]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - arch/x86/entry/entry_64.S
x86/mm: Disable preemption during CR3 read+write
[mirror_ubuntu-focal-kernel.git] / arch / x86 / entry / entry_64.S
CommitLineData
1da177e4
LT
1/*
2 * linux/arch/x86_64/entry.S
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
6 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
4d732138 7 *
1da177e4
LT
8 * entry.S contains the system-call and fault low-level handling routines.
9 *
8b4777a4
AL
10 * Some of this is documented in Documentation/x86/entry_64.txt
11 *
0bd7b798 12 * A note on terminology:
4d732138
IM
13 * - iret frame: Architecture defined interrupt frame from SS to RIP
14 * at the top of the kernel process stack.
2e91a17b
AK
15 *
16 * Some macro usage:
4d732138
IM
17 * - ENTRY/END: Define functions in the symbol table.
18 * - TRACE_IRQ_*: Trace hardirq state for lock debugging.
19 * - idtentry: Define exception entry points.
1da177e4 20 */
1da177e4
LT
21#include <linux/linkage.h>
22#include <asm/segment.h>
1da177e4
LT
23#include <asm/cache.h>
24#include <asm/errno.h>
d36f9479 25#include "calling.h"
e2d5df93 26#include <asm/asm-offsets.h>
1da177e4
LT
27#include <asm/msr.h>
28#include <asm/unistd.h>
29#include <asm/thread_info.h>
30#include <asm/hw_irq.h>
0341c14d 31#include <asm/page_types.h>
2601e64d 32#include <asm/irqflags.h>
72fe4858 33#include <asm/paravirt.h>
9939ddaf 34#include <asm/percpu.h>
d7abc0fa 35#include <asm/asm.h>
63bcff2a 36#include <asm/smap.h>
3891a04a 37#include <asm/pgtable_types.h>
d7e7528b 38#include <linux/err.h>
1da177e4 39
86a1c34a
RM
40/* Avoid __ASSEMBLER__'ifying <linux/audit.h> just for this. */
41#include <linux/elf-em.h>
4d732138
IM
42#define AUDIT_ARCH_X86_64 (EM_X86_64|__AUDIT_ARCH_64BIT|__AUDIT_ARCH_LE)
43#define __AUDIT_ARCH_64BIT 0x80000000
44#define __AUDIT_ARCH_LE 0x40000000
ea714547 45
4d732138
IM
46.code64
47.section .entry.text, "ax"
16444a8a 48
72fe4858 49#ifdef CONFIG_PARAVIRT
2be29982 50ENTRY(native_usergs_sysret64)
72fe4858
GOC
51 swapgs
52 sysretq
b3baaa13 53ENDPROC(native_usergs_sysret64)
72fe4858
GOC
54#endif /* CONFIG_PARAVIRT */
55
f2db9382 56.macro TRACE_IRQS_IRETQ
2601e64d 57#ifdef CONFIG_TRACE_IRQFLAGS
4d732138
IM
58 bt $9, EFLAGS(%rsp) /* interrupts off? */
59 jnc 1f
2601e64d
IM
60 TRACE_IRQS_ON
611:
62#endif
63.endm
64
5963e317
SR
65/*
66 * When dynamic function tracer is enabled it will add a breakpoint
67 * to all locations that it is about to modify, sync CPUs, update
68 * all the code, sync CPUs, then remove the breakpoints. In this time
69 * if lockdep is enabled, it might jump back into the debug handler
70 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
71 *
72 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
73 * make sure the stack pointer does not get reset back to the top
74 * of the debug stack, and instead just reuses the current stack.
75 */
76#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
77
78.macro TRACE_IRQS_OFF_DEBUG
4d732138 79 call debug_stack_set_zero
5963e317 80 TRACE_IRQS_OFF
4d732138 81 call debug_stack_reset
5963e317
SR
82.endm
83
84.macro TRACE_IRQS_ON_DEBUG
4d732138 85 call debug_stack_set_zero
5963e317 86 TRACE_IRQS_ON
4d732138 87 call debug_stack_reset
5963e317
SR
88.endm
89
f2db9382 90.macro TRACE_IRQS_IRETQ_DEBUG
4d732138
IM
91 bt $9, EFLAGS(%rsp) /* interrupts off? */
92 jnc 1f
5963e317
SR
93 TRACE_IRQS_ON_DEBUG
941:
95.endm
96
97#else
4d732138
IM
98# define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF
99# define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON
100# define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ
5963e317
SR
101#endif
102
1da177e4 103/*
4d732138 104 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
1da177e4 105 *
fda57b22
AL
106 * This is the only entry point used for 64-bit system calls. The
107 * hardware interface is reasonably well designed and the register to
108 * argument mapping Linux uses fits well with the registers that are
109 * available when SYSCALL is used.
110 *
111 * SYSCALL instructions can be found inlined in libc implementations as
112 * well as some other programs and libraries. There are also a handful
113 * of SYSCALL instructions in the vDSO used, for example, as a
114 * clock_gettimeofday fallback.
