]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - arch/x86/entry/entry_64.S
Kbuild: rename CC_STACKPROTECTOR[_STRONG] config variables
[mirror_ubuntu-focal-kernel.git] / arch / x86 / entry / entry_64.S
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2/*
3 * linux/arch/x86_64/entry.S
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
7 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
4d732138 8 *
1da177e4
LT
9 * entry.S contains the system-call and fault low-level handling routines.
10 *
8b4777a4
AL
11 * Some of this is documented in Documentation/x86/entry_64.txt
12 *
0bd7b798 13 * A note on terminology:
4d732138
IM
14 * - iret frame: Architecture defined interrupt frame from SS to RIP
15 * at the top of the kernel process stack.
2e91a17b
AK
16 *
17 * Some macro usage:
4d732138
IM
18 * - ENTRY/END: Define functions in the symbol table.
19 * - TRACE_IRQ_*: Trace hardirq state for lock debugging.
20 * - idtentry: Define exception entry points.
1da177e4 21 */
1da177e4
LT
22#include <linux/linkage.h>
23#include <asm/segment.h>
1da177e4
LT
24#include <asm/cache.h>
25#include <asm/errno.h>
e2d5df93 26#include <asm/asm-offsets.h>
1da177e4
LT
27#include <asm/msr.h>
28#include <asm/unistd.h>
29#include <asm/thread_info.h>
30#include <asm/hw_irq.h>
0341c14d 31#include <asm/page_types.h>
2601e64d 32#include <asm/irqflags.h>
72fe4858 33#include <asm/paravirt.h>
9939ddaf 34#include <asm/percpu.h>
d7abc0fa 35#include <asm/asm.h>
63bcff2a 36#include <asm/smap.h>
3891a04a 37#include <asm/pgtable_types.h>
784d5699 38#include <asm/export.h>
8c1f7558 39#include <asm/frame.h>
2641f08b 40#include <asm/nospec-branch.h>
d7e7528b 41#include <linux/err.h>
1da177e4 42
6fd166aa
PZ
43#include "calling.h"
44
4d732138
IM
45.code64
46.section .entry.text, "ax"
16444a8a 47
72fe4858 48#ifdef CONFIG_PARAVIRT
2be29982 49ENTRY(native_usergs_sysret64)
8c1f7558 50 UNWIND_HINT_EMPTY
72fe4858
GOC
51 swapgs
52 sysretq
8c1f7558 53END(native_usergs_sysret64)
72fe4858
GOC
54#endif /* CONFIG_PARAVIRT */
55
ca37e57b 56.macro TRACE_IRQS_FLAGS flags:req
2601e64d 57#ifdef CONFIG_TRACE_IRQFLAGS
a368d7fd 58 btl $9, \flags /* interrupts off? */
4d732138 59 jnc 1f
2601e64d
IM
60 TRACE_IRQS_ON
611:
62#endif
63.endm
64
ca37e57b
AL
65.macro TRACE_IRQS_IRETQ
66 TRACE_IRQS_FLAGS EFLAGS(%rsp)
67.endm
68
5963e317
SR
69/*
70 * When dynamic function tracer is enabled it will add a breakpoint
71 * to all locations that it is about to modify, sync CPUs, update
72 * all the code, sync CPUs, then remove the breakpoints. In this time
73 * if lockdep is enabled, it might jump back into the debug handler
74 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
75 *
76 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
77 * make sure the stack pointer does not get reset back to the top
78 * of the debug stack, and instead just reuses the current stack.
79 */
80#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
81
82.macro TRACE_IRQS_OFF_DEBUG
4d732138 83 call debug_stack_set_zero
5963e317 84 TRACE_IRQS_OFF
4d732138 85 call debug_stack_reset
5963e317
SR
86.endm
87
88.macro TRACE_IRQS_ON_DEBUG
4d732138 89 call debug_stack_set_zero
5963e317 90 TRACE_IRQS_ON
4d732138 91 call debug_stack_reset
5963e317
SR
92.endm
93
f2db9382 94.macro TRACE_IRQS_IRETQ_DEBUG
4d732138
IM
95 bt $9, EFLAGS(%rsp) /* interrupts off? */
96 jnc 1f
5963e317
SR
97 TRACE_IRQS_ON_DEBUG
981:
99.endm
100
101#else
4d732138
IM
102# define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF
103# define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON
104# define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ
5963e317
SR
105#endif
106
1da177e4 107/*
4d732138 108 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
1da177e4 109 *
fda57b22
AL
110 * This is the only entry point used for 64-bit system calls. The
111 * hardware interface is reasonably well designed and the register to
112 * argument mapping Linux uses fits well with the registers that are
113 * available when SYSCALL is used.
114 *
115 * SYSCALL instructions can be found inlined in libc implementations as
116 * well as some other programs and libraries. There are also a handful
117 * of SYSCALL instructions in the vDSO used, for example, as a
118 * clock_gettimeofday fallback.
119 *
4d732138 120 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
b87cf63e
DV
121 * then loads new ss, cs, and rip from previously programmed MSRs.
122 * rflags gets masked by a value from another MSR (so CLD and CLAC
123 * are not needed). SYSCALL does not save anything on the stack
124 * and does not change rsp.
125 *
126 * Registers on entry:
1da177e4 127 * rax system call number
b87cf63e
DV
128 * rcx return address
129 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
1da177e4 130 * rdi arg0
1da177e4 131 * rsi arg1
0bd7b798 132 * rdx arg2
b87cf63e 133 * r10 arg3 (needs to be moved to rcx to conform to C ABI)
1da177e4
LT
134 * r8 arg4
135 * r9 arg5
4d732138 136 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
0bd7b798 137 *
1da177e4
LT
138 * Only called from user space.
139 *
7fcb3bc3 140 * When user can change pt_regs->foo always force IRET. That is because
7bf36bbc
AK
141 * it deals with uncanonical addresses better. SYSRET has trouble
142 * with them due to bugs in both AMD and Intel CPUs.
0bd7b798 143 */
1da177e4 144
3386bc8a
AL
145 .pushsection .entry_trampoline, "ax"
146
147/*
148 * The code in here gets remapped into cpu_entry_area's trampoline. This means
149 * that the assembler and linker have the wrong idea as to where this code
150 * lives (and, in fact, it's mapped more than once, so it's not even at a
151 * fixed address). So we can't reference any symbols outside the entry
152 * trampoline and expect it to work.
153 *
154 * Instead, we carefully abuse %rip-relative addressing.
155 * _entry_trampoline(%rip) refers to the start of the remapped) entry
156 * trampoline. We can thus find cpu_entry_area with this macro:
157 */
158
159#define CPU_ENTRY_AREA \
160 _entry_trampoline - CPU_ENTRY_AREA_entry_trampoline(%rip)
161
162/* The top word of the SYSENTER stack is hot and is usable as scratch space. */
4fe2d8b1
DH
163#define RSP_SCRATCH CPU_ENTRY_AREA_entry_stack + \
164 SIZEOF_entry_stack - 8 + CPU_ENTRY_AREA
3386bc8a
AL
165
166ENTRY(entry_SYSCALL_64_trampoline)
167 UNWIND_HINT_EMPTY
168 swapgs
169
170 /* Stash the user RSP. */
171 movq %rsp, RSP_SCRATCH
172
8a09317b
DH
173 /* Note: using %rsp as a scratch reg. */
174 SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
175
3386bc8a
AL
176 /* Load the top of the task stack into RSP */
177 movq CPU_ENTRY_AREA_tss + TSS_sp1 + CPU_ENTRY_AREA, %rsp
178
179 /* Start building the simulated IRET frame. */
180 pushq $__USER_DS /* pt_regs->ss */
181 pushq RSP_SCRATCH /* pt_regs->sp */
182 pushq %r11 /* pt_regs->flags */
183 pushq $__USER_CS /* pt_regs->cs */
184 pushq %rcx /* pt_regs->ip */
185
186 /*
187 * x86 lacks a near absolute jump, and we can't jump to the real
188 * entry text with a relative jump. We could push the target
189 * address and then use retq, but this destroys the pipeline on
190 * many CPUs (wasting over 20 cycles on Sandy Bridge). Instead,
191 * spill RDI and restore it in a second-stage trampoline.
192 */
193 pushq %rdi
194 movq $entry_SYSCALL_64_stage2, %rdi
2641f08b 195 JMP_NOSPEC %rdi
3386bc8a
AL
196END(entry_SYSCALL_64_trampoline)
197
198 .popsection
199
200ENTRY(entry_SYSCALL_64_stage2)
201 UNWIND_HINT_EMPTY
202 popq %rdi
203 jmp entry_SYSCALL_64_after_hwframe
204END(entry_SYSCALL_64_stage2)
205
b2502b41 206ENTRY(entry_SYSCALL_64)
8c1f7558 207 UNWIND_HINT_EMPTY
9ed8e7d8
DV
208 /*
209 * Interrupts are off on entry.
210 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
211 * it is too small to ever cause noticeable irq latency.
