]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - arch/x86/entry/entry_64.S
x86/entry/64: Merge SAVE_C_REGS and SAVE_EXTRA_REGS, remove unused extensions
[mirror_ubuntu-focal-kernel.git] / arch / x86 / entry / entry_64.S
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2/*
3 * linux/arch/x86_64/entry.S
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
7 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
4d732138 8 *
1da177e4
LT
9 * entry.S contains the system-call and fault low-level handling routines.
10 *
8b4777a4
AL
11 * Some of this is documented in Documentation/x86/entry_64.txt
12 *
0bd7b798 13 * A note on terminology:
4d732138
IM
14 * - iret frame: Architecture defined interrupt frame from SS to RIP
15 * at the top of the kernel process stack.
2e91a17b
AK
16 *
17 * Some macro usage:
4d732138
IM
18 * - ENTRY/END: Define functions in the symbol table.
19 * - TRACE_IRQ_*: Trace hardirq state for lock debugging.
20 * - idtentry: Define exception entry points.
1da177e4 21 */
1da177e4
LT
22#include <linux/linkage.h>
23#include <asm/segment.h>
1da177e4
LT
24#include <asm/cache.h>
25#include <asm/errno.h>
e2d5df93 26#include <asm/asm-offsets.h>
1da177e4
LT
27#include <asm/msr.h>
28#include <asm/unistd.h>
29#include <asm/thread_info.h>
30#include <asm/hw_irq.h>
0341c14d 31#include <asm/page_types.h>
2601e64d 32#include <asm/irqflags.h>
72fe4858 33#include <asm/paravirt.h>
9939ddaf 34#include <asm/percpu.h>
d7abc0fa 35#include <asm/asm.h>
63bcff2a 36#include <asm/smap.h>
3891a04a 37#include <asm/pgtable_types.h>
784d5699 38#include <asm/export.h>
8c1f7558 39#include <asm/frame.h>
2641f08b 40#include <asm/nospec-branch.h>
d7e7528b 41#include <linux/err.h>
1da177e4 42
6fd166aa
PZ
43#include "calling.h"
44
4d732138
IM
45.code64
46.section .entry.text, "ax"
16444a8a 47
72fe4858 48#ifdef CONFIG_PARAVIRT
2be29982 49ENTRY(native_usergs_sysret64)
8c1f7558 50 UNWIND_HINT_EMPTY
72fe4858
GOC
51 swapgs
52 sysretq
8c1f7558 53END(native_usergs_sysret64)
72fe4858
GOC
54#endif /* CONFIG_PARAVIRT */
55
ca37e57b 56.macro TRACE_IRQS_FLAGS flags:req
2601e64d 57#ifdef CONFIG_TRACE_IRQFLAGS
ca37e57b 58 bt $9, \flags /* interrupts off? */
4d732138 59 jnc 1f
2601e64d
IM
60 TRACE_IRQS_ON
611:
62#endif
63.endm
64
ca37e57b
AL
65.macro TRACE_IRQS_IRETQ
66 TRACE_IRQS_FLAGS EFLAGS(%rsp)
67.endm
68
5963e317
SR
69/*
70 * When dynamic function tracer is enabled it will add a breakpoint
71 * to all locations that it is about to modify, sync CPUs, update
72 * all the code, sync CPUs, then remove the breakpoints. In this time
73 * if lockdep is enabled, it might jump back into the debug handler
74 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
75 *
76 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
77 * make sure the stack pointer does not get reset back to the top
78 * of the debug stack, and instead just reuses the current stack.
79 */
80#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
81
82.macro TRACE_IRQS_OFF_DEBUG
4d732138 83 call debug_stack_set_zero
5963e317 84 TRACE_IRQS_OFF
4d732138 85 call debug_stack_reset
5963e317
SR
86.endm
87
88.macro TRACE_IRQS_ON_DEBUG
4d732138 89 call debug_stack_set_zero
5963e317 90 TRACE_IRQS_ON
4d732138 91 call debug_stack_reset
5963e317
SR
92.endm
93
f2db9382 94.macro TRACE_IRQS_IRETQ_DEBUG
4d732138
IM
95 bt $9, EFLAGS(%rsp) /* interrupts off? */
96 jnc 1f
5963e317
SR
97 TRACE_IRQS_ON_DEBUG
981:
99.endm
100
101#else
4d732138
IM
102# define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF
103# define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON
104# define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ
5963e317
SR
105#endif
106
1da177e4 107/*
4d732138 108 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
1da177e4 109 *
fda57b22
AL
110 * This is the only entry point used for 64-bit system calls. The
111 * hardware interface is reasonably well designed and the register to
112 * argument mapping Linux uses fits well with the registers that are
113 * available when SYSCALL is used.
114 *
115 * SYSCALL instructions can be found inlined in libc implementations as
116 * well as some other programs and libraries. There are also a handful
117 * of SYSCALL instructions in the vDSO used, for example, as a
118 * clock_gettimeofday fallback.
119 *
4d732138 120 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
b87cf63e
DV
121 * then loads new ss, cs, and rip from previously programmed MSRs.
122 * rflags gets masked by a value from another MSR (so CLD and CLAC
123 * are not needed). SYSCALL does not save anything on the stack
124 * and does not change rsp.
125 *
126 * Registers on entry:
1da177e4 127 * rax system call number
b87cf63e
DV
128 * rcx return address
129 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
1da177e4 130 * rdi arg0
1da177e4 131 * rsi arg1
0bd7b798 132 * rdx arg2
b87cf63e 133 * r10 arg3 (needs to be moved to rcx to conform to C ABI)
1da177e4
LT
134 * r8 arg4
135 * r9 arg5
4d732138 136 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
0bd7b798 137 *
1da177e4
LT
138 * Only called from user space.
139 *
7fcb3bc3 140 * When user can change pt_regs->foo always force IRET. That is because
7bf36bbc
AK
141 * it deals with uncanonical addresses better. SYSRET has trouble
142 * with them due to bugs in both AMD and Intel CPUs.
0bd7b798 143 */
1da177e4 144
3386bc8a
AL
145 .pushsection .entry_trampoline, "ax"
146
147/*
148 * The code in here gets remapped into cpu_entry_area's trampoline. This means
149 * that the assembler and linker have the wrong idea as to where this code
150 * lives (and, in fact, it's mapped more than once, so it's not even at a
151 * fixed address). So we can't reference any symbols outside the entry
152 * trampoline and expect it to work.
153 *
154 * Instead, we carefully abuse %rip-relative addressing.
155 * _entry_trampoline(%rip) refers to the start of the remapped) entry
156 * trampoline. We can thus find cpu_entry_area with this macro:
157 */
158
159#define CPU_ENTRY_AREA \
160 _entry_trampoline - CPU_ENTRY_AREA_entry_trampoline(%rip)
161
162/* The top word of the SYSENTER stack is hot and is usable as scratch space. */
4fe2d8b1
DH
163#define RSP_SCRATCH CPU_ENTRY_AREA_entry_stack + \
164 SIZEOF_entry_stack - 8 + CPU_ENTRY_AREA
3386bc8a
AL
165
166ENTRY(entry_SYSCALL_64_trampoline)
167 UNWIND_HINT_EMPTY
168 swapgs
169
170 /* Stash the user RSP. */
171 movq %rsp, RSP_SCRATCH
172
8a09317b
DH
173 /* Note: using %rsp as a scratch reg. */
174 SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
175
3386bc8a
AL
176 /* Load the top of the task stack into RSP */
177 movq CPU_ENTRY_AREA_tss + TSS_sp1 + CPU_ENTRY_AREA, %rsp
178
179 /* Start building the simulated IRET frame. */
180 pushq $__USER_DS /* pt_regs->ss */
181 pushq RSP_SCRATCH /* pt_regs->sp */
182 pushq %r11 /* pt_regs->flags */
183 pushq $__USER_CS /* pt_regs->cs */
184 pushq %rcx /* pt_regs->ip */
185
186 /*
187 * x86 lacks a near absolute jump, and we can't jump to the real
188 * entry text with a relative jump. We could push the target
189 * address and then use retq, but this destroys the pipeline on
190 * many CPUs (wasting over 20 cycles on Sandy Bridge). Instead,
191 * spill RDI and restore it in a second-stage trampoline.
192 */
193 pushq %rdi
194 movq $entry_SYSCALL_64_stage2, %rdi
2641f08b 195 JMP_NOSPEC %rdi
3386bc8a
AL
196END(entry_SYSCALL_64_trampoline)
197
198 .popsection
199
200ENTRY(entry_SYSCALL_64_stage2)
201 UNWIND_HINT_EMPTY
202 popq %rdi
203 jmp entry_SYSCALL_64_after_hwframe
204END(entry_SYSCALL_64_stage2)
205
b2502b41 206ENTRY(entry_SYSCALL_64)
8c1f7558 207 UNWIND_HINT_EMPTY
9ed8e7d8
DV
208 /*
209 * Interrupts are off on entry.
210 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
211 * it is too small to ever cause noticeable irq latency.
212 */
72fe4858 213
8a9949bc 214 swapgs
8a09317b 215 /*
14b1fcc6 216 * This path is only taken when PAGE_TABLE_ISOLATION is disabled so it
8a09317b
DH
217 * is not required to switch CR3.