115 *
4d732138 116 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
b87cf63e
DV
117 * then loads new ss, cs, and rip from previously programmed MSRs.
118 * rflags gets masked by a value from another MSR (so CLD and CLAC
119 * are not needed). SYSCALL does not save anything on the stack
120 * and does not change rsp.
121 *
122 * Registers on entry:
1da177e4 123 * rax system call number
b87cf63e
DV
124 * rcx return address
125 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
1da177e4 126 * rdi arg0
1da177e4 127 * rsi arg1
0bd7b798 128 * rdx arg2
b87cf63e 129 * r10 arg3 (needs to be moved to rcx to conform to C ABI)
1da177e4
LT
130 * r8 arg4
131 * r9 arg5
4d732138 132 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
0bd7b798 133 *
1da177e4
LT
134 * Only called from user space.
135 *
7fcb3bc3 136 * When user can change pt_regs->foo always force IRET. That is because
7bf36bbc
AK
137 * it deals with uncanonical addresses better. SYSRET has trouble
138 * with them due to bugs in both AMD and Intel CPUs.
0bd7b798 139 */
1da177e4 140
b2502b41 141ENTRY(entry_SYSCALL_64)
9ed8e7d8
DV
142 /*
143 * Interrupts are off on entry.
144 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
145 * it is too small to ever cause noticeable irq latency.
146 */
72fe4858
GOC
147 SWAPGS_UNSAFE_STACK
148 /*
149 * A hypervisor implementation might want to use a label
150 * after the swapgs, so that it can do the swapgs
151 * for the guest and jump here on syscall.
152 */
b2502b41 153GLOBAL(entry_SYSCALL_64_after_swapgs)
72fe4858 154
4d732138
IM
155 movq %rsp, PER_CPU_VAR(rsp_scratch)
156 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
9ed8e7d8 157
1e423bff
AL
158 TRACE_IRQS_OFF
159
9ed8e7d8 160 /* Construct struct pt_regs on stack */
4d732138
IM
161 pushq $__USER_DS /* pt_regs->ss */
162 pushq PER_CPU_VAR(rsp_scratch) /* pt_regs->sp */
4d732138
IM
163 pushq %r11 /* pt_regs->flags */
164 pushq $__USER_CS /* pt_regs->cs */
165 pushq %rcx /* pt_regs->ip */
166 pushq %rax /* pt_regs->orig_ax */
167 pushq %rdi /* pt_regs->di */
168 pushq %rsi /* pt_regs->si */
169 pushq %rdx /* pt_regs->dx */
170 pushq %rcx /* pt_regs->cx */
171 pushq $-ENOSYS /* pt_regs->ax */
172 pushq %r8 /* pt_regs->r8 */
173 pushq %r9 /* pt_regs->r9 */
174 pushq %r10 /* pt_regs->r10 */
175 pushq %r11 /* pt_regs->r11 */
176 sub $(6*8), %rsp /* pt_regs->bp, bx, r12-15 not saved */
177
1e423bff
AL
178 /*
179 * If we need to do entry work or if we guess we'll need to do
180 * exit work, go straight to the slow path.
181 */
182 testl $_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
183 jnz entry_SYSCALL64_slow_path
184
b2502b41 185entry_SYSCALL_64_fastpath:
1e423bff
AL
186 /*
187 * Easy case: enable interrupts and issue the syscall. If the syscall
188 * needs pt_regs, we'll call a stub that disables interrupts again
189 * and jumps to the slow path.
190 */
191 TRACE_IRQS_ON
192 ENABLE_INTERRUPTS(CLBR_NONE)
fca460f9 193#if __SYSCALL_MASK == ~0
4d732138 194 cmpq $__NR_syscall_max, %rax
fca460f9 195#else
4d732138
IM
196 andl $__SYSCALL_MASK, %eax
197 cmpl $__NR_syscall_max, %eax
fca460f9 198#endif
4d732138
IM
199 ja 1f /* return -ENOSYS (already in pt_regs->ax) */
200 movq %r10, %rcx
302f5b26
AL
201
202 /*
203 * This call instruction is handled specially in stub_ptregs_64.
b7765086
AL
204 * It might end up jumping to the slow path. If it jumps, RAX
205 * and all argument registers are clobbered.
302f5b26 206 */
4d732138 207 call *sys_call_table(, %rax, 8)
302f5b26
AL
208.Lentry_SYSCALL_64_after_fastpath_call:
209
4d732138 210 movq %rax, RAX(%rsp)
146b2b09 2111:
b3494a4a
AL
212
213 /*
1e423bff
AL
214 * If we get here, then we know that pt_regs is clean for SYSRET64.