212 */
72fe4858 213
8a9949bc 214 swapgs
8a09317b 215 /*
14b1fcc6 216 * This path is only taken when PAGE_TABLE_ISOLATION is disabled so it
8a09317b
DH
217 * is not required to switch CR3.
218 */
4d732138
IM
219 movq %rsp, PER_CPU_VAR(rsp_scratch)
220 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
9ed8e7d8
DV
221
222 /* Construct struct pt_regs on stack */
4d732138
IM
223 pushq $__USER_DS /* pt_regs->ss */
224 pushq PER_CPU_VAR(rsp_scratch) /* pt_regs->sp */
4d732138
IM
225 pushq %r11 /* pt_regs->flags */
226 pushq $__USER_CS /* pt_regs->cs */
227 pushq %rcx /* pt_regs->ip */
8a9949bc 228GLOBAL(entry_SYSCALL_64_after_hwframe)
4d732138 229 pushq %rax /* pt_regs->orig_ax */
30907fd1
DB
230
231 PUSH_AND_CLEAR_REGS rax=$-ENOSYS
4d732138 232
548c3050
AL
233 TRACE_IRQS_OFF
234
1e423bff 235 /* IRQs are off. */
dfe64506
LT
236 movq %rax, %rdi
237 movq %rsp, %rsi
1e423bff
AL
238 call do_syscall_64 /* returns with IRQs disabled */
239
29ea1b25 240 TRACE_IRQS_IRETQ /* we're about to change IF */
fffbb5dc
DV
241
242 /*
243 * Try to use SYSRET instead of IRET if we're returning to
8a055d7f
AL
244 * a completely clean 64-bit userspace context. If we're not,
245 * go to the slow exit path.
fffbb5dc 246 */
4d732138
IM
247 movq RCX(%rsp), %rcx
248 movq RIP(%rsp), %r11
8a055d7f
AL
249
250 cmpq %rcx, %r11 /* SYSRET requires RCX == RIP */
251 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc
DV
252
253 /*
254 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
255 * in kernel space. This essentially lets the user take over
17be0aec 256 * the kernel, since userspace controls RSP.
fffbb5dc 257 *
17be0aec 258 * If width of "canonical tail" ever becomes variable, this will need
fffbb5dc 259 * to be updated to remain correct on both old and new CPUs.
361b4b58 260 *
cbe0317b
KS
261 * Change top bits to match most significant bit (47th or 56th bit
262 * depending on paging mode) in the address.
fffbb5dc 263 */
09e61a77 264#ifdef CONFIG_X86_5LEVEL
39b95522
KS
265 ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \
266 "shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57
09e61a77 267#else
17be0aec
DV
268 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
269 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
09e61a77 270#endif
4d732138 271
17be0aec
DV
272 /* If this changed %rcx, it was not canonical */
273 cmpq %rcx, %r11
8a055d7f 274 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc 275
4d732138 276 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
8a055d7f 277 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc 278
4d732138
IM
279 movq R11(%rsp), %r11
280 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
8a055d7f 281 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc
DV
282
283 /*
3e035305
BP
284 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
285 * restore RF properly. If the slowpath sets it for whatever reason, we
286 * need to restore it correctly.
287 *
288 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
289 * trap from userspace immediately after SYSRET. This would cause an
290 * infinite loop whenever #DB happens with register state that satisfies
291 * the opportunistic SYSRET conditions. For example, single-stepping
292 * this user code:
fffbb5dc 293 *
4d732138 294 * movq $stuck_here, %rcx
fffbb5dc
DV
295 * pushfq
296 * popq %r11
297 * stuck_here:
298 *
299 * would never get past 'stuck_here'.
300 */
4d732138 301 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
8a055d7f 302 jnz swapgs_restore_regs_and_return_to_usermode
fffbb5dc
DV
303
304 /* nothing to check for RSP */
305
4d732138 306 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
8a055d7f 307 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc
DV
308
309 /*
4d732138
IM
310 * We win! This label is here just for ease of understanding
311 * perf profiles. Nothing jumps here.
fffbb5dc
DV
312 */
313syscall_return_via_sysret:
17be0aec 314 /* rcx and r11 are already restored (see code above) */
8c1f7558 315 UNWIND_HINT_EMPTY
502af0d7 316 POP_REGS pop_rdi=0 skip_r11rcx=1
3e3b9293
AL
317
318 /*
319 * Now all regs are restored except RSP and RDI.
320 * Save old stack pointer and switch to trampoline stack.
321 */
322 movq %rsp, %rdi
c482feef 323 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
3e3b9293
AL
324
325 pushq RSP-RDI(%rdi) /* RSP */
326 pushq (%rdi) /* RDI */
327
328 /*
329 * We are on the trampoline stack. All regs except RDI are live.
330 * We can do future final exit work right here.
331 */
6fd166aa 332 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
3e3b9293 333
4fbb3910 334 popq %rdi
3e3b9293 335 popq %rsp
fffbb5dc 336 USERGS_SYSRET64
b2502b41 337END(entry_SYSCALL_64)
0bd7b798 338
0100301b
BG
339/*
340 * %rdi: prev task
341 * %rsi: next task
342 */
343ENTRY(__switch_to_asm)
8c1f7558 344 UNWIND_HINT_FUNC
0100301b
BG
345 /*
346 * Save callee-saved registers
347 * This must match the order in inactive_task_frame
348 */
349 pushq %rbp
350 pushq %rbx
351 pushq %r12
352 pushq %r13
353 pushq %r14
354 pushq %r15
355
356 /* switch stack */
357 movq %rsp, TASK_threadsp(%rdi)
358 movq TASK_threadsp(%rsi), %rsp
359
050e9baa 360#ifdef CONFIG_STACKPROTECTOR
0100301b
BG
361 movq TASK_stack_canary(%rsi), %rbx
362 movq %rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
363#endif
364
c995efd5
DW
365#ifdef CONFIG_RETPOLINE
366 /*
367 * When switching from a shallower to a deeper call stack
368 * the RSB may either underflow or use entries populated
369 * with userspace addresses. On CPUs where those concerns
370 * exist, overwrite the RSB with entries which capture
371 * speculative execution to prevent attack.
372 */
d1c99108 373 FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
c995efd5
DW
374#endif
375
0100301b
BG
376 /* restore callee-saved registers */
377 popq %r15
378 popq %r14
379 popq %r13
380 popq %r12
381 popq %rbx
382 popq %rbp
383
384 jmp __switch_to
385END(__switch_to_asm)
386
1eeb207f
DV
387/*
388 * A newly forked process directly context switches into this address.
389 *
0100301b 390 * rax: prev task we switched from
616d2483
BG
391 * rbx: kernel thread func (NULL for user thread)
392 * r12: kernel thread arg
1eeb207f
DV
393 */
394ENTRY(ret_from_fork)
8c1f7558 395 UNWIND_HINT_EMPTY
0100301b 396 movq %rax, %rdi
ebd57499 397 call schedule_tail /* rdi: 'prev' task parameter */
1eeb207f 398
ebd57499
JP
399 testq %rbx, %rbx /* from kernel_thread? */
400 jnz 1f /* kernel threads are uncommon */
24d978b7 401
616d2483 4022:
8c1f7558 403 UNWIND_HINT_REGS
ebd57499 404 movq %rsp, %rdi
24d978b7
AL
405 call syscall_return_slowpath /* returns with IRQs disabled */
406 TRACE_IRQS_ON /* user mode is traced as IRQS on */
8a055d7f 407 jmp swapgs_restore_regs_and_return_to_usermode
616d2483
BG
408
4091:
410 /* kernel thread */
411 movq %r12, %rdi
2641f08b 412 CALL_NOSPEC %rbx
616d2483
BG
413 /*
414 * A kernel thread is allowed to return here after successfully
415 * calling do_execve(). Exit to userspace to complete the execve()
416 * syscall.
417 */
418 movq $0, RAX(%rsp)
419 jmp 2b
1eeb207f
DV
420END(ret_from_fork)
421
939b7871 422/*
3304c9c3
DV
423 * Build the entry stubs with some assembler magic.
424 * We pack 1 stub into every 8-byte block.
939b7871 425 */
3304c9c3 426 .align 8
939b7871 427ENTRY(irq_entries_start)
3304c9c3
DV
428 vector=FIRST_EXTERNAL_VECTOR
429 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
8c1f7558 430 UNWIND_HINT_IRET_REGS
4d732138 431 pushq $(~vector+0x80) /* Note: always in signed byte range */
3304c9c3 432 jmp common_interrupt
3304c9c3 433 .align 8
8c1f7558 434 vector=vector+1
3304c9c3 435 .endr
939b7871
PA
436END(irq_entries_start)
437
1d3e53e8
AL
438.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
439#ifdef CONFIG_DEBUG_ENTRY
e17f8234
BO
440 pushq %rax
441 SAVE_FLAGS(CLBR_RAX)
442 testl $X86_EFLAGS_IF, %eax
1d3e53e8
AL
443 jz .Lokay_\@
444 ud2
445.Lokay_\@:
e17f8234 446 popq %rax
1d3e53e8
AL
447#endif
448.endm
449
450/*
451 * Enters the IRQ stack if we're not already using it. NMI-safe. Clobbers
452 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
453 * Requires kernel GSBASE.