218 */
4d732138
IM
219 movq %rsp, PER_CPU_VAR(rsp_scratch)
220 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
9ed8e7d8
DV
221
222 /* Construct struct pt_regs on stack */
4d732138
IM
223 pushq $__USER_DS /* pt_regs->ss */
224 pushq PER_CPU_VAR(rsp_scratch) /* pt_regs->sp */
4d732138
IM
225 pushq %r11 /* pt_regs->flags */
226 pushq $__USER_CS /* pt_regs->cs */
227 pushq %rcx /* pt_regs->ip */
8a9949bc 228GLOBAL(entry_SYSCALL_64_after_hwframe)
4d732138
IM
229 pushq %rax /* pt_regs->orig_ax */
230 pushq %rdi /* pt_regs->di */
231 pushq %rsi /* pt_regs->si */
232 pushq %rdx /* pt_regs->dx */
233 pushq %rcx /* pt_regs->cx */
234 pushq $-ENOSYS /* pt_regs->ax */
235 pushq %r8 /* pt_regs->r8 */
236 pushq %r9 /* pt_regs->r9 */
237 pushq %r10 /* pt_regs->r10 */
8e1eb3fa
DW
238 /*
239 * Clear extra registers that a speculation attack might
240 * otherwise want to exploit. Interleave XOR with PUSH
241 * for better uop scheduling:
242 */
243 xorq %r10, %r10 /* nospec r10 */
4d732138 244 pushq %r11 /* pt_regs->r11 */
8e1eb3fa 245 xorq %r11, %r11 /* nospec r11 */
d1f77320 246 pushq %rbx /* pt_regs->rbx */
8e1eb3fa 247 xorl %ebx, %ebx /* nospec rbx */
d1f77320 248 pushq %rbp /* pt_regs->rbp */
8e1eb3fa 249 xorl %ebp, %ebp /* nospec rbp */
d1f77320 250 pushq %r12 /* pt_regs->r12 */
8e1eb3fa 251 xorq %r12, %r12 /* nospec r12 */
d1f77320 252 pushq %r13 /* pt_regs->r13 */
8e1eb3fa 253 xorq %r13, %r13 /* nospec r13 */
d1f77320 254 pushq %r14 /* pt_regs->r14 */
8e1eb3fa 255 xorq %r14, %r14 /* nospec r14 */
d1f77320 256 pushq %r15 /* pt_regs->r15 */
8e1eb3fa 257 xorq %r15, %r15 /* nospec r15 */
d1f77320 258 UNWIND_HINT_REGS
4d732138 259
548c3050
AL
260 TRACE_IRQS_OFF
261
1e423bff 262 /* IRQs are off. */
29ea1b25 263 movq %rsp, %rdi
1e423bff
AL
264 call do_syscall_64 /* returns with IRQs disabled */
265
29ea1b25 266 TRACE_IRQS_IRETQ /* we're about to change IF */
fffbb5dc
DV
267
268 /*
269 * Try to use SYSRET instead of IRET if we're returning to
8a055d7f
AL
270 * a completely clean 64-bit userspace context. If we're not,
271 * go to the slow exit path.
fffbb5dc 272 */
4d732138
IM
273 movq RCX(%rsp), %rcx
274 movq RIP(%rsp), %r11
8a055d7f
AL
275
276 cmpq %rcx, %r11 /* SYSRET requires RCX == RIP */
277 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc
DV
278
279 /*
280 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
281 * in kernel space. This essentially lets the user take over
17be0aec 282 * the kernel, since userspace controls RSP.
fffbb5dc 283 *
17be0aec 284 * If width of "canonical tail" ever becomes variable, this will need
fffbb5dc 285 * to be updated to remain correct on both old and new CPUs.
361b4b58 286 *
cbe0317b
KS
287 * Change top bits to match most significant bit (47th or 56th bit
288 * depending on paging mode) in the address.
fffbb5dc 289 */
17be0aec
DV
290 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
291 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
4d732138 292
17be0aec
DV
293 /* If this changed %rcx, it was not canonical */
294 cmpq %rcx, %r11
8a055d7f 295 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc 296
4d732138 297 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
8a055d7f 298 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc 299
4d732138
IM
300 movq R11(%rsp), %r11
301 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
8a055d7f 302 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc
DV
303
304 /*
3e035305
BP
305 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
306 * restore RF properly. If the slowpath sets it for whatever reason, we
307 * need to restore it correctly.
308 *
309 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
310 * trap from userspace immediately after SYSRET. This would cause an
311 * infinite loop whenever #DB happens with register state that satisfies
312 * the opportunistic SYSRET conditions. For example, single-stepping
313 * this user code:
fffbb5dc 314 *
4d732138 315 * movq $stuck_here, %rcx
fffbb5dc
DV
316 * pushfq
317 * popq %r11
318 * stuck_here:
319 *
320 * would never get past 'stuck_here'.
321 */
4d732138 322 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
8a055d7f 323 jnz swapgs_restore_regs_and_return_to_usermode
fffbb5dc
DV
324
325 /* nothing to check for RSP */
326
4d732138 327 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
8a055d7f 328 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc
DV
329
330 /*
4d732138
IM
331 * We win! This label is here just for ease of understanding
332 * perf profiles. Nothing jumps here.
fffbb5dc
DV
333 */
334syscall_return_via_sysret:
17be0aec 335 /* rcx and r11 are already restored (see code above) */
8c1f7558 336 UNWIND_HINT_EMPTY
4fbb3910
AL
337 POP_EXTRA_REGS
338 popq %rsi /* skip r11 */
339 popq %r10
340 popq %r9
341 popq %r8
342 popq %rax
343 popq %rsi /* skip rcx */
344 popq %rdx
345 popq %rsi
3e3b9293
AL
346
347 /*
348 * Now all regs are restored except RSP and RDI.
349 * Save old stack pointer and switch to trampoline stack.
350 */
351 movq %rsp, %rdi
c482feef 352 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
3e3b9293
AL
353
354 pushq RSP-RDI(%rdi) /* RSP */
355 pushq (%rdi) /* RDI */
356
357 /*
358 * We are on the trampoline stack. All regs except RDI are live.
359 * We can do future final exit work right here.
360 */
6fd166aa 361 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
3e3b9293 362
4fbb3910 363 popq %rdi
3e3b9293 364 popq %rsp
fffbb5dc 365 USERGS_SYSRET64
b2502b41 366END(entry_SYSCALL_64)
0bd7b798 367
0100301b
BG
368/*
369 * %rdi: prev task
370 * %rsi: next task
371 */
372ENTRY(__switch_to_asm)
8c1f7558 373 UNWIND_HINT_FUNC
0100301b
BG
374 /*
375 * Save callee-saved registers
376 * This must match the order in inactive_task_frame
377 */
378 pushq %rbp
379 pushq %rbx
380 pushq %r12
381 pushq %r13
382 pushq %r14
383 pushq %r15
384
385 /* switch stack */
386 movq %rsp, TASK_threadsp(%rdi)
387 movq TASK_threadsp(%rsi), %rsp
388
389#ifdef CONFIG_CC_STACKPROTECTOR
390 movq TASK_stack_canary(%rsi), %rbx
391 movq %rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
392#endif
393
c995efd5
DW
394#ifdef CONFIG_RETPOLINE
395 /*
396 * When switching from a shallower to a deeper call stack
397 * the RSB may either underflow or use entries populated
398 * with userspace addresses. On CPUs where those concerns
399 * exist, overwrite the RSB with entries which capture
400 * speculative execution to prevent attack.
401 */
1dde7415
BP
402 /* Clobbers %rbx */
403 FILL_RETURN_BUFFER RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
c995efd5
DW
404#endif
405
0100301b
BG
406 /* restore callee-saved registers */
407 popq %r15
408 popq %r14
409 popq %r13
410 popq %r12
411 popq %rbx
412 popq %rbp
413
414 jmp __switch_to
415END(__switch_to_asm)
416
1eeb207f
DV
417/*
418 * A newly forked process directly context switches into this address.
419 *
0100301b 420 * rax: prev task we switched from
616d2483
BG
421 * rbx: kernel thread func (NULL for user thread)
422 * r12: kernel thread arg
1eeb207f
DV
423 */
424ENTRY(ret_from_fork)
8c1f7558 425 UNWIND_HINT_EMPTY
0100301b 426 movq %rax, %rdi
ebd57499 427 call schedule_tail /* rdi: 'prev' task parameter */
1eeb207f 428
ebd57499
JP
429 testq %rbx, %rbx /* from kernel_thread? */
430 jnz 1f /* kernel threads are uncommon */
24d978b7 431
616d2483 4322:
8c1f7558 433 UNWIND_HINT_REGS
ebd57499 434 movq %rsp, %rdi
24d978b7
AL
435 call syscall_return_slowpath /* returns with IRQs disabled */
436 TRACE_IRQS_ON /* user mode is traced as IRQS on */
8a055d7f 437 jmp swapgs_restore_regs_and_return_to_usermode
616d2483
BG
438
4391:
440 /* kernel thread */
441 movq %r12, %rdi
2641f08b 442 CALL_NOSPEC %rbx
616d2483
BG
443 /*
444 * A kernel thread is allowed to return here after successfully
445 * calling do_execve(). Exit to userspace to complete the execve()
446 * syscall.
