATURE_XENPV
631
632 /* Bytes to copy */
633 movl $PTREGS_SIZE, %ecx
634
635#ifdef CONFIG_VM86
636 testl $(X86_EFLAGS_VM), PT_EFLAGS(%esp)
637 jz .Lcopy_pt_regs_\@
638
639 /* Additional 4 registers to copy when returning to VM86 mode */
640 addl $(4 * 4), %ecx
641
642.Lcopy_pt_regs_\@:
643#endif
644
645 /* Initialize source and destination for movsl */
646 movl PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi
647 subl %ecx, %edi
648 movl %esp, %esi
649
650 /* Save future stack pointer in %ebx */
651 movl %edi, %ebx
652
653 /* Copy over the stack-frame */
654 shrl $2, %ecx
655 cld
656 rep movsl
657
658 /*
659 * Switch to entry-stack - needs to happen after everything is
660 * copied because the NMI handler will overwrite the task-stack
661 * when on entry-stack
662 */
663 movl %ebx, %esp
664
665.Lend_\@:
666.endm
667
b92a165d
JR
668/*
669 * This macro handles the case when we return to kernel-mode on the iret
e464fb9f 670 * path and have to switch back to the entry stack and/or user-cr3
b92a165d
JR
671 *
672 * See the comments below the .Lentry_from_kernel_\@ label in the
673 * SWITCH_TO_KERNEL_STACK macro for more details.
674 */
675.macro PARANOID_EXIT_TO_KERNEL_MODE
676
677 /*
678 * Test if we entered the kernel with the entry-stack. Most
679 * likely we did not, because this code only runs on the
680 * return-to-kernel path.
681 */
682 testl $CS_FROM_ENTRY_STACK, PT_CS(%esp)
683 jz .Lend_\@
684
685 /* Unlikely slow-path */
686
687 /* Clear marker from stack-frame */
688 andl $(~CS_FROM_ENTRY_STACK), PT_CS(%esp)
689
690 /* Copy the remaining task-stack contents to entry-stack */
691 movl %esp, %esi
692 movl PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi
693
694 /* Bytes on the task-stack to ecx */
695 movl PER_CPU_VAR(cpu_tss_rw + TSS_sp1), %ecx
696 subl %esi, %ecx
697
698 /* Allocate stack-frame on entry-stack */
699 subl %ecx, %edi
700
701 /*
702 * Save future stack-pointer, we must not switch until the
703 * copy is done, otherwise the NMI handler could destroy the
704 * contents of the task-stack we are about to copy.
705 */
706 movl %edi, %ebx
707
708 /* Do the copy */
709 shrl $2, %ecx
710 cld
711 rep movsl
712
713 /* Safe to switch to entry-stack now */
714 movl %ebx, %esp
715
e464fb9f
JR
716 /*
717 * We came from entry-stack and need to check if we also need to
718 * switch back to user cr3.
719 */
720 testl $CS_FROM_USER_CR3, PT_CS(%esp)
721 jz .Lend_\@
722
723 /* Clear marker from stack-frame */
724 andl $(~CS_FROM_USER_CR3), PT_CS(%esp)
725
726 SWITCH_TO_USER_CR3 scratch_reg=%eax
727
b92a165d
JR
728.Lend_\@:
729.endm
60400677
TG
730
731/**
732 * idtentry - Macro to generate entry stubs for simple IDT entries
733 * @vector: Vector number
734 * @asmsym: ASM symbol for the entry point
735 * @cfunc: C function to be called
736 * @has_error_code: Hardware pushed error code on stack
737 * @sane: Compatibility flag with 64bit
738 */
739.macro idtentry vector asmsym cfunc has_error_code:req sane=0
740SYM_CODE_START(\asmsym)
741 ASM_CLAC
742 cld
743
744 .if \has_error_code == 0
745 pushl $0 /* Clear the error code */
746 .endif
747
748 /* Push the C-function address into the GS slot */
749 pushl $\cfunc
750 /* Invoke the common exception entry */
751 jmp handle_exception
752SYM_CODE_END(\asmsym)
753.endm
754
53aaf262
TG
755/*
756 * Include the defines which emit the idt entries which are shared
757 * shared between 32 and 64 bit.
758 */
759#include <asm/idtentry.h>
760
0100301b
BG
761/*
762 * %eax: prev task
763 * %edx: next task
764 */
8c0fa8a0 765.pushsection .text, "ax"
5e63306f 766SYM_CODE_START(__switch_to_asm)
0100301b
BG
767 /*
768 * Save callee-saved registers
769 * This must match the order in struct inactive_task_frame
770 */
771 pushl %ebp
772 pushl %ebx
773 pushl %edi
774 pushl %esi
a3ba9660
TG
775 /*
776 * Flags are saved to prevent AC leakage. This could go
777 * away if objtool would have 32bit support to verify
778 * the STAC/CLAC correctness.
779 */
6690e86b 780 pushfl
0100301b
BG
781
782 /* switch stack */
783 movl %esp, TASK_threadsp(%eax)
784 movl TASK_threadsp(%edx), %esp
785
050e9baa 786#ifdef CONFIG_STACKPROTECTOR
0100301b
BG
787 movl TASK_stack_canary(%edx), %ebx
788 movl %ebx, PER_CPU_VAR(stack_canary)+stack_canary_offset
789#endif
790
c995efd5
DW
791#ifdef CONFIG_RETPOLINE
792 /*
793 * When switching from a shallower to a deeper call stack
794 * the RSB may either underflow or use entries populated
795 * with userspace addresses. On CPUs where those concerns
796 * exist, overwrite the RSB with entries which capture
797 * speculative execution to prevent attack.
798 */
d1c99108 799 FILL_RETURN_BUFFER %ebx, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
c995efd5
DW
800#endif
801
a3ba9660 802 /* Restore flags or the incoming task to restore AC state. */
6690e86b 803 popfl
a3ba9660 804 /* restore callee-saved registers */
0100301b
BG
805 popl %esi
806 popl %edi
807 popl %ebx
808 popl %ebp
809
810 jmp __switch_to
5e63306f 811SYM_CODE_END(__switch_to_asm)
8c0fa8a0 812.popsection
0100301b 813
ebd57499
JP
814/*
815 * The unwinder expects the last frame on the stack to always be at the same
816 * offset from the end of the page, which allows it to validate the stack.