454 *
455 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
456 */
2ba64741 457.macro ENTER_IRQ_STACK regs=1 old_rsp save_ret=0
1d3e53e8 458 DEBUG_ENTRY_ASSERT_IRQS_OFF
2ba64741
DB
459
460 .if \save_ret
461 /*
462 * If save_ret is set, the original stack contains one additional
463 * entry -- the return address. Therefore, move the address one
464 * entry below %rsp to \old_rsp.
465 */
466 leaq 8(%rsp), \old_rsp
467 .else
1d3e53e8 468 movq %rsp, \old_rsp
2ba64741 469 .endif
8c1f7558
JP
470
471 .if \regs
472 UNWIND_HINT_REGS base=\old_rsp
473 .endif
474
1d3e53e8 475 incl PER_CPU_VAR(irq_count)
29955909 476 jnz .Lirq_stack_push_old_rsp_\@
1d3e53e8
AL
477
478 /*
479 * Right now, if we just incremented irq_count to zero, we've
480 * claimed the IRQ stack but we haven't switched to it yet.
481 *
482 * If anything is added that can interrupt us here without using IST,
483 * it must be *extremely* careful to limit its stack usage. This
484 * could include kprobes and a hypothetical future IST-less #DB
485 * handler.
29955909
AL
486 *
487 * The OOPS unwinder relies on the word at the top of the IRQ
488 * stack linking back to the previous RSP for the entire time we're
489 * on the IRQ stack. For this to work reliably, we need to write
490 * it before we actually move ourselves to the IRQ stack.
491 */
492
493 movq \old_rsp, PER_CPU_VAR(irq_stack_union + IRQ_STACK_SIZE - 8)
494 movq PER_CPU_VAR(irq_stack_ptr), %rsp
495
496#ifdef CONFIG_DEBUG_ENTRY
497 /*
498 * If the first movq above becomes wrong due to IRQ stack layout
499 * changes, the only way we'll notice is if we try to unwind right
500 * here. Assert that we set up the stack right to catch this type
501 * of bug quickly.
1d3e53e8 502 */
29955909
AL
503 cmpq -8(%rsp), \old_rsp
504 je .Lirq_stack_okay\@
505 ud2
506 .Lirq_stack_okay\@:
507#endif
1d3e53e8 508
29955909 509.Lirq_stack_push_old_rsp_\@:
1d3e53e8 510 pushq \old_rsp
8c1f7558
JP
511
512 .if \regs
513 UNWIND_HINT_REGS indirect=1
514 .endif
2ba64741
DB
515
516 .if \save_ret
517 /*
518 * Push the return address to the stack. This return address can
519 * be found at the "real" original RSP, which was offset by 8 at
520 * the beginning of this macro.
521 */
522 pushq -8(\old_rsp)
523 .endif
1d3e53e8
AL
524.endm
525
526/*
527 * Undoes ENTER_IRQ_STACK.
528 */
8c1f7558 529.macro LEAVE_IRQ_STACK regs=1
1d3e53e8
AL
530 DEBUG_ENTRY_ASSERT_IRQS_OFF
531 /* We need to be off the IRQ stack before decrementing irq_count. */
532 popq %rsp
533
8c1f7558
JP
534 .if \regs
535 UNWIND_HINT_REGS
536 .endif
537
1d3e53e8
AL
538 /*
539 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
540 * the irq stack but we're not on it.
541 */
542
543 decl PER_CPU_VAR(irq_count)
544.endm
545
d99015b1 546/*
f3d415ea 547 * Interrupt entry helper function.
d99015b1 548 *
f3d415ea
DB
549 * Entry runs with interrupts off. Stack layout at entry:
550 * +----------------------------------------------------+
551 * | regs->ss |
552 * | regs->rsp |
553 * | regs->eflags |
554 * | regs->cs |
555 * | regs->ip |
556 * +----------------------------------------------------+
557 * | regs->orig_ax = ~(interrupt number) |
558 * +----------------------------------------------------+
559 * | return address |
560 * +----------------------------------------------------+
d99015b1 561 */
f3d415ea
DB
562ENTRY(interrupt_entry)
563 UNWIND_HINT_FUNC
564 ASM_CLAC
f6f64681 565 cld
7f2590a1 566
f3d415ea 567 testb $3, CS-ORIG_RAX+8(%rsp)
7f2590a1
AL
568 jz 1f
569 SWAPGS
f3d415ea
DB
570
571 /*
572 * Switch to the thread stack. The IRET frame and orig_ax are
573 * on the stack, as well as the return address. RDI..R12 are
574 * not (yet) on the stack and space has not (yet) been
575 * allocated for them.
576 */
90a6acc4 577 pushq %rdi
f3d415ea 578
90a6acc4
DB
579 /* Need to switch before accessing the thread stack. */
580 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi
581 movq %rsp, %rdi
582 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
f3d415ea
DB
583
584 /*
585 * We have RDI, return address, and orig_ax on the stack on
586 * top of the IRET frame. That means offset=24
587 */
588 UNWIND_HINT_IRET_REGS base=%rdi offset=24
90a6acc4
DB
589
590 pushq 7*8(%rdi) /* regs->ss */
591 pushq 6*8(%rdi) /* regs->rsp */
592 pushq 5*8(%rdi) /* regs->eflags */
593 pushq 4*8(%rdi) /* regs->cs */
594 pushq 3*8(%rdi) /* regs->ip */
595 pushq 2*8(%rdi) /* regs->orig_ax */
596 pushq 8(%rdi) /* return address */
597 UNWIND_HINT_FUNC
598
599 movq (%rdi), %rdi
7f2590a1
AL
6001:
601
0e34d226
DB
602 PUSH_AND_CLEAR_REGS save_ret=1
603 ENCODE_FRAME_POINTER 8
76f5df43 604
2ba64741 605 testb $3, CS+8(%rsp)
dde74f2e 606 jz 1f
02bc7768
AL
607
608 /*
7f2590a1
AL
609 * IRQ from user mode.
610 *
f1075053
AL
611 * We need to tell lockdep that IRQs are off. We can't do this until
612 * we fix gsbase, and we should do it before enter_from_user_mode
f3d415ea 613 * (which can take locks). Since TRACE_IRQS_OFF is idempotent,
f1075053
AL
614 * the simplest way to handle it is to just call it twice if
615 * we enter from user mode. There's no reason to optimize this since
616 * TRACE_IRQS_OFF is a no-op if lockdep is off.
617 */
618 TRACE_IRQS_OFF
619
478dc89c 620 CALL_enter_from_user_mode
02bc7768 621
76f5df43 6221:
2ba64741 623 ENTER_IRQ_STACK old_rsp=%rdi save_ret=1
f6f64681
DV
624 /* We entered an interrupt context - irqs are off: */
625 TRACE_IRQS_OFF
626
2ba64741
DB
627 ret
628END(interrupt_entry)
629
f3d415ea
DB
630
631/* Interrupt entry/exit. */
1da177e4 632
722024db
AH
633 /*
634 * The interrupt stubs push (~vector+0x80) onto the stack and
635 * then jump to common_interrupt.
636 */
939b7871
PA
637 .p2align CONFIG_X86_L1_CACHE_SHIFT
638common_interrupt:
4d732138 639 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
3aa99fc3
DB
640 call interrupt_entry
641 UNWIND_HINT_REGS indirect=1
642 call do_IRQ /* rdi points to pt_regs */
34061f13 643 /* 0(%rsp): old RSP */
7effaa88 644ret_from_intr:
2140a994 645 DISABLE_INTERRUPTS(CLBR_ANY)
2601e64d 646 TRACE_IRQS_OFF
625dbc3b 647
1d3e53e8 648 LEAVE_IRQ_STACK
625dbc3b 649
03335e95 650 testb $3, CS(%rsp)
dde74f2e 651 jz retint_kernel
4d732138 652
02bc7768 653 /* Interrupt came from user space */
02bc7768
AL
654GLOBAL(retint_user)
655 mov %rsp,%rdi
656 call prepare_exit_to_usermode
2601e64d 657 TRACE_IRQS_IRETQ
26c4ef9c 658
8a055d7f 659GLOBAL(swapgs_restore_regs_and_return_to_usermode)
26c4ef9c
AL
660#ifdef CONFIG_DEBUG_ENTRY
661 /* Assert that pt_regs indicates user mode. */
1e4c4f61 662 testb $3, CS(%rsp)
26c4ef9c
AL
663 jnz 1f
664 ud2
6651:
666#endif
502af0d7 667 POP_REGS pop_rdi=0
3e3b9293
AL
668
669 /*
670 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
671 * Save old stack pointer and switch to trampoline stack.
