]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/entry/entry_64.S
x86/entry/64: Refactor IRQ stacks and make them NMI-safe
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / entry / entry_64.S
CommitLineData
1da177e4
LT
1/*
2 * linux/arch/x86_64/entry.S
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
6 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
4d732138 7 *
1da177e4
LT
8 * entry.S contains the system-call and fault low-level handling routines.
9 *
8b4777a4
AL
10 * Some of this is documented in Documentation/x86/entry_64.txt
11 *
0bd7b798 12 * A note on terminology:
4d732138
IM
13 * - iret frame: Architecture defined interrupt frame from SS to RIP
14 * at the top of the kernel process stack.
2e91a17b
AK
15 *
16 * Some macro usage:
4d732138
IM
17 * - ENTRY/END: Define functions in the symbol table.
18 * - TRACE_IRQ_*: Trace hardirq state for lock debugging.
19 * - idtentry: Define exception entry points.
1da177e4 20 */
1da177e4
LT
21#include <linux/linkage.h>
22#include <asm/segment.h>
1da177e4
LT
23#include <asm/cache.h>
24#include <asm/errno.h>
d36f9479 25#include "calling.h"
e2d5df93 26#include <asm/asm-offsets.h>
1da177e4
LT
27#include <asm/msr.h>
28#include <asm/unistd.h>
29#include <asm/thread_info.h>
30#include <asm/hw_irq.h>
0341c14d 31#include <asm/page_types.h>
2601e64d 32#include <asm/irqflags.h>
72fe4858 33#include <asm/paravirt.h>
9939ddaf 34#include <asm/percpu.h>
d7abc0fa 35#include <asm/asm.h>
63bcff2a 36#include <asm/smap.h>
3891a04a 37#include <asm/pgtable_types.h>
784d5699 38#include <asm/export.h>
d7e7528b 39#include <linux/err.h>
1da177e4 40
4d732138
IM
41.code64
42.section .entry.text, "ax"
16444a8a 43
72fe4858 44#ifdef CONFIG_PARAVIRT
2be29982 45ENTRY(native_usergs_sysret64)
72fe4858
GOC
46 swapgs
47 sysretq
b3baaa13 48ENDPROC(native_usergs_sysret64)
72fe4858
GOC
49#endif /* CONFIG_PARAVIRT */
50
f2db9382 51.macro TRACE_IRQS_IRETQ
2601e64d 52#ifdef CONFIG_TRACE_IRQFLAGS
4d732138
IM
53 bt $9, EFLAGS(%rsp) /* interrupts off? */
54 jnc 1f
2601e64d
IM
55 TRACE_IRQS_ON
561:
57#endif
58.endm
59
5963e317
SR
60/*
61 * When dynamic function tracer is enabled it will add a breakpoint
62 * to all locations that it is about to modify, sync CPUs, update
63 * all the code, sync CPUs, then remove the breakpoints. In this time
64 * if lockdep is enabled, it might jump back into the debug handler
65 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
66 *
67 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
68 * make sure the stack pointer does not get reset back to the top
69 * of the debug stack, and instead just reuses the current stack.
70 */
71#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
72
73.macro TRACE_IRQS_OFF_DEBUG
4d732138 74 call debug_stack_set_zero
5963e317 75 TRACE_IRQS_OFF
4d732138 76 call debug_stack_reset
5963e317
SR
77.endm
78
79.macro TRACE_IRQS_ON_DEBUG
4d732138 80 call debug_stack_set_zero
5963e317 81 TRACE_IRQS_ON
4d732138 82 call debug_stack_reset
5963e317
SR
83.endm
84
f2db9382 85.macro TRACE_IRQS_IRETQ_DEBUG
4d732138
IM
86 bt $9, EFLAGS(%rsp) /* interrupts off? */
87 jnc 1f
5963e317
SR
88 TRACE_IRQS_ON_DEBUG
891:
90.endm
91
92#else
4d732138
IM
93# define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF
94# define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON
95# define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ
5963e317
SR
96#endif
97
1da177e4 98/*
4d732138 99 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
1da177e4 100 *
fda57b22
AL
101 * This is the only entry point used for 64-bit system calls. The
102 * hardware interface is reasonably well designed and the register to
103 * argument mapping Linux uses fits well with the registers that are
104 * available when SYSCALL is used.
105 *
106 * SYSCALL instructions can be found inlined in libc implementations as
107 * well as some other programs and libraries. There are also a handful
108 * of SYSCALL instructions in the vDSO used, for example, as a
109 * clock_gettimeofday fallback.
110 *
4d732138 111 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
b87cf63e
DV
112 * then loads new ss, cs, and rip from previously programmed MSRs.
113 * rflags gets masked by a value from another MSR (so CLD and CLAC
114 * are not needed). SYSCALL does not save anything on the stack
115 * and does not change rsp.
116 *
117 * Registers on entry:
1da177e4 118 * rax system call number
b87cf63e
DV
119 * rcx return address
120 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
1da177e4 121 * rdi arg0
1da177e4 122 * rsi arg1
0bd7b798 123 * rdx arg2
b87cf63e 124 * r10 arg3 (needs to be moved to rcx to conform to C ABI)
1da177e4
LT
125 * r8 arg4
126 * r9 arg5
4d732138 127 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
0bd7b798 128 *
1da177e4
LT
129 * Only called from user space.
130 *
7fcb3bc3 131 * When user can change pt_regs->foo always force IRET. That is because
7bf36bbc
AK
132 * it deals with uncanonical addresses better. SYSRET has trouble
133 * with them due to bugs in both AMD and Intel CPUs.
0bd7b798 134 */
1da177e4 135
b2502b41 136ENTRY(entry_SYSCALL_64)
9ed8e7d8
DV
137 /*
138 * Interrupts are off on entry.
139 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
140 * it is too small to ever cause noticeable irq latency.
141 */
72fe4858
GOC
142 SWAPGS_UNSAFE_STACK
143 /*
144 * A hypervisor implementation might want to use a label
145 * after the swapgs, so that it can do the swapgs
146 * for the guest and jump here on syscall.
147 */
b2502b41 148GLOBAL(entry_SYSCALL_64_after_swapgs)
72fe4858 149
4d732138
IM
150 movq %rsp, PER_CPU_VAR(rsp_scratch)
151 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
9ed8e7d8 152
1e423bff
AL
153 TRACE_IRQS_OFF
154
9ed8e7d8 155 /* Construct struct pt_regs on stack */
4d732138
IM
156 pushq $__USER_DS /* pt_regs->ss */
157 pushq PER_CPU_VAR(rsp_scratch) /* pt_regs->sp */
4d732138
IM
158 pushq %r11 /* pt_regs->flags */
159 pushq $__USER_CS /* pt_regs->cs */
160 pushq %rcx /* pt_regs->ip */
161 pushq %rax /* pt_regs->orig_ax */
162 pushq %rdi /* pt_regs->di */
163 pushq %rsi /* pt_regs->si */
164 pushq %rdx /* pt_regs->dx */
165 pushq %rcx /* pt_regs->cx */
166 pushq $-ENOSYS /* pt_regs->ax */
167 pushq %r8 /* pt_regs->r8 */
168 pushq %r9 /* pt_regs->r9 */
169 pushq %r10 /* pt_regs->r10 */
170 pushq %r11 /* pt_regs->r11 */
171 sub $(6*8), %rsp /* pt_regs->bp, bx, r12-15 not saved */
172
1e423bff
AL
173 /*
174 * If we need to do entry work or if we guess we'll need to do
175 * exit work, go straight to the slow path.
176 */
15f4eae7
AL
177 movq PER_CPU_VAR(current_task), %r11
178 testl $_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
1e423bff
AL
179 jnz entry_SYSCALL64_slow_path
180
b2502b41 181entry_SYSCALL_64_fastpath:
1e423bff
AL
182 /*
183 * Easy case: enable interrupts and issue the syscall. If the syscall
184 * needs pt_regs, we'll call a stub that disables interrupts again
185 * and jumps to the slow path.