817 * Calling schedule_tail() directly would break that convention because its an
818 * asmlinkage function so its argument has to be pushed on the stack. This
819 * wrapper creates a proper "end of stack" frame header before the call.
820 */
8c0fa8a0 821.pushsection .text, "ax"
6d685e53 822SYM_FUNC_START(schedule_tail_wrapper)
ebd57499
JP
823 FRAME_BEGIN
824
825 pushl %eax
826 call schedule_tail
827 popl %eax
828
829 FRAME_END
830 ret
6d685e53 831SYM_FUNC_END(schedule_tail_wrapper)
8c0fa8a0
TG
832.popsection
833
0100301b
BG
834/*
835 * A newly forked process directly context switches into this address.
836 *
837 * eax: prev task we switched from
616d2483
BG
838 * ebx: kernel thread func (NULL for user thread)
839 * edi: kernel thread arg
0100301b 840 */
8c0fa8a0 841.pushsection .text, "ax"
5e63306f 842SYM_CODE_START(ret_from_fork)
ebd57499 843 call schedule_tail_wrapper
39e8701f 844
616d2483
BG
845 testl %ebx, %ebx
846 jnz 1f /* kernel threads are uncommon */
847
8482:
39e8701f 849 /* When we fork, we trace the syscall return in the child, too. */
ebd57499 850 movl %esp, %eax
39e8701f 851 call syscall_return_slowpath
4983e5d7 852 jmp .Lsyscall_32_done
39e8701f 853
616d2483
BG
854 /* kernel thread */
8551: movl %edi, %eax
34fdce69 856 CALL_NOSPEC ebx
39e8701f 857 /*
616d2483
BG
858 * A kernel thread is allowed to return here after successfully
859 * calling do_execve(). Exit to userspace to complete the execve()
860 * syscall.
39e8701f 861 */
616d2483
BG
862 movl $0, PT_EAX(%esp)
863 jmp 2b
5e63306f 864SYM_CODE_END(ret_from_fork)
8c0fa8a0 865.popsection
6783eaa2 866
1da177e4
LT
867/*
868 * Return to user mode is not as complex as all this looks,
869 * but we want the default path for a system call return to
870 * go as quickly as possible which is why some of this is
871 * less clear than it otherwise should be.
872 */
873
874 # userspace resumption stub bypassing syscall exit tracing
cc66936e 875SYM_CODE_START_LOCAL(ret_from_exception)
139ec7c4 876 preempt_stop(CLBR_ANY)
1da177e4 877ret_from_intr:
29a2e283 878#ifdef CONFIG_VM86
a49976d1
IM
879 movl PT_EFLAGS(%esp), %eax # mix EFLAGS and CS
880 movb PT_CS(%esp), %al
881 andl $(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %eax
29a2e283
DA
882#else
883 /*
6783eaa2 884 * We can be coming here from child spawned by kernel_thread().
29a2e283 885 */
a49976d1
IM
886 movl PT_CS(%esp), %eax
887 andl $SEGMENT_RPL_MASK, %eax
29a2e283 888#endif
a49976d1 889 cmpl $USER_RPL, %eax
5e1246ff 890 jb restore_all_kernel # not returning to v8086 or userspace
f95d47ca 891
5d73fc70 892 DISABLE_INTERRUPTS(CLBR_ANY)
e32e58a9 893 TRACE_IRQS_OFF
5d73fc70
AL
894 movl %esp, %eax
895 call prepare_exit_to_usermode
4983e5d7 896 jmp restore_all_switch_stack
cc66936e 897SYM_CODE_END(ret_from_exception)
1da177e4 898
b4edca15 899SYM_ENTRY(__begin_SYSENTER_singlestep_region, SYM_L_GLOBAL, SYM_A_NONE)
f2b37575
AL
900/*
901 * All code from here through __end_SYSENTER_singlestep_region is subject
902 * to being single-stepped if a user program sets TF and executes SYSENTER.
903 * There is absolutely nothing that we can do to prevent this from happening
904 * (thanks Intel!). To keep our handling of this situation as simple as
905 * possible, we handle TF just like AC and NT, except that our #DB handler
906 * will ignore all of the single-step traps generated in this range.
907 */
908
28c11b0f 909#ifdef CONFIG_XEN_PV
f2b37575
AL
910/*
911 * Xen doesn't set %esp to be precisely what the normal SYSENTER
912 * entry point expects, so fix it up before using the normal path.
913 */
78762b0e 914SYM_CODE_START(xen_sysenter_target)
f2b37575 915 addl $5*4, %esp /* remove xen-provided frame */
1b00255f 916 jmp .Lsysenter_past_esp
78762b0e 917SYM_CODE_END(xen_sysenter_target)
f2b37575
AL
918#endif
919
fda57b22
AL
920/*
921 * 32-bit SYSENTER entry.
922 *
923 * 32-bit system calls through the vDSO's __kernel_vsyscall enter here
924 * if X86_FEATURE_SEP is available. This is the preferred system call
925 * entry on 32-bit systems.
926 *
927 * The SYSENTER instruction, in principle, should *only* occur in the
928 * vDSO. In practice, a small number of Android devices were shipped
929 * with a copy of Bionic that inlined a SYSENTER instruction. This
930 * never happened in any of Google's Bionic versions -- it only happened
931 * in a narrow range of Intel-provided versions.
932 *
933 * SYSENTER loads SS, ESP, CS, and EIP from previously programmed MSRs.
934 * IF and VM in RFLAGS are cleared (IOW: interrupts are off).
935 * SYSENTER does not save anything on the stack,
936 * and does not save old EIP (!!!), ESP, or EFLAGS.
