]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/entry/entry_64.S
selftests/x86/sigreturn: Use CX, not AX, as the scratch register
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / entry / entry_64.S
CommitLineData
1da177e4
LT
1/*
2 * linux/arch/x86_64/entry.S
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
6 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
4d732138 7 *
1da177e4
LT
8 * entry.S contains the system-call and fault low-level handling routines.
9 *
8b4777a4
AL
10 * Some of this is documented in Documentation/x86/entry_64.txt
11 *
0bd7b798 12 * A note on terminology:
4d732138
IM
13 * - iret frame: Architecture defined interrupt frame from SS to RIP
14 * at the top of the kernel process stack.
2e91a17b
AK
15 *
16 * Some macro usage:
4d732138
IM
17 * - ENTRY/END: Define functions in the symbol table.
18 * - TRACE_IRQ_*: Trace hardirq state for lock debugging.
19 * - idtentry: Define exception entry points.
1da177e4 20 */
1da177e4
LT
21#include <linux/linkage.h>
22#include <asm/segment.h>
1da177e4
LT
23#include <asm/cache.h>
24#include <asm/errno.h>
d36f9479 25#include "calling.h"
e2d5df93 26#include <asm/asm-offsets.h>
1da177e4
LT
27#include <asm/msr.h>
28#include <asm/unistd.h>
29#include <asm/thread_info.h>
30#include <asm/hw_irq.h>
0341c14d 31#include <asm/page_types.h>
2601e64d 32#include <asm/irqflags.h>
72fe4858 33#include <asm/paravirt.h>
9939ddaf 34#include <asm/percpu.h>
d7abc0fa 35#include <asm/asm.h>
63bcff2a 36#include <asm/smap.h>
3891a04a 37#include <asm/pgtable_types.h>
d7e7528b 38#include <linux/err.h>
1da177e4 39
86a1c34a
RM
40/* Avoid __ASSEMBLER__'ifying <linux/audit.h> just for this. */
41#include <linux/elf-em.h>
4d732138
IM
42#define AUDIT_ARCH_X86_64 (EM_X86_64|__AUDIT_ARCH_64BIT|__AUDIT_ARCH_LE)
43#define __AUDIT_ARCH_64BIT 0x80000000
44#define __AUDIT_ARCH_LE 0x40000000
ea714547 45
4d732138
IM
46.code64
47.section .entry.text, "ax"
16444a8a 48
72fe4858 49#ifdef CONFIG_PARAVIRT
2be29982 50ENTRY(native_usergs_sysret64)
72fe4858
GOC
51 swapgs
52 sysretq
b3baaa13 53ENDPROC(native_usergs_sysret64)
72fe4858
GOC
54#endif /* CONFIG_PARAVIRT */
55
f2db9382 56.macro TRACE_IRQS_IRETQ
2601e64d 57#ifdef CONFIG_TRACE_IRQFLAGS
4d732138
IM
58 bt $9, EFLAGS(%rsp) /* interrupts off? */
59 jnc 1f
2601e64d
IM
60 TRACE_IRQS_ON
611:
62#endif
63.endm
64
5963e317
SR
65/*
66 * When dynamic function tracer is enabled it will add a breakpoint
67 * to all locations that it is about to modify, sync CPUs, update
68 * all the code, sync CPUs, then remove the breakpoints. In this time
69 * if lockdep is enabled, it might jump back into the debug handler
70 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
71 *
72 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
73 * make sure the stack pointer does not get reset back to the top
74 * of the debug stack, and instead just reuses the current stack.
75 */
76#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
77
78.macro TRACE_IRQS_OFF_DEBUG
4d732138 79 call debug_stack_set_zero
5963e317 80 TRACE_IRQS_OFF
4d732138 81 call debug_stack_reset
5963e317
SR
82.endm
83
84.macro TRACE_IRQS_ON_DEBUG
4d732138 85 call debug_stack_set_zero
5963e317 86 TRACE_IRQS_ON
4d732138 87 call debug_stack_reset
5963e317
SR
88.endm
89
f2db9382 90.macro TRACE_IRQS_IRETQ_DEBUG
4d732138
IM
91 bt $9, EFLAGS(%rsp) /* interrupts off? */
92 jnc 1f
5963e317
SR
93 TRACE_IRQS_ON_DEBUG
941:
95.endm
96
97#else
4d732138
IM
98# define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF
99# define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON
100# define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ
5963e317
SR
101#endif
102
1da177e4 103/*
4d732138 104 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
1da177e4 105 *
fda57b22
AL
106 * This is the only entry point used for 64-bit system calls. The
107 * hardware interface is reasonably well designed and the register to
108 * argument mapping Linux uses fits well with the registers that are
109 * available when SYSCALL is used.
110 *
111 * SYSCALL instructions can be found inlined in libc implementations as
112 * well as some other programs and libraries. There are also a handful
113 * of SYSCALL instructions in the vDSO used, for example, as a
114 * clock_gettimeofday fallback.
115 *
4d732138 116 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
b87cf63e
DV
117 * then loads new ss, cs, and rip from previously programmed MSRs.
118 * rflags gets masked by a value from another MSR (so CLD and CLAC
119 * are not needed). SYSCALL does not save anything on the stack
120 * and does not change rsp.
121 *
122 * Registers on entry:
1da177e4 123 * rax system call number
b87cf63e
DV
124 * rcx return address
125 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
1da177e4 126 * rdi arg0
1da177e4 127 * rsi arg1
0bd7b798 128 * rdx arg2
b87cf63e 129 * r10 arg3 (needs to be moved to rcx to conform to C ABI)
1da177e4
LT
130 * r8 arg4
131 * r9 arg5
4d732138 132 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
0bd7b798 133 *
1da177e4
LT
134 * Only called from user space.
135 *
7fcb3bc3 136 * When user can change pt_regs->foo always force IRET. That is because
7bf36bbc
AK
137 * it deals with uncanonical addresses better. SYSRET has trouble
138 * with them due to bugs in both AMD and Intel CPUs.
0bd7b798 139 */
1da177e4 140
b2502b41 141ENTRY(entry_SYSCALL_64)
9ed8e7d8
DV
142 /*
143 * Interrupts are off on entry.
144 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
145 * it is too small to ever cause noticeable irq latency.
146 */
72fe4858
GOC
147 SWAPGS_UNSAFE_STACK
148 /*
149 * A hypervisor implementation might want to use a label
150 * after the swapgs, so that it can do the swapgs
151 * for the guest and jump here on syscall.
152 */
b2502b41 153GLOBAL(entry_SYSCALL_64_after_swapgs)
72fe4858 154
4d732138
IM
155 movq %rsp, PER_CPU_VAR(rsp_scratch)
156 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
9ed8e7d8 157
1e423bff
AL
158 TRACE_IRQS_OFF
159
9ed8e7d8 160 /* Construct struct pt_regs on stack */
4d732138
IM
161 pushq $__USER_DS /* pt_regs->ss */
162 pushq PER_CPU_VAR(rsp_scratch) /* pt_regs->sp */
4d732138
IM
163 pushq %r11 /* pt_regs->flags */
164 pushq $__USER_CS /* pt_regs->cs */
165 pushq %rcx /* pt_regs->ip */
166 pushq %rax /* pt_regs->orig_ax */
167 pushq %rdi /* pt_regs->di */
168 pushq %rsi /* pt_regs->si */
169 pushq %rdx /* pt_regs->dx */
170 pushq %rcx /* pt_regs->cx */
171 pushq $-ENOSYS /* pt_regs->ax */
172 pushq %r8 /* pt_regs->r8 */
173 pushq %r9 /* pt_regs->r9 */
174 pushq %r10 /* pt_regs->r10 */
175 pushq %r11 /* pt_regs->r11 */
176 sub $(6*8), %rsp /* pt_regs->bp, bx, r12-15 not saved */
177
1e423bff
AL
178 /*
179 * If we need to do entry work or if we guess we'll need to do
180 * exit work, go straight to the slow path.