186 */
187 TRACE_IRQS_ON
188 ENABLE_INTERRUPTS(CLBR_NONE)
fca460f9 189#if __SYSCALL_MASK == ~0
4d732138 190 cmpq $__NR_syscall_max, %rax
fca460f9 191#else
4d732138
IM
192 andl $__SYSCALL_MASK, %eax
193 cmpl $__NR_syscall_max, %eax
fca460f9 194#endif
4d732138
IM
195 ja 1f /* return -ENOSYS (already in pt_regs->ax) */
196 movq %r10, %rcx
302f5b26
AL
197
198 /*
199 * This call instruction is handled specially in stub_ptregs_64.
b7765086
AL
200 * It might end up jumping to the slow path. If it jumps, RAX
201 * and all argument registers are clobbered.
302f5b26 202 */
4d732138 203 call *sys_call_table(, %rax, 8)
302f5b26
AL
204.Lentry_SYSCALL_64_after_fastpath_call:
205
4d732138 206 movq %rax, RAX(%rsp)
146b2b09 2071:
b3494a4a
AL
208
209 /*
1e423bff
AL
210 * If we get here, then we know that pt_regs is clean for SYSRET64.
211 * If we see that no exit work is required (which we are required
212 * to check with IRQs off), then we can go straight to SYSRET64.
b3494a4a 213 */
2140a994 214 DISABLE_INTERRUPTS(CLBR_ANY)
1e423bff 215 TRACE_IRQS_OFF
15f4eae7
AL
216 movq PER_CPU_VAR(current_task), %r11
217 testl $_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
1e423bff 218 jnz 1f
b3494a4a 219
1e423bff
AL
220 LOCKDEP_SYS_EXIT
221 TRACE_IRQS_ON /* user mode is traced as IRQs on */
eb2a54c3
AL
222 movq RIP(%rsp), %rcx
223 movq EFLAGS(%rsp), %r11
224 RESTORE_C_REGS_EXCEPT_RCX_R11
4d732138 225 movq RSP(%rsp), %rsp
2be29982 226 USERGS_SYSRET64
1da177e4 227
1e423bff
AL
2281:
229 /*
230 * The fast path looked good when we started, but something changed
231 * along the way and we need to switch to the slow path. Calling
232 * raise(3) will trigger this, for example. IRQs are off.
233 */
29ea1b25 234 TRACE_IRQS_ON
2140a994 235 ENABLE_INTERRUPTS(CLBR_ANY)
76f5df43 236 SAVE_EXTRA_REGS
4d732138 237 movq %rsp, %rdi
1e423bff
AL
238 call syscall_return_slowpath /* returns with IRQs disabled */
239 jmp return_from_SYSCALL_64
0bd7b798 240
1e423bff
AL
241entry_SYSCALL64_slow_path:
242 /* IRQs are off. */
76f5df43 243 SAVE_EXTRA_REGS
29ea1b25 244 movq %rsp, %rdi
1e423bff
AL
245 call do_syscall_64 /* returns with IRQs disabled */
246
247return_from_SYSCALL_64:
76f5df43 248 RESTORE_EXTRA_REGS
29ea1b25 249 TRACE_IRQS_IRETQ /* we're about to change IF */
fffbb5dc
DV
250
251 /*
252 * Try to use SYSRET instead of IRET if we're returning to
253 * a completely clean 64-bit userspace context.
254 */
4d732138
IM
255 movq RCX(%rsp), %rcx
256 movq RIP(%rsp), %r11
257 cmpq %rcx, %r11 /* RCX == RIP */
258 jne opportunistic_sysret_failed
fffbb5dc
DV
259
260 /*
261 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
262 * in kernel space. This essentially lets the user take over
17be0aec 263 * the kernel, since userspace controls RSP.
fffbb5dc 264 *
17be0aec 265 * If width of "canonical tail" ever becomes variable, this will need
fffbb5dc 266 * to be updated to remain correct on both old and new CPUs.
361b4b58 267 *
cbe0317b
KS
268 * Change top bits to match most significant bit (47th or 56th bit
269 * depending on paging mode) in the address.
fffbb5dc 270 */
17be0aec
DV
271 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
272 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
4d732138 273
17be0aec
DV
274 /* If this changed %rcx, it was not canonical */
275 cmpq %rcx, %r11
276 jne opportunistic_sysret_failed
fffbb5dc 277
4d732138
IM
278 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
279 jne opportunistic_sysret_failed
fffbb5dc 280
4d732138
IM
281 movq R11(%rsp), %r11
282 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
283 jne opportunistic_sysret_failed
fffbb5dc
DV
284
285 /*
3e035305
BP
286 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
287 * restore RF properly. If the slowpath sets it for whatever reason, we
288 * need to restore it correctly.
289 *
290 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
291 * trap from userspace immediately after SYSRET. This would cause an
292 * infinite loop whenever #DB happens with register state that satisfies
293 * the opportunistic SYSRET conditions. For example, single-stepping
294 * this user code:
fffbb5dc 295 *
4d732138 296 * movq $stuck_here, %rcx
fffbb5dc
DV
297 * pushfq
298 * popq %r11
299 * stuck_here:
300 *
301 * would never get past 'stuck_here'.
302 */
4d732138
IM
303 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
304 jnz opportunistic_sysret_failed
fffbb5dc
DV
305
306 /* nothing to check for RSP */
307
4d732138
IM
308 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
309 jne opportunistic_sysret_failed
fffbb5dc
DV
310
311 /*
4d732138
IM
312 * We win! This label is here just for ease of understanding
313 * perf profiles. Nothing jumps here.
fffbb5dc
DV
314 */
315syscall_return_via_sysret:
17be0aec
DV
316 /* rcx and r11 are already restored (see code above) */
317 RESTORE_C_REGS_EXCEPT_RCX_R11
4d732138 318 movq RSP(%rsp), %rsp
fffbb5dc 319 USERGS_SYSRET64
fffbb5dc
DV
320
321opportunistic_sysret_failed:
322 SWAPGS
323 jmp restore_c_regs_and_iret
b2502b41 324END(entry_SYSCALL_64)
0bd7b798 325
302f5b26
AL
326ENTRY(stub_ptregs_64)
327 /*
328 * Syscalls marked as needing ptregs land here.
b7765086
AL
329 * If we are on the fast path, we need to save the extra regs,
330 * which we achieve by trying again on the slow path. If we are on
331 * the slow path, the extra regs are already saved.
302f5b26
AL
332 *
333 * RAX stores a pointer to the C function implementing the syscall.
b7765086 334 * IRQs are on.
302f5b26
AL
335 */
336 cmpq $.Lentry_SYSCALL_64_after_fastpath_call, (%rsp)
337 jne 1f
338
b7765086
AL
339 /*
340 * Called from fast path -- disable IRQs again, pop return address
341 * and jump to slow path
342 */
2140a994 343 DISABLE_INTERRUPTS(CLBR_ANY)
b7765086 344 TRACE_IRQS_OFF
302f5b26 345 popq %rax
b7765086 346 jmp entry_SYSCALL64_slow_path
302f5b26
AL
347
3481:
b3830e8d 349 jmp *%rax /* Called from C */
302f5b26
AL
350END(stub_ptregs_64)
351
352.macro ptregs_stub func
353ENTRY(ptregs_\func)
354 leaq \func(%rip), %rax
355 jmp stub_ptregs_64
356END(ptregs_\func)
357.endm
358
359/* Instantiate ptregs_stub for each ptregs-using syscall */
360#define __SYSCALL_64_QUAL_(sym)
361#define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym
362#define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym)
363#include <asm/syscalls_64.h>
fffbb5dc 364
0100301b
BG
365/*
366 * %rdi: prev task
367 * %rsi: next task
368 */
369ENTRY(__switch_to_asm)
370 /*
371 * Save callee-saved registers
372 * This must match the order in inactive_task_frame
373 */
374 pushq %rbp
375 pushq %rbx
376 pushq %r12
377 pushq %r13
378 pushq %r14
379 pushq %r15
380
381 /* switch stack */
382 movq %rsp, TASK_threadsp(%rdi)
383 movq TASK_threadsp(%rsi), %rsp
384
385#ifdef CONFIG_CC_STACKPROTECTOR
386 movq TASK_stack_canary(%rsi), %rbx
387 movq %rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
388#endif
389
390 /* restore callee-saved registers */
391 popq %r15
392 popq %r14
393 popq %r13
394 popq %r12
395 popq %rbx
396 popq %rbp
397
398 jmp __switch_to
399END(__switch_to_asm)
400
1eeb207f
DV
401/*
402 * A newly forked process directly context switches into this address.