937 *
938 * To avoid losing track of EFLAGS.VM (and thus potentially corrupting
939 * user and/or vm86 state), we explicitly disable the SYSENTER
940 * instruction in vm86 mode by reprogramming the MSRs.
941 *
942 * Arguments:
943 * eax system call number
944 * ebx arg1
945 * ecx arg2
946 * edx arg3
947 * esi arg4
948 * edi arg5
949 * ebp user stack
950 * 0(%ebp) arg6
951 */
6d685e53 952SYM_FUNC_START(entry_SYSENTER_32)
e464fb9f
JR
953 /*
954 * On entry-stack with all userspace-regs live - save and
955 * restore eflags and %eax to use it as scratch-reg for the cr3
956 * switch.
957 */
958 pushfl
959 pushl %eax
97193702 960 BUG_IF_WRONG_CR3 no_user_check=1
e464fb9f
JR
961 SWITCH_TO_KERNEL_CR3 scratch_reg=%eax
962 popl %eax
963 popfl
964
965 /* Stack empty again, switch to task stack */
ae2e565b 966 movl TSS_entry2task_stack(%esp), %esp
e464fb9f 967
1b00255f 968.Lsysenter_past_esp:
5f310f73 969 pushl $__USER_DS /* pt_regs->ss */
30bfa7b3 970 pushl %ebp /* pt_regs->sp (stashed in bp) */
5f310f73
AL
971 pushfl /* pt_regs->flags (except IF = 0) */
972 orl $X86_EFLAGS_IF, (%esp) /* Fix IF */
973 pushl $__USER_CS /* pt_regs->cs */
974 pushl $0 /* pt_regs->ip = 0 (placeholder) */
975 pushl %eax /* pt_regs->orig_ax */
45d7b255 976 SAVE_ALL pt_regs_ax=$-ENOSYS /* save rest, stack already switched */
5f310f73 977
67f590e8 978 /*
f2b37575
AL
979 * SYSENTER doesn't filter flags, so we need to clear NT, AC
980 * and TF ourselves. To save a few cycles, we can check whether
67f590e8
AL
981 * either was set instead of doing an unconditional popfq.
982 * This needs to happen before enabling interrupts so that
983 * we don't get preempted with NT set.
984 *
f2b37575
AL
985 * If TF is set, we will single-step all the way to here -- do_debug
986 * will ignore all the traps. (Yes, this is slow, but so is
987 * single-stepping in general. This allows us to avoid having
988 * a more complicated code to handle the case where a user program
989 * forces us to single-step through the SYSENTER entry code.)
990 *
67f590e8
AL
991 * NB.: .Lsysenter_fix_flags is a label with the code under it moved
992 * out-of-line as an optimization: NT is unlikely to be set in the
993 * majority of the cases and instead of polluting the I$ unnecessarily,
994 * we're keeping that code behind a branch which will predict as
995 * not-taken and therefore its instructions won't be fetched.
996 */
f2b37575 997 testl $X86_EFLAGS_NT|X86_EFLAGS_AC|X86_EFLAGS_TF, PT_EFLAGS(%esp)
67f590e8
AL
998 jnz .Lsysenter_fix_flags
999.Lsysenter_flags_fixed:
1000
5f310f73
AL
1001 movl %esp, %eax
1002 call do_fast_syscall_32
91e2eea9
BO
1003 /* XEN PV guests always use IRET path */
1004 ALTERNATIVE "testl %eax, %eax; jz .Lsyscall_32_done", \
1005 "jmp .Lsyscall_32_done", X86_FEATURE_XENPV
5f310f73 1006
afaef01c
AP
1007 STACKLEAK_ERASE
1008
4983e5d7 1009 /* Opportunistic SYSEXIT */
e5862d05
JR
1010
1011 /*
1012 * Setup entry stack - we keep the pointer in %eax and do the
1013 * switch after almost all user-state is restored.
1014 */
1015
1016 /* Load entry stack pointer and allocate frame for eflags/eax */
1017 movl PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %eax
1018 subl $(2*4), %eax
1019
1020 /* Copy eflags and eax to entry stack */
1021 movl PT_EFLAGS(%esp), %edi
1022 movl PT_EAX(%esp), %esi
1023 movl %edi, (%eax)
1024 movl %esi, 4(%eax)
1025
1026 /* Restore user registers and segments */
5f310f73
AL
1027 movl PT_EIP(%esp), %edx /* pt_regs->ip */
1028 movl PT_OLDESP(%esp), %ecx /* pt_regs->sp */
3bd29515
AL
10291: mov PT_FS(%esp), %fs
1030 PTGS_TO_GS
e5862d05 1031
5f310f73
AL
1032 popl %ebx /* pt_regs->bx */
1033 addl $2*4, %esp /* skip pt_regs->cx and pt_regs->dx */
1034 popl %esi /* pt_regs->si */
1035 popl %edi /* pt_regs->di */
1036 popl %ebp /* pt_regs->bp */
e5862d05
JR
1037
1038 /* Switch to entry stack */
1039 movl %eax, %esp
5f310f73 1040
e464fb9f
JR
1041 /* Now ready to switch the cr3 */
1042 SWITCH_TO_USER_CR3 scratch_reg=%eax
1043
c2c9b52f
AL
1044 /*
1045 * Restore all flags except IF. (We restore IF separately because
1046 * STI gives a one-instruction window in which we won't be interrupted,
1047 * whereas POPF does not.)
1048 */
236f0cd2 1049 btrl $X86_EFLAGS_IF_BIT, (%esp)
97193702 1050 BUG_IF_WRONG_CR3 no_user_check=1
c2c9b52f 1051 popfl
e5862d05 1052 popl %eax
c2c9b52f 1053
5f310f73
AL
1054 /*
1055 * Return back to the vDSO, which will pop ecx and edx.
1056 * Don't bother with DS and ES (they already contain __USER_DS).