181 */
182 testl $_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
183 jnz entry_SYSCALL64_slow_path
184
b2502b41 185entry_SYSCALL_64_fastpath:
1e423bff
AL
186 /*
187 * Easy case: enable interrupts and issue the syscall. If the syscall
188 * needs pt_regs, we'll call a stub that disables interrupts again
189 * and jumps to the slow path.
190 */
191 TRACE_IRQS_ON
192 ENABLE_INTERRUPTS(CLBR_NONE)
fca460f9 193#if __SYSCALL_MASK == ~0
4d732138 194 cmpq $__NR_syscall_max, %rax
fca460f9 195#else
4d732138
IM
196 andl $__SYSCALL_MASK, %eax
197 cmpl $__NR_syscall_max, %eax
fca460f9 198#endif
4d732138
IM
199 ja 1f /* return -ENOSYS (already in pt_regs->ax) */
200 movq %r10, %rcx
302f5b26
AL
201
202 /*
203 * This call instruction is handled specially in stub_ptregs_64.
b7765086
AL
204 * It might end up jumping to the slow path. If it jumps, RAX
205 * and all argument registers are clobbered.
302f5b26 206 */
4d732138 207 call *sys_call_table(, %rax, 8)
302f5b26
AL
208.Lentry_SYSCALL_64_after_fastpath_call:
209
4d732138 210 movq %rax, RAX(%rsp)
146b2b09 2111:
b3494a4a
AL
212
213 /*
1e423bff
AL
214 * If we get here, then we know that pt_regs is clean for SYSRET64.
215 * If we see that no exit work is required (which we are required
216 * to check with IRQs off), then we can go straight to SYSRET64.
b3494a4a 217 */
1e423bff
AL
218 DISABLE_INTERRUPTS(CLBR_NONE)
219 TRACE_IRQS_OFF
4d732138 220 testl $_TIF_ALLWORK_MASK, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
1e423bff 221 jnz 1f
b3494a4a 222
1e423bff
AL
223 LOCKDEP_SYS_EXIT
224 TRACE_IRQS_ON /* user mode is traced as IRQs on */
eb2a54c3
AL
225 movq RIP(%rsp), %rcx
226 movq EFLAGS(%rsp), %r11
227 RESTORE_C_REGS_EXCEPT_RCX_R11
4d732138 228 movq RSP(%rsp), %rsp
2be29982 229 USERGS_SYSRET64
1da177e4 230
1e423bff
AL
2311:
232 /*
233 * The fast path looked good when we started, but something changed
234 * along the way and we need to switch to the slow path. Calling
235 * raise(3) will trigger this, for example. IRQs are off.
236 */
29ea1b25
AL
237 TRACE_IRQS_ON
238 ENABLE_INTERRUPTS(CLBR_NONE)
76f5df43 239 SAVE_EXTRA_REGS
4d732138 240 movq %rsp, %rdi
1e423bff
AL
241 call syscall_return_slowpath /* returns with IRQs disabled */
242 jmp return_from_SYSCALL_64
0bd7b798 243
1e423bff
AL
244entry_SYSCALL64_slow_path:
245 /* IRQs are off. */
76f5df43 246 SAVE_EXTRA_REGS
29ea1b25 247 movq %rsp, %rdi
1e423bff
AL
248 call do_syscall_64 /* returns with IRQs disabled */
249
250return_from_SYSCALL_64:
76f5df43 251 RESTORE_EXTRA_REGS
29ea1b25 252 TRACE_IRQS_IRETQ /* we're about to change IF */
fffbb5dc
DV
253
254 /*
255 * Try to use SYSRET instead of IRET if we're returning to
256 * a completely clean 64-bit userspace context.
257 */
4d732138
IM
258 movq RCX(%rsp), %rcx
259 movq RIP(%rsp), %r11
260 cmpq %rcx, %r11 /* RCX == RIP */
261 jne opportunistic_sysret_failed
fffbb5dc
DV
262
263 /*
264 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
265 * in kernel space. This essentially lets the user take over
17be0aec 266 * the kernel, since userspace controls RSP.
fffbb5dc 267 *
17be0aec 268 * If width of "canonical tail" ever becomes variable, this will need
fffbb5dc
DV
269 * to be updated to remain correct on both old and new CPUs.
270 */
271 .ifne __VIRTUAL_MASK_SHIFT - 47
272 .error "virtual address width changed -- SYSRET checks need update"
273 .endif
4d732138 274
17be0aec
DV
275 /* Change top 16 bits to be the sign-extension of 47th bit */
276 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
277 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
4d732138 278
17be0aec
DV
279 /* If this changed %rcx, it was not canonical */
280 cmpq %rcx, %r11
281 jne opportunistic_sysret_failed
fffbb5dc 282
4d732138
IM
283 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
284 jne opportunistic_sysret_failed
fffbb5dc 285
4d732138
IM
286 movq R11(%rsp), %r11
287 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
288 jne opportunistic_sysret_failed
fffbb5dc
DV
289
290 /*
3e035305
BP
291 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
292 * restore RF properly. If the slowpath sets it for whatever reason, we
293 * need to restore it correctly.
294 *
295 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
296 * trap from userspace immediately after SYSRET. This would cause an
297 * infinite loop whenever #DB happens with register state that satisfies
298 * the opportunistic SYSRET conditions. For example, single-stepping
299 * this user code:
fffbb5dc 300 *
4d732138 301 * movq $stuck_here, %rcx
fffbb5dc
DV
302 * pushfq
303 * popq %r11
304 * stuck_here:
305 *
306 * would never get past 'stuck_here'.
307 */
4d732138
IM
308 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
309 jnz opportunistic_sysret_failed
fffbb5dc
DV
310
311 /* nothing to check for RSP */
312
4d732138
IM
313 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
314 jne opportunistic_sysret_failed
fffbb5dc
DV
315
316 /*
4d732138
IM
317 * We win! This label is here just for ease of understanding
318 * perf profiles. Nothing jumps here.
fffbb5dc
DV
319 */
320syscall_return_via_sysret:
17be0aec
DV
321 /* rcx and r11 are already restored (see code above) */
322 RESTORE_C_REGS_EXCEPT_RCX_R11
4d732138 323 movq RSP(%rsp), %rsp
fffbb5dc 324 USERGS_SYSRET64
fffbb5dc
DV
325
326opportunistic_sysret_failed:
327 SWAPGS
328 jmp restore_c_regs_and_iret
b2502b41 329END(entry_SYSCALL_64)
0bd7b798 330
302f5b26
AL
331ENTRY(stub_ptregs_64)
332 /*
333 * Syscalls marked as needing ptregs land here.
b7765086
AL
334 * If we are on the fast path, we need to save the extra regs,
335 * which we achieve by trying again on the slow path. If we are on
336 * the slow path, the extra regs are already saved.
302f5b26
AL
337 *
338 * RAX stores a pointer to the C function implementing the syscall.
b7765086 339 * IRQs are on.