447 */
448 movq $0, RAX(%rsp)
449 jmp 2b
1eeb207f
DV
450END(ret_from_fork)
451
939b7871 452/*
3304c9c3
DV
453 * Build the entry stubs with some assembler magic.
454 * We pack 1 stub into every 8-byte block.
939b7871 455 */
3304c9c3 456 .align 8
939b7871 457ENTRY(irq_entries_start)
3304c9c3
DV
458 vector=FIRST_EXTERNAL_VECTOR
459 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
8c1f7558 460 UNWIND_HINT_IRET_REGS
4d732138 461 pushq $(~vector+0x80) /* Note: always in signed byte range */
3304c9c3 462 jmp common_interrupt
3304c9c3 463 .align 8
8c1f7558 464 vector=vector+1
3304c9c3 465 .endr
939b7871
PA
466END(irq_entries_start)
467
1d3e53e8
AL
468.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
469#ifdef CONFIG_DEBUG_ENTRY
e17f8234
BO
470 pushq %rax
471 SAVE_FLAGS(CLBR_RAX)
472 testl $X86_EFLAGS_IF, %eax
1d3e53e8
AL
473 jz .Lokay_\@
474 ud2
475.Lokay_\@:
e17f8234 476 popq %rax
1d3e53e8
AL
477#endif
478.endm
479
480/*
481 * Enters the IRQ stack if we're not already using it. NMI-safe. Clobbers
482 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
483 * Requires kernel GSBASE.
484 *
485 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
486 */
8c1f7558 487.macro ENTER_IRQ_STACK regs=1 old_rsp
1d3e53e8
AL
488 DEBUG_ENTRY_ASSERT_IRQS_OFF
489 movq %rsp, \old_rsp
8c1f7558
JP
490
491 .if \regs
492 UNWIND_HINT_REGS base=\old_rsp
493 .endif
494
1d3e53e8 495 incl PER_CPU_VAR(irq_count)
29955909 496 jnz .Lirq_stack_push_old_rsp_\@
1d3e53e8
AL
497
498 /*
499 * Right now, if we just incremented irq_count to zero, we've
500 * claimed the IRQ stack but we haven't switched to it yet.
501 *
502 * If anything is added that can interrupt us here without using IST,
503 * it must be *extremely* careful to limit its stack usage. This
504 * could include kprobes and a hypothetical future IST-less #DB
505 * handler.
29955909
AL
506 *
507 * The OOPS unwinder relies on the word at the top of the IRQ
508 * stack linking back to the previous RSP for the entire time we're
509 * on the IRQ stack. For this to work reliably, we need to write
510 * it before we actually move ourselves to the IRQ stack.
511 */
512
513 movq \old_rsp, PER_CPU_VAR(irq_stack_union + IRQ_STACK_SIZE - 8)
514 movq PER_CPU_VAR(irq_stack_ptr), %rsp
515
516#ifdef CONFIG_DEBUG_ENTRY
517 /*
518 * If the first movq above becomes wrong due to IRQ stack layout
519 * changes, the only way we'll notice is if we try to unwind right
520 * here. Assert that we set up the stack right to catch this type
521 * of bug quickly.
1d3e53e8 522 */
29955909
AL
523 cmpq -8(%rsp), \old_rsp
524 je .Lirq_stack_okay\@
525 ud2
526 .Lirq_stack_okay\@:
527#endif
1d3e53e8 528
29955909 529.Lirq_stack_push_old_rsp_\@:
1d3e53e8 530 pushq \old_rsp
8c1f7558
JP
531
532 .if \regs
533 UNWIND_HINT_REGS indirect=1
534 .endif
1d3e53e8
AL
535.endm
536
537/*
538 * Undoes ENTER_IRQ_STACK.
539 */
8c1f7558 540.macro LEAVE_IRQ_STACK regs=1
1d3e53e8
AL
541 DEBUG_ENTRY_ASSERT_IRQS_OFF
542 /* We need to be off the IRQ stack before decrementing irq_count. */
543 popq %rsp
544
8c1f7558
JP
545 .if \regs
546 UNWIND_HINT_REGS
547 .endif
548
1d3e53e8
AL
549 /*
550 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
551 * the irq stack but we're not on it.
552 */
553
554 decl PER_CPU_VAR(irq_count)
555.endm
556
d99015b1 557/*
1da177e4
LT
558 * Interrupt entry/exit.
559 *
560 * Interrupt entry points save only callee clobbered registers in fast path.
d99015b1
AH
561 *
562 * Entry runs with interrupts off.
563 */
1da177e4 564
722024db 565/* 0(%rsp): ~(interrupt number) */
1da177e4 566 .macro interrupt func
f6f64681 567 cld
7f2590a1
AL
568
569 testb $3, CS-ORIG_RAX(%rsp)
570 jz 1f
571 SWAPGS
572 call switch_to_thread_stack
5731:
574
ff467594 575 ALLOC_PT_GPREGS_ON_STACK
2e3f0098 576 SAVE_REGS
3ac6d8c7 577 CLEAR_REGS_NOSPEC
946c1911 578 ENCODE_FRAME_POINTER
76f5df43 579
ff467594 580 testb $3, CS(%rsp)
dde74f2e 581 jz 1f
02bc7768
AL
582
583 /*
7f2590a1
AL
584 * IRQ from user mode.
585 *
f1075053
AL
586 * We need to tell lockdep that IRQs are off. We can't do this until
587 * we fix gsbase, and we should do it before enter_from_user_mode
588 * (which can take locks). Since TRACE_IRQS_OFF idempotent,
589 * the simplest way to handle it is to just call it twice if
590 * we enter from user mode. There's no reason to optimize this since
591 * TRACE_IRQS_OFF is a no-op if lockdep is off.
592 */
593 TRACE_IRQS_OFF
594
478dc89c 595 CALL_enter_from_user_mode
02bc7768 596
76f5df43 5971:
1d3e53e8 598 ENTER_IRQ_STACK old_rsp=%rdi
f6f64681
DV
599 /* We entered an interrupt context - irqs are off: */
600 TRACE_IRQS_OFF
601
a586f98e 602 call \func /* rdi points to pt_regs */
1da177e4
LT
603 .endm
604
722024db
AH
605 /*
606 * The interrupt stubs push (~vector+0x80) onto the stack and
607 * then jump to common_interrupt.
608 */
939b7871
PA
609 .p2align CONFIG_X86_L1_CACHE_SHIFT
610common_interrupt:
ee4eb87b 611 ASM_CLAC
4d732138 612 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
1da177e4 613 interrupt do_IRQ
34061f13 614 /* 0(%rsp): old RSP */
7effaa88 615ret_from_intr:
2140a994 616 DISABLE_INTERRUPTS(CLBR_ANY)
2601e64d 617 TRACE_IRQS_OFF
625dbc3b 618
1d3e53e8 619 LEAVE_IRQ_STACK
625dbc3b 620
03335e95 621 testb $3, CS(%rsp)
dde74f2e 622 jz retint_kernel
4d732138 623
02bc7768 624 /* Interrupt came from user space */
02bc7768
AL
625GLOBAL(retint_user)
626 mov %rsp,%rdi
627 call prepare_exit_to_usermode
2601e64d 628 TRACE_IRQS_IRETQ
26c4ef9c 629
8a055d7f 630GLOBAL(swapgs_restore_regs_and_return_to_usermode)
26c4ef9c
AL
631#ifdef CONFIG_DEBUG_ENTRY
632 /* Assert that pt_regs indicates user mode. */
1e4c4f61 633 testb $3, CS(%rsp)
26c4ef9c
AL
634 jnz 1f
635 ud2
6361:
637#endif
e872045b 638 POP_EXTRA_REGS
3e3b9293
AL
639 popq %r11
640 popq %r10
641 popq %r9
642 popq %r8
643 popq %rax
644 popq %rcx
645 popq %rdx
646 popq %rsi
647
648 /*
649 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
650 * Save old stack pointer and switch to trampoline stack.
651 */
652 movq %rsp, %rdi
c482feef 653 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
3e3b9293
AL
654
655 /* Copy the IRET frame to the trampoline stack. */
656 pushq 6*8(%rdi) /* SS */
657 pushq 5*8(%rdi) /* RSP */
658 pushq 4*8(%rdi) /* EFLAGS */
659 pushq 3*8(%rdi) /* CS */
660 pushq 2*8(%rdi) /* RIP */
661
662 /* Push user RDI on the trampoline stack. */
663 pushq (%rdi)
664
665 /*
666 * We are on the trampoline stack. All regs except RDI are live.
667 * We can do future final exit work right here.