215 * If we see that no exit work is required (which we are required
216 * to check with IRQs off), then we can go straight to SYSRET64.
b3494a4a 217 */
1e423bff
AL
218 DISABLE_INTERRUPTS(CLBR_NONE)
219 TRACE_IRQS_OFF
4d732138 220 testl $_TIF_ALLWORK_MASK, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
1e423bff 221 jnz 1f
b3494a4a 222
1e423bff
AL
223 LOCKDEP_SYS_EXIT
224 TRACE_IRQS_ON /* user mode is traced as IRQs on */
eb2a54c3
AL
225 movq RIP(%rsp), %rcx
226 movq EFLAGS(%rsp), %r11
227 RESTORE_C_REGS_EXCEPT_RCX_R11
4d732138 228 movq RSP(%rsp), %rsp
2be29982 229 USERGS_SYSRET64
1da177e4 230
1e423bff
AL
2311:
232 /*
233 * The fast path looked good when we started, but something changed
234 * along the way and we need to switch to the slow path. Calling
235 * raise(3) will trigger this, for example. IRQs are off.
236 */
29ea1b25
AL
237 TRACE_IRQS_ON
238 ENABLE_INTERRUPTS(CLBR_NONE)
76f5df43 239 SAVE_EXTRA_REGS
4d732138 240 movq %rsp, %rdi
1e423bff
AL
241 call syscall_return_slowpath /* returns with IRQs disabled */
242 jmp return_from_SYSCALL_64
0bd7b798 243
1e423bff
AL
244entry_SYSCALL64_slow_path:
245 /* IRQs are off. */
76f5df43 246 SAVE_EXTRA_REGS
29ea1b25 247 movq %rsp, %rdi
1e423bff
AL
248 call do_syscall_64 /* returns with IRQs disabled */
249
250return_from_SYSCALL_64:
76f5df43 251 RESTORE_EXTRA_REGS
29ea1b25 252 TRACE_IRQS_IRETQ /* we're about to change IF */
fffbb5dc
DV
253
254 /*
255 * Try to use SYSRET instead of IRET if we're returning to
256 * a completely clean 64-bit userspace context.
257 */
4d732138
IM
258 movq RCX(%rsp), %rcx
259 movq RIP(%rsp), %r11
260 cmpq %rcx, %r11 /* RCX == RIP */
261 jne opportunistic_sysret_failed
fffbb5dc
DV
262
263 /*
264 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
265 * in kernel space. This essentially lets the user take over
17be0aec 266 * the kernel, since userspace controls RSP.
fffbb5dc 267 *
17be0aec 268 * If width of "canonical tail" ever becomes variable, this will need
fffbb5dc
DV
269 * to be updated to remain correct on both old and new CPUs.
270 */
271 .ifne __VIRTUAL_MASK_SHIFT - 47
272 .error "virtual address width changed -- SYSRET checks need update"
273 .endif
4d732138 274
17be0aec
DV
275 /* Change top 16 bits to be the sign-extension of 47th bit */
276 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
277 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
4d732138 278
17be0aec
DV
279 /* If this changed %rcx, it was not canonical */
280 cmpq %rcx, %r11
281 jne opportunistic_sysret_failed
fffbb5dc 282
4d732138
IM
283 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
284 jne opportunistic_sysret_failed
fffbb5dc 285
4d732138
IM
286 movq R11(%rsp), %r11
287 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
288 jne opportunistic_sysret_failed
fffbb5dc
DV
289
290 /*
291 * SYSRET can't restore RF. SYSRET can restore TF, but unlike IRET,
292 * restoring TF results in a trap from userspace immediately after
293 * SYSRET. This would cause an infinite loop whenever #DB happens
294 * with register state that satisfies the opportunistic SYSRET
295 * conditions. For example, single-stepping this user code:
296 *
4d732138 297 * movq $stuck_here, %rcx
fffbb5dc
DV
298 * pushfq
299 * popq %r11
300 * stuck_here:
301 *
302 * would never get past 'stuck_here'.
303 */
4d732138
IM
304 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
305 jnz opportunistic_sysret_failed
fffbb5dc
DV
306
307 /* nothing to check for RSP */
308
4d732138
IM
309 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
310 jne opportunistic_sysret_failed
fffbb5dc
DV
311
312 /*
4d732138
IM
313 * We win! This label is here just for ease of understanding
314 * perf profiles. Nothing jumps here.
fffbb5dc
DV
315 */
316syscall_return_via_sysret:
17be0aec
DV
317 /* rcx and r11 are already restored (see code above) */
318 RESTORE_C_REGS_EXCEPT_RCX_R11
4d732138 319 movq RSP(%rsp), %rsp
fffbb5dc 320 USERGS_SYSRET64
fffbb5dc
DV
321
322opportunistic_sysret_failed:
323 SWAPGS
324 jmp restore_c_regs_and_iret
b2502b41 325END(entry_SYSCALL_64)
0bd7b798 326
302f5b26
AL
327ENTRY(stub_ptregs_64)
328 /*
329 * Syscalls marked as needing ptregs land here.
b7765086
AL
330 * If we are on the fast path, we need to save the extra regs,
331 * which we achieve by trying again on the slow path. If we are on
332 * the slow path, the extra regs are already saved.