302f5b26
AL
340 */
341 cmpq $.Lentry_SYSCALL_64_after_fastpath_call, (%rsp)
342 jne 1f
343
b7765086
AL
344 /*
345 * Called from fast path -- disable IRQs again, pop return address
346 * and jump to slow path
347 */
348 DISABLE_INTERRUPTS(CLBR_NONE)
349 TRACE_IRQS_OFF
302f5b26 350 popq %rax
b7765086 351 jmp entry_SYSCALL64_slow_path
302f5b26
AL
352
3531:
b3830e8d 354 jmp *%rax /* Called from C */
302f5b26
AL
355END(stub_ptregs_64)
356
357.macro ptregs_stub func
358ENTRY(ptregs_\func)
359 leaq \func(%rip), %rax
360 jmp stub_ptregs_64
361END(ptregs_\func)
362.endm
363
364/* Instantiate ptregs_stub for each ptregs-using syscall */
365#define __SYSCALL_64_QUAL_(sym)
366#define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym
367#define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym)
368#include <asm/syscalls_64.h>
fffbb5dc 369
0100301b
BG
370/*
371 * %rdi: prev task
372 * %rsi: next task
373 */
374ENTRY(__switch_to_asm)
375 /*
376 * Save callee-saved registers
377 * This must match the order in inactive_task_frame
378 */
379 pushq %rbp
380 pushq %rbx
381 pushq %r12
382 pushq %r13
383 pushq %r14
384 pushq %r15
385
386 /* switch stack */
387 movq %rsp, TASK_threadsp(%rdi)
388 movq TASK_threadsp(%rsi), %rsp
389
390#ifdef CONFIG_CC_STACKPROTECTOR
391 movq TASK_stack_canary(%rsi), %rbx
392 movq %rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
393#endif
394
395 /* restore callee-saved registers */
396 popq %r15
397 popq %r14
398 popq %r13
399 popq %r12
400 popq %rbx
401 popq %rbp
402
403 jmp __switch_to
404END(__switch_to_asm)
405
1eeb207f
DV
406/*
407 * A newly forked process directly context switches into this address.
408 *
0100301b 409 * rax: prev task we switched from
616d2483
BG
410 * rbx: kernel thread func (NULL for user thread)
411 * r12: kernel thread arg
1eeb207f
DV
412 */
413ENTRY(ret_from_fork)
0100301b 414 movq %rax, %rdi
4d732138 415 call schedule_tail /* rdi: 'prev' task parameter */
1eeb207f 416
616d2483
BG
417 testq %rbx, %rbx /* from kernel_thread? */
418 jnz 1f /* kernel threads are uncommon */
1eeb207f 419
616d2483 4202:
24d978b7
AL
421 movq %rsp, %rdi
422 call syscall_return_slowpath /* returns with IRQs disabled */
423 TRACE_IRQS_ON /* user mode is traced as IRQS on */
424 SWAPGS
425 jmp restore_regs_and_iret
616d2483
BG
426
4271:
428 /* kernel thread */
429 movq %r12, %rdi
430 call *%rbx
431 /*
432 * A kernel thread is allowed to return here after successfully
433 * calling do_execve(). Exit to userspace to complete the execve()
434 * syscall.
435 */
436 movq $0, RAX(%rsp)
437 jmp 2b
1eeb207f
DV
438END(ret_from_fork)
439
939b7871 440/*
3304c9c3
DV
441 * Build the entry stubs with some assembler magic.
442 * We pack 1 stub into every 8-byte block.
939b7871 443 */
3304c9c3 444 .align 8
939b7871 445ENTRY(irq_entries_start)
3304c9c3
DV
446 vector=FIRST_EXTERNAL_VECTOR
447 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
4d732138 448 pushq $(~vector+0x80) /* Note: always in signed byte range */
3304c9c3
DV
449 vector=vector+1
450 jmp common_interrupt
3304c9c3
DV
451 .align 8
452 .endr
939b7871
PA
453END(irq_entries_start)
454
d99015b1 455/*
1da177e4
LT
456 * Interrupt entry/exit.
457 *
458 * Interrupt entry points save only callee clobbered registers in fast path.
d99015b1
AH
459 *
460 * Entry runs with interrupts off.
461 */
1da177e4 462
722024db 463/* 0(%rsp): ~(interrupt number) */
1da177e4 464 .macro interrupt func
f6f64681 465 cld
ff467594
AL
466 ALLOC_PT_GPREGS_ON_STACK
467 SAVE_C_REGS
468 SAVE_EXTRA_REGS
76f5df43 469
ff467594 470 testb $3, CS(%rsp)
dde74f2e 471 jz 1f
02bc7768
AL
472
473 /*
474 * IRQ from user mode. Switch to kernel gsbase and inform context
475 * tracking that we're in kernel mode.
476 */
f6f64681 477 SWAPGS
f1075053
AL
478
479 /*
480 * We need to tell lockdep that IRQs are off. We can't do this until
481 * we fix gsbase, and we should do it before enter_from_user_mode
482 * (which can take locks). Since TRACE_IRQS_OFF idempotent,
483 * the simplest way to handle it is to just call it twice if
484 * we enter from user mode. There's no reason to optimize this since
485 * TRACE_IRQS_OFF is a no-op if lockdep is off.
486 */
487 TRACE_IRQS_OFF
488
478dc89c 489 CALL_enter_from_user_mode
02bc7768 490
76f5df43 4911:
f6f64681 492 /*
e90e147c 493 * Save previous stack pointer, optionally switch to interrupt stack.
f6f64681
DV
494 * irq_count is used to check if a CPU is already on an interrupt stack
495 * or not. While this is essentially redundant with preempt_count it is
496 * a little cheaper to use a separate counter in the PDA (short of
497 * moving irq_enter into assembly, which would be too much work)
498 */
a586f98e 499 movq %rsp, %rdi
4d732138
IM
500 incl PER_CPU_VAR(irq_count)
501 cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp
a586f98e 502 pushq %rdi
f6f64681
DV
503 /* We entered an interrupt context - irqs are off: */
504 TRACE_IRQS_OFF
505
a586f98e 506 call \func /* rdi points to pt_regs */
1da177e4
LT
507 .endm
508
722024db
AH
509 /*
510 * The interrupt stubs push (~vector+0x80) onto the stack and
511 * then jump to common_interrupt.
512 */
939b7871
PA
513 .p2align CONFIG_X86_L1_CACHE_SHIFT
514common_interrupt:
ee4eb87b 515 ASM_CLAC
4d732138 516 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
1da177e4 517 interrupt do_IRQ
34061f13 518 /* 0(%rsp): old RSP */
7effaa88 519ret_from_intr:
72fe4858 520 DISABLE_INTERRUPTS(CLBR_NONE)
2601e64d 521 TRACE_IRQS_OFF
4d732138 522 decl PER_CPU_VAR(irq_count)
625dbc3b 523
a2bbe750 524 /* Restore saved previous stack */
ff467594 525 popq %rsp
625dbc3b 526
03335e95 527 testb $3, CS(%rsp)
dde74f2e 528 jz retint_kernel
4d732138 529
02bc7768 530 /* Interrupt came from user space */
02bc7768
AL
531GLOBAL(retint_user)
532 mov %rsp,%rdi
533 call prepare_exit_to_usermode
2601e64d 534 TRACE_IRQS_IRETQ
72fe4858 535 SWAPGS
ff467594 536 jmp restore_regs_and_iret
2601e64d 537
627276cb 538/* Returning to kernel space */
6ba71b76 539retint_kernel:
627276cb
DV
540#ifdef CONFIG_PREEMPT
541 /* Interrupts are off */
542 /* Check if we need preemption */
4d732138 543 bt $9, EFLAGS(%rsp) /* were interrupts off? */
6ba71b76 544 jnc 1f
4d732138 5450: cmpl $0, PER_CPU_VAR(__preempt_count)
36acef25 546 jnz 1f
627276cb 547 call preempt_schedule_irq
36acef25 548 jmp 0b
6ba71b76 5491:
627276cb 550#endif
2601e64d
IM
551 /*
552 * The iretq could re-enable interrupts:
553 */
554 TRACE_IRQS_IRETQ
fffbb5dc
DV
555
556/*
557 * At this label, code paths which return to kernel and to user,
558 * which come from interrupts/exception and from syscalls, merge.
559 */
ee08c6bd 560GLOBAL(restore_regs_and_iret)
ff467594 561 RESTORE_EXTRA_REGS
fffbb5dc 562restore_c_regs_and_iret:
76f5df43
DV
563 RESTORE_C_REGS
564 REMOVE_PT_GPREGS_FROM_STACK 8
7209a75d
AL
565 INTERRUPT_RETURN
566
567ENTRY(native_iret)
3891a04a
PA
568 /*
569 * Are we returning to a stack segment from the LDT? Note: in
570 * 64-bit mode SS:RSP on the exception stack is always valid.