668 */
669
6fd166aa 670 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
8a09317b 671
3e3b9293
AL
672 /* Restore RDI. */
673 popq %rdi
674 SWAPGS
26c4ef9c
AL
675 INTERRUPT_RETURN
676
2601e64d 677
627276cb 678/* Returning to kernel space */
6ba71b76 679retint_kernel:
627276cb
DV
680#ifdef CONFIG_PREEMPT
681 /* Interrupts are off */
682 /* Check if we need preemption */
4d732138 683 bt $9, EFLAGS(%rsp) /* were interrupts off? */
6ba71b76 684 jnc 1f
4d732138 6850: cmpl $0, PER_CPU_VAR(__preempt_count)
36acef25 686 jnz 1f
627276cb 687 call preempt_schedule_irq
36acef25 688 jmp 0b
6ba71b76 6891:
627276cb 690#endif
2601e64d
IM
691 /*
692 * The iretq could re-enable interrupts:
693 */
694 TRACE_IRQS_IRETQ
fffbb5dc 695
26c4ef9c
AL
696GLOBAL(restore_regs_and_return_to_kernel)
697#ifdef CONFIG_DEBUG_ENTRY
698 /* Assert that pt_regs indicates kernel mode. */
1e4c4f61 699 testb $3, CS(%rsp)
26c4ef9c
AL
700 jz 1f
701 ud2
7021:
703#endif
e872045b
AL
704 POP_EXTRA_REGS
705 POP_C_REGS
706 addq $8, %rsp /* skip regs->orig_ax */
7209a75d
AL
707 INTERRUPT_RETURN
708
709ENTRY(native_iret)
8c1f7558 710 UNWIND_HINT_IRET_REGS
3891a04a
PA
711 /*
712 * Are we returning to a stack segment from the LDT? Note: in
713 * 64-bit mode SS:RSP on the exception stack is always valid.
714 */
34273f41 715#ifdef CONFIG_X86_ESPFIX64
4d732138
IM
716 testb $4, (SS-RIP)(%rsp)
717 jnz native_irq_return_ldt
34273f41 718#endif
3891a04a 719
af726f21 720.global native_irq_return_iret
7209a75d 721native_irq_return_iret:
b645af2d
AL
722 /*
723 * This may fault. Non-paranoid faults on return to userspace are
724 * handled by fixup_bad_iret. These include #SS, #GP, and #NP.
725 * Double-faults due to espfix64 are handled in do_double_fault.
726 * Other faults here are fatal.
727 */
1da177e4 728 iretq
3701d863 729
34273f41 730#ifdef CONFIG_X86_ESPFIX64
7209a75d 731native_irq_return_ldt:
85063fac
AL
732 /*
733 * We are running with user GSBASE. All GPRs contain their user
734 * values. We have a percpu ESPFIX stack that is eight slots
735 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom
736 * of the ESPFIX stack.
737 *
738 * We clobber RAX and RDI in this code. We stash RDI on the
739 * normal stack and RAX on the ESPFIX stack.
740 *
741 * The ESPFIX stack layout we set up looks like this:
742 *
743 * --- top of ESPFIX stack ---
744 * SS
745 * RSP
746 * RFLAGS
747 * CS
748 * RIP <-- RSP points here when we're done
749 * RAX <-- espfix_waddr points here
750 * --- bottom of ESPFIX stack ---
751 */
752
753 pushq %rdi /* Stash user RDI */
8a09317b
DH
754 SWAPGS /* to kernel GS */
755 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi /* to kernel CR3 */
756
4d732138 757 movq PER_CPU_VAR(espfix_waddr), %rdi
85063fac
AL
758 movq %rax, (0*8)(%rdi) /* user RAX */
759 movq (1*8)(%rsp), %rax /* user RIP */
4d732138 760 movq %rax, (1*8)(%rdi)
85063fac 761 movq (2*8)(%rsp), %rax /* user CS */
4d732138 762 movq %rax, (2*8)(%rdi)
85063fac 763 movq (3*8)(%rsp), %rax /* user RFLAGS */
4d732138 764 movq %rax, (3*8)(%rdi)
85063fac 765 movq (5*8)(%rsp), %rax /* user SS */
4d732138 766 movq %rax, (5*8)(%rdi)
85063fac 767 movq (4*8)(%rsp), %rax /* user RSP */
4d732138 768 movq %rax, (4*8)(%rdi)
85063fac
AL
769 /* Now RAX == RSP. */
770
771 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */
85063fac
AL
772
773 /*
774 * espfix_stack[31:16] == 0. The page tables are set up such that
775 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
776 * espfix_waddr for any X. That is, there are 65536 RO aliases of
777 * the same page. Set up RSP so that RSP[31:16] contains the
778 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
779 * still points to an RO alias of the ESPFIX stack.
780 */
4d732138 781 orq PER_CPU_VAR(espfix_stack), %rax
8a09317b 782
6fd166aa 783 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
8a09317b
DH
784 SWAPGS /* to user GS */
785 popq %rdi /* Restore user RDI */
786
4d732138 787 movq %rax, %rsp
8c1f7558 788 UNWIND_HINT_IRET_REGS offset=8
85063fac
AL
789
790 /*
791 * At this point, we cannot write to the stack any more, but we can
792 * still read.
793 */
794 popq %rax /* Restore user RAX */
795
796 /*
797 * RSP now points to an ordinary IRET frame, except that the page
798 * is read-only and RSP[31:16] are preloaded with the userspace
799 * values. We can now IRET back to userspace.
800 */
4d732138 801 jmp native_irq_return_iret
34273f41 802#endif
4b787e0b 803END(common_interrupt)
3891a04a 804
1da177e4
LT
805/*
806 * APIC interrupts.
0bd7b798 807 */
cf910e83 808.macro apicinterrupt3 num sym do_sym
322648d1 809ENTRY(\sym)
8c1f7558 810 UNWIND_HINT_IRET_REGS
ee4eb87b 811 ASM_CLAC
4d732138 812 pushq $~(\num)
39e95433 813.Lcommon_\sym:
322648d1 814 interrupt \do_sym
4d732138 815 jmp ret_from_intr
322648d1
AH
816END(\sym)
817.endm
1da177e4 818
469f0023 819/* Make sure APIC interrupt handlers end up in the irqentry section: */
229a7186
MH
820#define PUSH_SECTION_IRQENTRY .pushsection .irqentry.text, "ax"
821#define POP_SECTION_IRQENTRY .popsection
469f0023 822
cf910e83 823.macro apicinterrupt num sym do_sym
469f0023 824PUSH_SECTION_IRQENTRY
cf910e83 825apicinterrupt3 \num \sym \do_sym
469f0023 826POP_SECTION_IRQENTRY
cf910e83
SA
827.endm
828
322648d1 829#ifdef CONFIG_SMP
4d732138
IM
830apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt
831apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt
322648d1 832#endif
1da177e4 833
03b48632 834#ifdef CONFIG_X86_UV
4d732138 835apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt
03b48632 836#endif
4d732138
IM
837
838apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt
839apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi
89b831ef 840
d78f2664 841#ifdef CONFIG_HAVE_KVM
4d732138
IM
842apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi
843apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi
210f84b0 844apicinterrupt3 POSTED_INTR_NESTED_VECTOR kvm_posted_intr_nested_ipi smp_kvm_posted_intr_nested_ipi
d78f2664
YZ
845#endif
846
33e5ff63 847#ifdef CONFIG_X86_MCE_THRESHOLD
4d732138 848apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt
33e5ff63
SA
849#endif
850
24fd78a8 851#ifdef CONFIG_X86_MCE_AMD
4d732138 852apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt
24fd78a8
AG
853#endif
854
33e5ff63 855#ifdef CONFIG_X86_THERMAL_VECTOR
4d732138 856apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt
33e5ff63 857#endif
1812924b 858
322648d1 859#ifdef CONFIG_SMP
4d732138
IM
860apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt
861apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt
862apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt
322648d1 863#endif
1da177e4 864
4d732138
IM
865apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt
866apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt
0bd7b798 867
e360adbe 868#ifdef CONFIG_IRQ_WORK
4d732138 869apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
241771ef
IM
870#endif
871
1da177e4
LT
872/*
873 * Exception entry points.
0bd7b798 874 */
c482feef 875#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss_rw) + (TSS_ist + ((x) - 1) * 8)
577ed45e 876
7f2590a1
AL
877/*
878 * Switch to the thread stack. This is called with the IRET frame and
879 * orig_ax on the stack. (That is, RDI..R12 are not on the stack and
880 * space has not been allocated for them.)