672 */
673 movq %rsp, %rdi
c482feef 674 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
3e3b9293
AL
675
676 /* Copy the IRET frame to the trampoline stack. */
677 pushq 6*8(%rdi) /* SS */
678 pushq 5*8(%rdi) /* RSP */
679 pushq 4*8(%rdi) /* EFLAGS */
680 pushq 3*8(%rdi) /* CS */
681 pushq 2*8(%rdi) /* RIP */
682
683 /* Push user RDI on the trampoline stack. */
684 pushq (%rdi)
685
686 /*
687 * We are on the trampoline stack. All regs except RDI are live.
688 * We can do future final exit work right here.
689 */
690
6fd166aa 691 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
8a09317b 692
3e3b9293
AL
693 /* Restore RDI. */
694 popq %rdi
695 SWAPGS
26c4ef9c
AL
696 INTERRUPT_RETURN
697
2601e64d 698
627276cb 699/* Returning to kernel space */
6ba71b76 700retint_kernel:
627276cb
DV
701#ifdef CONFIG_PREEMPT
702 /* Interrupts are off */
703 /* Check if we need preemption */
4d732138 704 bt $9, EFLAGS(%rsp) /* were interrupts off? */
6ba71b76 705 jnc 1f
4d732138 7060: cmpl $0, PER_CPU_VAR(__preempt_count)
36acef25 707 jnz 1f
627276cb 708 call preempt_schedule_irq
36acef25 709 jmp 0b
6ba71b76 7101:
627276cb 711#endif
2601e64d
IM
712 /*
713 * The iretq could re-enable interrupts:
714 */
715 TRACE_IRQS_IRETQ
fffbb5dc 716
26c4ef9c
AL
717GLOBAL(restore_regs_and_return_to_kernel)
718#ifdef CONFIG_DEBUG_ENTRY
719 /* Assert that pt_regs indicates kernel mode. */
1e4c4f61 720 testb $3, CS(%rsp)
26c4ef9c
AL
721 jz 1f
722 ud2
7231:
724#endif
502af0d7 725 POP_REGS
e872045b 726 addq $8, %rsp /* skip regs->orig_ax */
10bcc80e
MD
727 /*
728 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
729 * when returning from IPI handler.
730 */
7209a75d
AL
731 INTERRUPT_RETURN
732
733ENTRY(native_iret)
8c1f7558 734 UNWIND_HINT_IRET_REGS
3891a04a
PA
735 /*
736 * Are we returning to a stack segment from the LDT? Note: in
737 * 64-bit mode SS:RSP on the exception stack is always valid.
738 */
34273f41 739#ifdef CONFIG_X86_ESPFIX64
4d732138
IM
740 testb $4, (SS-RIP)(%rsp)
741 jnz native_irq_return_ldt
34273f41 742#endif
3891a04a 743
af726f21 744.global native_irq_return_iret
7209a75d 745native_irq_return_iret:
b645af2d
AL
746 /*
747 * This may fault. Non-paranoid faults on return to userspace are
748 * handled by fixup_bad_iret. These include #SS, #GP, and #NP.
749 * Double-faults due to espfix64 are handled in do_double_fault.
750 * Other faults here are fatal.
751 */
1da177e4 752 iretq
3701d863 753
34273f41 754#ifdef CONFIG_X86_ESPFIX64
7209a75d 755native_irq_return_ldt:
85063fac
AL
756 /*
757 * We are running with user GSBASE. All GPRs contain their user
758 * values. We have a percpu ESPFIX stack that is eight slots
759 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom
760 * of the ESPFIX stack.
761 *
762 * We clobber RAX and RDI in this code. We stash RDI on the
763 * normal stack and RAX on the ESPFIX stack.
764 *
765 * The ESPFIX stack layout we set up looks like this:
766 *
767 * --- top of ESPFIX stack ---
768 * SS
769 * RSP
770 * RFLAGS
771 * CS
772 * RIP <-- RSP points here when we're done
773 * RAX <-- espfix_waddr points here
774 * --- bottom of ESPFIX stack ---
775 */
776
777 pushq %rdi /* Stash user RDI */
8a09317b
DH
778 SWAPGS /* to kernel GS */
779 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi /* to kernel CR3 */
780
4d732138 781 movq PER_CPU_VAR(espfix_waddr), %rdi
85063fac
AL
782 movq %rax, (0*8)(%rdi) /* user RAX */
783 movq (1*8)(%rsp), %rax /* user RIP */
4d732138 784 movq %rax, (1*8)(%rdi)
85063fac 785 movq (2*8)(%rsp), %rax /* user CS */
4d732138 786 movq %rax, (2*8)(%rdi)
85063fac 787 movq (3*8)(%rsp), %rax /* user RFLAGS */
4d732138 788 movq %rax, (3*8)(%rdi)
85063fac 789 movq (5*8)(%rsp), %rax /* user SS */
4d732138 790 movq %rax, (5*8)(%rdi)
85063fac 791 movq (4*8)(%rsp), %rax /* user RSP */
4d732138 792 movq %rax, (4*8)(%rdi)
85063fac
AL
793 /* Now RAX == RSP. */
794
795 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */
85063fac
AL
796
797 /*
798 * espfix_stack[31:16] == 0. The page tables are set up such that
799 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
800 * espfix_waddr for any X. That is, there are 65536 RO aliases of
801 * the same page. Set up RSP so that RSP[31:16] contains the
802 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
803 * still points to an RO alias of the ESPFIX stack.
804 */
4d732138 805 orq PER_CPU_VAR(espfix_stack), %rax
8a09317b 806
6fd166aa 807 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
8a09317b
DH
808 SWAPGS /* to user GS */
809 popq %rdi /* Restore user RDI */
810
4d732138 811 movq %rax, %rsp
8c1f7558 812 UNWIND_HINT_IRET_REGS offset=8
85063fac
AL
813
814 /*
815 * At this point, we cannot write to the stack any more, but we can
816 * still read.
817 */
818 popq %rax /* Restore user RAX */
819
820 /*
821 * RSP now points to an ordinary IRET frame, except that the page
822 * is read-only and RSP[31:16] are preloaded with the userspace
823 * values. We can now IRET back to userspace.
824 */
4d732138 825 jmp native_irq_return_iret
34273f41 826#endif
4b787e0b 827END(common_interrupt)
3891a04a 828
1da177e4
LT
829/*
830 * APIC interrupts.
0bd7b798 831 */
cf910e83 832.macro apicinterrupt3 num sym do_sym
322648d1 833ENTRY(\sym)
8c1f7558 834 UNWIND_HINT_IRET_REGS
4d732138 835 pushq $~(\num)
39e95433 836.Lcommon_\sym:
3aa99fc3
DB
837 call interrupt_entry
838 UNWIND_HINT_REGS indirect=1
839 call \do_sym /* rdi points to pt_regs */
4d732138 840 jmp ret_from_intr
322648d1
AH
841END(\sym)
842.endm
1da177e4 843
469f0023 844/* Make sure APIC interrupt handlers end up in the irqentry section: */
229a7186
MH
845#define PUSH_SECTION_IRQENTRY .pushsection .irqentry.text, "ax"
846#define POP_SECTION_IRQENTRY .popsection
469f0023 847
cf910e83 848.macro apicinterrupt num sym do_sym
469f0023 849PUSH_SECTION_IRQENTRY
cf910e83 850apicinterrupt3 \num \sym \do_sym
469f0023 851POP_SECTION_IRQENTRY
cf910e83
SA
852.endm
853
322648d1 854#ifdef CONFIG_SMP
4d732138
IM
855apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt
856apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt
322648d1 857#endif
1da177e4 858
03b48632 859#ifdef CONFIG_X86_UV
4d732138 860apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt
03b48632 861#endif
4d732138
IM
862
863apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt
864apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi
89b831ef 865
d78f2664 866#ifdef CONFIG_HAVE_KVM
4d732138
IM
867apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi
868apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi
210f84b0 869apicinterrupt3 POSTED_INTR_NESTED_VECTOR kvm_posted_intr_nested_ipi smp_kvm_posted_intr_nested_ipi
d78f2664
YZ
870#endif
871
33e5ff63 872#ifdef CONFIG_X86_MCE_THRESHOLD
4d732138 873apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt
33e5ff63
SA
874#endif
875
24fd78a8 876#ifdef CONFIG_X86_MCE_AMD
4d732138 877apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt
24fd78a8
AG
878#endif
879
33e5ff63 880#ifdef CONFIG_X86_THERMAL_VECTOR
4d732138 881apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt
33e5ff63 882#endif
1812924b 883
322648d1 884#ifdef CONFIG_SMP
4d732138
IM
885apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt
886apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt
887apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt
322648d1 888#endif
1da177e4 889
4d732138
IM
890apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt
891apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt
0bd7b798 892
e360adbe 893#ifdef CONFIG_IRQ_WORK
4d732138 894apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
241771ef
IM
895#endif
896
1da177e4
LT
897/*
898 * Exception entry points.