403 *
0100301b 404 * rax: prev task we switched from
616d2483
BG
405 * rbx: kernel thread func (NULL for user thread)
406 * r12: kernel thread arg
1eeb207f
DV
407 */
408ENTRY(ret_from_fork)
0100301b 409 movq %rax, %rdi
ebd57499 410 call schedule_tail /* rdi: 'prev' task parameter */
1eeb207f 411
ebd57499
JP
412 testq %rbx, %rbx /* from kernel_thread? */
413 jnz 1f /* kernel threads are uncommon */
24d978b7 414
616d2483 4152:
ebd57499 416 movq %rsp, %rdi
24d978b7
AL
417 call syscall_return_slowpath /* returns with IRQs disabled */
418 TRACE_IRQS_ON /* user mode is traced as IRQS on */
419 SWAPGS
420 jmp restore_regs_and_iret
616d2483
BG
421
4221:
423 /* kernel thread */
424 movq %r12, %rdi
425 call *%rbx
426 /*
427 * A kernel thread is allowed to return here after successfully
428 * calling do_execve(). Exit to userspace to complete the execve()
429 * syscall.
430 */
431 movq $0, RAX(%rsp)
432 jmp 2b
1eeb207f
DV
433END(ret_from_fork)
434
939b7871 435/*
3304c9c3
DV
436 * Build the entry stubs with some assembler magic.
437 * We pack 1 stub into every 8-byte block.
939b7871 438 */
3304c9c3 439 .align 8
939b7871 440ENTRY(irq_entries_start)
3304c9c3
DV
441 vector=FIRST_EXTERNAL_VECTOR
442 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
4d732138 443 pushq $(~vector+0x80) /* Note: always in signed byte range */
3304c9c3
DV
444 vector=vector+1
445 jmp common_interrupt
3304c9c3
DV
446 .align 8
447 .endr
939b7871
PA
448END(irq_entries_start)
449
1d3e53e8
AL
450.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
451#ifdef CONFIG_DEBUG_ENTRY
452 pushfq
453 testl $X86_EFLAGS_IF, (%rsp)
454 jz .Lokay_\@
455 ud2
456.Lokay_\@:
457 addq $8, %rsp
458#endif
459.endm
460
461/*
462 * Enters the IRQ stack if we're not already using it. NMI-safe. Clobbers
463 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
464 * Requires kernel GSBASE.
465 *
466 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
467 */
468.macro ENTER_IRQ_STACK old_rsp
469 DEBUG_ENTRY_ASSERT_IRQS_OFF
470 movq %rsp, \old_rsp
471 incl PER_CPU_VAR(irq_count)
472
473 /*
474 * Right now, if we just incremented irq_count to zero, we've
475 * claimed the IRQ stack but we haven't switched to it yet.
476 *
477 * If anything is added that can interrupt us here without using IST,
478 * it must be *extremely* careful to limit its stack usage. This
479 * could include kprobes and a hypothetical future IST-less #DB
480 * handler.
481 */
482
483 cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp
484 pushq \old_rsp
485.endm
486
487/*
488 * Undoes ENTER_IRQ_STACK.
489 */
490.macro LEAVE_IRQ_STACK
491 DEBUG_ENTRY_ASSERT_IRQS_OFF
492 /* We need to be off the IRQ stack before decrementing irq_count. */
493 popq %rsp
494
495 /*
496 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
497 * the irq stack but we're not on it.
498 */
499
500 decl PER_CPU_VAR(irq_count)
501.endm
502
d99015b1 503/*
1da177e4
LT
504 * Interrupt entry/exit.
505 *
506 * Interrupt entry points save only callee clobbered registers in fast path.
d99015b1
AH
507 *
508 * Entry runs with interrupts off.
509 */
1da177e4 510
722024db 511/* 0(%rsp): ~(interrupt number) */
1da177e4 512 .macro interrupt func
f6f64681 513 cld
ff467594
AL
514 ALLOC_PT_GPREGS_ON_STACK
515 SAVE_C_REGS
516 SAVE_EXTRA_REGS
946c1911 517 ENCODE_FRAME_POINTER
76f5df43 518
ff467594 519 testb $3, CS(%rsp)
dde74f2e 520 jz 1f
02bc7768
AL
521
522 /*
523 * IRQ from user mode. Switch to kernel gsbase and inform context
524 * tracking that we're in kernel mode.
525 */
f6f64681 526 SWAPGS
f1075053
AL
527
528 /*
529 * We need to tell lockdep that IRQs are off. We can't do this until
530 * we fix gsbase, and we should do it before enter_from_user_mode
531 * (which can take locks). Since TRACE_IRQS_OFF idempotent,
532 * the simplest way to handle it is to just call it twice if
533 * we enter from user mode. There's no reason to optimize this since
534 * TRACE_IRQS_OFF is a no-op if lockdep is off.
535 */
536 TRACE_IRQS_OFF
537
478dc89c 538 CALL_enter_from_user_mode
02bc7768 539
76f5df43 5401:
1d3e53e8 541 ENTER_IRQ_STACK old_rsp=%rdi
f6f64681
DV
542 /* We entered an interrupt context - irqs are off: */
543 TRACE_IRQS_OFF
544
a586f98e 545 call \func /* rdi points to pt_regs */
1da177e4
LT
546 .endm
547
722024db
AH
548 /*
549 * The interrupt stubs push (~vector+0x80) onto the stack and
550 * then jump to common_interrupt.
551 */
939b7871
PA
552 .p2align CONFIG_X86_L1_CACHE_SHIFT
553common_interrupt:
ee4eb87b 554 ASM_CLAC
4d732138 555 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
1da177e4 556 interrupt do_IRQ
34061f13 557 /* 0(%rsp): old RSP */
7effaa88 558ret_from_intr:
2140a994 559 DISABLE_INTERRUPTS(CLBR_ANY)
2601e64d 560 TRACE_IRQS_OFF
625dbc3b 561
1d3e53e8 562 LEAVE_IRQ_STACK
625dbc3b 563
03335e95 564 testb $3, CS(%rsp)
dde74f2e 565 jz retint_kernel
4d732138 566
02bc7768 567 /* Interrupt came from user space */
02bc7768
AL
568GLOBAL(retint_user)
569 mov %rsp,%rdi
570 call prepare_exit_to_usermode
2601e64d 571 TRACE_IRQS_IRETQ
72fe4858 572 SWAPGS
ff467594 573 jmp restore_regs_and_iret
2601e64d 574
627276cb 575/* Returning to kernel space */
6ba71b76 576retint_kernel:
627276cb
DV
577#ifdef CONFIG_PREEMPT
578 /* Interrupts are off */
579 /* Check if we need preemption */
4d732138 580 bt $9, EFLAGS(%rsp) /* were interrupts off? */
6ba71b76 581 jnc 1f
4d732138 5820: cmpl $0, PER_CPU_VAR(__preempt_count)
36acef25 583 jnz 1f
627276cb 584 call preempt_schedule_irq
36acef25 585 jmp 0b
6ba71b76 5861:
627276cb 587#endif
2601e64d
IM
588 /*
589 * The iretq could re-enable interrupts:
590 */
591 TRACE_IRQS_IRETQ
fffbb5dc
DV
592
593/*
594 * At this label, code paths which return to kernel and to user,
595 * which come from interrupts/exception and from syscalls, merge.
596 */
ee08c6bd 597GLOBAL(restore_regs_and_iret)
ff467594 598 RESTORE_EXTRA_REGS
fffbb5dc 599restore_c_regs_and_iret:
76f5df43
DV
600 RESTORE_C_REGS
601 REMOVE_PT_GPREGS_FROM_STACK 8
7209a75d
AL
602 INTERRUPT_RETURN
603
604ENTRY(native_iret)
3891a04a
PA
605 /*
606 * Are we returning to a stack segment from the LDT? Note: in
607 * 64-bit mode SS:RSP on the exception stack is always valid.
608 */
34273f41 609#ifdef CONFIG_X86_ESPFIX64
4d732138
IM
610 testb $4, (SS-RIP)(%rsp)
611 jnz native_irq_return_ldt
34273f41 612#endif
3891a04a 613
af726f21 614.global native_irq_return_iret
7209a75d 615native_irq_return_iret:
b645af2d
AL
616 /*
617 * This may fault. Non-paranoid faults on return to userspace are
618 * handled by fixup_bad_iret. These include #SS, #GP, and #NP.