1057 */
88c15ec9
BO
1058 sti
1059 sysexit
af0575bb 1060
a49976d1
IM
1061.pushsection .fixup, "ax"
10622: movl $0, PT_FS(%esp)
1063 jmp 1b
f95d47ca 1064.popsection
a49976d1 1065 _ASM_EXTABLE(1b, 2b)
ccbeed3a 1066 PTGS_TO_GS_EX
67f590e8
AL
1067
1068.Lsysenter_fix_flags:
1069 pushl $X86_EFLAGS_FIXED
1070 popfl
1071 jmp .Lsysenter_flags_fixed
b4edca15 1072SYM_ENTRY(__end_SYSENTER_singlestep_region, SYM_L_GLOBAL, SYM_A_NONE)
6d685e53 1073SYM_FUNC_END(entry_SYSENTER_32)
1da177e4 1074
fda57b22
AL
1075/*
1076 * 32-bit legacy system call entry.
1077 *
1078 * 32-bit x86 Linux system calls traditionally used the INT $0x80
1079 * instruction. INT $0x80 lands here.
1080 *
1081 * This entry point can be used by any 32-bit perform system calls.
1082 * Instances of INT $0x80 can be found inline in various programs and
1083 * libraries. It is also used by the vDSO's __kernel_vsyscall
1084 * fallback for hardware that doesn't support a faster entry method.
1085 * Restarted 32-bit system calls also fall back to INT $0x80
1086 * regardless of what instruction was originally used to do the system
1087 * call. (64-bit programs can use INT $0x80 as well, but they can
1088 * only run on 64-bit kernels and therefore land in
1089 * entry_INT80_compat.)
1090 *
1091 * This is considered a slow path. It is not used by most libc
1092 * implementations on modern hardware except during process startup.
1093 *
1094 * Arguments:
1095 * eax system call number
1096 * ebx arg1
1097 * ecx arg2
1098 * edx arg3
1099 * esi arg4
1100 * edi arg5
1101 * ebp arg6
1102 */
6d685e53 1103SYM_FUNC_START(entry_INT80_32)
e59d1b0a 1104 ASM_CLAC
150ac78d 1105 pushl %eax /* pt_regs->orig_ax */
45d7b255
JR
1106
1107 SAVE_ALL pt_regs_ax=$-ENOSYS switch_stacks=1 /* save rest */
150ac78d 1108
150ac78d 1109 movl %esp, %eax
a798f091 1110 call do_int80_syscall_32
5f310f73 1111.Lsyscall_32_done:
afaef01c
AP
1112 STACKLEAK_ERASE
1113
4983e5d7 1114restore_all_switch_stack:
e5862d05 1115 SWITCH_TO_ENTRY_STACK
46eabca2 1116 CHECK_AND_APPLY_ESPFIX
74a4882d 1117
e464fb9f
JR
1118 /* Switch back to user CR3 */
1119 SWITCH_TO_USER_CR3 scratch_reg=%eax
1120
97193702
JR
1121 BUG_IF_WRONG_CR3
1122
e464fb9f
JR
1123 /* Restore user state */
1124 RESTORE_REGS pop=4 # skip orig_eax/error_code
1b00255f 1125.Lirq_return:
10bcc80e
MD
1126 /*
1127 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
1128 * when returning from IPI handler and when returning from
1129 * scheduler to user-space.
1130 */
3701d863 1131 INTERRUPT_RETURN
1b00255f 1132
0d2eb73b 1133restore_all_kernel:
48593975 1134#ifdef CONFIG_PREEMPTION
5e1246ff
PZ
1135 DISABLE_INTERRUPTS(CLBR_ANY)
1136 cmpl $0, PER_CPU_VAR(__preempt_count)
1137 jnz .Lno_preempt
1138 testl $X86_EFLAGS_IF, PT_EFLAGS(%esp) # interrupts off (exception path) ?
1139 jz .Lno_preempt
1140 call preempt_schedule_irq
1141.Lno_preempt:
1142#endif
0d2eb73b 1143 TRACE_IRQS_IRET
b92a165d 1144 PARANOID_EXIT_TO_KERNEL_MODE
97193702 1145 BUG_IF_WRONG_CR3
0d2eb73b
JR
1146 RESTORE_REGS 4
1147 jmp .Lirq_return
1148
a49976d1 1149.section .fixup, "ax"
cc66936e 1150SYM_CODE_START(iret_exc)
a49976d1
IM
1151 pushl $0 # no error code
1152 pushl $do_iret_error
97193702
JR
1153
1154#ifdef CONFIG_DEBUG_ENTRY
1155 /*
1156 * The stack-frame here is the one that iret faulted on, so its a
1157 * return-to-user frame. We are on kernel-cr3 because we come here from
1158 * the fixup code. This confuses the CR3 checker, so switch to user-cr3
1159 * as the checker expects it.
1160 */
1161 pushl %eax
1162 SWITCH_TO_USER_CR3 scratch_reg=%eax
1163 popl %eax
1164#endif
1165
7252c4c3 1166 jmp common_exception
cc66936e 1167SYM_CODE_END(iret_exc)
1da177e4 1168.previous
1b00255f 1169 _ASM_EXTABLE(.Lirq_return, iret_exc)
6d685e53 1170SYM_FUNC_END(entry_INT80_32)
1da177e4 1171
f0d96110 1172.macro FIXUP_ESPFIX_STACK
dc4c2a0a
AH
1173/*
1174 * Switch back for ESPFIX stack to the normal zerobased stack
1175 *
1176 * We can't call C functions using the ESPFIX stack. This code reads
1177 * the high word of the segment base from the GDT and swiches to the
1178 * normal stack and adjusts ESP with the matching offset.
4a13b0e3
AL
1179 *
1180 * We might be on user CR3 here, so percpu data is not mapped and we can't
1181 * access the GDT through the percpu segment. Instead, use SGDT to find
1182 * the cpu_entry_area alias of the GDT.
dc4c2a0a 1183 */
34273f41 1184#ifdef CONFIG_X86_ESPFIX32
dc4c2a0a 1185 /* fixup the stack */
4a13b0e3
AL
1186 pushl %ecx
1187 subl $2*4, %esp
1188 sgdt (%esp)
1189 movl 2(%esp), %ecx /* GDT address */
1190 /*
1191 * Careful: ECX is a linear pointer, so we need to force base
1192 * zero. %cs is the only known-linear segment we have right now.