302f5b26
AL
333 *
334 * RAX stores a pointer to the C function implementing the syscall.
b7765086 335 * IRQs are on.
302f5b26
AL
336 */
337 cmpq $.Lentry_SYSCALL_64_after_fastpath_call, (%rsp)
338 jne 1f
339
b7765086
AL
340 /*
341 * Called from fast path -- disable IRQs again, pop return address
342 * and jump to slow path
343 */
344 DISABLE_INTERRUPTS(CLBR_NONE)
345 TRACE_IRQS_OFF
302f5b26 346 popq %rax
b7765086 347 jmp entry_SYSCALL64_slow_path
302f5b26
AL
348
3491:
350 /* Called from C */
351 jmp *%rax /* called from C */
352END(stub_ptregs_64)
353
354.macro ptregs_stub func
355ENTRY(ptregs_\func)
356 leaq \func(%rip), %rax
357 jmp stub_ptregs_64
358END(ptregs_\func)
359.endm
360
361/* Instantiate ptregs_stub for each ptregs-using syscall */
362#define __SYSCALL_64_QUAL_(sym)
363#define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym
364#define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym)
365#include <asm/syscalls_64.h>
fffbb5dc 366
1eeb207f
DV
367/*
368 * A newly forked process directly context switches into this address.
369 *
370 * rdi: prev task we switched from
371 */
372ENTRY(ret_from_fork)
4d732138 373 LOCK ; btr $TIF_FORK, TI_flags(%r8)
1eeb207f 374
4d732138 375 call schedule_tail /* rdi: 'prev' task parameter */
1eeb207f 376
4d732138 377 testb $3, CS(%rsp) /* from kernel_thread? */
24d978b7 378 jnz 1f
1eeb207f 379
1e3fbb8a 380 /*
24d978b7
AL
381 * We came from kernel_thread. This code path is quite twisted, and
382 * someone should clean it up.
383 *
384 * copy_thread_tls stashes the function pointer in RBX and the
385 * parameter to be passed in RBP. The called function is permitted
386 * to call do_execve and thereby jump to user mode.
1e3fbb8a 387 */
24d978b7
AL
388 movq RBP(%rsp), %rdi
389 call *RBX(%rsp)
390 movl $0, RAX(%rsp)
1eeb207f 391
4d732138 392 /*
24d978b7
AL
393 * Fall through as though we're exiting a syscall. This makes a
394 * twisted sort of sense if we just called do_execve.
4d732138 395 */
24d978b7
AL
396
3971:
398 movq %rsp, %rdi
399 call syscall_return_slowpath /* returns with IRQs disabled */
400 TRACE_IRQS_ON /* user mode is traced as IRQS on */
401 SWAPGS
402 jmp restore_regs_and_iret
1eeb207f
DV
403END(ret_from_fork)
404
939b7871 405/*
3304c9c3
DV
406 * Build the entry stubs with some assembler magic.
407 * We pack 1 stub into every 8-byte block.
939b7871 408 */
3304c9c3 409 .align 8
939b7871 410ENTRY(irq_entries_start)
3304c9c3
DV
411 vector=FIRST_EXTERNAL_VECTOR
412 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
4d732138 413 pushq $(~vector+0x80) /* Note: always in signed byte range */
3304c9c3
DV
414 vector=vector+1
415 jmp common_interrupt
3304c9c3
DV
416 .align 8
417 .endr
939b7871
PA
418END(irq_entries_start)
419
d99015b1 420/*
1da177e4
LT
421 * Interrupt entry/exit.
422 *
423 * Interrupt entry points save only callee clobbered registers in fast path.
d99015b1
AH
424 *
425 * Entry runs with interrupts off.
426 */
1da177e4 427
722024db 428/* 0(%rsp): ~(interrupt number) */
1da177e4 429 .macro interrupt func
f6f64681 430 cld
ff467594
AL
431 ALLOC_PT_GPREGS_ON_STACK
432 SAVE_C_REGS
433 SAVE_EXTRA_REGS
76f5df43 434
ff467594 435 testb $3, CS(%rsp)
dde74f2e 436 jz 1f
02bc7768
AL
437
438 /*
439 * IRQ from user mode. Switch to kernel gsbase and inform context
440 * tracking that we're in kernel mode.
441 */
f6f64681 442 SWAPGS
f1075053
AL
443
444 /*
445 * We need to tell lockdep that IRQs are off. We can't do this until
446 * we fix gsbase, and we should do it before enter_from_user_mode
447 * (which can take locks). Since TRACE_IRQS_OFF idempotent,
448 * the simplest way to handle it is to just call it twice if
449 * we enter from user mode. There's no reason to optimize this since
450 * TRACE_IRQS_OFF is a no-op if lockdep is off.