619 * Double-faults due to espfix64 are handled in do_double_fault.
620 * Other faults here are fatal.
621 */
1da177e4 622 iretq
3701d863 623
34273f41 624#ifdef CONFIG_X86_ESPFIX64
7209a75d 625native_irq_return_ldt:
85063fac
AL
626 /*
627 * We are running with user GSBASE. All GPRs contain their user
628 * values. We have a percpu ESPFIX stack that is eight slots
629 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom
630 * of the ESPFIX stack.
631 *
632 * We clobber RAX and RDI in this code. We stash RDI on the
633 * normal stack and RAX on the ESPFIX stack.
634 *
635 * The ESPFIX stack layout we set up looks like this:
636 *
637 * --- top of ESPFIX stack ---
638 * SS
639 * RSP
640 * RFLAGS
641 * CS
642 * RIP <-- RSP points here when we're done
643 * RAX <-- espfix_waddr points here
644 * --- bottom of ESPFIX stack ---
645 */
646
647 pushq %rdi /* Stash user RDI */
3891a04a 648 SWAPGS
4d732138 649 movq PER_CPU_VAR(espfix_waddr), %rdi
85063fac
AL
650 movq %rax, (0*8)(%rdi) /* user RAX */
651 movq (1*8)(%rsp), %rax /* user RIP */
4d732138 652 movq %rax, (1*8)(%rdi)
85063fac 653 movq (2*8)(%rsp), %rax /* user CS */
4d732138 654 movq %rax, (2*8)(%rdi)
85063fac 655 movq (3*8)(%rsp), %rax /* user RFLAGS */
4d732138 656 movq %rax, (3*8)(%rdi)
85063fac 657 movq (5*8)(%rsp), %rax /* user SS */
4d732138 658 movq %rax, (5*8)(%rdi)
85063fac 659 movq (4*8)(%rsp), %rax /* user RSP */
4d732138 660 movq %rax, (4*8)(%rdi)
85063fac
AL
661 /* Now RAX == RSP. */
662
663 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */
664 popq %rdi /* Restore user RDI */
665
666 /*
667 * espfix_stack[31:16] == 0. The page tables are set up such that
668 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
669 * espfix_waddr for any X. That is, there are 65536 RO aliases of
670 * the same page. Set up RSP so that RSP[31:16] contains the
671 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
672 * still points to an RO alias of the ESPFIX stack.
673 */
4d732138 674 orq PER_CPU_VAR(espfix_stack), %rax
3891a04a 675 SWAPGS
4d732138 676 movq %rax, %rsp
85063fac
AL
677
678 /*
679 * At this point, we cannot write to the stack any more, but we can
680 * still read.
681 */
682 popq %rax /* Restore user RAX */
683
684 /*
685 * RSP now points to an ordinary IRET frame, except that the page
686 * is read-only and RSP[31:16] are preloaded with the userspace
687 * values. We can now IRET back to userspace.
688 */
4d732138 689 jmp native_irq_return_iret
34273f41 690#endif
4b787e0b 691END(common_interrupt)
3891a04a 692
1da177e4
LT
693/*
694 * APIC interrupts.
0bd7b798 695 */
cf910e83 696.macro apicinterrupt3 num sym do_sym
322648d1 697ENTRY(\sym)
ee4eb87b 698 ASM_CLAC
4d732138 699 pushq $~(\num)
39e95433 700.Lcommon_\sym:
322648d1 701 interrupt \do_sym
4d732138 702 jmp ret_from_intr
322648d1
AH
703END(\sym)
704.endm
1da177e4 705
cf910e83
SA
706#ifdef CONFIG_TRACING
707#define trace(sym) trace_##sym
708#define smp_trace(sym) smp_trace_##sym
709
710.macro trace_apicinterrupt num sym
711apicinterrupt3 \num trace(\sym) smp_trace(\sym)
712.endm
713#else
714.macro trace_apicinterrupt num sym do_sym
715.endm
716#endif
717
469f0023
AP
718/* Make sure APIC interrupt handlers end up in the irqentry section: */
719#if defined(CONFIG_FUNCTION_GRAPH_TRACER) || defined(CONFIG_KASAN)
720# define PUSH_SECTION_IRQENTRY .pushsection .irqentry.text, "ax"
721# define POP_SECTION_IRQENTRY .popsection
722#else
723# define PUSH_SECTION_IRQENTRY
724# define POP_SECTION_IRQENTRY
725#endif
726
cf910e83 727.macro apicinterrupt num sym do_sym
469f0023 728PUSH_SECTION_IRQENTRY
cf910e83
SA
729apicinterrupt3 \num \sym \do_sym
730trace_apicinterrupt \num \sym
469f0023 731POP_SECTION_IRQENTRY
cf910e83
SA
732.endm
733
322648d1 734#ifdef CONFIG_SMP
4d732138
IM
735apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt
736apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt
322648d1 737#endif
1da177e4 738
03b48632 739#ifdef CONFIG_X86_UV
4d732138 740apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt
03b48632 741#endif
4d732138
IM
742
743apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt
744apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi
89b831ef 745
d78f2664 746#ifdef CONFIG_HAVE_KVM
4d732138
IM
747apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi
748apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi
d78f2664
YZ
749#endif
750
33e5ff63 751#ifdef CONFIG_X86_MCE_THRESHOLD
4d732138 752apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt
33e5ff63
SA
753#endif
754
24fd78a8 755#ifdef CONFIG_X86_MCE_AMD
4d732138 756apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt
24fd78a8
AG
757#endif
758
33e5ff63 759#ifdef CONFIG_X86_THERMAL_VECTOR
4d732138 760apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt
33e5ff63 761#endif
1812924b 762
322648d1 763#ifdef CONFIG_SMP
4d732138
IM
764apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt
765apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt
766apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt
322648d1 767#endif
1da177e4 768
4d732138
IM
769apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt
770apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt
0bd7b798 771
e360adbe 772#ifdef CONFIG_IRQ_WORK
4d732138 773apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
241771ef
IM
774#endif
775
1da177e4
LT
776/*
777 * Exception entry points.
0bd7b798 778 */
9b476688 779#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
577ed45e
AL
780
781.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
322648d1 782ENTRY(\sym)
577ed45e
AL
783 /* Sanity check */
784 .if \shift_ist != -1 && \paranoid == 0
785 .error "using shift_ist requires paranoid=1"
786 .endif
787
ee4eb87b 788 ASM_CLAC
b8b1d08b 789 PARAVIRT_ADJUST_EXCEPTION_FRAME
cb5dd2c5
AL
790
791 .ifeq \has_error_code
4d732138 792 pushq $-1 /* ORIG_RAX: no syscall to restart */
cb5dd2c5
AL
793 .endif
794
76f5df43 795 ALLOC_PT_GPREGS_ON_STACK
cb5dd2c5
AL
796
797 .if \paranoid
48e08d0f 798 .if \paranoid == 1
4d732138
IM
799 testb $3, CS(%rsp) /* If coming from userspace, switch stacks */
800 jnz 1f
48e08d0f 801 .endif
4d732138 802 call paranoid_entry
cb5dd2c5 803 .else
4d732138 804 call error_entry
cb5dd2c5 805 .endif
ebfc453e 806 /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
cb5dd2c5 807
cb5dd2c5 808 .if \paranoid
577ed45e 809 .if \shift_ist != -1
4d732138 810 TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */
577ed45e 811 .else
b8b1d08b 812 TRACE_IRQS_OFF
cb5dd2c5 813 .endif
577ed45e 814 .endif
cb5dd2c5 815
4d732138 816 movq %rsp, %rdi /* pt_regs pointer */
cb5dd2c5
AL
817
818 .if \has_error_code
4d732138
IM
819 movq ORIG_RAX(%rsp), %rsi /* get error code */
820 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
cb5dd2c5 821 .else
4d732138 822 xorl %esi, %esi /* no error code */
cb5dd2c5
AL
823 .endif
824
577ed45e 825 .if \shift_ist != -1
4d732138 826 subq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
577ed45e
AL
827 .endif
828
4d732138 829 call \do_sym
cb5dd2c5 830
577ed45e 831 .if \shift_ist != -1
4d732138 832 addq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
577ed45e
AL
833 .endif
834
ebfc453e 835 /* these procedures expect "no swapgs" flag in ebx */
cb5dd2c5 836 .if \paranoid
4d732138 837 jmp paranoid_exit
cb5dd2c5 838 .else
4d732138 839 jmp error_exit
cb5dd2c5
AL
840 .endif
841
48e08d0f 842 .if \paranoid == 1
48e08d0f
AL
843 /*
844 * Paranoid entry from userspace. Switch stacks and treat it
845 * as a normal entry. This means that paranoid handlers
846 * run in real process context if user_mode(regs).