1193 */
1194 mov %cs:GDT_ESPFIX_OFFSET + 4(%ecx), %al /* bits 16..23 */
1195 mov %cs:GDT_ESPFIX_OFFSET + 7(%ecx), %ah /* bits 24..31 */
9b47feb7 1196 shl $16, %eax
4a13b0e3
AL
1197 addl $2*4, %esp
1198 popl %ecx
a49976d1
IM
1199 addl %esp, %eax /* the adjusted stack pointer */
1200 pushl $__KERNEL_DS
1201 pushl %eax
1202 lss (%esp), %esp /* switch to the normal stack segment */
34273f41 1203#endif
f0d96110 1204.endm
a1a338e5 1205
f0d96110 1206.macro UNWIND_ESPFIX_STACK
a1a338e5 1207 /* It's safe to clobber %eax, all other regs need to be preserved */
34273f41 1208#ifdef CONFIG_X86_ESPFIX32
a49976d1 1209 movl %ss, %eax
f0d96110 1210 /* see if on espfix stack */
a49976d1 1211 cmpw $__ESPFIX_SS, %ax
a1a338e5 1212 jne .Lno_fixup_\@
f0d96110
TH
1213 /* switch to normal stack */
1214 FIXUP_ESPFIX_STACK
a1a338e5 1215.Lno_fixup_\@:
34273f41 1216#endif
f0d96110 1217.endm
1da177e4
LT
1218
1219/*
3304c9c3
DV
1220 * Build the entry stubs with some assembler magic.
1221 * We pack 1 stub into every 8-byte block.
1da177e4 1222 */
3304c9c3 1223 .align 8
5e63306f 1224SYM_CODE_START(irq_entries_start)
3304c9c3
DV
1225 vector=FIRST_EXTERNAL_VECTOR
1226 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
a49976d1 1227 pushl $(~vector+0x80) /* Note: always in signed byte range */
3304c9c3
DV
1228 vector=vector+1
1229 jmp common_interrupt
3304c9c3
DV
1230 .align 8
1231 .endr
5e63306f 1232SYM_CODE_END(irq_entries_start)
47a55cd7 1233
f8a8fe61
TG
1234#ifdef CONFIG_X86_LOCAL_APIC
1235 .align 8
5e63306f 1236SYM_CODE_START(spurious_entries_start)
f8a8fe61
TG
1237 vector=FIRST_SYSTEM_VECTOR
1238 .rept (NR_VECTORS - FIRST_SYSTEM_VECTOR)
1239 pushl $(~vector+0x80) /* Note: always in signed byte range */
1240 vector=vector+1
1241 jmp common_spurious
1242 .align 8
1243 .endr
5e63306f 1244SYM_CODE_END(spurious_entries_start)
f8a8fe61 1245
cc66936e 1246SYM_CODE_START_LOCAL(common_spurious)
f8a8fe61
TG
1247 ASM_CLAC
1248 addl $-0x80, (%esp) /* Adjust vector into the [-256, -1] range */
1249 SAVE_ALL switch_stacks=1
1250 ENCODE_FRAME_POINTER
1251 TRACE_IRQS_OFF
1252 movl %esp, %eax
1253 call smp_spurious_interrupt
1254 jmp ret_from_intr
cc66936e 1255SYM_CODE_END(common_spurious)
f8a8fe61
TG
1256#endif
1257
55f327fa
IM
1258/*
1259 * the CPU automatically disables interrupts when executing an IRQ vector,
1260 * so IRQ-flags tracing has to follow that:
1261 */
b7c6244f 1262 .p2align CONFIG_X86_L1_CACHE_SHIFT
cc66936e 1263SYM_CODE_START_LOCAL(common_interrupt)
e59d1b0a 1264 ASM_CLAC
a49976d1 1265 addl $-0x80, (%esp) /* Adjust vector into the [-256, -1] range */
45d7b255
JR
1266
1267 SAVE_ALL switch_stacks=1
946c1911 1268 ENCODE_FRAME_POINTER
55f327fa 1269 TRACE_IRQS_OFF
a49976d1
IM
1270 movl %esp, %eax
1271 call do_IRQ
1272 jmp ret_from_intr
cc66936e 1273SYM_CODE_END(common_interrupt)
1da177e4 1274
45d7b255 1275#define BUILD_INTERRUPT3(name, nr, fn) \
6d685e53 1276SYM_FUNC_START(name) \
45d7b255
JR
1277 ASM_CLAC; \
1278 pushl $~(nr); \
1279 SAVE_ALL switch_stacks=1; \
1280 ENCODE_FRAME_POINTER; \
1281 TRACE_IRQS_OFF \
1282 movl %esp, %eax; \
1283 call fn; \
1284 jmp ret_from_intr; \
6d685e53 1285SYM_FUNC_END(name)
1da177e4 1286
a49976d1
IM
1287#define BUILD_INTERRUPT(name, nr) \
1288 BUILD_INTERRUPT3(name, nr, smp_##name); \
02cf94c3 1289
1da177e4 1290/* The include is where all of the SMP etc. interrupts come from */
1164dd00 1291#include <asm/entry_arch.h>
1da177e4 1292
5e63306f 1293SYM_CODE_START(simd_coprocessor_error)
e59d1b0a 1294 ASM_CLAC
a49976d1 1295 pushl $0
40d2e763
BG
1296#ifdef CONFIG_X86_INVD_BUG
1297 /* AMD 486 bug: invd from userspace calls exception 19 instead of #GP */
be4c11af 1298 ALTERNATIVE "pushl $exc_general_protection", \
a49976d1 1299 "pushl $do_simd_coprocessor_error", \
8e65f6e0 1300 X86_FEATURE_XMM
40d2e763 1301#else
a49976d1 1302 pushl $do_simd_coprocessor_error
40d2e763 1303#endif
7252c4c3 1304 jmp common_exception
5e63306f 1305SYM_CODE_END(simd_coprocessor_error)
1da177e4 1306
d3561b7f 1307#ifdef CONFIG_PARAVIRT
5e63306f 1308SYM_CODE_START(native_iret)
3701d863 1309 iret