571 */
34273f41 572#ifdef CONFIG_X86_ESPFIX64
4d732138
IM
573 testb $4, (SS-RIP)(%rsp)
574 jnz native_irq_return_ldt
34273f41 575#endif
3891a04a 576
af726f21 577.global native_irq_return_iret
7209a75d 578native_irq_return_iret:
b645af2d
AL
579 /*
580 * This may fault. Non-paranoid faults on return to userspace are
581 * handled by fixup_bad_iret. These include #SS, #GP, and #NP.
582 * Double-faults due to espfix64 are handled in do_double_fault.
583 * Other faults here are fatal.
584 */
1da177e4 585 iretq
3701d863 586
34273f41 587#ifdef CONFIG_X86_ESPFIX64
7209a75d 588native_irq_return_ldt:
4d732138
IM
589 pushq %rax
590 pushq %rdi
3891a04a 591 SWAPGS
4d732138
IM
592 movq PER_CPU_VAR(espfix_waddr), %rdi
593 movq %rax, (0*8)(%rdi) /* RAX */
594 movq (2*8)(%rsp), %rax /* RIP */
595 movq %rax, (1*8)(%rdi)
596 movq (3*8)(%rsp), %rax /* CS */
597 movq %rax, (2*8)(%rdi)
598 movq (4*8)(%rsp), %rax /* RFLAGS */
599 movq %rax, (3*8)(%rdi)
600 movq (6*8)(%rsp), %rax /* SS */
601 movq %rax, (5*8)(%rdi)
602 movq (5*8)(%rsp), %rax /* RSP */
603 movq %rax, (4*8)(%rdi)
604 andl $0xffff0000, %eax
605 popq %rdi
606 orq PER_CPU_VAR(espfix_stack), %rax
3891a04a 607 SWAPGS
4d732138
IM
608 movq %rax, %rsp
609 popq %rax
610 jmp native_irq_return_iret
34273f41 611#endif
4b787e0b 612END(common_interrupt)
3891a04a 613
1da177e4
LT
614/*
615 * APIC interrupts.
0bd7b798 616 */
cf910e83 617.macro apicinterrupt3 num sym do_sym
322648d1 618ENTRY(\sym)
ee4eb87b 619 ASM_CLAC
4d732138 620 pushq $~(\num)
39e95433 621.Lcommon_\sym:
322648d1 622 interrupt \do_sym
4d732138 623 jmp ret_from_intr
322648d1
AH
624END(\sym)
625.endm
1da177e4 626
cf910e83
SA
627#ifdef CONFIG_TRACING
628#define trace(sym) trace_##sym
629#define smp_trace(sym) smp_trace_##sym
630
631.macro trace_apicinterrupt num sym
632apicinterrupt3 \num trace(\sym) smp_trace(\sym)
633.endm
634#else
635.macro trace_apicinterrupt num sym do_sym
636.endm
637#endif
638
469f0023
AP
639/* Make sure APIC interrupt handlers end up in the irqentry section: */
640#if defined(CONFIG_FUNCTION_GRAPH_TRACER) || defined(CONFIG_KASAN)
641# define PUSH_SECTION_IRQENTRY .pushsection .irqentry.text, "ax"
642# define POP_SECTION_IRQENTRY .popsection
643#else
644# define PUSH_SECTION_IRQENTRY
645# define POP_SECTION_IRQENTRY
646#endif
647
cf910e83 648.macro apicinterrupt num sym do_sym
469f0023 649PUSH_SECTION_IRQENTRY
cf910e83
SA
650apicinterrupt3 \num \sym \do_sym
651trace_apicinterrupt \num \sym
469f0023 652POP_SECTION_IRQENTRY
cf910e83
SA
653.endm
654
322648d1 655#ifdef CONFIG_SMP
4d732138
IM
656apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt
657apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt
322648d1 658#endif
1da177e4 659
03b48632 660#ifdef CONFIG_X86_UV
4d732138 661apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt
03b48632 662#endif
4d732138
IM
663
664apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt
665apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi
89b831ef 666
d78f2664 667#ifdef CONFIG_HAVE_KVM
4d732138
IM
668apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi
669apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi
d78f2664
YZ
670#endif
671
33e5ff63 672#ifdef CONFIG_X86_MCE_THRESHOLD
4d732138 673apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt
33e5ff63
SA
674#endif
675
24fd78a8 676#ifdef CONFIG_X86_MCE_AMD
4d732138 677apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt
24fd78a8
AG
678#endif
679
33e5ff63 680#ifdef CONFIG_X86_THERMAL_VECTOR
4d732138 681apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt
33e5ff63 682#endif
1812924b 683
322648d1 684#ifdef CONFIG_SMP
4d732138
IM
685apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt
686apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt
687apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt
322648d1 688#endif
1da177e4 689
4d732138
IM
690apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt
691apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt
0bd7b798 692
e360adbe 693#ifdef CONFIG_IRQ_WORK
4d732138 694apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
241771ef
IM
695#endif
696
1da177e4
LT
697/*
698 * Exception entry points.
0bd7b798 699 */
9b476688 700#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
577ed45e
AL
701
702.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
322648d1 703ENTRY(\sym)
577ed45e
AL
704 /* Sanity check */
705 .if \shift_ist != -1 && \paranoid == 0
706 .error "using shift_ist requires paranoid=1"
707 .endif
708
ee4eb87b 709 ASM_CLAC
b8b1d08b 710 PARAVIRT_ADJUST_EXCEPTION_FRAME
cb5dd2c5
AL
711
712 .ifeq \has_error_code
4d732138 713 pushq $-1 /* ORIG_RAX: no syscall to restart */
cb5dd2c5
AL
714 .endif
715
76f5df43 716 ALLOC_PT_GPREGS_ON_STACK
cb5dd2c5
AL
717
718 .if \paranoid
48e08d0f 719 .if \paranoid == 1
4d732138
IM
720 testb $3, CS(%rsp) /* If coming from userspace, switch stacks */
721 jnz 1f
48e08d0f 722 .endif
4d732138 723 call paranoid_entry
cb5dd2c5 724 .else
4d732138 725 call error_entry
cb5dd2c5 726 .endif
ebfc453e 727 /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
cb5dd2c5 728
cb5dd2c5 729 .if \paranoid
577ed45e 730 .if \shift_ist != -1
4d732138 731 TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */
577ed45e 732 .else
b8b1d08b 733 TRACE_IRQS_OFF
cb5dd2c5 734 .endif
577ed45e 735 .endif
cb5dd2c5 736
4d732138 737 movq %rsp, %rdi /* pt_regs pointer */
cb5dd2c5
AL
738
739 .if \has_error_code
4d732138
IM
740 movq ORIG_RAX(%rsp), %rsi /* get error code */
741 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
cb5dd2c5 742 .else
4d732138 743 xorl %esi, %esi /* no error code */
cb5dd2c5
AL
744 .endif
745
577ed45e 746 .if \shift_ist != -1
4d732138 747 subq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
577ed45e
AL
748 .endif
749
4d732138 750 call \do_sym
cb5dd2c5 751
577ed45e 752 .if \shift_ist != -1
4d732138 753 addq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
577ed45e
AL
754 .endif
755
ebfc453e 756 /* these procedures expect "no swapgs" flag in ebx */
cb5dd2c5 757 .if \paranoid
4d732138 758 jmp paranoid_exit
cb5dd2c5 759 .else
4d732138 760 jmp error_exit
cb5dd2c5
AL
761 .endif
762
48e08d0f 763 .if \paranoid == 1
48e08d0f
AL
764 /*
765 * Paranoid entry from userspace. Switch stacks and treat it
766 * as a normal entry. This means that paranoid handlers
767 * run in real process context if user_mode(regs).