451 */
452 TRACE_IRQS_OFF
453
478dc89c 454 CALL_enter_from_user_mode
02bc7768 455
76f5df43 4561:
f6f64681 457 /*
e90e147c 458 * Save previous stack pointer, optionally switch to interrupt stack.
f6f64681
DV
459 * irq_count is used to check if a CPU is already on an interrupt stack
460 * or not. While this is essentially redundant with preempt_count it is
461 * a little cheaper to use a separate counter in the PDA (short of
462 * moving irq_enter into assembly, which would be too much work)
463 */
a586f98e 464 movq %rsp, %rdi
4d732138
IM
465 incl PER_CPU_VAR(irq_count)
466 cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp
a586f98e 467 pushq %rdi
f6f64681
DV
468 /* We entered an interrupt context - irqs are off: */
469 TRACE_IRQS_OFF
470
a586f98e 471 call \func /* rdi points to pt_regs */
1da177e4
LT
472 .endm
473
722024db
AH
474 /*
475 * The interrupt stubs push (~vector+0x80) onto the stack and
476 * then jump to common_interrupt.
477 */
939b7871
PA
478 .p2align CONFIG_X86_L1_CACHE_SHIFT
479common_interrupt:
ee4eb87b 480 ASM_CLAC
4d732138 481 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
1da177e4 482 interrupt do_IRQ
34061f13 483 /* 0(%rsp): old RSP */
7effaa88 484ret_from_intr:
72fe4858 485 DISABLE_INTERRUPTS(CLBR_NONE)
2601e64d 486 TRACE_IRQS_OFF
4d732138 487 decl PER_CPU_VAR(irq_count)
625dbc3b 488
a2bbe750 489 /* Restore saved previous stack */
ff467594 490 popq %rsp
625dbc3b 491
03335e95 492 testb $3, CS(%rsp)
dde74f2e 493 jz retint_kernel
4d732138 494
02bc7768 495 /* Interrupt came from user space */
02bc7768
AL
496GLOBAL(retint_user)
497 mov %rsp,%rdi
498 call prepare_exit_to_usermode
2601e64d 499 TRACE_IRQS_IRETQ
72fe4858 500 SWAPGS
ff467594 501 jmp restore_regs_and_iret
2601e64d 502
627276cb 503/* Returning to kernel space */
6ba71b76 504retint_kernel:
627276cb
DV
505#ifdef CONFIG_PREEMPT
506 /* Interrupts are off */
507 /* Check if we need preemption */
4d732138 508 bt $9, EFLAGS(%rsp) /* were interrupts off? */
6ba71b76 509 jnc 1f
4d732138 5100: cmpl $0, PER_CPU_VAR(__preempt_count)
36acef25 511 jnz 1f
627276cb 512 call preempt_schedule_irq
36acef25 513 jmp 0b
6ba71b76 5141:
627276cb 515#endif
2601e64d
IM
516 /*
517 * The iretq could re-enable interrupts:
518 */
519 TRACE_IRQS_IRETQ
fffbb5dc
DV
520
521/*
522 * At this label, code paths which return to kernel and to user,
523 * which come from interrupts/exception and from syscalls, merge.
524 */
ee08c6bd 525GLOBAL(restore_regs_and_iret)
ff467594 526 RESTORE_EXTRA_REGS
fffbb5dc 527restore_c_regs_and_iret:
76f5df43
DV
528 RESTORE_C_REGS
529 REMOVE_PT_GPREGS_FROM_STACK 8
7209a75d
AL
530 INTERRUPT_RETURN
531
532ENTRY(native_iret)
3891a04a
PA
533 /*
534 * Are we returning to a stack segment from the LDT? Note: in
535 * 64-bit mode SS:RSP on the exception stack is always valid.
536 */
34273f41 537#ifdef CONFIG_X86_ESPFIX64
4d732138
IM
538 testb $4, (SS-RIP)(%rsp)
539 jnz native_irq_return_ldt
34273f41 540#endif
3891a04a 541
af726f21 542.global native_irq_return_iret
7209a75d 543native_irq_return_iret:
b645af2d
AL
544 /*
545 * This may fault. Non-paranoid faults on return to userspace are
546 * handled by fixup_bad_iret. These include #SS, #GP, and #NP.
547 * Double-faults due to espfix64 are handled in do_double_fault.
548 * Other faults here are fatal.
549 */
1da177e4 550 iretq
3701d863 551
34273f41 552#ifdef CONFIG_X86_ESPFIX64
7209a75d 553native_irq_return_ldt:
4d732138
IM
554 pushq %rax
555 pushq %rdi
3891a04a 556 SWAPGS
4d732138
IM
557 movq PER_CPU_VAR(espfix_waddr), %rdi
558 movq %rax, (0*8)(%rdi) /* RAX */
559 movq (2*8)(%rsp), %rax /* RIP */
560 movq %rax, (1*8)(%rdi)
561 movq (3*8)(%rsp), %rax /* CS */
562 movq %rax, (2*8)(%rdi)
563 movq (4*8)(%rsp), %rax /* RFLAGS */
564 movq %rax, (3*8)(%rdi)
565 movq (6*8)(%rsp), %rax /* SS */
566 movq %rax, (5*8)(%rdi)
567 movq (5*8)(%rsp), %rax /* RSP */
568 movq %rax, (4*8)(%rdi)
569 andl $0xffff0000, %eax
570 popq %rdi
571 orq PER_CPU_VAR(espfix_stack), %rax
3891a04a 572 SWAPGS
4d732138
IM
573 movq %rax, %rsp
574 popq %rax
575 jmp native_irq_return_iret
34273f41 576#endif
4b787e0b 577END(common_interrupt)
3891a04a 578
1da177e4
LT
579/*
580 * APIC interrupts.