847 */
8481:
4d732138 849 call error_entry
48e08d0f 850
48e08d0f 851
4d732138
IM
852 movq %rsp, %rdi /* pt_regs pointer */
853 call sync_regs
854 movq %rax, %rsp /* switch stack */
48e08d0f 855
4d732138 856 movq %rsp, %rdi /* pt_regs pointer */
48e08d0f
AL
857
858 .if \has_error_code
4d732138
IM
859 movq ORIG_RAX(%rsp), %rsi /* get error code */
860 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
48e08d0f 861 .else
4d732138 862 xorl %esi, %esi /* no error code */
48e08d0f
AL
863 .endif
864
4d732138 865 call \do_sym
48e08d0f 866
4d732138 867 jmp error_exit /* %ebx: no swapgs flag */
48e08d0f 868 .endif
ddeb8f21 869END(\sym)
322648d1 870.endm
b8b1d08b 871
25c74b10 872#ifdef CONFIG_TRACING
cb5dd2c5
AL
873.macro trace_idtentry sym do_sym has_error_code:req
874idtentry trace(\sym) trace(\do_sym) has_error_code=\has_error_code
875idtentry \sym \do_sym has_error_code=\has_error_code
25c74b10
SA
876.endm
877#else
cb5dd2c5
AL
878.macro trace_idtentry sym do_sym has_error_code:req
879idtentry \sym \do_sym has_error_code=\has_error_code
25c74b10
SA
880.endm
881#endif
882
4d732138
IM
883idtentry divide_error do_divide_error has_error_code=0
884idtentry overflow do_overflow has_error_code=0
885idtentry bounds do_bounds has_error_code=0
886idtentry invalid_op do_invalid_op has_error_code=0
887idtentry device_not_available do_device_not_available has_error_code=0
888idtentry double_fault do_double_fault has_error_code=1 paranoid=2
889idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0
890idtentry invalid_TSS do_invalid_TSS has_error_code=1
891idtentry segment_not_present do_segment_not_present has_error_code=1
892idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0
893idtentry coprocessor_error do_coprocessor_error has_error_code=0
894idtentry alignment_check do_alignment_check has_error_code=1
895idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0
896
897
898 /*
899 * Reload gs selector with exception handling
900 * edi: new selector
901 */
9f9d489a 902ENTRY(native_load_gs_index)
131484c8 903 pushfq
b8aa287f 904 DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
9f1e87ea 905 SWAPGS
42c748bb 906.Lgs_change:
4d732138 907 movl %edi, %gs
96e5d28a 9082: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
72fe4858 909 SWAPGS
131484c8 910 popfq
9f1e87ea 911 ret
6efdcfaf 912END(native_load_gs_index)
784d5699 913EXPORT_SYMBOL(native_load_gs_index)
0bd7b798 914
42c748bb 915 _ASM_EXTABLE(.Lgs_change, bad_gs)
4d732138 916 .section .fixup, "ax"
1da177e4 917 /* running with kernelgs */
0bd7b798 918bad_gs:
4d732138 919 SWAPGS /* switch back to user gs */
b038c842
AL
920.macro ZAP_GS
921 /* This can't be a string because the preprocessor needs to see it. */
922 movl $__USER_DS, %eax
923 movl %eax, %gs
924.endm
925 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
4d732138
IM
926 xorl %eax, %eax
927 movl %eax, %gs
928 jmp 2b
9f1e87ea 929 .previous
0bd7b798 930
2699500b 931/* Call softirq on interrupt stack. Interrupts are off. */
7d65f4a6 932ENTRY(do_softirq_own_stack)
4d732138
IM
933 pushq %rbp
934 mov %rsp, %rbp
1d3e53e8 935 ENTER_IRQ_STACK old_rsp=%r11
4d732138 936 call __do_softirq
1d3e53e8 937 LEAVE_IRQ_STACK
2699500b 938 leaveq
ed6b676c 939 ret
7d65f4a6 940END(do_softirq_own_stack)
75154f40 941
3d75e1b8 942#ifdef CONFIG_XEN
cb5dd2c5 943idtentry xen_hypervisor_callback xen_do_hypervisor_callback has_error_code=0
3d75e1b8
JF
944
945/*
9f1e87ea
CG
946 * A note on the "critical region" in our callback handler.
947 * We want to avoid stacking callback handlers due to events occurring
948 * during handling of the last event. To do this, we keep events disabled
949 * until we've done all processing. HOWEVER, we must enable events before
950 * popping the stack frame (can't be done atomically) and so it would still
951 * be possible to get enough handler activations to overflow the stack.
952 * Although unlikely, bugs of that kind are hard to track down, so we'd
953 * like to avoid the possibility.
954 * So, on entry to the handler we detect whether we interrupted an
955 * existing activation in its critical region -- if so, we pop the current
956 * activation and restart the handler using the previous one.
957 */
4d732138
IM
958ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */
959
9f1e87ea
CG
960/*
961 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
962 * see the correct pointer to the pt_regs
963 */
4d732138 964 movq %rdi, %rsp /* we don't return, adjust the stack frame */
1d3e53e8
AL
965
966 ENTER_IRQ_STACK old_rsp=%r10
4d732138 967 call xen_evtchn_do_upcall
1d3e53e8
AL
968 LEAVE_IRQ_STACK
969
fdfd811d 970#ifndef CONFIG_PREEMPT
4d732138 971 call xen_maybe_preempt_hcall
fdfd811d 972#endif
4d732138 973 jmp error_exit
371c394a 974END(xen_do_hypervisor_callback)
3d75e1b8
JF
975
976/*
9f1e87ea
CG
977 * Hypervisor uses this for application faults while it executes.
978 * We get here for two reasons:
979 * 1. Fault while reloading DS, ES, FS or GS
980 * 2. Fault while executing IRET
981 * Category 1 we do not need to fix up as Xen has already reloaded all segment
982 * registers that could be reloaded and zeroed the others.
983 * Category 2 we fix up by killing the current process. We cannot use the
984 * normal Linux return path in this case because if we use the IRET hypercall
985 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
986 * We distinguish between categories by comparing each saved segment register
987 * with its current contents: any discrepancy means we in category 1.