881 */
882ENTRY(switch_to_thread_stack)
883 UNWIND_HINT_FUNC
884
885 pushq %rdi
8a09317b
DH
886 /* Need to switch before accessing the thread stack. */
887 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi
7f2590a1
AL
888 movq %rsp, %rdi
889 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
890 UNWIND_HINT sp_offset=16 sp_reg=ORC_REG_DI
891
892 pushq 7*8(%rdi) /* regs->ss */
893 pushq 6*8(%rdi) /* regs->rsp */
894 pushq 5*8(%rdi) /* regs->eflags */
895 pushq 4*8(%rdi) /* regs->cs */
896 pushq 3*8(%rdi) /* regs->ip */
897 pushq 2*8(%rdi) /* regs->orig_ax */
898 pushq 8(%rdi) /* return address */
899 UNWIND_HINT_FUNC
900
901 movq (%rdi), %rdi
902 ret
903END(switch_to_thread_stack)
904
577ed45e 905.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
322648d1 906ENTRY(\sym)
98990a33 907 UNWIND_HINT_IRET_REGS offset=\has_error_code*8
8c1f7558 908
577ed45e
AL
909 /* Sanity check */
910 .if \shift_ist != -1 && \paranoid == 0
911 .error "using shift_ist requires paranoid=1"
912 .endif
913
ee4eb87b 914 ASM_CLAC
cb5dd2c5 915
82c62fa0 916 .if \has_error_code == 0
4d732138 917 pushq $-1 /* ORIG_RAX: no syscall to restart */
cb5dd2c5
AL
918 .endif
919
76f5df43 920 ALLOC_PT_GPREGS_ON_STACK
cb5dd2c5 921
7f2590a1 922 .if \paranoid < 2
4d732138 923 testb $3, CS(%rsp) /* If coming from userspace, switch stacks */
7f2590a1 924 jnz .Lfrom_usermode_switch_stack_\@
48e08d0f 925 .endif
7f2590a1
AL
926
927 .if \paranoid
4d732138 928 call paranoid_entry
cb5dd2c5 929 .else
4d732138 930 call error_entry
cb5dd2c5 931 .endif
8c1f7558 932 UNWIND_HINT_REGS
ebfc453e 933 /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
cb5dd2c5 934
cb5dd2c5 935 .if \paranoid
577ed45e 936 .if \shift_ist != -1
4d732138 937 TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */
577ed45e 938 .else
b8b1d08b 939 TRACE_IRQS_OFF
cb5dd2c5 940 .endif
577ed45e 941 .endif
cb5dd2c5 942
4d732138 943 movq %rsp, %rdi /* pt_regs pointer */
cb5dd2c5
AL
944
945 .if \has_error_code
4d732138
IM
946 movq ORIG_RAX(%rsp), %rsi /* get error code */
947 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
cb5dd2c5 948 .else
4d732138 949 xorl %esi, %esi /* no error code */
cb5dd2c5
AL
950 .endif
951
577ed45e 952 .if \shift_ist != -1
4d732138 953 subq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
577ed45e
AL
954 .endif
955
4d732138 956 call \do_sym
cb5dd2c5 957
577ed45e 958 .if \shift_ist != -1
4d732138 959 addq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
577ed45e
AL
960 .endif
961
ebfc453e 962 /* these procedures expect "no swapgs" flag in ebx */
cb5dd2c5 963 .if \paranoid
4d732138 964 jmp paranoid_exit
cb5dd2c5 965 .else
4d732138 966 jmp error_exit
cb5dd2c5
AL
967 .endif
968
7f2590a1 969 .if \paranoid < 2
48e08d0f 970 /*
7f2590a1 971 * Entry from userspace. Switch stacks and treat it
48e08d0f
AL
972 * as a normal entry. This means that paranoid handlers
973 * run in real process context if user_mode(regs).
974 */
7f2590a1 975.Lfrom_usermode_switch_stack_\@:
4d732138 976 call error_entry
48e08d0f 977
4d732138 978 movq %rsp, %rdi /* pt_regs pointer */
48e08d0f
AL
979
980 .if \has_error_code
4d732138
IM
981 movq ORIG_RAX(%rsp), %rsi /* get error code */
982 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
48e08d0f 983 .else
4d732138 984 xorl %esi, %esi /* no error code */
48e08d0f
AL
985 .endif
986
4d732138 987 call \do_sym
48e08d0f 988
4d732138 989 jmp error_exit /* %ebx: no swapgs flag */
48e08d0f 990 .endif
ddeb8f21 991END(\sym)
322648d1 992.endm
b8b1d08b 993
4d732138
IM
994idtentry divide_error do_divide_error has_error_code=0
995idtentry overflow do_overflow has_error_code=0
996idtentry bounds do_bounds has_error_code=0
997idtentry invalid_op do_invalid_op has_error_code=0
998idtentry device_not_available do_device_not_available has_error_code=0
999idtentry double_fault do_double_fault has_error_code=1 paranoid=2
1000idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0
1001idtentry invalid_TSS do_invalid_TSS has_error_code=1
1002idtentry segment_not_present do_segment_not_present has_error_code=1
1003idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0
1004idtentry coprocessor_error do_coprocessor_error has_error_code=0
1005idtentry alignment_check do_alignment_check has_error_code=1
1006idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0
1007
1008
1009 /*
1010 * Reload gs selector with exception handling
1011 * edi: new selector
1012 */
9f9d489a 1013ENTRY(native_load_gs_index)
8c1f7558 1014 FRAME_BEGIN
131484c8 1015 pushfq
b8aa287f 1016 DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
ca37e57b 1017 TRACE_IRQS_OFF
9f1e87ea 1018 SWAPGS
42c748bb 1019.Lgs_change:
4d732138 1020 movl %edi, %gs
96e5d28a 10212: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
72fe4858 1022 SWAPGS
ca37e57b 1023 TRACE_IRQS_FLAGS (%rsp)
131484c8 1024 popfq
8c1f7558 1025 FRAME_END
9f1e87ea 1026 ret
8c1f7558 1027ENDPROC(native_load_gs_index)
784d5699 1028EXPORT_SYMBOL(native_load_gs_index)
0bd7b798 1029
42c748bb 1030 _ASM_EXTABLE(.Lgs_change, bad_gs)
4d732138 1031 .section .fixup, "ax"
1da177e4 1032 /* running with kernelgs */
0bd7b798 1033bad_gs:
4d732138 1034 SWAPGS /* switch back to user gs */
b038c842
AL
1035.macro ZAP_GS
1036 /* This can't be a string because the preprocessor needs to see it. */
1037 movl $__USER_DS, %eax
1038 movl %eax, %gs
1039.endm
1040 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
4d732138
IM
1041 xorl %eax, %eax
1042 movl %eax, %gs
1043 jmp 2b
9f1e87ea 1044 .previous
0bd7b798 1045
2699500b 1046/* Call softirq on interrupt stack. Interrupts are off. */
7d65f4a6 1047ENTRY(do_softirq_own_stack)
4d732138
IM
1048 pushq %rbp
1049 mov %rsp, %rbp
8c1f7558 1050 ENTER_IRQ_STACK regs=0 old_rsp=%r11
4d732138 1051 call __do_softirq
8c1f7558 1052 LEAVE_IRQ_STACK regs=0
2699500b 1053 leaveq
ed6b676c 1054 ret
8c1f7558 1055ENDPROC(do_softirq_own_stack)
75154f40 1056
3d75e1b8 1057#ifdef CONFIG_XEN
5878d5d6 1058idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
3d75e1b8
JF
1059
1060/*
9f1e87ea
CG
1061 * A note on the "critical region" in our callback handler.
1062 * We want to avoid stacking callback handlers due to events occurring
1063 * during handling of the last event. To do this, we keep events disabled
1064 * until we've done all processing. HOWEVER, we must enable events before
1065 * popping the stack frame (can't be done atomically) and so it would still
1066 * be possible to get enough handler activations to overflow the stack.
1067 * Although unlikely, bugs of that kind are hard to track down, so we'd
1068 * like to avoid the possibility.
1069 * So, on entry to the handler we detect whether we interrupted an
1070 * existing activation in its critical region -- if so, we pop the current
1071 * activation and restart the handler using the previous one.
1072 */
4d732138
IM
1073ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */
1074
9f1e87ea
CG
1075/*
1076 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
1077 * see the correct pointer to the pt_regs
1078 */
8c1f7558 1079 UNWIND_HINT_FUNC
4d732138 1080 movq %rdi, %rsp /* we don't return, adjust the stack frame */
8c1f7558 1081 UNWIND_HINT_REGS
1d3e53e8
AL
1082
1083 ENTER_IRQ_STACK old_rsp=%r10
4d732138 1084 call xen_evtchn_do_upcall
1d3e53e8
AL
1085 LEAVE_IRQ_STACK
1086
fdfd811d 1087#ifndef CONFIG_PREEMPT
4d732138 1088 call xen_maybe_preempt_hcall
fdfd811d 1089#endif
4d732138 1090 jmp error_exit
371c394a 1091END(xen_do_hypervisor_callback)
3d75e1b8
JF
1092
1093/*
9f1e87ea
CG
1094 * Hypervisor uses this for application faults while it executes.
1095 * We get here for two reasons:
1096 * 1. Fault while reloading DS, ES, FS or GS
1097 * 2. Fault while executing IRET
1098 * Category 1 we do not need to fix up as Xen has already reloaded all segment
1099 * registers that could be reloaded and zeroed the others.
1100 * Category 2 we fix up by killing the current process. We cannot use the
1101 * normal Linux return path in this case because if we use the IRET hypercall
1102 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
1103 * We distinguish between categories by comparing each saved segment register
1104 * with its current contents: any discrepancy means we in category 1.