768 */
7691:
4d732138 770 call error_entry
48e08d0f 771
48e08d0f 772
4d732138
IM
773 movq %rsp, %rdi /* pt_regs pointer */
774 call sync_regs
775 movq %rax, %rsp /* switch stack */
48e08d0f 776
4d732138 777 movq %rsp, %rdi /* pt_regs pointer */
48e08d0f
AL
778
779 .if \has_error_code
4d732138
IM
780 movq ORIG_RAX(%rsp), %rsi /* get error code */
781 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
48e08d0f 782 .else
4d732138 783 xorl %esi, %esi /* no error code */
48e08d0f
AL
784 .endif
785
4d732138 786 call \do_sym
48e08d0f 787
4d732138 788 jmp error_exit /* %ebx: no swapgs flag */
48e08d0f 789 .endif
ddeb8f21 790END(\sym)
322648d1 791.endm
b8b1d08b 792
25c74b10 793#ifdef CONFIG_TRACING
cb5dd2c5
AL
794.macro trace_idtentry sym do_sym has_error_code:req
795idtentry trace(\sym) trace(\do_sym) has_error_code=\has_error_code
796idtentry \sym \do_sym has_error_code=\has_error_code
25c74b10
SA
797.endm
798#else
cb5dd2c5
AL
799.macro trace_idtentry sym do_sym has_error_code:req
800idtentry \sym \do_sym has_error_code=\has_error_code
25c74b10
SA
801.endm
802#endif
803
4d732138
IM
804idtentry divide_error do_divide_error has_error_code=0
805idtentry overflow do_overflow has_error_code=0
806idtentry bounds do_bounds has_error_code=0
807idtentry invalid_op do_invalid_op has_error_code=0
808idtentry device_not_available do_device_not_available has_error_code=0
809idtentry double_fault do_double_fault has_error_code=1 paranoid=2
810idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0
811idtentry invalid_TSS do_invalid_TSS has_error_code=1
812idtentry segment_not_present do_segment_not_present has_error_code=1
813idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0
814idtentry coprocessor_error do_coprocessor_error has_error_code=0
815idtentry alignment_check do_alignment_check has_error_code=1
816idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0
817
818
819 /*
820 * Reload gs selector with exception handling
821 * edi: new selector
822 */
9f9d489a 823ENTRY(native_load_gs_index)
131484c8 824 pushfq
b8aa287f 825 DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
9f1e87ea 826 SWAPGS
42c748bb 827.Lgs_change:
4d732138 828 movl %edi, %gs
96e5d28a 8292: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
72fe4858 830 SWAPGS
131484c8 831 popfq
9f1e87ea 832 ret
6efdcfaf 833END(native_load_gs_index)
0bd7b798 834
42c748bb 835 _ASM_EXTABLE(.Lgs_change, bad_gs)
4d732138 836 .section .fixup, "ax"
1da177e4 837 /* running with kernelgs */
0bd7b798 838bad_gs:
4d732138 839 SWAPGS /* switch back to user gs */
b038c842
AL
840.macro ZAP_GS
841 /* This can't be a string because the preprocessor needs to see it. */
842 movl $__USER_DS, %eax
843 movl %eax, %gs
844.endm
845 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
4d732138
IM
846 xorl %eax, %eax
847 movl %eax, %gs
848 jmp 2b
9f1e87ea 849 .previous
0bd7b798 850
2699500b 851/* Call softirq on interrupt stack. Interrupts are off. */
7d65f4a6 852ENTRY(do_softirq_own_stack)
4d732138
IM
853 pushq %rbp
854 mov %rsp, %rbp
855 incl PER_CPU_VAR(irq_count)
856 cmove PER_CPU_VAR(irq_stack_ptr), %rsp
857 push %rbp /* frame pointer backlink */
858 call __do_softirq
2699500b 859 leaveq
4d732138 860 decl PER_CPU_VAR(irq_count)
ed6b676c 861 ret
7d65f4a6 862END(do_softirq_own_stack)
75154f40 863
3d75e1b8 864#ifdef CONFIG_XEN
cb5dd2c5 865idtentry xen_hypervisor_callback xen_do_hypervisor_callback has_error_code=0
3d75e1b8
JF
866
867/*
9f1e87ea
CG
868 * A note on the "critical region" in our callback handler.
869 * We want to avoid stacking callback handlers due to events occurring
870 * during handling of the last event. To do this, we keep events disabled
871 * until we've done all processing. HOWEVER, we must enable events before
872 * popping the stack frame (can't be done atomically) and so it would still
873 * be possible to get enough handler activations to overflow the stack.
874 * Although unlikely, bugs of that kind are hard to track down, so we'd
875 * like to avoid the possibility.
876 * So, on entry to the handler we detect whether we interrupted an
877 * existing activation in its critical region -- if so, we pop the current
878 * activation and restart the handler using the previous one.
879 */
4d732138
IM
880ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */
881
9f1e87ea
CG
882/*
883 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
884 * see the correct pointer to the pt_regs
885 */
4d732138
IM
886 movq %rdi, %rsp /* we don't return, adjust the stack frame */
88711: incl PER_CPU_VAR(irq_count)
888 movq %rsp, %rbp
889 cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp
890 pushq %rbp /* frame pointer backlink */
891 call xen_evtchn_do_upcall
892 popq %rsp
893 decl PER_CPU_VAR(irq_count)
fdfd811d 894#ifndef CONFIG_PREEMPT
4d732138 895 call xen_maybe_preempt_hcall
fdfd811d 896#endif
4d732138 897 jmp error_exit
371c394a 898END(xen_do_hypervisor_callback)
3d75e1b8
JF
899
900/*
9f1e87ea
CG
901 * Hypervisor uses this for application faults while it executes.
902 * We get here for two reasons:
903 * 1. Fault while reloading DS, ES, FS or GS
904 * 2. Fault while executing IRET
905 * Category 1 we do not need to fix up as Xen has already reloaded all segment
906 * registers that could be reloaded and zeroed the others.
907 * Category 2 we fix up by killing the current process. We cannot use the
908 * normal Linux return path in this case because if we use the IRET hypercall
909 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
910 * We distinguish between categories by comparing each saved segment register
911 * with its current contents: any discrepancy means we in category 1.
912 */
3d75e1b8 913ENTRY(xen_failsafe_callback)
4d732138
IM
914 movl %ds, %ecx
915 cmpw %cx, 0x10(%rsp)
916 jne 1f
917 movl %es, %ecx
918 cmpw %cx, 0x18(%rsp)
919 jne 1f
920 movl %fs, %ecx
921 cmpw %cx, 0x20(%rsp)
922 jne 1f
923 movl %gs, %ecx
924 cmpw %cx, 0x28(%rsp)
925 jne 1f
3d75e1b8 926 /* All segments match their saved values => Category 2 (Bad IRET). */
4d732138
IM
927 movq (%rsp), %rcx
928 movq 8(%rsp), %r11
929 addq $0x30, %rsp
930 pushq $0 /* RIP */
931 pushq %r11
932 pushq %rcx
933 jmp general_protection
3d75e1b8 9341: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
4d732138
IM
935 movq (%rsp), %rcx
936 movq 8(%rsp), %r11
937 addq $0x30, %rsp
938 pushq $-1 /* orig_ax = -1 => not a system call */
76f5df43
DV
939 ALLOC_PT_GPREGS_ON_STACK
940 SAVE_C_REGS
941 SAVE_EXTRA_REGS
4d732138 942 jmp error_exit
3d75e1b8
JF
943END(xen_failsafe_callback)
944
cf910e83 945apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
38e20b07
SY
946 xen_hvm_callback_vector xen_evtchn_do_upcall
947
3d75e1b8 948#endif /* CONFIG_XEN */
ddeb8f21 949
bc2b0331 950#if IS_ENABLED(CONFIG_HYPERV)
cf910e83 951apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
bc2b0331
S
952 hyperv_callback_vector hyperv_vector_handler
953#endif /* CONFIG_HYPERV */
954
4d732138
IM
955idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
956idtentry int3 do_int3 has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
957idtentry stack_segment do_stack_segment has_error_code=1
958
6cac5a92 959#ifdef CONFIG_XEN
4d732138
IM
960idtentry xen_debug do_debug has_error_code=0
961idtentry xen_int3 do_int3 has_error_code=0
962idtentry xen_stack_segment do_stack_segment has_error_code=1
6cac5a92 963#endif
4d732138
IM
964
965idtentry general_protection do_general_protection has_error_code=1
966trace_idtentry page_fault do_page_fault has_error_code=1
967
631bc487 968#ifdef CONFIG_KVM_GUEST
4d732138 969idtentry async_page_fault do_async_page_fault has_error_code=1
631bc487 970#endif
4d732138 971
ddeb8f21 972#ifdef CONFIG_X86_MCE
4d732138 973idtentry machine_check has_error_code=0 paranoid=1 do_sym=*machine_check_vector(%rip)
ddeb8f21
AH
974#endif
975
ebfc453e
DV
976/*
977 * Save all registers in pt_regs, and switch gs if needed.