988 */
3d75e1b8 989ENTRY(xen_failsafe_callback)
4d732138
IM
990 movl %ds, %ecx
991 cmpw %cx, 0x10(%rsp)
992 jne 1f
993 movl %es, %ecx
994 cmpw %cx, 0x18(%rsp)
995 jne 1f
996 movl %fs, %ecx
997 cmpw %cx, 0x20(%rsp)
998 jne 1f
999 movl %gs, %ecx
1000 cmpw %cx, 0x28(%rsp)
1001 jne 1f
3d75e1b8 1002 /* All segments match their saved values => Category 2 (Bad IRET). */
4d732138
IM
1003 movq (%rsp), %rcx
1004 movq 8(%rsp), %r11
1005 addq $0x30, %rsp
1006 pushq $0 /* RIP */
1007 pushq %r11
1008 pushq %rcx
1009 jmp general_protection
3d75e1b8 10101: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
4d732138
IM
1011 movq (%rsp), %rcx
1012 movq 8(%rsp), %r11
1013 addq $0x30, %rsp
1014 pushq $-1 /* orig_ax = -1 => not a system call */
76f5df43
DV
1015 ALLOC_PT_GPREGS_ON_STACK
1016 SAVE_C_REGS
1017 SAVE_EXTRA_REGS
946c1911 1018 ENCODE_FRAME_POINTER
4d732138 1019 jmp error_exit
3d75e1b8
JF
1020END(xen_failsafe_callback)
1021
cf910e83 1022apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
38e20b07
SY
1023 xen_hvm_callback_vector xen_evtchn_do_upcall
1024
3d75e1b8 1025#endif /* CONFIG_XEN */
ddeb8f21 1026
bc2b0331 1027#if IS_ENABLED(CONFIG_HYPERV)
cf910e83 1028apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
bc2b0331
S
1029 hyperv_callback_vector hyperv_vector_handler
1030#endif /* CONFIG_HYPERV */
1031
4d732138
IM
1032idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
1033idtentry int3 do_int3 has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
1034idtentry stack_segment do_stack_segment has_error_code=1
1035
6cac5a92 1036#ifdef CONFIG_XEN
4d732138
IM
1037idtentry xen_debug do_debug has_error_code=0
1038idtentry xen_int3 do_int3 has_error_code=0
1039idtentry xen_stack_segment do_stack_segment has_error_code=1
6cac5a92 1040#endif
4d732138
IM
1041
1042idtentry general_protection do_general_protection has_error_code=1
1043trace_idtentry page_fault do_page_fault has_error_code=1
1044
631bc487 1045#ifdef CONFIG_KVM_GUEST
4d732138 1046idtentry async_page_fault do_async_page_fault has_error_code=1
631bc487 1047#endif
4d732138 1048
ddeb8f21 1049#ifdef CONFIG_X86_MCE
4d732138 1050idtentry machine_check has_error_code=0 paranoid=1 do_sym=*machine_check_vector(%rip)
ddeb8f21
AH
1051#endif
1052
ebfc453e
DV
1053/*
1054 * Save all registers in pt_regs, and switch gs if needed.
1055 * Use slow, but surefire "are we in kernel?" check.
1056 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
1057 */
1058ENTRY(paranoid_entry)
1eeb207f
DV
1059 cld
1060 SAVE_C_REGS 8
1061 SAVE_EXTRA_REGS 8
946c1911 1062 ENCODE_FRAME_POINTER 8
4d732138
IM
1063 movl $1, %ebx
1064 movl $MSR_GS_BASE, %ecx
1eeb207f 1065 rdmsr
4d732138
IM
1066 testl %edx, %edx
1067 js 1f /* negative -> in kernel */
1eeb207f 1068 SWAPGS
4d732138 1069 xorl %ebx, %ebx
1eeb207f 10701: ret
ebfc453e 1071END(paranoid_entry)
ddeb8f21 1072
ebfc453e
DV
1073/*
1074 * "Paranoid" exit path from exception stack. This is invoked
1075 * only on return from non-NMI IST interrupts that came
1076 * from kernel space.
1077 *
1078 * We may be returning to very strange contexts (e.g. very early
1079 * in syscall entry), so checking for preemption here would
1080 * be complicated. Fortunately, we there's no good reason
1081 * to try to handle preemption here.
4d732138
IM
1082 *
1083 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
ebfc453e 1084 */
ddeb8f21 1085ENTRY(paranoid_exit)
2140a994 1086 DISABLE_INTERRUPTS(CLBR_ANY)
5963e317 1087 TRACE_IRQS_OFF_DEBUG
4d732138
IM
1088 testl %ebx, %ebx /* swapgs needed? */
1089 jnz paranoid_exit_no_swapgs
f2db9382 1090 TRACE_IRQS_IRETQ
ddeb8f21 1091 SWAPGS_UNSAFE_STACK
4d732138 1092 jmp paranoid_exit_restore
0d550836 1093paranoid_exit_no_swapgs:
f2db9382 1094 TRACE_IRQS_IRETQ_DEBUG
0d550836 1095paranoid_exit_restore:
76f5df43
DV
1096 RESTORE_EXTRA_REGS
1097 RESTORE_C_REGS
1098 REMOVE_PT_GPREGS_FROM_STACK 8
48e08d0f 1099 INTERRUPT_RETURN
ddeb8f21
AH
1100END(paranoid_exit)
1101
1102/*
ebfc453e 1103 * Save all registers in pt_regs, and switch gs if needed.
539f5113 1104 * Return: EBX=0: came from user mode; EBX=1: otherwise
ddeb8f21
AH
1105 */
1106ENTRY(error_entry)
ddeb8f21 1107 cld
76f5df43
DV
1108 SAVE_C_REGS 8
1109 SAVE_EXTRA_REGS 8
946c1911 1110 ENCODE_FRAME_POINTER 8
4d732138 1111 xorl %ebx, %ebx
03335e95 1112 testb $3, CS+8(%rsp)
cb6f64ed 1113 jz .Lerror_kernelspace
539f5113 1114
cb6f64ed
AL
1115 /*
1116 * We entered from user mode or we're pretending to have entered
1117 * from user mode due to an IRET fault.
1118 */
ddeb8f21 1119 SWAPGS
539f5113 1120
cb6f64ed 1121.Lerror_entry_from_usermode_after_swapgs:
f1075053
AL
1122 /*
1123 * We need to tell lockdep that IRQs are off. We can't do this until
1124 * we fix gsbase, and we should do it before enter_from_user_mode
1125 * (which can take locks).
1126 */
1127 TRACE_IRQS_OFF
478dc89c 1128 CALL_enter_from_user_mode
f1075053 1129 ret
02bc7768 1130
cb6f64ed 1131.Lerror_entry_done:
ddeb8f21
AH
1132 TRACE_IRQS_OFF
1133 ret
ddeb8f21 1134
ebfc453e
DV
1135 /*
1136 * There are two places in the kernel that can potentially fault with
1137 * usergs. Handle them here. B stepping K8s sometimes report a
1138 * truncated RIP for IRET exceptions returning to compat mode. Check
1139 * for these here too.
1140 */
cb6f64ed 1141.Lerror_kernelspace:
4d732138
IM
1142 incl %ebx
1143 leaq native_irq_return_iret(%rip), %rcx
1144 cmpq %rcx, RIP+8(%rsp)
cb6f64ed 1145 je .Lerror_bad_iret
4d732138
IM
1146 movl %ecx, %eax /* zero extend */
1147 cmpq %rax, RIP+8(%rsp)
cb6f64ed 1148 je .Lbstep_iret
42c748bb 1149 cmpq $.Lgs_change, RIP+8(%rsp)
cb6f64ed 1150 jne .Lerror_entry_done
539f5113
AL
1151
1152 /*
42c748bb 1153 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up
539f5113 1154 * gsbase and proceed. We'll fix up the exception and land in
42c748bb 1155 * .Lgs_change's error handler with kernel gsbase.
539f5113 1156 */
2fa5f04f
WL
1157 SWAPGS
1158 jmp .Lerror_entry_done
ae24ffe5 1159
cb6f64ed 1160.Lbstep_iret:
ae24ffe5 1161 /* Fix truncated RIP */
4d732138 1162 movq %rcx, RIP+8(%rsp)
b645af2d
AL
1163 /* fall through */
1164
cb6f64ed 1165.Lerror_bad_iret:
539f5113
AL
1166 /*
1167 * We came from an IRET to user mode, so we have user gsbase.
1168 * Switch to kernel gsbase:
1169 */
b645af2d 1170 SWAPGS
539f5113
AL
1171
1172 /*
1173 * Pretend that the exception came from user mode: set up pt_regs
1174 * as if we faulted immediately after IRET and clear EBX so that
1175 * error_exit knows that we will be returning to user mode.
1176 */
4d732138
IM
1177 mov %rsp, %rdi
1178 call fixup_bad_iret
1179 mov %rax, %rsp
539f5113 1180 decl %ebx
cb6f64ed 1181 jmp .Lerror_entry_from_usermode_after_swapgs
ddeb8f21
AH
1182END(error_entry)
1183
1184
539f5113 1185/*
75ca5b22 1186 * On entry, EBX is a "return to kernel mode" flag:
539f5113
AL
1187 * 1: already in kernel mode, don't need SWAPGS
1188 * 0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
1189 */
ddeb8f21 1190ENTRY(error_exit)
2140a994 1191 DISABLE_INTERRUPTS(CLBR_ANY)
ddeb8f21 1192 TRACE_IRQS_OFF
2140a994 1193 testl %ebx, %ebx
4d732138
IM
1194 jnz retint_kernel
1195 jmp retint_user
ddeb8f21
AH
1196END(error_exit)
1197
0784b364 1198/* Runs on exception stack */
ddeb8f21 1199ENTRY(nmi)
fc57a7c6
AL
1200 /*
1201 * Fix up the exception frame if we're on Xen.