6837a54d 1310 _ASM_EXTABLE(native_iret, iret_exc)
5e63306f 1311SYM_CODE_END(native_iret)
d3561b7f
RR
1312#endif
1313
1da177e4 1314#ifdef CONFIG_X86_MCE
5e63306f 1315SYM_CODE_START(machine_check)
e59d1b0a 1316 ASM_CLAC
a49976d1 1317 pushl $0
840371be 1318 pushl $do_mce
7252c4c3 1319 jmp common_exception
5e63306f 1320SYM_CODE_END(machine_check)
1da177e4
LT
1321#endif
1322
28c11b0f 1323#ifdef CONFIG_XEN_PV
6d685e53 1324SYM_FUNC_START(xen_hypervisor_callback)
a49976d1
IM
1325 /*
1326 * Check to see if we got the event in the critical
1327 * region in xen_iret_direct, after we've reenabled
1328 * events and checked for pending events. This simulates
1329 * iret instruction's behaviour where it delivers a
1330 * pending interrupt when enabling interrupts:
1331 */
29b810f5 1332 cmpl $xen_iret_start_crit, (%esp)
a49976d1 1333 jb 1f
29b810f5 1334 cmpl $xen_iret_end_crit, (%esp)
a49976d1 1335 jae 1f
29b810f5
JB
1336 call xen_iret_crit_fixup
13371:
1338 pushl $-1 /* orig_ax = -1 => not a system call */
1339 SAVE_ALL
1340 ENCODE_FRAME_POINTER
1341 TRACE_IRQS_OFF
1342 mov %esp, %eax
a49976d1 1343 call xen_evtchn_do_upcall
48593975 1344#ifndef CONFIG_PREEMPTION
a49976d1 1345 call xen_maybe_preempt_hcall
fdfd811d 1346#endif
a49976d1 1347 jmp ret_from_intr
6d685e53 1348SYM_FUNC_END(xen_hypervisor_callback)
5ead97c8 1349
a49976d1
IM
1350/*
1351 * Hypervisor uses this for application faults while it executes.
1352 * We get here for two reasons:
1353 * 1. Fault while reloading DS, ES, FS or GS
1354 * 2. Fault while executing IRET
1355 * Category 1 we fix up by reattempting the load, and zeroing the segment
1356 * register if the load fails.
1357 * Category 2 we fix up by jumping to do_iret_error. We cannot use the
1358 * normal Linux return path in this case because if we use the IRET hypercall
1359 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
1360 * We distinguish between categories by maintaining a status value in EAX.
1361 */
6d685e53 1362SYM_FUNC_START(xen_failsafe_callback)
a49976d1
IM
1363 pushl %eax
1364 movl $1, %eax
13651: mov 4(%esp), %ds
13662: mov 8(%esp), %es
13673: mov 12(%esp), %fs
13684: mov 16(%esp), %gs
a349e23d
DV
1369 /* EAX == 0 => Category 1 (Bad segment)
1370 EAX != 0 => Category 2 (Bad IRET) */
a49976d1
IM
1371 testl %eax, %eax
1372 popl %eax
1373 lea 16(%esp), %esp
1374 jz 5f
1375 jmp iret_exc
13765: pushl $-1 /* orig_ax = -1 => not a system call */
5ead97c8 1377 SAVE_ALL
946c1911 1378 ENCODE_FRAME_POINTER
a49976d1
IM
1379 jmp ret_from_exception
1380
1381.section .fixup, "ax"
13826: xorl %eax, %eax
1383 movl %eax, 4(%esp)
1384 jmp 1b
13857: xorl %eax, %eax
1386 movl %eax, 8(%esp)
1387 jmp 2b
13888: xorl %eax, %eax
1389 movl %eax, 12(%esp)
1390 jmp 3b
13919: xorl %eax, %eax
1392 movl %eax, 16(%esp)
1393 jmp 4b
5ead97c8 1394.previous
a49976d1
IM
1395 _ASM_EXTABLE(1b, 6b)
1396 _ASM_EXTABLE(2b, 7b)
1397 _ASM_EXTABLE(3b, 8b)
1398 _ASM_EXTABLE(4b, 9b)
6d685e53 1399SYM_FUNC_END(xen_failsafe_callback)
28c11b0f 1400#endif /* CONFIG_XEN_PV */
5ead97c8 1401
28c11b0f 1402#ifdef CONFIG_XEN_PVHVM
bc2b0331 1403BUILD_INTERRUPT3(xen_hvm_callback_vector, HYPERVISOR_CALLBACK_VECTOR,
4b9a8dca 1404 xen_evtchn_do_upcall)
28c11b0f 1405#endif
38e20b07 1406
bc2b0331
S
1407
1408#if IS_ENABLED(CONFIG_HYPERV)
1409
1410BUILD_INTERRUPT3(hyperv_callback_vector, HYPERVISOR_CALLBACK_VECTOR,
4b9a8dca 1411 hyperv_vector_handler)
bc2b0331 1412
93286261
VK
1413BUILD_INTERRUPT3(hyperv_reenlightenment_vector, HYPERV_REENLIGHTENMENT_VECTOR,
1414 hyperv_reenlightenment_intr)
1415
248e742a
MK
1416BUILD_INTERRUPT3(hv_stimer0_callback_vector, HYPERV_STIMER0_VECTOR,
1417 hv_stimer0_vector_handler)
1418
bc2b0331 1419#endif /* CONFIG_HYPERV */
5ead97c8 1420
5e63306f 1421SYM_CODE_START(page_fault)
e59d1b0a 1422 ASM_CLAC
b8f70953
MM
1423 pushl $do_page_fault
1424 jmp common_exception_read_cr2
5e63306f 1425SYM_CODE_END(page_fault)
a0d14b89 1426
cc66936e 1427SYM_CODE_START_LOCAL_NOALIGN(common_exception_read_cr2)
b8f70953 1428 /* the function address is in %gs's slot on the stack */
a1a338e5 1429 SAVE_ALL switch_stacks=1 skip_gs=1 unwind_espfix=1