1105 */
3d75e1b8 1106ENTRY(xen_failsafe_callback)
8c1f7558 1107 UNWIND_HINT_EMPTY
4d732138
IM
1108 movl %ds, %ecx
1109 cmpw %cx, 0x10(%rsp)
1110 jne 1f
1111 movl %es, %ecx
1112 cmpw %cx, 0x18(%rsp)
1113 jne 1f
1114 movl %fs, %ecx
1115 cmpw %cx, 0x20(%rsp)
1116 jne 1f
1117 movl %gs, %ecx
1118 cmpw %cx, 0x28(%rsp)
1119 jne 1f
3d75e1b8 1120 /* All segments match their saved values => Category 2 (Bad IRET). */
4d732138
IM
1121 movq (%rsp), %rcx
1122 movq 8(%rsp), %r11
1123 addq $0x30, %rsp
1124 pushq $0 /* RIP */
8c1f7558 1125 UNWIND_HINT_IRET_REGS offset=8
4d732138 1126 jmp general_protection
3d75e1b8 11271: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
4d732138
IM
1128 movq (%rsp), %rcx
1129 movq 8(%rsp), %r11
1130 addq $0x30, %rsp
8c1f7558 1131 UNWIND_HINT_IRET_REGS
4d732138 1132 pushq $-1 /* orig_ax = -1 => not a system call */
76f5df43 1133 ALLOC_PT_GPREGS_ON_STACK
2e3f0098 1134 SAVE_REGS
3ac6d8c7 1135 CLEAR_REGS_NOSPEC
946c1911 1136 ENCODE_FRAME_POINTER
4d732138 1137 jmp error_exit
3d75e1b8
JF
1138END(xen_failsafe_callback)
1139
cf910e83 1140apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
38e20b07
SY
1141 xen_hvm_callback_vector xen_evtchn_do_upcall
1142
3d75e1b8 1143#endif /* CONFIG_XEN */
ddeb8f21 1144
bc2b0331 1145#if IS_ENABLED(CONFIG_HYPERV)
cf910e83 1146apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
bc2b0331
S
1147 hyperv_callback_vector hyperv_vector_handler
1148#endif /* CONFIG_HYPERV */
1149
4d732138
IM
1150idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
1151idtentry int3 do_int3 has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
1152idtentry stack_segment do_stack_segment has_error_code=1
1153
6cac5a92 1154#ifdef CONFIG_XEN
43e41110 1155idtentry xennmi do_nmi has_error_code=0
5878d5d6
JG
1156idtentry xendebug do_debug has_error_code=0
1157idtentry xenint3 do_int3 has_error_code=0
6cac5a92 1158#endif
4d732138
IM
1159
1160idtentry general_protection do_general_protection has_error_code=1
11a7ffb0 1161idtentry page_fault do_page_fault has_error_code=1
4d732138 1162
631bc487 1163#ifdef CONFIG_KVM_GUEST
4d732138 1164idtentry async_page_fault do_async_page_fault has_error_code=1
631bc487 1165#endif
4d732138 1166
ddeb8f21 1167#ifdef CONFIG_X86_MCE
6f41c34d 1168idtentry machine_check do_mce has_error_code=0 paranoid=1
ddeb8f21
AH
1169#endif
1170
ebfc453e
DV
1171/*
1172 * Save all registers in pt_regs, and switch gs if needed.
1173 * Use slow, but surefire "are we in kernel?" check.
1174 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
1175 */
1176ENTRY(paranoid_entry)
8c1f7558 1177 UNWIND_HINT_FUNC
1eeb207f 1178 cld
2e3f0098 1179 SAVE_REGS 8
3ac6d8c7 1180 CLEAR_REGS_NOSPEC
946c1911 1181 ENCODE_FRAME_POINTER 8
4d732138
IM
1182 movl $1, %ebx
1183 movl $MSR_GS_BASE, %ecx
1eeb207f 1184 rdmsr
4d732138
IM
1185 testl %edx, %edx
1186 js 1f /* negative -> in kernel */
1eeb207f 1187 SWAPGS
4d732138 1188 xorl %ebx, %ebx
8a09317b
DH
1189
11901:
1191 SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14
1192
1193 ret
ebfc453e 1194END(paranoid_entry)
ddeb8f21 1195
ebfc453e
DV
1196/*
1197 * "Paranoid" exit path from exception stack. This is invoked
1198 * only on return from non-NMI IST interrupts that came
1199 * from kernel space.
1200 *
1201 * We may be returning to very strange contexts (e.g. very early
1202 * in syscall entry), so checking for preemption here would
1203 * be complicated. Fortunately, we there's no good reason
1204 * to try to handle preemption here.
4d732138
IM
1205 *
1206 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
ebfc453e 1207 */
ddeb8f21 1208ENTRY(paranoid_exit)
8c1f7558 1209 UNWIND_HINT_REGS
2140a994 1210 DISABLE_INTERRUPTS(CLBR_ANY)
5963e317 1211 TRACE_IRQS_OFF_DEBUG
4d732138 1212 testl %ebx, %ebx /* swapgs needed? */
e5317832 1213 jnz .Lparanoid_exit_no_swapgs
f2db9382 1214 TRACE_IRQS_IRETQ
21e94459 1215 RESTORE_CR3 scratch_reg=%rbx save_reg=%r14
ddeb8f21 1216 SWAPGS_UNSAFE_STACK
e5317832
AL
1217 jmp .Lparanoid_exit_restore
1218.Lparanoid_exit_no_swapgs:
f2db9382 1219 TRACE_IRQS_IRETQ_DEBUG
e5317832
AL
1220.Lparanoid_exit_restore:
1221 jmp restore_regs_and_return_to_kernel
ddeb8f21
AH
1222END(paranoid_exit)
1223
1224/*
ebfc453e 1225 * Save all registers in pt_regs, and switch gs if needed.
539f5113 1226 * Return: EBX=0: came from user mode; EBX=1: otherwise
ddeb8f21
AH
1227 */
1228ENTRY(error_entry)
8c1f7558 1229 UNWIND_HINT_FUNC
ddeb8f21 1230 cld
2e3f0098 1231 SAVE_REGS 8
3ac6d8c7 1232 CLEAR_REGS_NOSPEC
946c1911 1233 ENCODE_FRAME_POINTER 8
03335e95 1234 testb $3, CS+8(%rsp)
cb6f64ed 1235 jz .Lerror_kernelspace
539f5113 1236
cb6f64ed
AL
1237 /*
1238 * We entered from user mode or we're pretending to have entered
1239 * from user mode due to an IRET fault.
1240 */
ddeb8f21 1241 SWAPGS
8a09317b
DH
1242 /* We have user CR3. Change to kernel CR3. */
1243 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
539f5113 1244
cb6f64ed 1245.Lerror_entry_from_usermode_after_swapgs:
7f2590a1
AL
1246 /* Put us onto the real thread stack. */
1247 popq %r12 /* save return addr in %12 */
1248 movq %rsp, %rdi /* arg0 = pt_regs pointer */
1249 call sync_regs
1250 movq %rax, %rsp /* switch stack */
1251 ENCODE_FRAME_POINTER
1252 pushq %r12
1253
f1075053
AL
1254 /*
1255 * We need to tell lockdep that IRQs are off. We can't do this until
1256 * we fix gsbase, and we should do it before enter_from_user_mode
1257 * (which can take locks).
1258 */
1259 TRACE_IRQS_OFF
478dc89c 1260 CALL_enter_from_user_mode
f1075053 1261 ret
02bc7768 1262
cb6f64ed 1263.Lerror_entry_done:
ddeb8f21
AH
1264 TRACE_IRQS_OFF
1265 ret
ddeb8f21 1266
ebfc453e
DV
1267 /*
1268 * There are two places in the kernel that can potentially fault with
1269 * usergs. Handle them here. B stepping K8s sometimes report a
1270 * truncated RIP for IRET exceptions returning to compat mode. Check
1271 * for these here too.
1272 */
cb6f64ed 1273.Lerror_kernelspace:
4d732138
IM
1274 incl %ebx
1275 leaq native_irq_return_iret(%rip), %rcx
1276 cmpq %rcx, RIP+8(%rsp)
cb6f64ed 1277 je .Lerror_bad_iret
4d732138
IM
1278 movl %ecx, %eax /* zero extend */
1279 cmpq %rax, RIP+8(%rsp)
cb6f64ed 1280 je .Lbstep_iret
42c748bb 1281 cmpq $.Lgs_change, RIP+8(%rsp)
cb6f64ed 1282 jne .Lerror_entry_done
539f5113
AL
1283
1284 /*
42c748bb 1285 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up
539f5113 1286 * gsbase and proceed. We'll fix up the exception and land in
42c748bb 1287 * .Lgs_change's error handler with kernel gsbase.
539f5113 1288 */
2fa5f04f 1289 SWAPGS
8a09317b 1290 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
2fa5f04f 1291 jmp .Lerror_entry_done
ae24ffe5 1292
cb6f64ed 1293.Lbstep_iret:
ae24ffe5 1294 /* Fix truncated RIP */
4d732138 1295 movq %rcx, RIP+8(%rsp)
b645af2d
AL
1296 /* fall through */
1297
cb6f64ed 1298.Lerror_bad_iret:
539f5113 1299 /*
8a09317b
DH
1300 * We came from an IRET to user mode, so we have user
1301 * gsbase and CR3. Switch to kernel gsbase and CR3:
539f5113 1302 */
b645af2d 1303 SWAPGS
8a09317b 1304 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
539f5113
AL
1305
1306 /*
1307 * Pretend that the exception came from user mode: set up pt_regs
1308 * as if we faulted immediately after IRET and clear EBX so that
1309 * error_exit knows that we will be returning to user mode.