1202 * PARAVIRT_ADJUST_EXCEPTION_FRAME is guaranteed to push at most
1203 * one value to the stack on native, so it may clobber the rdx
1204 * scratch slot, but it won't clobber any of the important
1205 * slots past it.
1206 *
1207 * Xen is a different story, because the Xen frame itself overlaps
1208 * the "NMI executing" variable.
1209 */
ddeb8f21 1210 PARAVIRT_ADJUST_EXCEPTION_FRAME
fc57a7c6 1211
3f3c8b8c
SR
1212 /*
1213 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1214 * the iretq it performs will take us out of NMI context.
1215 * This means that we can have nested NMIs where the next
1216 * NMI is using the top of the stack of the previous NMI. We
1217 * can't let it execute because the nested NMI will corrupt the
1218 * stack of the previous NMI. NMI handlers are not re-entrant
1219 * anyway.
1220 *
1221 * To handle this case we do the following:
1222 * Check the a special location on the stack that contains
1223 * a variable that is set when NMIs are executing.
1224 * The interrupted task's stack is also checked to see if it
1225 * is an NMI stack.
1226 * If the variable is not set and the stack is not the NMI
1227 * stack then:
1228 * o Set the special variable on the stack
0b22930e
AL
1229 * o Copy the interrupt frame into an "outermost" location on the
1230 * stack
1231 * o Copy the interrupt frame into an "iret" location on the stack
3f3c8b8c
SR
1232 * o Continue processing the NMI
1233 * If the variable is set or the previous stack is the NMI stack:
0b22930e 1234 * o Modify the "iret" location to jump to the repeat_nmi
3f3c8b8c
SR
1235 * o return back to the first NMI
1236 *
1237 * Now on exit of the first NMI, we first clear the stack variable
1238 * The NMI stack will tell any nested NMIs at that point that it is
1239 * nested. Then we pop the stack normally with iret, and if there was
1240 * a nested NMI that updated the copy interrupt stack frame, a
1241 * jump will be made to the repeat_nmi code that will handle the second
1242 * NMI.
9b6e6a83
AL
1243 *
1244 * However, espfix prevents us from directly returning to userspace
1245 * with a single IRET instruction. Similarly, IRET to user mode
1246 * can fault. We therefore handle NMIs from user space like
1247 * other IST entries.
3f3c8b8c
SR
1248 */
1249
146b2b09 1250 /* Use %rdx as our temp variable throughout */
4d732138 1251 pushq %rdx
3f3c8b8c 1252
9b6e6a83
AL
1253 testb $3, CS-RIP+8(%rsp)
1254 jz .Lnmi_from_kernel
1255
1256 /*
1257 * NMI from user mode. We need to run on the thread stack, but we
1258 * can't go through the normal entry paths: NMIs are masked, and
1259 * we don't want to enable interrupts, because then we'll end
1260 * up in an awkward situation in which IRQs are on but NMIs
1261 * are off.
83c133cf
AL
1262 *
1263 * We also must not push anything to the stack before switching
1264 * stacks lest we corrupt the "NMI executing" variable.
9b6e6a83
AL
1265 */
1266
83c133cf 1267 SWAPGS_UNSAFE_STACK
9b6e6a83
AL
1268 cld
1269 movq %rsp, %rdx
1270 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1271 pushq 5*8(%rdx) /* pt_regs->ss */
1272 pushq 4*8(%rdx) /* pt_regs->rsp */
1273 pushq 3*8(%rdx) /* pt_regs->flags */
1274 pushq 2*8(%rdx) /* pt_regs->cs */
1275 pushq 1*8(%rdx) /* pt_regs->rip */
1276 pushq $-1 /* pt_regs->orig_ax */
1277 pushq %rdi /* pt_regs->di */
1278 pushq %rsi /* pt_regs->si */
1279 pushq (%rdx) /* pt_regs->dx */
1280 pushq %rcx /* pt_regs->cx */
1281 pushq %rax /* pt_regs->ax */
1282 pushq %r8 /* pt_regs->r8 */
1283 pushq %r9 /* pt_regs->r9 */
1284 pushq %r10 /* pt_regs->r10 */
1285 pushq %r11 /* pt_regs->r11 */
1286 pushq %rbx /* pt_regs->rbx */
1287 pushq %rbp /* pt_regs->rbp */
1288 pushq %r12 /* pt_regs->r12 */
1289 pushq %r13 /* pt_regs->r13 */
1290 pushq %r14 /* pt_regs->r14 */
1291 pushq %r15 /* pt_regs->r15 */
946c1911 1292 ENCODE_FRAME_POINTER
9b6e6a83
AL
1293
1294 /*
1295 * At this point we no longer need to worry about stack damage
1296 * due to nesting -- we're on the normal thread stack and we're
1297 * done with the NMI stack.
1298 */
1299
1300 movq %rsp, %rdi
1301 movq $-1, %rsi
1302 call do_nmi
1303
45d5a168 1304 /*
9b6e6a83 1305 * Return back to user mode. We must *not* do the normal exit
946c1911 1306 * work, because we don't want to enable interrupts.
45d5a168 1307 */
9b6e6a83 1308 SWAPGS
946c1911 1309 jmp restore_regs_and_iret
45d5a168 1310
9b6e6a83 1311.Lnmi_from_kernel:
3f3c8b8c 1312 /*
0b22930e
AL
1313 * Here's what our stack frame will look like:
1314 * +---------------------------------------------------------+
1315 * | original SS |
1316 * | original Return RSP |
1317 * | original RFLAGS |
1318 * | original CS |
1319 * | original RIP |
1320 * +---------------------------------------------------------+
1321 * | temp storage for rdx |
1322 * +---------------------------------------------------------+
1323 * | "NMI executing" variable |
1324 * +---------------------------------------------------------+
1325 * | iret SS } Copied from "outermost" frame |
1326 * | iret Return RSP } on each loop iteration; overwritten |
1327 * | iret RFLAGS } by a nested NMI to force another |
1328 * | iret CS } iteration if needed. |
1329 * | iret RIP } |
1330 * +---------------------------------------------------------+
1331 * | outermost SS } initialized in first_nmi; |
1332 * | outermost Return RSP } will not be changed before |
1333 * | outermost RFLAGS } NMI processing is done. |
1334 * | outermost CS } Copied to "iret" frame on each |
1335 * | outermost RIP } iteration. |
1336 * +---------------------------------------------------------+
1337 * | pt_regs |
1338 * +---------------------------------------------------------+
1339 *
1340 * The "original" frame is used by hardware. Before re-enabling
1341 * NMIs, we need to be done with it, and we need to leave enough
1342 * space for the asm code here.
1343 *
1344 * We return by executing IRET while RSP points to the "iret" frame.
1345 * That will either return for real or it will loop back into NMI
1346 * processing.
1347 *
1348 * The "outermost" frame is copied to the "iret" frame on each
1349 * iteration of the loop, so each iteration starts with the "iret"
1350 * frame pointing to the final return target.
1351 */
1352
45d5a168 1353 /*
0b22930e
AL
1354 * Determine whether we're a nested NMI.
1355 *
a27507ca
AL
1356 * If we interrupted kernel code between repeat_nmi and
1357 * end_repeat_nmi, then we are a nested NMI. We must not
1358 * modify the "iret" frame because it's being written by
1359 * the outer NMI. That's okay; the outer NMI handler is
1360 * about to about to call do_nmi anyway, so we can just
1361 * resume the outer NMI.
45d5a168 1362 */
a27507ca
AL
1363
1364 movq $repeat_nmi, %rdx
1365 cmpq 8(%rsp), %rdx
1366 ja 1f
1367 movq $end_repeat_nmi, %rdx
1368 cmpq 8(%rsp), %rdx
1369 ja nested_nmi_out
13701:
45d5a168 1371
3f3c8b8c 1372 /*
a27507ca 1373 * Now check "NMI executing". If it's set, then we're nested.
0b22930e
AL
1374 * This will not detect if we interrupted an outer NMI just
1375 * before IRET.