0bd7b798 581 */
cf910e83 582.macro apicinterrupt3 num sym do_sym
322648d1 583ENTRY(\sym)
ee4eb87b 584 ASM_CLAC
4d732138 585 pushq $~(\num)
39e95433 586.Lcommon_\sym:
322648d1 587 interrupt \do_sym
4d732138 588 jmp ret_from_intr
322648d1
AH
589END(\sym)
590.endm
1da177e4 591
cf910e83
SA
592#ifdef CONFIG_TRACING
593#define trace(sym) trace_##sym
594#define smp_trace(sym) smp_trace_##sym
595
596.macro trace_apicinterrupt num sym
597apicinterrupt3 \num trace(\sym) smp_trace(\sym)
598.endm
599#else
600.macro trace_apicinterrupt num sym do_sym
601.endm
602#endif
603
469f0023
AP
604/* Make sure APIC interrupt handlers end up in the irqentry section: */
605#if defined(CONFIG_FUNCTION_GRAPH_TRACER) || defined(CONFIG_KASAN)
606# define PUSH_SECTION_IRQENTRY .pushsection .irqentry.text, "ax"
607# define POP_SECTION_IRQENTRY .popsection
608#else
609# define PUSH_SECTION_IRQENTRY
610# define POP_SECTION_IRQENTRY
611#endif
612
cf910e83 613.macro apicinterrupt num sym do_sym
469f0023 614PUSH_SECTION_IRQENTRY
cf910e83
SA
615apicinterrupt3 \num \sym \do_sym
616trace_apicinterrupt \num \sym
469f0023 617POP_SECTION_IRQENTRY
cf910e83
SA
618.endm
619
322648d1 620#ifdef CONFIG_SMP
4d732138
IM
621apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt
622apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt
322648d1 623#endif
1da177e4 624
03b48632 625#ifdef CONFIG_X86_UV
4d732138 626apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt
03b48632 627#endif
4d732138
IM
628
629apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt
630apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi
89b831ef 631
d78f2664 632#ifdef CONFIG_HAVE_KVM
4d732138
IM
633apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi
634apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi
d78f2664
YZ
635#endif
636
33e5ff63 637#ifdef CONFIG_X86_MCE_THRESHOLD
4d732138 638apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt
33e5ff63
SA
639#endif
640
24fd78a8 641#ifdef CONFIG_X86_MCE_AMD
4d732138 642apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt
24fd78a8
AG
643#endif
644
33e5ff63 645#ifdef CONFIG_X86_THERMAL_VECTOR
4d732138 646apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt
33e5ff63 647#endif
1812924b 648
322648d1 649#ifdef CONFIG_SMP
4d732138
IM
650apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt
651apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt
652apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt
322648d1 653#endif
1da177e4 654
4d732138
IM
655apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt
656apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt
0bd7b798 657
e360adbe 658#ifdef CONFIG_IRQ_WORK
4d732138 659apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
241771ef
IM
660#endif
661
1da177e4
LT
662/*
663 * Exception entry points.