978 * Use slow, but surefire "are we in kernel?" check.
979 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
980 */
981ENTRY(paranoid_entry)
1eeb207f
DV
982 cld
983 SAVE_C_REGS 8
984 SAVE_EXTRA_REGS 8
4d732138
IM
985 movl $1, %ebx
986 movl $MSR_GS_BASE, %ecx
1eeb207f 987 rdmsr
4d732138
IM
988 testl %edx, %edx
989 js 1f /* negative -> in kernel */
1eeb207f 990 SWAPGS
4d732138 991 xorl %ebx, %ebx
1eeb207f 9921: ret
ebfc453e 993END(paranoid_entry)
ddeb8f21 994
ebfc453e
DV
995/*
996 * "Paranoid" exit path from exception stack. This is invoked
997 * only on return from non-NMI IST interrupts that came
998 * from kernel space.
999 *
1000 * We may be returning to very strange contexts (e.g. very early
1001 * in syscall entry), so checking for preemption here would
1002 * be complicated. Fortunately, we there's no good reason
1003 * to try to handle preemption here.
4d732138
IM
1004 *
1005 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
ebfc453e 1006 */
ddeb8f21 1007ENTRY(paranoid_exit)
ddeb8f21 1008 DISABLE_INTERRUPTS(CLBR_NONE)
5963e317 1009 TRACE_IRQS_OFF_DEBUG
4d732138
IM
1010 testl %ebx, %ebx /* swapgs needed? */
1011 jnz paranoid_exit_no_swapgs
f2db9382 1012 TRACE_IRQS_IRETQ
ddeb8f21 1013 SWAPGS_UNSAFE_STACK
4d732138 1014 jmp paranoid_exit_restore
0d550836 1015paranoid_exit_no_swapgs:
f2db9382 1016 TRACE_IRQS_IRETQ_DEBUG
0d550836 1017paranoid_exit_restore:
76f5df43
DV
1018 RESTORE_EXTRA_REGS
1019 RESTORE_C_REGS
1020 REMOVE_PT_GPREGS_FROM_STACK 8
48e08d0f 1021 INTERRUPT_RETURN
ddeb8f21
AH
1022END(paranoid_exit)
1023
1024/*
ebfc453e 1025 * Save all registers in pt_regs, and switch gs if needed.
539f5113 1026 * Return: EBX=0: came from user mode; EBX=1: otherwise
ddeb8f21
AH
1027 */
1028ENTRY(error_entry)
ddeb8f21 1029 cld
76f5df43
DV
1030 SAVE_C_REGS 8
1031 SAVE_EXTRA_REGS 8
4d732138 1032 xorl %ebx, %ebx
03335e95 1033 testb $3, CS+8(%rsp)
cb6f64ed 1034 jz .Lerror_kernelspace
539f5113 1035
cb6f64ed
AL
1036.Lerror_entry_from_usermode_swapgs:
1037 /*
1038 * We entered from user mode or we're pretending to have entered
1039 * from user mode due to an IRET fault.
1040 */
ddeb8f21 1041 SWAPGS
539f5113 1042
cb6f64ed 1043.Lerror_entry_from_usermode_after_swapgs:
f1075053
AL
1044 /*
1045 * We need to tell lockdep that IRQs are off. We can't do this until
1046 * we fix gsbase, and we should do it before enter_from_user_mode
1047 * (which can take locks).
1048 */
1049 TRACE_IRQS_OFF
478dc89c 1050 CALL_enter_from_user_mode
f1075053 1051 ret
02bc7768 1052
cb6f64ed 1053.Lerror_entry_done:
ddeb8f21
AH
1054 TRACE_IRQS_OFF
1055 ret
ddeb8f21 1056
ebfc453e
DV
1057 /*
1058 * There are two places in the kernel that can potentially fault with
1059 * usergs. Handle them here. B stepping K8s sometimes report a
1060 * truncated RIP for IRET exceptions returning to compat mode. Check
1061 * for these here too.
1062 */
cb6f64ed 1063.Lerror_kernelspace:
4d732138
IM
1064 incl %ebx
1065 leaq native_irq_return_iret(%rip), %rcx
1066 cmpq %rcx, RIP+8(%rsp)
cb6f64ed 1067 je .Lerror_bad_iret
4d732138
IM
1068 movl %ecx, %eax /* zero extend */
1069 cmpq %rax, RIP+8(%rsp)
cb6f64ed 1070 je .Lbstep_iret
42c748bb 1071 cmpq $.Lgs_change, RIP+8(%rsp)
cb6f64ed 1072 jne .Lerror_entry_done
539f5113
AL
1073
1074 /*
42c748bb 1075 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up
539f5113 1076 * gsbase and proceed. We'll fix up the exception and land in
42c748bb 1077 * .Lgs_change's error handler with kernel gsbase.
539f5113 1078 */
cb6f64ed 1079 jmp .Lerror_entry_from_usermode_swapgs
ae24ffe5 1080
cb6f64ed 1081.Lbstep_iret:
ae24ffe5 1082 /* Fix truncated RIP */
4d732138 1083 movq %rcx, RIP+8(%rsp)
b645af2d
AL
1084 /* fall through */
1085
cb6f64ed 1086.Lerror_bad_iret:
539f5113
AL
1087 /*
1088 * We came from an IRET to user mode, so we have user gsbase.
1089 * Switch to kernel gsbase:
1090 */
b645af2d 1091 SWAPGS
539f5113
AL
1092
1093 /*
1094 * Pretend that the exception came from user mode: set up pt_regs
1095 * as if we faulted immediately after IRET and clear EBX so that
1096 * error_exit knows that we will be returning to user mode.
1097 */
4d732138
IM
1098 mov %rsp, %rdi
1099 call fixup_bad_iret
1100 mov %rax, %rsp
539f5113 1101 decl %ebx
cb6f64ed 1102 jmp .Lerror_entry_from_usermode_after_swapgs
ddeb8f21
AH
1103END(error_entry)
1104
1105
539f5113
AL
1106/*
1107 * On entry, EBS is a "return to kernel mode" flag:
1108 * 1: already in kernel mode, don't need SWAPGS
1109 * 0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
1110 */
ddeb8f21 1111ENTRY(error_exit)
4d732138 1112 movl %ebx, %eax
ddeb8f21
AH
1113 DISABLE_INTERRUPTS(CLBR_NONE)
1114 TRACE_IRQS_OFF
4d732138
IM
1115 testl %eax, %eax
1116 jnz retint_kernel
1117 jmp retint_user
ddeb8f21
AH
1118END(error_exit)
1119
0784b364 1120/* Runs on exception stack */
ddeb8f21 1121ENTRY(nmi)
fc57a7c6
AL
1122 /*
1123 * Fix up the exception frame if we're on Xen.
1124 * PARAVIRT_ADJUST_EXCEPTION_FRAME is guaranteed to push at most
1125 * one value to the stack on native, so it may clobber the rdx
1126 * scratch slot, but it won't clobber any of the important
1127 * slots past it.
1128 *
1129 * Xen is a different story, because the Xen frame itself overlaps
1130 * the "NMI executing" variable.