a0d14b89
PZ
1430
1431 ENCODE_FRAME_POINTER
a0d14b89
PZ
1432
1433 /* fixup %gs */
1434 GS_TO_REG %ecx
b8f70953 1435 movl PT_GS(%esp), %edi
a0d14b89
PZ
1436 REG_TO_PTGS %ecx
1437 SET_KERNEL_GS %ecx
1438
1439 GET_CR2_INTO(%ecx) # might clobber %eax
1440
1441 /* fixup orig %eax */
1442 movl PT_ORIG_EAX(%esp), %edx # get the error code
1443 movl $-1, PT_ORIG_EAX(%esp) # no syscall to restart
1444
1445 TRACE_IRQS_OFF
1446 movl %esp, %eax # pt_regs pointer
34fdce69 1447 CALL_NOSPEC edi
a0d14b89 1448 jmp ret_from_exception
cc66936e 1449SYM_CODE_END(common_exception_read_cr2)
7252c4c3 1450
cc66936e 1451SYM_CODE_START_LOCAL_NOALIGN(common_exception)
ccbeed3a 1452 /* the function address is in %gs's slot on the stack */
a1a338e5 1453 SAVE_ALL switch_stacks=1 skip_gs=1 unwind_espfix=1
946c1911 1454 ENCODE_FRAME_POINTER
e67f1c11
PZ
1455
1456 /* fixup %gs */
ccbeed3a 1457 GS_TO_REG %ecx
a49976d1 1458 movl PT_GS(%esp), %edi # get the function address
ccbeed3a
TH
1459 REG_TO_PTGS %ecx
1460 SET_KERNEL_GS %ecx
e67f1c11
PZ
1461
1462 /* fixup orig %eax */
1463 movl PT_ORIG_EAX(%esp), %edx # get the error code
1464 movl $-1, PT_ORIG_EAX(%esp) # no syscall to restart
1465
d211af05 1466 TRACE_IRQS_OFF
a49976d1 1467 movl %esp, %eax # pt_regs pointer
34fdce69 1468 CALL_NOSPEC edi
a49976d1 1469 jmp ret_from_exception
cc66936e 1470SYM_CODE_END(common_exception)
d211af05 1471
60400677
TG
1472SYM_CODE_START_LOCAL_NOALIGN(handle_exception)
1473 /* the function address is in %gs's slot on the stack */
1474 SAVE_ALL switch_stacks=1 skip_gs=1 unwind_espfix=1
1475 ENCODE_FRAME_POINTER
1476
1477 /* fixup %gs */
1478 GS_TO_REG %ecx
1479 movl PT_GS(%esp), %edi # get the function address
1480 REG_TO_PTGS %ecx
1481 SET_KERNEL_GS %ecx
1482
1483 /* fixup orig %eax */
1484 movl PT_ORIG_EAX(%esp), %edx # get the error code
1485 movl $-1, PT_ORIG_EAX(%esp) # no syscall to restart
1486
1487 movl %esp, %eax # pt_regs pointer
1488 CALL_NOSPEC edi
1489
1490#ifdef CONFIG_VM86
1491 movl PT_EFLAGS(%esp), %eax # mix EFLAGS and CS
1492 movb PT_CS(%esp), %al
1493 andl $(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %eax
1494#else
1495 /*
1496 * We can be coming here from child spawned by kernel_thread().
1497 */
1498 movl PT_CS(%esp), %eax
1499 andl $SEGMENT_RPL_MASK, %eax
1500#endif
1501 cmpl $USER_RPL, %eax # returning to v8086 or userspace ?
1502 jnb ret_to_user
1503
1504 PARANOID_EXIT_TO_KERNEL_MODE
1505 BUG_IF_WRONG_CR3
1506 RESTORE_REGS 4
1507 jmp .Lirq_return
1508
1509ret_to_user:
1510 movl %esp, %eax
1511 jmp restore_all_switch_stack
1512SYM_CODE_END(handle_exception)
1513
5e63306f 1514SYM_CODE_START(debug)
7536656f 1515 /*
929b44eb 1516 * Entry from sysenter is now handled in common_exception
7536656f 1517 */
e59d1b0a 1518 ASM_CLAC
e441a2ae 1519 pushl $0
929b44eb
JR
1520 pushl $do_debug
1521 jmp common_exception
5e63306f 1522SYM_CODE_END(debug)
d211af05 1523
7d8d8cfd
AL
1524SYM_CODE_START(double_fault)
15251:
1526 /*
1527 * This is a task gate handler, not an interrupt gate handler.
1528 * The error code is on the stack, but the stack is otherwise
1529 * empty. Interrupts are off. Our state is sane with the following
1530 * exceptions:
1531 *
1532 * - CR0.TS is set. "TS" literally means "task switched".
1533 * - EFLAGS.NT is set because we're a "nested task".
1534 * - The doublefault TSS has back_link set and has been marked busy.
1535 * - TR points to the doublefault TSS and the normal TSS is busy.
1536 * - CR3 is the normal kernel PGD. This would be delightful, except
1537 * that the CPU didn't bother to save the old CR3 anywhere. This
1538 * would make it very awkward to return back to the context we came
1539 * from.
1540 *
1541 * The rest of EFLAGS is sanitized for us, so we don't need to
1542 * worry about AC or DF.
1543 *
1544 * Don't even bother popping the error code. It's always zero,
1545 * and ignoring it makes us a bit more robust against buggy
1546 * hypervisor task gate implementations.
1547 *
1548 * We will manually undo the task switch instead of doing a
1549 * task-switching IRET.