0bd7b798 899 */
c482feef 900#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss_rw) + (TSS_ist + ((x) - 1) * 8)
577ed45e
AL
901
902.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
322648d1 903ENTRY(\sym)
98990a33 904 UNWIND_HINT_IRET_REGS offset=\has_error_code*8
8c1f7558 905
577ed45e
AL
906 /* Sanity check */
907 .if \shift_ist != -1 && \paranoid == 0
908 .error "using shift_ist requires paranoid=1"
909 .endif
910
ee4eb87b 911 ASM_CLAC
cb5dd2c5 912
82c62fa0 913 .if \has_error_code == 0
4d732138 914 pushq $-1 /* ORIG_RAX: no syscall to restart */
cb5dd2c5
AL
915 .endif
916
071ccc96 917 .if \paranoid == 1
9e809d15 918 testb $3, CS-ORIG_RAX(%rsp) /* If coming from userspace, switch stacks */
7f2590a1 919 jnz .Lfrom_usermode_switch_stack_\@
48e08d0f 920 .endif
7f2590a1
AL
921
922 .if \paranoid
4d732138 923 call paranoid_entry
cb5dd2c5 924 .else
4d732138 925 call error_entry
cb5dd2c5 926 .endif
8c1f7558 927 UNWIND_HINT_REGS
ebfc453e 928 /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
cb5dd2c5 929
cb5dd2c5 930 .if \paranoid
577ed45e 931 .if \shift_ist != -1
4d732138 932 TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */
577ed45e 933 .else
b8b1d08b 934 TRACE_IRQS_OFF
cb5dd2c5 935 .endif
577ed45e 936 .endif
cb5dd2c5 937
4d732138 938 movq %rsp, %rdi /* pt_regs pointer */
cb5dd2c5
AL
939
940 .if \has_error_code
4d732138
IM
941 movq ORIG_RAX(%rsp), %rsi /* get error code */
942 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
cb5dd2c5 943 .else
4d732138 944 xorl %esi, %esi /* no error code */
cb5dd2c5
AL
945 .endif
946
577ed45e 947 .if \shift_ist != -1
4d732138 948 subq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
577ed45e
AL
949 .endif
950
4d732138 951 call \do_sym
cb5dd2c5 952
577ed45e 953 .if \shift_ist != -1
4d732138 954 addq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
577ed45e
AL
955 .endif
956
ebfc453e 957 /* these procedures expect "no swapgs" flag in ebx */
cb5dd2c5 958 .if \paranoid
4d732138 959 jmp paranoid_exit
cb5dd2c5 960 .else
4d732138 961 jmp error_exit
cb5dd2c5
AL
962 .endif
963
071ccc96 964 .if \paranoid == 1
48e08d0f 965 /*
7f2590a1 966 * Entry from userspace. Switch stacks and treat it
48e08d0f
AL
967 * as a normal entry. This means that paranoid handlers
968 * run in real process context if user_mode(regs).
969 */
7f2590a1 970.Lfrom_usermode_switch_stack_\@:
4d732138 971 call error_entry
48e08d0f 972
4d732138 973 movq %rsp, %rdi /* pt_regs pointer */
48e08d0f
AL
974
975 .if \has_error_code
4d732138
IM
976 movq ORIG_RAX(%rsp), %rsi /* get error code */
977 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
48e08d0f 978 .else
4d732138 979 xorl %esi, %esi /* no error code */
48e08d0f
AL
980 .endif
981
4d732138 982 call \do_sym
48e08d0f 983
4d732138 984 jmp error_exit /* %ebx: no swapgs flag */
48e08d0f 985 .endif
ddeb8f21 986END(\sym)
322648d1 987.endm
b8b1d08b 988
4d732138
IM
989idtentry divide_error do_divide_error has_error_code=0
990idtentry overflow do_overflow has_error_code=0
991idtentry bounds do_bounds has_error_code=0
992idtentry invalid_op do_invalid_op has_error_code=0
993idtentry device_not_available do_device_not_available has_error_code=0
994idtentry double_fault do_double_fault has_error_code=1 paranoid=2
995idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0
996idtentry invalid_TSS do_invalid_TSS has_error_code=1
997idtentry segment_not_present do_segment_not_present has_error_code=1
998idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0
999idtentry coprocessor_error do_coprocessor_error has_error_code=0
1000idtentry alignment_check do_alignment_check has_error_code=1
1001idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0
1002
1003
1004 /*
1005 * Reload gs selector with exception handling
1006 * edi: new selector
1007 */
9f9d489a 1008ENTRY(native_load_gs_index)
8c1f7558 1009 FRAME_BEGIN
131484c8 1010 pushfq
b8aa287f 1011 DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
ca37e57b 1012 TRACE_IRQS_OFF
9f1e87ea 1013 SWAPGS
42c748bb 1014.Lgs_change:
4d732138 1015 movl %edi, %gs
96e5d28a 10162: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
72fe4858 1017 SWAPGS
ca37e57b 1018 TRACE_IRQS_FLAGS (%rsp)
131484c8 1019 popfq
8c1f7558 1020 FRAME_END
9f1e87ea 1021 ret
8c1f7558 1022ENDPROC(native_load_gs_index)
784d5699 1023EXPORT_SYMBOL(native_load_gs_index)
0bd7b798 1024
42c748bb 1025 _ASM_EXTABLE(.Lgs_change, bad_gs)
4d732138 1026 .section .fixup, "ax"
1da177e4 1027 /* running with kernelgs */
0bd7b798 1028bad_gs:
4d732138 1029 SWAPGS /* switch back to user gs */
b038c842
AL
1030.macro ZAP_GS
1031 /* This can't be a string because the preprocessor needs to see it. */
1032 movl $__USER_DS, %eax
1033 movl %eax, %gs
1034.endm
1035 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
4d732138
IM
1036 xorl %eax, %eax
1037 movl %eax, %gs
1038 jmp 2b
9f1e87ea 1039 .previous
0bd7b798 1040
2699500b 1041/* Call softirq on interrupt stack. Interrupts are off. */
7d65f4a6 1042ENTRY(do_softirq_own_stack)
4d732138
IM
1043 pushq %rbp
1044 mov %rsp, %rbp
8c1f7558 1045 ENTER_IRQ_STACK regs=0 old_rsp=%r11
4d732138 1046 call __do_softirq
8c1f7558 1047 LEAVE_IRQ_STACK regs=0
2699500b 1048 leaveq
ed6b676c 1049 ret
8c1f7558 1050ENDPROC(do_softirq_own_stack)
75154f40 1051
3d75e1b8 1052#ifdef CONFIG_XEN
5878d5d6 1053idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
3d75e1b8
JF
1054
1055/*
9f1e87ea
CG
1056 * A note on the "critical region" in our callback handler.
1057 * We want to avoid stacking callback handlers due to events occurring
1058 * during handling of the last event. To do this, we keep events disabled
1059 * until we've done all processing. HOWEVER, we must enable events before
1060 * popping the stack frame (can't be done atomically) and so it would still
1061 * be possible to get enough handler activations to overflow the stack.
1062 * Although unlikely, bugs of that kind are hard to track down, so we'd
1063 * like to avoid the possibility.
1064 * So, on entry to the handler we detect whether we interrupted an
1065 * existing activation in its critical region -- if so, we pop the current
1066 * activation and restart the handler using the previous one.
1067 */
4d732138
IM
1068ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */
1069
9f1e87ea
CG
1070/*
1071 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
1072 * see the correct pointer to the pt_regs
1073 */
8c1f7558 1074 UNWIND_HINT_FUNC
4d732138 1075 movq %rdi, %rsp /* we don't return, adjust the stack frame */
8c1f7558 1076 UNWIND_HINT_REGS
1d3e53e8
AL
1077
1078 ENTER_IRQ_STACK old_rsp=%r10
4d732138 1079 call xen_evtchn_do_upcall
1d3e53e8
AL
1080 LEAVE_IRQ_STACK
1081
fdfd811d 1082#ifndef CONFIG_PREEMPT
4d732138 1083 call xen_maybe_preempt_hcall
fdfd811d 1084#endif
4d732138 1085 jmp error_exit
371c394a 1086END(xen_do_hypervisor_callback)
3d75e1b8
JF
1087
1088/*
9f1e87ea
CG
1089 * Hypervisor uses this for application faults while it executes.
1090 * We get here for two reasons:
1091 * 1. Fault while reloading DS, ES, FS or GS
1092 * 2. Fault while executing IRET
1093 * Category 1 we do not need to fix up as Xen has already reloaded all segment
1094 * registers that could be reloaded and zeroed the others.
1095 * Category 2 we fix up by killing the current process. We cannot use the
1096 * normal Linux return path in this case because if we use the IRET hypercall
1097 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
1098 * We distinguish between categories by comparing each saved segment register
1099 * with its current contents: any discrepancy means we in category 1.