1131 */
ddeb8f21 1132 PARAVIRT_ADJUST_EXCEPTION_FRAME
fc57a7c6 1133
3f3c8b8c
SR
1134 /*
1135 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1136 * the iretq it performs will take us out of NMI context.
1137 * This means that we can have nested NMIs where the next
1138 * NMI is using the top of the stack of the previous NMI. We
1139 * can't let it execute because the nested NMI will corrupt the
1140 * stack of the previous NMI. NMI handlers are not re-entrant
1141 * anyway.
1142 *
1143 * To handle this case we do the following:
1144 * Check the a special location on the stack that contains
1145 * a variable that is set when NMIs are executing.
1146 * The interrupted task's stack is also checked to see if it
1147 * is an NMI stack.
1148 * If the variable is not set and the stack is not the NMI
1149 * stack then:
1150 * o Set the special variable on the stack
0b22930e
AL
1151 * o Copy the interrupt frame into an "outermost" location on the
1152 * stack
1153 * o Copy the interrupt frame into an "iret" location on the stack
3f3c8b8c
SR
1154 * o Continue processing the NMI
1155 * If the variable is set or the previous stack is the NMI stack:
0b22930e 1156 * o Modify the "iret" location to jump to the repeat_nmi
3f3c8b8c
SR
1157 * o return back to the first NMI
1158 *
1159 * Now on exit of the first NMI, we first clear the stack variable
1160 * The NMI stack will tell any nested NMIs at that point that it is
1161 * nested. Then we pop the stack normally with iret, and if there was
1162 * a nested NMI that updated the copy interrupt stack frame, a
1163 * jump will be made to the repeat_nmi code that will handle the second
1164 * NMI.
9b6e6a83
AL
1165 *
1166 * However, espfix prevents us from directly returning to userspace
1167 * with a single IRET instruction. Similarly, IRET to user mode
1168 * can fault. We therefore handle NMIs from user space like
1169 * other IST entries.
3f3c8b8c
SR
1170 */
1171
146b2b09 1172 /* Use %rdx as our temp variable throughout */
4d732138 1173 pushq %rdx
3f3c8b8c 1174
9b6e6a83
AL
1175 testb $3, CS-RIP+8(%rsp)
1176 jz .Lnmi_from_kernel
1177
1178 /*
1179 * NMI from user mode. We need to run on the thread stack, but we
1180 * can't go through the normal entry paths: NMIs are masked, and
1181 * we don't want to enable interrupts, because then we'll end
1182 * up in an awkward situation in which IRQs are on but NMIs
1183 * are off.
83c133cf
AL
1184 *
1185 * We also must not push anything to the stack before switching
1186 * stacks lest we corrupt the "NMI executing" variable.
9b6e6a83
AL
1187 */
1188
83c133cf 1189 SWAPGS_UNSAFE_STACK
9b6e6a83
AL
1190 cld
1191 movq %rsp, %rdx
1192 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1193 pushq 5*8(%rdx) /* pt_regs->ss */
1194 pushq 4*8(%rdx) /* pt_regs->rsp */
1195 pushq 3*8(%rdx) /* pt_regs->flags */
1196 pushq 2*8(%rdx) /* pt_regs->cs */
1197 pushq 1*8(%rdx) /* pt_regs->rip */
1198 pushq $-1 /* pt_regs->orig_ax */
1199 pushq %rdi /* pt_regs->di */
1200 pushq %rsi /* pt_regs->si */
1201 pushq (%rdx) /* pt_regs->dx */
1202 pushq %rcx /* pt_regs->cx */
1203 pushq %rax /* pt_regs->ax */
1204 pushq %r8 /* pt_regs->r8 */
1205 pushq %r9 /* pt_regs->r9 */
1206 pushq %r10 /* pt_regs->r10 */
1207 pushq %r11 /* pt_regs->r11 */
1208 pushq %rbx /* pt_regs->rbx */
1209 pushq %rbp /* pt_regs->rbp */
1210 pushq %r12 /* pt_regs->r12 */
1211 pushq %r13 /* pt_regs->r13 */
1212 pushq %r14 /* pt_regs->r14 */
1213 pushq %r15 /* pt_regs->r15 */
1214
1215 /*
1216 * At this point we no longer need to worry about stack damage
1217 * due to nesting -- we're on the normal thread stack and we're
1218 * done with the NMI stack.
1219 */
1220
1221 movq %rsp, %rdi
1222 movq $-1, %rsi
1223 call do_nmi
1224
45d5a168 1225 /*
9b6e6a83
AL
1226 * Return back to user mode. We must *not* do the normal exit
1227 * work, because we don't want to enable interrupts. Fortunately,
1228 * do_nmi doesn't modify pt_regs.
45d5a168 1229 */
9b6e6a83
AL
1230 SWAPGS
1231 jmp restore_c_regs_and_iret
45d5a168 1232
9b6e6a83 1233.Lnmi_from_kernel:
3f3c8b8c 1234 /*
0b22930e
AL
1235 * Here's what our stack frame will look like:
1236 * +---------------------------------------------------------+
1237 * | original SS |
1238 * | original Return RSP |
1239 * | original RFLAGS |
1240 * | original CS |
1241 * | original RIP |
1242 * +---------------------------------------------------------+
1243 * | temp storage for rdx |
1244 * +---------------------------------------------------------+
1245 * | "NMI executing" variable |
1246 * +---------------------------------------------------------+
1247 * | iret SS } Copied from "outermost" frame |
1248 * | iret Return RSP } on each loop iteration; overwritten |
1249 * | iret RFLAGS } by a nested NMI to force another |
1250 * | iret CS } iteration if needed. |
1251 * | iret RIP } |
1252 * +---------------------------------------------------------+
1253 * | outermost SS } initialized in first_nmi; |
1254 * | outermost Return RSP } will not be changed before |
1255 * | outermost RFLAGS } NMI processing is done. |
1256 * | outermost CS } Copied to "iret" frame on each |
1257 * | outermost RIP } iteration. |
1258 * +---------------------------------------------------------+
1259 * | pt_regs |
1260 * +---------------------------------------------------------+
1261 *
1262 * The "original" frame is used by hardware. Before re-enabling
1263 * NMIs, we need to be done with it, and we need to leave enough
1264 * space for the asm code here.
1265 *
1266 * We return by executing IRET while RSP points to the "iret" frame.
1267 * That will either return for real or it will loop back into NMI
1268 * processing.
1269 *
1270 * The "outermost" frame is copied to the "iret" frame on each
1271 * iteration of the loop, so each iteration starts with the "iret"
1272 * frame pointing to the final return target.
1273 */
1274
45d5a168 1275 /*
0b22930e
AL
1276 * Determine whether we're a nested NMI.
1277 *
a27507ca
AL
1278 * If we interrupted kernel code between repeat_nmi and
1279 * end_repeat_nmi, then we are a nested NMI. We must not
1280 * modify the "iret" frame because it's being written by
1281 * the outer NMI. That's okay; the outer NMI handler is
1282 * about to about to call do_nmi anyway, so we can just
1283 * resume the outer NMI.
45d5a168 1284 */
a27507ca
AL
1285
1286 movq $repeat_nmi, %rdx
1287 cmpq 8(%rsp), %rdx
1288 ja 1f
1289 movq $end_repeat_nmi, %rdx
1290 cmpq 8(%rsp), %rdx
1291 ja nested_nmi_out
12921:
45d5a168 1293
3f3c8b8c 1294 /*
a27507ca 1295 * Now check "NMI executing". If it's set, then we're nested.
0b22930e
AL
1296 * This will not detect if we interrupted an outer NMI just
1297 * before IRET.