1550 */
1551
1552 clts /* clear CR0.TS */
1553 pushl $X86_EFLAGS_FIXED
1554 popfl /* clear EFLAGS.NT */
1555
1556 call doublefault_shim
1557
1558 /* We don't support returning, so we have no IRET here. */
15591:
1560 hlt
1561 jmp 1b
1562SYM_CODE_END(double_fault)
7d8d8cfd 1563
d211af05 1564/*
7536656f
AL
1565 * NMI is doubly nasty. It can happen on the first instruction of
1566 * entry_SYSENTER_32 (just like #DB), but it can also interrupt the beginning
1567 * of the #DB handler even if that #DB in turn hit before entry_SYSENTER_32
1568 * switched stacks. We handle both conditions by simply checking whether we
1569 * interrupted kernel code running on the SYSENTER stack.
d211af05 1570 */
5e63306f 1571SYM_CODE_START(nmi)
e59d1b0a 1572 ASM_CLAC
45d7b255 1573
34273f41 1574#ifdef CONFIG_X86_ESPFIX32
89542907
PZ
1575 /*
1576 * ESPFIX_SS is only ever set on the return to user path
1577 * after we've switched to the entry stack.
1578 */
a49976d1
IM
1579 pushl %eax
1580 movl %ss, %eax
1581 cmpw $__ESPFIX_SS, %ax
1582 popl %eax
1b00255f 1583 je .Lnmi_espfix_stack
34273f41 1584#endif
7536656f
AL
1585
1586 pushl %eax # pt_regs->orig_ax
b65bef40 1587 SAVE_ALL_NMI cr3_reg=%edi
946c1911 1588 ENCODE_FRAME_POINTER
a49976d1
IM
1589 xorl %edx, %edx # zero error code
1590 movl %esp, %eax # pt_regs pointer
7536656f
AL
1591
1592 /* Are we currently on the SYSENTER stack? */
72f5e08d 1593 movl PER_CPU_VAR(cpu_entry_area), %ecx
4fe2d8b1
DH
1594 addl $CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
1595 subl %eax, %ecx /* ecx = (end of entry_stack) - esp */
1596 cmpl $SIZEOF_entry_stack, %ecx
7536656f
AL
1597 jb .Lnmi_from_sysenter_stack
1598
1599 /* Not on SYSENTER stack. */
a49976d1 1600 call do_nmi
8e676ced 1601 jmp .Lnmi_return
d211af05 1602
7536656f
AL
1603.Lnmi_from_sysenter_stack:
1604 /*
1605 * We're on the SYSENTER stack. Switch off. No one (not even debug)
1606 * is using the thread stack right now, so it's safe for us to use it.
1607 */
946c1911 1608 movl %esp, %ebx
7536656f
AL
1609 movl PER_CPU_VAR(cpu_current_top_of_stack), %esp
1610 call do_nmi
946c1911 1611 movl %ebx, %esp
8e676ced
JR
1612
1613.Lnmi_return:
89542907
PZ
1614#ifdef CONFIG_X86_ESPFIX32
1615 testl $CS_FROM_ESPFIX, PT_CS(%esp)
1616 jnz .Lnmi_from_espfix
1617#endif
1618
8e676ced 1619 CHECK_AND_APPLY_ESPFIX
b65bef40 1620 RESTORE_ALL_NMI cr3_reg=%edi pop=4
8e676ced 1621 jmp .Lirq_return
d211af05 1622
34273f41 1623#ifdef CONFIG_X86_ESPFIX32
1b00255f 1624.Lnmi_espfix_stack:
131484c8 1625 /*
89542907 1626 * Create the pointer to LSS back
d211af05 1627 */
a49976d1
IM
1628 pushl %ss
1629 pushl %esp
1630 addl $4, (%esp)
89542907
PZ
1631
1632 /* Copy the (short) IRET frame */
1633 pushl 4*4(%esp) # flags
1634 pushl 4*4(%esp) # cs
1635 pushl 4*4(%esp) # ip
1636
1637 pushl %eax # orig_ax
1638
1639 SAVE_ALL_NMI cr3_reg=%edi unwind_espfix=1
946c1911 1640 ENCODE_FRAME_POINTER
89542907
PZ
1641
1642 /* clear CS_FROM_KERNEL, set CS_FROM_ESPFIX */
1643 xorl $(CS_FROM_ESPFIX | CS_FROM_KERNEL), PT_CS(%esp)
1644
a49976d1 1645 xorl %edx, %edx # zero error code
89542907
PZ
1646 movl %esp, %eax # pt_regs pointer
1647 jmp .Lnmi_from_sysenter_stack
1648
1649.Lnmi_from_espfix:
b65bef40 1650 RESTORE_ALL_NMI cr3_reg=%edi
89542907
PZ
1651 /*
1652 * Because we cleared CS_FROM_KERNEL, IRET_FRAME 'forgot' to
1653 * fix up the gap and long frame:
1654 *
1655 * 3 - original frame (exception)
1656 * 2 - ESPFIX block (above)
1657 * 6 - gap (FIXUP_FRAME)
1658 * 5 - long frame (FIXUP_FRAME)
1659 * 1 - orig_ax
1660 */
1661 lss (1+5+6)*4(%esp), %esp # back to espfix stack
1b00255f 1662 jmp .Lirq_return
34273f41 1663#endif
5e63306f 1664SYM_CODE_END(nmi)
d211af05 1665
5e63306f 1666SYM_CODE_START(int3)
e59d1b0a 1667 ASM_CLAC
e441a2ae 1668 pushl $0
ac3607f9
TG
1669 pushl $do_int3
1670 jmp common_exception
5e63306f 1671SYM_CODE_END(int3)
d211af05 1672
8c0fa8a0 1673.pushsection .text, "ax"
5e63306f 1674SYM_CODE_START(rewind_stack_do_exit)
2deb4be2
AL
1675 /* Prevent any naive code from trying to unwind to our caller. */
1676 xorl %ebp, %ebp
1677
1678 movl PER_CPU_VAR(cpu_current_top_of_stack), %esi
1679 leal -TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%esi), %esp
1680
1681 call do_exit
16821: jmp 1b
5e63306f 1683SYM_CODE_END(rewind_stack_do_exit)
8c0fa8a0 1684.popsection