1310 */
4d732138
IM
1311 mov %rsp, %rdi
1312 call fixup_bad_iret
1313 mov %rax, %rsp
539f5113 1314 decl %ebx
cb6f64ed 1315 jmp .Lerror_entry_from_usermode_after_swapgs
ddeb8f21
AH
1316END(error_entry)
1317
1318
539f5113 1319/*
75ca5b22 1320 * On entry, EBX is a "return to kernel mode" flag:
539f5113
AL
1321 * 1: already in kernel mode, don't need SWAPGS
1322 * 0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
1323 */
ddeb8f21 1324ENTRY(error_exit)
8c1f7558 1325 UNWIND_HINT_REGS
2140a994 1326 DISABLE_INTERRUPTS(CLBR_ANY)
ddeb8f21 1327 TRACE_IRQS_OFF
2140a994 1328 testl %ebx, %ebx
4d732138
IM
1329 jnz retint_kernel
1330 jmp retint_user
ddeb8f21
AH
1331END(error_exit)
1332
929bacec
AL
1333/*
1334 * Runs on exception stack. Xen PV does not go through this path at all,
1335 * so we can use real assembly here.
8a09317b
DH
1336 *
1337 * Registers:
1338 * %r14: Used to save/restore the CR3 of the interrupted context
1339 * when PAGE_TABLE_ISOLATION is in use. Do not clobber.
929bacec 1340 */
ddeb8f21 1341ENTRY(nmi)
8c1f7558 1342 UNWIND_HINT_IRET_REGS
929bacec 1343
3f3c8b8c
SR
1344 /*
1345 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1346 * the iretq it performs will take us out of NMI context.
1347 * This means that we can have nested NMIs where the next
1348 * NMI is using the top of the stack of the previous NMI. We
1349 * can't let it execute because the nested NMI will corrupt the
1350 * stack of the previous NMI. NMI handlers are not re-entrant
1351 * anyway.
1352 *
1353 * To handle this case we do the following:
1354 * Check the a special location on the stack that contains
1355 * a variable that is set when NMIs are executing.
1356 * The interrupted task's stack is also checked to see if it
1357 * is an NMI stack.
1358 * If the variable is not set and the stack is not the NMI
1359 * stack then:
1360 * o Set the special variable on the stack
0b22930e
AL
1361 * o Copy the interrupt frame into an "outermost" location on the
1362 * stack
1363 * o Copy the interrupt frame into an "iret" location on the stack
3f3c8b8c
SR
1364 * o Continue processing the NMI
1365 * If the variable is set or the previous stack is the NMI stack:
0b22930e 1366 * o Modify the "iret" location to jump to the repeat_nmi
3f3c8b8c
SR
1367 * o return back to the first NMI
1368 *
1369 * Now on exit of the first NMI, we first clear the stack variable
1370 * The NMI stack will tell any nested NMIs at that point that it is
1371 * nested. Then we pop the stack normally with iret, and if there was
1372 * a nested NMI that updated the copy interrupt stack frame, a
1373 * jump will be made to the repeat_nmi code that will handle the second
1374 * NMI.
9b6e6a83
AL
1375 *
1376 * However, espfix prevents us from directly returning to userspace
1377 * with a single IRET instruction. Similarly, IRET to user mode
1378 * can fault. We therefore handle NMIs from user space like
1379 * other IST entries.
3f3c8b8c
SR
1380 */
1381
e93c1730
AL
1382 ASM_CLAC
1383
146b2b09 1384 /* Use %rdx as our temp variable throughout */
4d732138 1385 pushq %rdx
3f3c8b8c 1386
9b6e6a83
AL
1387 testb $3, CS-RIP+8(%rsp)
1388 jz .Lnmi_from_kernel
1389
1390 /*
1391 * NMI from user mode. We need to run on the thread stack, but we
1392 * can't go through the normal entry paths: NMIs are masked, and
1393 * we don't want to enable interrupts, because then we'll end
1394 * up in an awkward situation in which IRQs are on but NMIs
1395 * are off.
83c133cf
AL
1396 *
1397 * We also must not push anything to the stack before switching
1398 * stacks lest we corrupt the "NMI executing" variable.
9b6e6a83
AL
1399 */
1400
929bacec 1401 swapgs
9b6e6a83 1402 cld
8a09317b 1403 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
9b6e6a83
AL
1404 movq %rsp, %rdx
1405 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
8c1f7558 1406 UNWIND_HINT_IRET_REGS base=%rdx offset=8
9b6e6a83
AL
1407 pushq 5*8(%rdx) /* pt_regs->ss */
1408 pushq 4*8(%rdx) /* pt_regs->rsp */
1409 pushq 3*8(%rdx) /* pt_regs->flags */
1410 pushq 2*8(%rdx) /* pt_regs->cs */
1411 pushq 1*8(%rdx) /* pt_regs->rip */
8c1f7558 1412 UNWIND_HINT_IRET_REGS
9b6e6a83
AL
1413 pushq $-1 /* pt_regs->orig_ax */
1414 pushq %rdi /* pt_regs->di */
1415 pushq %rsi /* pt_regs->si */
1416 pushq (%rdx) /* pt_regs->dx */
1417 pushq %rcx /* pt_regs->cx */
1418 pushq %rax /* pt_regs->ax */
1419 pushq %r8 /* pt_regs->r8 */
1420 pushq %r9 /* pt_regs->r9 */
1421 pushq %r10 /* pt_regs->r10 */
1422 pushq %r11 /* pt_regs->r11 */
1423 pushq %rbx /* pt_regs->rbx */
1424 pushq %rbp /* pt_regs->rbp */
1425 pushq %r12 /* pt_regs->r12 */
1426 pushq %r13 /* pt_regs->r13 */
1427 pushq %r14 /* pt_regs->r14 */
1428 pushq %r15 /* pt_regs->r15 */
8c1f7558 1429 UNWIND_HINT_REGS
3ac6d8c7 1430 CLEAR_REGS_NOSPEC
946c1911 1431 ENCODE_FRAME_POINTER
9b6e6a83
AL
1432
1433 /*
1434 * At this point we no longer need to worry about stack damage
1435 * due to nesting -- we're on the normal thread stack and we're
1436 * done with the NMI stack.
1437 */
1438
1439 movq %rsp, %rdi
1440 movq $-1, %rsi
1441 call do_nmi
1442
45d5a168 1443 /*
9b6e6a83 1444 * Return back to user mode. We must *not* do the normal exit
946c1911 1445 * work, because we don't want to enable interrupts.
45d5a168 1446 */
8a055d7f 1447 jmp swapgs_restore_regs_and_return_to_usermode
45d5a168 1448
9b6e6a83 1449.Lnmi_from_kernel:
3f3c8b8c 1450 /*
0b22930e
AL
1451 * Here's what our stack frame will look like:
1452 * +---------------------------------------------------------+
1453 * | original SS |
1454 * | original Return RSP |
1455 * | original RFLAGS |
1456 * | original CS |
1457 * | original RIP |
1458 * +---------------------------------------------------------+
1459 * | temp storage for rdx |
1460 * +---------------------------------------------------------+
1461 * | "NMI executing" variable |
1462 * +---------------------------------------------------------+
1463 * | iret SS } Copied from "outermost" frame |
1464 * | iret Return RSP } on each loop iteration; overwritten |
1465 * | iret RFLAGS } by a nested NMI to force another |
1466 * | iret CS } iteration if needed. |
1467 * | iret RIP } |
1468 * +---------------------------------------------------------+
1469 * | outermost SS } initialized in first_nmi; |
1470 * | outermost Return RSP } will not be changed before |
1471 * | outermost RFLAGS } NMI processing is done. |
1472 * | outermost CS } Copied to "iret" frame on each |
1473 * | outermost RIP } iteration. |
1474 * +---------------------------------------------------------+
1475 * | pt_regs |
1476 * +---------------------------------------------------------+
1477 *
1478 * The "original" frame is used by hardware. Before re-enabling
1479 * NMIs, we need to be done with it, and we need to leave enough
1480 * space for the asm code here.
1481 *
1482 * We return by executing IRET while RSP points to the "iret" frame.
1483 * That will either return for real or it will loop back into NMI
1484 * processing.
1485 *
1486 * The "outermost" frame is copied to the "iret" frame on each
1487 * iteration of the loop, so each iteration starts with the "iret"
1488 * frame pointing to the final return target.
1489 */
1490
45d5a168 1491 /*
0b22930e
AL
1492 * Determine whether we're a nested NMI.
1493 *
a27507ca
AL
1494 * If we interrupted kernel code between repeat_nmi and
1495 * end_repeat_nmi, then we are a nested NMI. We must not
1496 * modify the "iret" frame because it's being written by
1497 * the outer NMI. That's okay; the outer NMI handler is
1498 * about to about to call do_nmi anyway, so we can just
1499 * resume the outer NMI.