1100 */
3d75e1b8 1101ENTRY(xen_failsafe_callback)
8c1f7558 1102 UNWIND_HINT_EMPTY
4d732138
IM
1103 movl %ds, %ecx
1104 cmpw %cx, 0x10(%rsp)
1105 jne 1f
1106 movl %es, %ecx
1107 cmpw %cx, 0x18(%rsp)
1108 jne 1f
1109 movl %fs, %ecx
1110 cmpw %cx, 0x20(%rsp)
1111 jne 1f
1112 movl %gs, %ecx
1113 cmpw %cx, 0x28(%rsp)
1114 jne 1f
3d75e1b8 1115 /* All segments match their saved values => Category 2 (Bad IRET). */
4d732138
IM
1116 movq (%rsp), %rcx
1117 movq 8(%rsp), %r11
1118 addq $0x30, %rsp
1119 pushq $0 /* RIP */
8c1f7558 1120 UNWIND_HINT_IRET_REGS offset=8
4d732138 1121 jmp general_protection
3d75e1b8 11221: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
4d732138
IM
1123 movq (%rsp), %rcx
1124 movq 8(%rsp), %r11
1125 addq $0x30, %rsp
8c1f7558 1126 UNWIND_HINT_IRET_REGS
4d732138 1127 pushq $-1 /* orig_ax = -1 => not a system call */
3f01daec 1128 PUSH_AND_CLEAR_REGS
946c1911 1129 ENCODE_FRAME_POINTER
4d732138 1130 jmp error_exit
3d75e1b8
JF
1131END(xen_failsafe_callback)
1132
cf910e83 1133apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
38e20b07
SY
1134 xen_hvm_callback_vector xen_evtchn_do_upcall
1135
3d75e1b8 1136#endif /* CONFIG_XEN */
ddeb8f21 1137
bc2b0331 1138#if IS_ENABLED(CONFIG_HYPERV)
cf910e83 1139apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
bc2b0331 1140 hyperv_callback_vector hyperv_vector_handler
93286261
VK
1141
1142apicinterrupt3 HYPERV_REENLIGHTENMENT_VECTOR \
1143 hyperv_reenlightenment_vector hyperv_reenlightenment_intr
248e742a
MK
1144
1145apicinterrupt3 HYPERV_STIMER0_VECTOR \
1146 hv_stimer0_callback_vector hv_stimer0_vector_handler
bc2b0331
S
1147#endif /* CONFIG_HYPERV */
1148
4d732138 1149idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
d8ba61ba 1150idtentry int3 do_int3 has_error_code=0
4d732138
IM
1151idtentry stack_segment do_stack_segment has_error_code=1
1152
6cac5a92 1153#ifdef CONFIG_XEN
43e41110 1154idtentry xennmi do_nmi has_error_code=0
5878d5d6
JG
1155idtentry xendebug do_debug has_error_code=0
1156idtentry xenint3 do_int3 has_error_code=0
6cac5a92 1157#endif
4d732138
IM
1158
1159idtentry general_protection do_general_protection has_error_code=1
11a7ffb0 1160idtentry page_fault do_page_fault has_error_code=1
4d732138 1161
631bc487 1162#ifdef CONFIG_KVM_GUEST
4d732138 1163idtentry async_page_fault do_async_page_fault has_error_code=1
631bc487 1164#endif
4d732138 1165
ddeb8f21 1166#ifdef CONFIG_X86_MCE
6f41c34d 1167idtentry machine_check do_mce has_error_code=0 paranoid=1
ddeb8f21
AH
1168#endif
1169
ebfc453e 1170/*
9e809d15 1171 * Save all registers in pt_regs, and switch gs if needed.
ebfc453e
DV
1172 * Use slow, but surefire "are we in kernel?" check.
1173 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
1174 */
1175ENTRY(paranoid_entry)
8c1f7558 1176 UNWIND_HINT_FUNC
1eeb207f 1177 cld
9e809d15
DB
1178 PUSH_AND_CLEAR_REGS save_ret=1
1179 ENCODE_FRAME_POINTER 8
4d732138
IM
1180 movl $1, %ebx
1181 movl $MSR_GS_BASE, %ecx
1eeb207f 1182 rdmsr
4d732138
IM
1183 testl %edx, %edx
1184 js 1f /* negative -> in kernel */
1eeb207f 1185 SWAPGS
4d732138 1186 xorl %ebx, %ebx
8a09317b
DH
1187
11881:
1189 SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14
1190
1191 ret
ebfc453e 1192END(paranoid_entry)
ddeb8f21 1193
ebfc453e
DV
1194/*
1195 * "Paranoid" exit path from exception stack. This is invoked
1196 * only on return from non-NMI IST interrupts that came
1197 * from kernel space.
1198 *
1199 * We may be returning to very strange contexts (e.g. very early
1200 * in syscall entry), so checking for preemption here would
1201 * be complicated. Fortunately, we there's no good reason
1202 * to try to handle preemption here.
4d732138
IM
1203 *
1204 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
ebfc453e 1205 */
ddeb8f21 1206ENTRY(paranoid_exit)
8c1f7558 1207 UNWIND_HINT_REGS
2140a994 1208 DISABLE_INTERRUPTS(CLBR_ANY)
5963e317 1209 TRACE_IRQS_OFF_DEBUG
4d732138 1210 testl %ebx, %ebx /* swapgs needed? */
e5317832 1211 jnz .Lparanoid_exit_no_swapgs
f2db9382 1212 TRACE_IRQS_IRETQ
21e94459 1213 RESTORE_CR3 scratch_reg=%rbx save_reg=%r14
ddeb8f21 1214 SWAPGS_UNSAFE_STACK
e5317832
AL
1215 jmp .Lparanoid_exit_restore
1216.Lparanoid_exit_no_swapgs:
f2db9382 1217 TRACE_IRQS_IRETQ_DEBUG
e4865757 1218 RESTORE_CR3 scratch_reg=%rbx save_reg=%r14
e5317832
AL
1219.Lparanoid_exit_restore:
1220 jmp restore_regs_and_return_to_kernel
ddeb8f21
AH
1221END(paranoid_exit)
1222
1223/*
9e809d15 1224 * Save all registers in pt_regs, and switch GS if needed.
539f5113 1225 * Return: EBX=0: came from user mode; EBX=1: otherwise
ddeb8f21
AH
1226 */
1227ENTRY(error_entry)
9e809d15 1228 UNWIND_HINT_FUNC
ddeb8f21 1229 cld
9e809d15
DB
1230 PUSH_AND_CLEAR_REGS save_ret=1
1231 ENCODE_FRAME_POINTER 8
03335e95 1232 testb $3, CS+8(%rsp)
cb6f64ed 1233 jz .Lerror_kernelspace
539f5113 1234
cb6f64ed
AL
1235 /*
1236 * We entered from user mode or we're pretending to have entered
1237 * from user mode due to an IRET fault.
1238 */
ddeb8f21 1239 SWAPGS
8a09317b
DH
1240 /* We have user CR3. Change to kernel CR3. */
1241 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
539f5113 1242
cb6f64ed 1243.Lerror_entry_from_usermode_after_swapgs:
7f2590a1
AL
1244 /* Put us onto the real thread stack. */
1245 popq %r12 /* save return addr in %12 */
1246 movq %rsp, %rdi /* arg0 = pt_regs pointer */
1247 call sync_regs
1248 movq %rax, %rsp /* switch stack */
1249 ENCODE_FRAME_POINTER
1250 pushq %r12
1251
f1075053
AL
1252 /*
1253 * We need to tell lockdep that IRQs are off. We can't do this until
1254 * we fix gsbase, and we should do it before enter_from_user_mode
1255 * (which can take locks).
1256 */
1257 TRACE_IRQS_OFF
478dc89c 1258 CALL_enter_from_user_mode
f1075053 1259 ret
02bc7768 1260
cb6f64ed 1261.Lerror_entry_done:
ddeb8f21
AH
1262 TRACE_IRQS_OFF
1263 ret
ddeb8f21 1264
ebfc453e
DV
1265 /*
1266 * There are two places in the kernel that can potentially fault with
1267 * usergs. Handle them here. B stepping K8s sometimes report a
1268 * truncated RIP for IRET exceptions returning to compat mode. Check
1269 * for these here too.
1270 */
cb6f64ed 1271.Lerror_kernelspace:
4d732138
IM
1272 incl %ebx
1273 leaq native_irq_return_iret(%rip), %rcx
1274 cmpq %rcx, RIP+8(%rsp)
cb6f64ed 1275 je .Lerror_bad_iret
4d732138
IM
1276 movl %ecx, %eax /* zero extend */
1277 cmpq %rax, RIP+8(%rsp)
cb6f64ed 1278 je .Lbstep_iret
42c748bb 1279 cmpq $.Lgs_change, RIP+8(%rsp)
cb6f64ed 1280 jne .Lerror_entry_done
539f5113
AL
1281
1282 /*
42c748bb 1283 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up
539f5113 1284 * gsbase and proceed. We'll fix up the exception and land in
42c748bb 1285 * .Lgs_change's error handler with kernel gsbase.