0bd7b798 664 */
9b476688 665#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
577ed45e
AL
666
667.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
322648d1 668ENTRY(\sym)
577ed45e
AL
669 /* Sanity check */
670 .if \shift_ist != -1 && \paranoid == 0
671 .error "using shift_ist requires paranoid=1"
672 .endif
673
ee4eb87b 674 ASM_CLAC
b8b1d08b 675 PARAVIRT_ADJUST_EXCEPTION_FRAME
cb5dd2c5
AL
676
677 .ifeq \has_error_code
4d732138 678 pushq $-1 /* ORIG_RAX: no syscall to restart */
cb5dd2c5
AL
679 .endif
680
76f5df43 681 ALLOC_PT_GPREGS_ON_STACK
cb5dd2c5
AL
682
683 .if \paranoid
48e08d0f 684 .if \paranoid == 1
4d732138
IM
685 testb $3, CS(%rsp) /* If coming from userspace, switch stacks */
686 jnz 1f
48e08d0f 687 .endif
4d732138 688 call paranoid_entry
cb5dd2c5 689 .else
4d732138 690 call error_entry
cb5dd2c5 691 .endif
ebfc453e 692 /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
cb5dd2c5 693
cb5dd2c5 694 .if \paranoid
577ed45e 695 .if \shift_ist != -1
4d732138 696 TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */
577ed45e 697 .else
b8b1d08b 698 TRACE_IRQS_OFF
cb5dd2c5 699 .endif
577ed45e 700 .endif
cb5dd2c5 701
4d732138 702 movq %rsp, %rdi /* pt_regs pointer */
cb5dd2c5
AL
703
704 .if \has_error_code
4d732138
IM
705 movq ORIG_RAX(%rsp), %rsi /* get error code */
706 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
cb5dd2c5 707 .else
4d732138 708 xorl %esi, %esi /* no error code */
cb5dd2c5
AL
709 .endif
710
577ed45e 711 .if \shift_ist != -1
4d732138 712 subq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
577ed45e
AL
713 .endif
714
4d732138 715 call \do_sym
cb5dd2c5 716
577ed45e 717 .if \shift_ist != -1
4d732138 718 addq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
577ed45e
AL
719 .endif
720
ebfc453e 721 /* these procedures expect "no swapgs" flag in ebx */
cb5dd2c5 722 .if \paranoid
4d732138 723 jmp paranoid_exit
cb5dd2c5 724 .else
4d732138 725 jmp error_exit
cb5dd2c5
AL
726 .endif
727
48e08d0f 728 .if \paranoid == 1
48e08d0f
AL
729 /*
730 * Paranoid entry from userspace. Switch stacks and treat it
731 * as a normal entry. This means that paranoid handlers
732 * run in real process context if user_mode(regs).
733 */
7341:
4d732138 735 call error_entry
48e08d0f 736
48e08d0f 737
4d732138
IM
738 movq %rsp, %rdi /* pt_regs pointer */
739 call sync_regs
740 movq %rax, %rsp /* switch stack */
48e08d0f 741
4d732138 742 movq %rsp, %rdi /* pt_regs pointer */
48e08d0f
AL
743
744 .if \has_error_code
4d732138
IM
745 movq ORIG_RAX(%rsp), %rsi /* get error code */
746 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
48e08d0f 747 .else
4d732138 748 xorl %esi, %esi /* no error code */
48e08d0f
AL
749 .endif
750
4d732138 751 call \do_sym
48e08d0f 752
4d732138 753 jmp error_exit /* %ebx: no swapgs flag */
48e08d0f 754 .endif
ddeb8f21 755END(\sym)
322648d1 756.endm
b8b1d08b 757
25c74b10 758#ifdef CONFIG_TRACING
cb5dd2c5
AL
759.macro trace_idtentry sym do_sym has_error_code:req
760idtentry trace(\sym) trace(\do_sym) has_error_code=\has_error_code
761idtentry \sym \do_sym has_error_code=\has_error_code
25c74b10
SA
762.endm
763#else
cb5dd2c5
AL
764.macro trace_idtentry sym do_sym has_error_code:req
765idtentry \sym \do_sym has_error_code=\has_error_code
25c74b10
SA
766.endm
767#endif
768
4d732138
IM
769idtentry divide_error do_divide_error has_error_code=0
770idtentry overflow do_overflow has_error_code=0
771idtentry bounds do_bounds has_error_code=0
772idtentry invalid_op do_invalid_op has_error_code=0
773idtentry device_not_available do_device_not_available has_error_code=0
774idtentry double_fault do_double_fault has_error_code=1 paranoid=2
775idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0
776idtentry invalid_TSS do_invalid_TSS has_error_code=1
777idtentry segment_not_present do_segment_not_present has_error_code=1
778idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0
779idtentry coprocessor_error do_coprocessor_error has_error_code=0
780idtentry alignment_check do_alignment_check has_error_code=1
781idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0
782
783
784 /*
785 * Reload gs selector with exception handling
786 * edi: new selector
787 */
9f9d489a 788ENTRY(native_load_gs_index)
131484c8 789 pushfq
b8aa287f 790 DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
9f1e87ea 791 SWAPGS
42c748bb 792.Lgs_change:
4d732138 793 movl %edi, %gs
96e5d28a 7942: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
72fe4858 795 SWAPGS
131484c8 796 popfq
9f1e87ea 797 ret
6efdcfaf 798END(native_load_gs_index)
0bd7b798 799
42c748bb 800 _ASM_EXTABLE(.Lgs_change, bad_gs)
4d732138 801 .section .fixup, "ax"
1da177e4 802 /* running with kernelgs */
0bd7b798 803bad_gs:
4d732138 804 SWAPGS /* switch back to user gs */
b038c842
AL
805.macro ZAP_GS
806 /* This can't be a string because the preprocessor needs to see it. */
807 movl $__USER_DS, %eax
808 movl %eax, %gs
809.endm
810 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
4d732138
IM
811 xorl %eax, %eax
812 movl %eax, %gs
813 jmp 2b
9f1e87ea 814 .previous
0bd7b798 815
2699500b 816/* Call softirq on interrupt stack. Interrupts are off. */
7d65f4a6 817ENTRY(do_softirq_own_stack)
4d732138
IM
818 pushq %rbp
819 mov %rsp, %rbp
820 incl PER_CPU_VAR(irq_count)
821 cmove PER_CPU_VAR(irq_stack_ptr), %rsp
822 push %rbp /* frame pointer backlink */
823 call __do_softirq
2699500b 824 leaveq
4d732138 825 decl PER_CPU_VAR(irq_count)
ed6b676c 826 ret
7d65f4a6 827END(do_softirq_own_stack)
75154f40 828
3d75e1b8 829#ifdef CONFIG_XEN
cb5dd2c5 830idtentry xen_hypervisor_callback xen_do_hypervisor_callback has_error_code=0
3d75e1b8
JF
831
832/*
9f1e87ea
CG
833 * A note on the "critical region" in our callback handler.