45d5a168 1500 */
a27507ca
AL
1501
1502 movq $repeat_nmi, %rdx
1503 cmpq 8(%rsp), %rdx
1504 ja 1f
1505 movq $end_repeat_nmi, %rdx
1506 cmpq 8(%rsp), %rdx
1507 ja nested_nmi_out
15081:
45d5a168 1509
3f3c8b8c 1510 /*
a27507ca 1511 * Now check "NMI executing". If it's set, then we're nested.
0b22930e
AL
1512 * This will not detect if we interrupted an outer NMI just
1513 * before IRET.
3f3c8b8c 1514 */
4d732138
IM
1515 cmpl $1, -8(%rsp)
1516 je nested_nmi
3f3c8b8c
SR
1517
1518 /*
0b22930e
AL
1519 * Now test if the previous stack was an NMI stack. This covers
1520 * the case where we interrupt an outer NMI after it clears
810bc075
AL
1521 * "NMI executing" but before IRET. We need to be careful, though:
1522 * there is one case in which RSP could point to the NMI stack
1523 * despite there being no NMI active: naughty userspace controls
1524 * RSP at the very beginning of the SYSCALL targets. We can
1525 * pull a fast one on naughty userspace, though: we program
1526 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1527 * if it controls the kernel's RSP. We set DF before we clear
1528 * "NMI executing".
3f3c8b8c 1529 */
0784b364
DV
1530 lea 6*8(%rsp), %rdx
1531 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1532 cmpq %rdx, 4*8(%rsp)
1533 /* If the stack pointer is above the NMI stack, this is a normal NMI */
1534 ja first_nmi
4d732138 1535
0784b364
DV
1536 subq $EXCEPTION_STKSZ, %rdx
1537 cmpq %rdx, 4*8(%rsp)
1538 /* If it is below the NMI stack, it is a normal NMI */
1539 jb first_nmi
810bc075
AL
1540
1541 /* Ah, it is within the NMI stack. */
1542
1543 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1544 jz first_nmi /* RSP was user controlled. */
1545
1546 /* This is a nested NMI. */
0784b364 1547
3f3c8b8c
SR
1548nested_nmi:
1549 /*
0b22930e
AL
1550 * Modify the "iret" frame to point to repeat_nmi, forcing another
1551 * iteration of NMI handling.
3f3c8b8c 1552 */
23a781e9 1553 subq $8, %rsp
4d732138
IM
1554 leaq -10*8(%rsp), %rdx
1555 pushq $__KERNEL_DS
1556 pushq %rdx
131484c8 1557 pushfq
4d732138
IM
1558 pushq $__KERNEL_CS
1559 pushq $repeat_nmi
3f3c8b8c
SR
1560
1561 /* Put stack back */
4d732138 1562 addq $(6*8), %rsp
3f3c8b8c
SR
1563
1564nested_nmi_out:
4d732138 1565 popq %rdx
3f3c8b8c 1566
0b22930e 1567 /* We are returning to kernel mode, so this cannot result in a fault. */
929bacec 1568 iretq
3f3c8b8c
SR
1569
1570first_nmi:
0b22930e 1571 /* Restore rdx. */
4d732138 1572 movq (%rsp), %rdx
62610913 1573
36f1a77b
AL
1574 /* Make room for "NMI executing". */
1575 pushq $0
3f3c8b8c 1576
0b22930e 1577 /* Leave room for the "iret" frame */
4d732138 1578 subq $(5*8), %rsp
28696f43 1579
0b22930e 1580 /* Copy the "original" frame to the "outermost" frame */
3f3c8b8c 1581 .rept 5
4d732138 1582 pushq 11*8(%rsp)
3f3c8b8c 1583 .endr
8c1f7558 1584 UNWIND_HINT_IRET_REGS
62610913 1585
79fb4ad6
SR
1586 /* Everything up to here is safe from nested NMIs */
1587
a97439aa
AL
1588#ifdef CONFIG_DEBUG_ENTRY
1589 /*
1590 * For ease of testing, unmask NMIs right away. Disabled by
1591 * default because IRET is very expensive.
1592 */
1593 pushq $0 /* SS */
1594 pushq %rsp /* RSP (minus 8 because of the previous push) */
1595 addq $8, (%rsp) /* Fix up RSP */
1596 pushfq /* RFLAGS */
1597 pushq $__KERNEL_CS /* CS */
1598 pushq $1f /* RIP */
929bacec 1599 iretq /* continues at repeat_nmi below */
8c1f7558 1600 UNWIND_HINT_IRET_REGS
a97439aa
AL
16011:
1602#endif
1603
0b22930e 1604repeat_nmi:
62610913
JB
1605 /*
1606 * If there was a nested NMI, the first NMI's iret will return
1607 * here. But NMIs are still enabled and we can take another
1608 * nested NMI. The nested NMI checks the interrupted RIP to see
1609 * if it is between repeat_nmi and end_repeat_nmi, and if so
1610 * it will just return, as we are about to repeat an NMI anyway.
1611 * This makes it safe to copy to the stack frame that a nested
1612 * NMI will update.
0b22930e
AL
1613 *
1614 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
1615 * we're repeating an NMI, gsbase has the same value that it had on
1616 * the first iteration. paranoid_entry will load the kernel
36f1a77b
AL
1617 * gsbase if needed before we call do_nmi. "NMI executing"
1618 * is zero.
62610913 1619 */
36f1a77b 1620 movq $1, 10*8(%rsp) /* Set "NMI executing". */
3f3c8b8c 1621
62610913 1622 /*
0b22930e
AL
1623 * Copy the "outermost" frame to the "iret" frame. NMIs that nest
1624 * here must not modify the "iret" frame while we're writing to
1625 * it or it will end up containing garbage.
62610913 1626 */
4d732138 1627 addq $(10*8), %rsp
3f3c8b8c 1628 .rept 5
4d732138 1629 pushq -6*8(%rsp)
3f3c8b8c 1630 .endr
4d732138 1631 subq $(5*8), %rsp
62610913 1632end_repeat_nmi:
3f3c8b8c
SR
1633
1634 /*
0b22930e
AL
1635 * Everything below this point can be preempted by a nested NMI.
1636 * If this happens, then the inner NMI will change the "iret"
1637 * frame to point back to repeat_nmi.
3f3c8b8c 1638 */
4d732138 1639 pushq $-1 /* ORIG_RAX: no syscall to restart */
76f5df43
DV
1640 ALLOC_PT_GPREGS_ON_STACK
1641
1fd466ef 1642 /*
ebfc453e 1643 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1fd466ef
SR
1644 * as we should not be calling schedule in NMI context.
1645 * Even with normal interrupts enabled. An NMI should not be
1646 * setting NEED_RESCHED or anything that normal interrupts and
1647 * exceptions might do.
1648 */
4d732138 1649 call paranoid_entry
8c1f7558 1650 UNWIND_HINT_REGS
7fbb98c5 1651
ddeb8f21 1652 /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
4d732138
IM
1653 movq %rsp, %rdi
1654 movq $-1, %rsi
1655 call do_nmi
7fbb98c5 1656
21e94459 1657 RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
8a09317b 1658
4d732138
IM
1659 testl %ebx, %ebx /* swapgs needed? */
1660 jnz nmi_restore
ddeb8f21
AH
1661nmi_swapgs:
1662 SWAPGS_UNSAFE_STACK
1663nmi_restore:
471ee483
AL
1664 POP_EXTRA_REGS
1665 POP_C_REGS
0b22930e 1666
471ee483
AL
1667 /*
1668 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1669 * at the "iret" frame.
1670 */
1671 addq $6*8, %rsp
28696f43 1672
810bc075
AL
1673 /*
1674 * Clear "NMI executing". Set DF first so that we can easily
1675 * distinguish the remaining code between here and IRET from
929bacec
AL
1676 * the SYSCALL entry and exit paths.
1677 *
1678 * We arguably should just inspect RIP instead, but I (Andy) wrote
1679 * this code when I had the misapprehension that Xen PV supported
1680 * NMIs, and Xen PV would break that approach.
810bc075
AL
1681 */
1682 std
1683 movq $0, 5*8(%rsp) /* clear "NMI executing" */
0b22930e
AL
1684
1685 /*
929bacec
AL
1686 * iretq reads the "iret" frame and exits the NMI stack in a
1687 * single instruction. We are returning to kernel mode, so this
1688 * cannot result in a fault. Similarly, we don't need to worry
1689 * about espfix64 on the way back to kernel mode.
0b22930e 1690 */
929bacec 1691 iretq
ddeb8f21
AH
1692END(nmi)
1693
1694ENTRY(ignore_sysret)
8c1f7558 1695 UNWIND_HINT_EMPTY
4d732138 1696 mov $-ENOSYS, %eax
ddeb8f21 1697 sysret
ddeb8f21 1698END(ignore_sysret)
2deb4be2
AL
1699
1700ENTRY(rewind_stack_do_exit)
8c1f7558 1701 UNWIND_HINT_FUNC
2deb4be2
AL
1702 /* Prevent any naive code from trying to unwind to our caller. */
1703 xorl %ebp, %ebp
1704
1705 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax
8c1f7558
JP
1706 leaq -PTREGS_SIZE(%rax), %rsp
1707 UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
2deb4be2
AL
1708
1709 call do_exit
2deb4be2 1710END(rewind_stack_do_exit)