539f5113 1286 */
2fa5f04f 1287 SWAPGS
8a09317b 1288 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
2fa5f04f 1289 jmp .Lerror_entry_done
ae24ffe5 1290
cb6f64ed 1291.Lbstep_iret:
ae24ffe5 1292 /* Fix truncated RIP */
4d732138 1293 movq %rcx, RIP+8(%rsp)
b645af2d
AL
1294 /* fall through */
1295
cb6f64ed 1296.Lerror_bad_iret:
539f5113 1297 /*
8a09317b
DH
1298 * We came from an IRET to user mode, so we have user
1299 * gsbase and CR3. Switch to kernel gsbase and CR3:
539f5113 1300 */
b645af2d 1301 SWAPGS
8a09317b 1302 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
539f5113
AL
1303
1304 /*
1305 * Pretend that the exception came from user mode: set up pt_regs
1306 * as if we faulted immediately after IRET and clear EBX so that
1307 * error_exit knows that we will be returning to user mode.
1308 */
4d732138
IM
1309 mov %rsp, %rdi
1310 call fixup_bad_iret
1311 mov %rax, %rsp
539f5113 1312 decl %ebx
cb6f64ed 1313 jmp .Lerror_entry_from_usermode_after_swapgs
ddeb8f21
AH
1314END(error_entry)
1315
1316
539f5113 1317/*
75ca5b22 1318 * On entry, EBX is a "return to kernel mode" flag:
539f5113
AL
1319 * 1: already in kernel mode, don't need SWAPGS
1320 * 0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
1321 */
ddeb8f21 1322ENTRY(error_exit)
8c1f7558 1323 UNWIND_HINT_REGS
2140a994 1324 DISABLE_INTERRUPTS(CLBR_ANY)
ddeb8f21 1325 TRACE_IRQS_OFF
2140a994 1326 testl %ebx, %ebx
4d732138
IM
1327 jnz retint_kernel
1328 jmp retint_user
ddeb8f21
AH
1329END(error_exit)
1330
929bacec
AL
1331/*
1332 * Runs on exception stack. Xen PV does not go through this path at all,
1333 * so we can use real assembly here.
8a09317b
DH
1334 *
1335 * Registers:
1336 * %r14: Used to save/restore the CR3 of the interrupted context
1337 * when PAGE_TABLE_ISOLATION is in use. Do not clobber.
929bacec 1338 */
ddeb8f21 1339ENTRY(nmi)
8c1f7558 1340 UNWIND_HINT_IRET_REGS
929bacec 1341
3f3c8b8c
SR
1342 /*
1343 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1344 * the iretq it performs will take us out of NMI context.
1345 * This means that we can have nested NMIs where the next
1346 * NMI is using the top of the stack of the previous NMI. We
1347 * can't let it execute because the nested NMI will corrupt the
1348 * stack of the previous NMI. NMI handlers are not re-entrant
1349 * anyway.
1350 *
1351 * To handle this case we do the following:
1352 * Check the a special location on the stack that contains
1353 * a variable that is set when NMIs are executing.
1354 * The interrupted task's stack is also checked to see if it
1355 * is an NMI stack.
1356 * If the variable is not set and the stack is not the NMI
1357 * stack then:
1358 * o Set the special variable on the stack
0b22930e
AL
1359 * o Copy the interrupt frame into an "outermost" location on the
1360 * stack
1361 * o Copy the interrupt frame into an "iret" location on the stack
3f3c8b8c
SR
1362 * o Continue processing the NMI
1363 * If the variable is set or the previous stack is the NMI stack:
0b22930e 1364 * o Modify the "iret" location to jump to the repeat_nmi
3f3c8b8c
SR
1365 * o return back to the first NMI
1366 *
1367 * Now on exit of the first NMI, we first clear the stack variable
1368 * The NMI stack will tell any nested NMIs at that point that it is
1369 * nested. Then we pop the stack normally with iret, and if there was
1370 * a nested NMI that updated the copy interrupt stack frame, a
1371 * jump will be made to the repeat_nmi code that will handle the second
1372 * NMI.
9b6e6a83
AL
1373 *
1374 * However, espfix prevents us from directly returning to userspace
1375 * with a single IRET instruction. Similarly, IRET to user mode
1376 * can fault. We therefore handle NMIs from user space like
1377 * other IST entries.
3f3c8b8c
SR
1378 */
1379
e93c1730
AL
1380 ASM_CLAC
1381
146b2b09 1382 /* Use %rdx as our temp variable throughout */
4d732138 1383 pushq %rdx
3f3c8b8c 1384
9b6e6a83
AL
1385 testb $3, CS-RIP+8(%rsp)
1386 jz .Lnmi_from_kernel
1387
1388 /*
1389 * NMI from user mode. We need to run on the thread stack, but we
1390 * can't go through the normal entry paths: NMIs are masked, and
1391 * we don't want to enable interrupts, because then we'll end
1392 * up in an awkward situation in which IRQs are on but NMIs
1393 * are off.
83c133cf
AL
1394 *
1395 * We also must not push anything to the stack before switching
1396 * stacks lest we corrupt the "NMI executing" variable.
9b6e6a83
AL
1397 */
1398
929bacec 1399 swapgs
9b6e6a83 1400 cld
8a09317b 1401 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
9b6e6a83
AL
1402 movq %rsp, %rdx
1403 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
8c1f7558 1404 UNWIND_HINT_IRET_REGS base=%rdx offset=8
9b6e6a83
AL
1405 pushq 5*8(%rdx) /* pt_regs->ss */
1406 pushq 4*8(%rdx) /* pt_regs->rsp */
1407 pushq 3*8(%rdx) /* pt_regs->flags */
1408 pushq 2*8(%rdx) /* pt_regs->cs */
1409 pushq 1*8(%rdx) /* pt_regs->rip */
8c1f7558 1410 UNWIND_HINT_IRET_REGS
9b6e6a83 1411 pushq $-1 /* pt_regs->orig_ax */
30907fd1 1412 PUSH_AND_CLEAR_REGS rdx=(%rdx)
946c1911 1413 ENCODE_FRAME_POINTER
9b6e6a83
AL
1414
1415 /*
1416 * At this point we no longer need to worry about stack damage
1417 * due to nesting -- we're on the normal thread stack and we're
1418 * done with the NMI stack.
1419 */
1420
1421 movq %rsp, %rdi
1422 movq $-1, %rsi
1423 call do_nmi
1424
45d5a168 1425 /*
9b6e6a83 1426 * Return back to user mode. We must *not* do the normal exit
946c1911 1427 * work, because we don't want to enable interrupts.
45d5a168 1428 */
8a055d7f 1429 jmp swapgs_restore_regs_and_return_to_usermode
45d5a168 1430
9b6e6a83 1431.Lnmi_from_kernel:
3f3c8b8c 1432 /*
0b22930e
AL
1433 * Here's what our stack frame will look like:
1434 * +---------------------------------------------------------+
1435 * | original SS |
1436 * | original Return RSP |
1437 * | original RFLAGS |
1438 * | original CS |
1439 * | original RIP |
1440 * +---------------------------------------------------------+
1441 * | temp storage for rdx |
1442 * +---------------------------------------------------------+
1443 * | "NMI executing" variable |
1444 * +---------------------------------------------------------+
1445 * | iret SS } Copied from "outermost" frame |
1446 * | iret Return RSP } on each loop iteration; overwritten |
1447 * | iret RFLAGS } by a nested NMI to force another |
1448 * | iret CS } iteration if needed. |
1449 * | iret RIP } |
1450 * +---------------------------------------------------------+
1451 * | outermost SS } initialized in first_nmi; |
1452 * | outermost Return RSP } will not be changed before |
1453 * | outermost RFLAGS } NMI processing is done. |
1454 * | outermost CS } Copied to "iret" frame on each |
1455 * | outermost RIP } iteration. |
1456 * +---------------------------------------------------------+
1457 * | pt_regs |
1458 * +---------------------------------------------------------+
1459 *
1460 * The "original" frame is used by hardware. Before re-enabling
1461 * NMIs, we need to be done with it, and we need to leave enough
1462 * space for the asm code here.
1463 *
1464 * We return by executing IRET while RSP points to the "iret" frame.
1465 * That will either return for real or it will loop back into NMI
1466 * processing.
1467 *
1468 * The "outermost" frame is copied to the "iret" frame on each
1469 * iteration of the loop, so each iteration starts with the "iret"
1470 * frame pointing to the final return target.
1471 */
1472
45d5a168 1473 /*
0b22930e
AL
1474 * Determine whether we're a nested NMI.
1475 *
a27507ca
AL
1476 * If we interrupted kernel code between repeat_nmi and
1477 * end_repeat_nmi, then we are a nested NMI. We must not
1478 * modify the "iret" frame because it's being written by
1479 * the outer NMI. That's okay; the outer NMI handler is
1480 * about to about to call do_nmi anyway, so we can just
1481 * resume the outer NMI.