3f3c8b8c 1376 */
4d732138
IM
1377 cmpl $1, -8(%rsp)
1378 je nested_nmi
3f3c8b8c
SR
1379
1380 /*
0b22930e
AL
1381 * Now test if the previous stack was an NMI stack. This covers
1382 * the case where we interrupt an outer NMI after it clears
810bc075
AL
1383 * "NMI executing" but before IRET. We need to be careful, though:
1384 * there is one case in which RSP could point to the NMI stack
1385 * despite there being no NMI active: naughty userspace controls
1386 * RSP at the very beginning of the SYSCALL targets. We can
1387 * pull a fast one on naughty userspace, though: we program
1388 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1389 * if it controls the kernel's RSP. We set DF before we clear
1390 * "NMI executing".
3f3c8b8c 1391 */
0784b364
DV
1392 lea 6*8(%rsp), %rdx
1393 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1394 cmpq %rdx, 4*8(%rsp)
1395 /* If the stack pointer is above the NMI stack, this is a normal NMI */
1396 ja first_nmi
4d732138 1397
0784b364
DV
1398 subq $EXCEPTION_STKSZ, %rdx
1399 cmpq %rdx, 4*8(%rsp)
1400 /* If it is below the NMI stack, it is a normal NMI */
1401 jb first_nmi
810bc075
AL
1402
1403 /* Ah, it is within the NMI stack. */
1404
1405 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1406 jz first_nmi /* RSP was user controlled. */
1407
1408 /* This is a nested NMI. */
0784b364 1409
3f3c8b8c
SR
1410nested_nmi:
1411 /*
0b22930e
AL
1412 * Modify the "iret" frame to point to repeat_nmi, forcing another
1413 * iteration of NMI handling.
3f3c8b8c 1414 */
23a781e9 1415 subq $8, %rsp
4d732138
IM
1416 leaq -10*8(%rsp), %rdx
1417 pushq $__KERNEL_DS
1418 pushq %rdx
131484c8 1419 pushfq
4d732138
IM
1420 pushq $__KERNEL_CS
1421 pushq $repeat_nmi
3f3c8b8c
SR
1422
1423 /* Put stack back */
4d732138 1424 addq $(6*8), %rsp
3f3c8b8c
SR
1425
1426nested_nmi_out:
4d732138 1427 popq %rdx
3f3c8b8c 1428
0b22930e 1429 /* We are returning to kernel mode, so this cannot result in a fault. */
3f3c8b8c
SR
1430 INTERRUPT_RETURN
1431
1432first_nmi:
0b22930e 1433 /* Restore rdx. */
4d732138 1434 movq (%rsp), %rdx
62610913 1435
36f1a77b
AL
1436 /* Make room for "NMI executing". */
1437 pushq $0
3f3c8b8c 1438
0b22930e 1439 /* Leave room for the "iret" frame */
4d732138 1440 subq $(5*8), %rsp
28696f43 1441
0b22930e 1442 /* Copy the "original" frame to the "outermost" frame */
3f3c8b8c 1443 .rept 5
4d732138 1444 pushq 11*8(%rsp)
3f3c8b8c 1445 .endr
62610913 1446
79fb4ad6
SR
1447 /* Everything up to here is safe from nested NMIs */
1448
a97439aa
AL
1449#ifdef CONFIG_DEBUG_ENTRY
1450 /*
1451 * For ease of testing, unmask NMIs right away. Disabled by
1452 * default because IRET is very expensive.
1453 */
1454 pushq $0 /* SS */
1455 pushq %rsp /* RSP (minus 8 because of the previous push) */
1456 addq $8, (%rsp) /* Fix up RSP */
1457 pushfq /* RFLAGS */
1458 pushq $__KERNEL_CS /* CS */
1459 pushq $1f /* RIP */
1460 INTERRUPT_RETURN /* continues at repeat_nmi below */
14611:
1462#endif
1463
0b22930e 1464repeat_nmi:
62610913
JB
1465 /*
1466 * If there was a nested NMI, the first NMI's iret will return
1467 * here. But NMIs are still enabled and we can take another
1468 * nested NMI. The nested NMI checks the interrupted RIP to see
1469 * if it is between repeat_nmi and end_repeat_nmi, and if so
1470 * it will just return, as we are about to repeat an NMI anyway.
1471 * This makes it safe to copy to the stack frame that a nested
1472 * NMI will update.
0b22930e
AL
1473 *
1474 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
1475 * we're repeating an NMI, gsbase has the same value that it had on
1476 * the first iteration. paranoid_entry will load the kernel
36f1a77b
AL
1477 * gsbase if needed before we call do_nmi. "NMI executing"
1478 * is zero.
62610913 1479 */
36f1a77b 1480 movq $1, 10*8(%rsp) /* Set "NMI executing". */
3f3c8b8c 1481
62610913 1482 /*
0b22930e
AL
1483 * Copy the "outermost" frame to the "iret" frame. NMIs that nest
1484 * here must not modify the "iret" frame while we're writing to
1485 * it or it will end up containing garbage.
62610913 1486 */
4d732138 1487 addq $(10*8), %rsp
3f3c8b8c 1488 .rept 5
4d732138 1489 pushq -6*8(%rsp)
3f3c8b8c 1490 .endr
4d732138 1491 subq $(5*8), %rsp
62610913 1492end_repeat_nmi:
3f3c8b8c
SR
1493
1494 /*
0b22930e
AL
1495 * Everything below this point can be preempted by a nested NMI.
1496 * If this happens, then the inner NMI will change the "iret"
1497 * frame to point back to repeat_nmi.
3f3c8b8c 1498 */
4d732138 1499 pushq $-1 /* ORIG_RAX: no syscall to restart */
76f5df43
DV
1500 ALLOC_PT_GPREGS_ON_STACK
1501
1fd466ef 1502 /*
ebfc453e 1503 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1fd466ef
SR
1504 * as we should not be calling schedule in NMI context.
1505 * Even with normal interrupts enabled. An NMI should not be
1506 * setting NEED_RESCHED or anything that normal interrupts and
1507 * exceptions might do.
1508 */
4d732138 1509 call paranoid_entry
7fbb98c5 1510
ddeb8f21 1511 /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
4d732138
IM
1512 movq %rsp, %rdi
1513 movq $-1, %rsi
1514 call do_nmi
7fbb98c5 1515
4d732138
IM
1516 testl %ebx, %ebx /* swapgs needed? */
1517 jnz nmi_restore
ddeb8f21
AH
1518nmi_swapgs:
1519 SWAPGS_UNSAFE_STACK
1520nmi_restore:
76f5df43
DV
1521 RESTORE_EXTRA_REGS
1522 RESTORE_C_REGS
0b22930e
AL
1523
1524 /* Point RSP at the "iret" frame. */
76f5df43 1525 REMOVE_PT_GPREGS_FROM_STACK 6*8
28696f43 1526
810bc075
AL
1527 /*
1528 * Clear "NMI executing". Set DF first so that we can easily
1529 * distinguish the remaining code between here and IRET from
1530 * the SYSCALL entry and exit paths. On a native kernel, we
1531 * could just inspect RIP, but, on paravirt kernels,
1532 * INTERRUPT_RETURN can translate into a jump into a
1533 * hypercall page.
1534 */
1535 std
1536 movq $0, 5*8(%rsp) /* clear "NMI executing" */
0b22930e
AL
1537
1538 /*
1539 * INTERRUPT_RETURN reads the "iret" frame and exits the NMI
1540 * stack in a single instruction. We are returning to kernel
1541 * mode, so this cannot result in a fault.
1542 */
5ca6f70f 1543 INTERRUPT_RETURN
ddeb8f21
AH
1544END(nmi)
1545
1546ENTRY(ignore_sysret)
4d732138 1547 mov $-ENOSYS, %eax
ddeb8f21 1548 sysret
ddeb8f21 1549END(ignore_sysret)
2deb4be2
AL
1550
1551ENTRY(rewind_stack_do_exit)
1552 /* Prevent any naive code from trying to unwind to our caller. */
1553 xorl %ebp, %ebp
1554
1555 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax
1556 leaq -TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%rax), %rsp
1557
1558 call do_exit
15591: jmp 1b
1560END(rewind_stack_do_exit)