3f3c8b8c 1298 */
4d732138
IM
1299 cmpl $1, -8(%rsp)
1300 je nested_nmi
3f3c8b8c
SR
1301
1302 /*
0b22930e
AL
1303 * Now test if the previous stack was an NMI stack. This covers
1304 * the case where we interrupt an outer NMI after it clears
810bc075
AL
1305 * "NMI executing" but before IRET. We need to be careful, though:
1306 * there is one case in which RSP could point to the NMI stack
1307 * despite there being no NMI active: naughty userspace controls
1308 * RSP at the very beginning of the SYSCALL targets. We can
1309 * pull a fast one on naughty userspace, though: we program
1310 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1311 * if it controls the kernel's RSP. We set DF before we clear
1312 * "NMI executing".
3f3c8b8c 1313 */
0784b364
DV
1314 lea 6*8(%rsp), %rdx
1315 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1316 cmpq %rdx, 4*8(%rsp)
1317 /* If the stack pointer is above the NMI stack, this is a normal NMI */
1318 ja first_nmi
4d732138 1319
0784b364
DV
1320 subq $EXCEPTION_STKSZ, %rdx
1321 cmpq %rdx, 4*8(%rsp)
1322 /* If it is below the NMI stack, it is a normal NMI */
1323 jb first_nmi
810bc075
AL
1324
1325 /* Ah, it is within the NMI stack. */
1326
1327 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1328 jz first_nmi /* RSP was user controlled. */
1329
1330 /* This is a nested NMI. */
0784b364 1331
3f3c8b8c
SR
1332nested_nmi:
1333 /*
0b22930e
AL
1334 * Modify the "iret" frame to point to repeat_nmi, forcing another
1335 * iteration of NMI handling.
3f3c8b8c 1336 */
23a781e9 1337 subq $8, %rsp
4d732138
IM
1338 leaq -10*8(%rsp), %rdx
1339 pushq $__KERNEL_DS
1340 pushq %rdx
131484c8 1341 pushfq
4d732138
IM
1342 pushq $__KERNEL_CS
1343 pushq $repeat_nmi
3f3c8b8c
SR
1344
1345 /* Put stack back */
4d732138 1346 addq $(6*8), %rsp
3f3c8b8c
SR
1347
1348nested_nmi_out:
4d732138 1349 popq %rdx
3f3c8b8c 1350
0b22930e 1351 /* We are returning to kernel mode, so this cannot result in a fault. */
3f3c8b8c
SR
1352 INTERRUPT_RETURN
1353
1354first_nmi:
0b22930e 1355 /* Restore rdx. */
4d732138 1356 movq (%rsp), %rdx
62610913 1357
36f1a77b
AL
1358 /* Make room for "NMI executing". */
1359 pushq $0
3f3c8b8c 1360
0b22930e 1361 /* Leave room for the "iret" frame */
4d732138 1362 subq $(5*8), %rsp
28696f43 1363
0b22930e 1364 /* Copy the "original" frame to the "outermost" frame */
3f3c8b8c 1365 .rept 5
4d732138 1366 pushq 11*8(%rsp)
3f3c8b8c 1367 .endr
62610913 1368
79fb4ad6
SR
1369 /* Everything up to here is safe from nested NMIs */
1370
a97439aa
AL
1371#ifdef CONFIG_DEBUG_ENTRY
1372 /*
1373 * For ease of testing, unmask NMIs right away. Disabled by
1374 * default because IRET is very expensive.
1375 */
1376 pushq $0 /* SS */
1377 pushq %rsp /* RSP (minus 8 because of the previous push) */
1378 addq $8, (%rsp) /* Fix up RSP */
1379 pushfq /* RFLAGS */
1380 pushq $__KERNEL_CS /* CS */
1381 pushq $1f /* RIP */
1382 INTERRUPT_RETURN /* continues at repeat_nmi below */
13831:
1384#endif
1385
0b22930e 1386repeat_nmi:
62610913
JB
1387 /*
1388 * If there was a nested NMI, the first NMI's iret will return
1389 * here. But NMIs are still enabled and we can take another
1390 * nested NMI. The nested NMI checks the interrupted RIP to see
1391 * if it is between repeat_nmi and end_repeat_nmi, and if so
1392 * it will just return, as we are about to repeat an NMI anyway.
1393 * This makes it safe to copy to the stack frame that a nested
1394 * NMI will update.
0b22930e
AL
1395 *
1396 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
1397 * we're repeating an NMI, gsbase has the same value that it had on
1398 * the first iteration. paranoid_entry will load the kernel
36f1a77b
AL
1399 * gsbase if needed before we call do_nmi. "NMI executing"
1400 * is zero.
62610913 1401 */
36f1a77b 1402 movq $1, 10*8(%rsp) /* Set "NMI executing". */
3f3c8b8c 1403
62610913 1404 /*
0b22930e
AL
1405 * Copy the "outermost" frame to the "iret" frame. NMIs that nest
1406 * here must not modify the "iret" frame while we're writing to
1407 * it or it will end up containing garbage.
62610913 1408 */
4d732138 1409 addq $(10*8), %rsp
3f3c8b8c 1410 .rept 5
4d732138 1411 pushq -6*8(%rsp)
3f3c8b8c 1412 .endr
4d732138 1413 subq $(5*8), %rsp
62610913 1414end_repeat_nmi:
3f3c8b8c
SR
1415
1416 /*
0b22930e
AL
1417 * Everything below this point can be preempted by a nested NMI.
1418 * If this happens, then the inner NMI will change the "iret"
1419 * frame to point back to repeat_nmi.
3f3c8b8c 1420 */
4d732138 1421 pushq $-1 /* ORIG_RAX: no syscall to restart */
76f5df43
DV
1422 ALLOC_PT_GPREGS_ON_STACK
1423
1fd466ef 1424 /*
ebfc453e 1425 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1fd466ef
SR
1426 * as we should not be calling schedule in NMI context.
1427 * Even with normal interrupts enabled. An NMI should not be
1428 * setting NEED_RESCHED or anything that normal interrupts and
1429 * exceptions might do.
1430 */
4d732138 1431 call paranoid_entry
7fbb98c5 1432
ddeb8f21 1433 /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
4d732138
IM
1434 movq %rsp, %rdi
1435 movq $-1, %rsi
1436 call do_nmi
7fbb98c5 1437
4d732138
IM
1438 testl %ebx, %ebx /* swapgs needed? */
1439 jnz nmi_restore
ddeb8f21
AH
1440nmi_swapgs:
1441 SWAPGS_UNSAFE_STACK
1442nmi_restore:
76f5df43
DV
1443 RESTORE_EXTRA_REGS
1444 RESTORE_C_REGS
0b22930e
AL
1445
1446 /* Point RSP at the "iret" frame. */
76f5df43 1447 REMOVE_PT_GPREGS_FROM_STACK 6*8
28696f43 1448
810bc075
AL
1449 /*
1450 * Clear "NMI executing". Set DF first so that we can easily
1451 * distinguish the remaining code between here and IRET from
1452 * the SYSCALL entry and exit paths. On a native kernel, we
1453 * could just inspect RIP, but, on paravirt kernels,
1454 * INTERRUPT_RETURN can translate into a jump into a
1455 * hypercall page.
1456 */
1457 std
1458 movq $0, 5*8(%rsp) /* clear "NMI executing" */
0b22930e
AL
1459
1460 /*
1461 * INTERRUPT_RETURN reads the "iret" frame and exits the NMI
1462 * stack in a single instruction. We are returning to kernel
1463 * mode, so this cannot result in a fault.
1464 */
5ca6f70f 1465 INTERRUPT_RETURN
ddeb8f21
AH
1466END(nmi)
1467
1468ENTRY(ignore_sysret)
4d732138 1469 mov $-ENOSYS, %eax
ddeb8f21 1470 sysret
ddeb8f21 1471END(ignore_sysret)
2deb4be2
AL
1472
1473ENTRY(rewind_stack_do_exit)
1474 /* Prevent any naive code from trying to unwind to our caller. */
1475 xorl %ebp, %ebp
1476
1477 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax
1478 leaq -TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%rax), %rsp
1479
1480 call do_exit
14811: jmp 1b
1482END(rewind_stack_do_exit)