45d5a168 1482 */
a27507ca
AL
1483
1484 movq $repeat_nmi, %rdx
1485 cmpq 8(%rsp), %rdx
1486 ja 1f
1487 movq $end_repeat_nmi, %rdx
1488 cmpq 8(%rsp), %rdx
1489 ja nested_nmi_out
14901:
45d5a168 1491
3f3c8b8c 1492 /*
a27507ca 1493 * Now check "NMI executing". If it's set, then we're nested.
0b22930e
AL
1494 * This will not detect if we interrupted an outer NMI just
1495 * before IRET.
3f3c8b8c 1496 */
4d732138
IM
1497 cmpl $1, -8(%rsp)
1498 je nested_nmi
3f3c8b8c
SR
1499
1500 /*
0b22930e
AL
1501 * Now test if the previous stack was an NMI stack. This covers
1502 * the case where we interrupt an outer NMI after it clears
810bc075
AL
1503 * "NMI executing" but before IRET. We need to be careful, though:
1504 * there is one case in which RSP could point to the NMI stack
1505 * despite there being no NMI active: naughty userspace controls
1506 * RSP at the very beginning of the SYSCALL targets. We can
1507 * pull a fast one on naughty userspace, though: we program
1508 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1509 * if it controls the kernel's RSP. We set DF before we clear
1510 * "NMI executing".
3f3c8b8c 1511 */
0784b364
DV
1512 lea 6*8(%rsp), %rdx
1513 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1514 cmpq %rdx, 4*8(%rsp)
1515 /* If the stack pointer is above the NMI stack, this is a normal NMI */
1516 ja first_nmi
4d732138 1517
0784b364
DV
1518 subq $EXCEPTION_STKSZ, %rdx
1519 cmpq %rdx, 4*8(%rsp)
1520 /* If it is below the NMI stack, it is a normal NMI */
1521 jb first_nmi
810bc075
AL
1522
1523 /* Ah, it is within the NMI stack. */
1524
1525 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1526 jz first_nmi /* RSP was user controlled. */
1527
1528 /* This is a nested NMI. */
0784b364 1529
3f3c8b8c
SR
1530nested_nmi:
1531 /*
0b22930e
AL
1532 * Modify the "iret" frame to point to repeat_nmi, forcing another
1533 * iteration of NMI handling.
3f3c8b8c 1534 */
23a781e9 1535 subq $8, %rsp
4d732138
IM
1536 leaq -10*8(%rsp), %rdx
1537 pushq $__KERNEL_DS
1538 pushq %rdx
131484c8 1539 pushfq
4d732138
IM
1540 pushq $__KERNEL_CS
1541 pushq $repeat_nmi
3f3c8b8c
SR
1542
1543 /* Put stack back */
4d732138 1544 addq $(6*8), %rsp
3f3c8b8c
SR
1545
1546nested_nmi_out:
4d732138 1547 popq %rdx
3f3c8b8c 1548
0b22930e 1549 /* We are returning to kernel mode, so this cannot result in a fault. */
929bacec 1550 iretq
3f3c8b8c
SR
1551
1552first_nmi:
0b22930e 1553 /* Restore rdx. */
4d732138 1554 movq (%rsp), %rdx
62610913 1555
36f1a77b
AL
1556 /* Make room for "NMI executing". */
1557 pushq $0
3f3c8b8c 1558
0b22930e 1559 /* Leave room for the "iret" frame */
4d732138 1560 subq $(5*8), %rsp
28696f43 1561
0b22930e 1562 /* Copy the "original" frame to the "outermost" frame */
3f3c8b8c 1563 .rept 5
4d732138 1564 pushq 11*8(%rsp)
3f3c8b8c 1565 .endr
8c1f7558 1566 UNWIND_HINT_IRET_REGS
62610913 1567
79fb4ad6
SR
1568 /* Everything up to here is safe from nested NMIs */
1569
a97439aa
AL
1570#ifdef CONFIG_DEBUG_ENTRY
1571 /*
1572 * For ease of testing, unmask NMIs right away. Disabled by
1573 * default because IRET is very expensive.
1574 */
1575 pushq $0 /* SS */
1576 pushq %rsp /* RSP (minus 8 because of the previous push) */
1577 addq $8, (%rsp) /* Fix up RSP */
1578 pushfq /* RFLAGS */
1579 pushq $__KERNEL_CS /* CS */
1580 pushq $1f /* RIP */
929bacec 1581 iretq /* continues at repeat_nmi below */
8c1f7558 1582 UNWIND_HINT_IRET_REGS
a97439aa
AL
15831:
1584#endif
1585
0b22930e 1586repeat_nmi:
62610913
JB
1587 /*
1588 * If there was a nested NMI, the first NMI's iret will return
1589 * here. But NMIs are still enabled and we can take another
1590 * nested NMI. The nested NMI checks the interrupted RIP to see
1591 * if it is between repeat_nmi and end_repeat_nmi, and if so
1592 * it will just return, as we are about to repeat an NMI anyway.
1593 * This makes it safe to copy to the stack frame that a nested
1594 * NMI will update.
0b22930e
AL
1595 *
1596 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
1597 * we're repeating an NMI, gsbase has the same value that it had on
1598 * the first iteration. paranoid_entry will load the kernel
36f1a77b
AL
1599 * gsbase if needed before we call do_nmi. "NMI executing"
1600 * is zero.
62610913 1601 */
36f1a77b 1602 movq $1, 10*8(%rsp) /* Set "NMI executing". */
3f3c8b8c 1603
62610913 1604 /*
0b22930e
AL
1605 * Copy the "outermost" frame to the "iret" frame. NMIs that nest
1606 * here must not modify the "iret" frame while we're writing to
1607 * it or it will end up containing garbage.
62610913 1608 */
4d732138 1609 addq $(10*8), %rsp
3f3c8b8c 1610 .rept 5
4d732138 1611 pushq -6*8(%rsp)
3f3c8b8c 1612 .endr
4d732138 1613 subq $(5*8), %rsp
62610913 1614end_repeat_nmi:
3f3c8b8c
SR
1615
1616 /*
0b22930e
AL
1617 * Everything below this point can be preempted by a nested NMI.
1618 * If this happens, then the inner NMI will change the "iret"
1619 * frame to point back to repeat_nmi.
3f3c8b8c 1620 */
4d732138 1621 pushq $-1 /* ORIG_RAX: no syscall to restart */
76f5df43 1622
1fd466ef 1623 /*
ebfc453e 1624 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1fd466ef
SR
1625 * as we should not be calling schedule in NMI context.
1626 * Even with normal interrupts enabled. An NMI should not be
1627 * setting NEED_RESCHED or anything that normal interrupts and
1628 * exceptions might do.
1629 */
4d732138 1630 call paranoid_entry
8c1f7558 1631 UNWIND_HINT_REGS
7fbb98c5 1632
ddeb8f21 1633 /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
4d732138
IM
1634 movq %rsp, %rdi
1635 movq $-1, %rsi
1636 call do_nmi
7fbb98c5 1637
21e94459 1638 RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
8a09317b 1639
4d732138
IM
1640 testl %ebx, %ebx /* swapgs needed? */
1641 jnz nmi_restore
ddeb8f21
AH
1642nmi_swapgs:
1643 SWAPGS_UNSAFE_STACK
1644nmi_restore:
502af0d7 1645 POP_REGS
0b22930e 1646
471ee483
AL
1647 /*
1648 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1649 * at the "iret" frame.
1650 */
1651 addq $6*8, %rsp
28696f43 1652
810bc075
AL
1653 /*
1654 * Clear "NMI executing". Set DF first so that we can easily
1655 * distinguish the remaining code between here and IRET from
929bacec
AL
1656 * the SYSCALL entry and exit paths.
1657 *
1658 * We arguably should just inspect RIP instead, but I (Andy) wrote
1659 * this code when I had the misapprehension that Xen PV supported
1660 * NMIs, and Xen PV would break that approach.
810bc075
AL
1661 */
1662 std
1663 movq $0, 5*8(%rsp) /* clear "NMI executing" */
0b22930e
AL
1664
1665 /*
929bacec
AL
1666 * iretq reads the "iret" frame and exits the NMI stack in a
1667 * single instruction. We are returning to kernel mode, so this
1668 * cannot result in a fault. Similarly, we don't need to worry
1669 * about espfix64 on the way back to kernel mode.
0b22930e 1670 */
929bacec 1671 iretq
ddeb8f21
AH
1672END(nmi)
1673
1674ENTRY(ignore_sysret)
8c1f7558 1675 UNWIND_HINT_EMPTY
4d732138 1676 mov $-ENOSYS, %eax
ddeb8f21 1677 sysret
ddeb8f21 1678END(ignore_sysret)
2deb4be2
AL
1679
1680ENTRY(rewind_stack_do_exit)
8c1f7558 1681 UNWIND_HINT_FUNC
2deb4be2
AL
1682 /* Prevent any naive code from trying to unwind to our caller. */
1683 xorl %ebp, %ebp
1684
1685 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax
8c1f7558
JP
1686 leaq -PTREGS_SIZE(%rax), %rsp
1687 UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
2deb4be2
AL
1688
1689 call do_exit
2deb4be2 1690END(rewind_stack_do_exit)