834 * We want to avoid stacking callback handlers due to events occurring
835 * during handling of the last event. To do this, we keep events disabled
836 * until we've done all processing. HOWEVER, we must enable events before
837 * popping the stack frame (can't be done atomically) and so it would still
838 * be possible to get enough handler activations to overflow the stack.
839 * Although unlikely, bugs of that kind are hard to track down, so we'd
840 * like to avoid the possibility.
841 * So, on entry to the handler we detect whether we interrupted an
842 * existing activation in its critical region -- if so, we pop the current
843 * activation and restart the handler using the previous one.
844 */
4d732138
IM
845ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */
846
9f1e87ea
CG
847/*
848 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
849 * see the correct pointer to the pt_regs
850 */
4d732138
IM
851 movq %rdi, %rsp /* we don't return, adjust the stack frame */
85211: incl PER_CPU_VAR(irq_count)
853 movq %rsp, %rbp
854 cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp
855 pushq %rbp /* frame pointer backlink */
856 call xen_evtchn_do_upcall
857 popq %rsp
858 decl PER_CPU_VAR(irq_count)
fdfd811d 859#ifndef CONFIG_PREEMPT
4d732138 860 call xen_maybe_preempt_hcall
fdfd811d 861#endif
4d732138 862 jmp error_exit
371c394a 863END(xen_do_hypervisor_callback)
3d75e1b8
JF
864
865/*
9f1e87ea
CG
866 * Hypervisor uses this for application faults while it executes.
867 * We get here for two reasons:
868 * 1. Fault while reloading DS, ES, FS or GS
869 * 2. Fault while executing IRET
870 * Category 1 we do not need to fix up as Xen has already reloaded all segment
871 * registers that could be reloaded and zeroed the others.
872 * Category 2 we fix up by killing the current process. We cannot use the
873 * normal Linux return path in this case because if we use the IRET hypercall
874 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
875 * We distinguish between categories by comparing each saved segment register
876 * with its current contents: any discrepancy means we in category 1.
877 */
3d75e1b8 878ENTRY(xen_failsafe_callback)
4d732138
IM
879 movl %ds, %ecx
880 cmpw %cx, 0x10(%rsp)
881 jne 1f
882 movl %es, %ecx
883 cmpw %cx, 0x18(%rsp)
884 jne 1f
885 movl %fs, %ecx
886 cmpw %cx, 0x20(%rsp)
887 jne 1f
888 movl %gs, %ecx
889 cmpw %cx, 0x28(%rsp)
890 jne 1f
3d75e1b8 891 /* All segments match their saved values => Category 2 (Bad IRET). */
4d732138
IM
892 movq (%rsp), %rcx
893 movq 8(%rsp), %r11
894 addq $0x30, %rsp
895 pushq $0 /* RIP */
896 pushq %r11
897 pushq %rcx
898 jmp general_protection
3d75e1b8 8991: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
4d732138
IM
900 movq (%rsp), %rcx
901 movq 8(%rsp), %r11
902 addq $0x30, %rsp
903 pushq $-1 /* orig_ax = -1 => not a system call */
76f5df43
DV
904 ALLOC_PT_GPREGS_ON_STACK
905 SAVE_C_REGS
906 SAVE_EXTRA_REGS
4d732138 907 jmp error_exit
3d75e1b8
JF
908END(xen_failsafe_callback)
909
cf910e83 910apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
38e20b07
SY
911 xen_hvm_callback_vector xen_evtchn_do_upcall
912
3d75e1b8 913#endif /* CONFIG_XEN */
ddeb8f21 914
bc2b0331 915#if IS_ENABLED(CONFIG_HYPERV)
cf910e83 916apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
bc2b0331
S
917 hyperv_callback_vector hyperv_vector_handler
918#endif /* CONFIG_HYPERV */
919
4d732138
IM
920idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
921idtentry int3 do_int3 has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
922idtentry stack_segment do_stack_segment has_error_code=1
923
6cac5a92 924#ifdef CONFIG_XEN
4d732138
IM
925idtentry xen_debug do_debug has_error_code=0
926idtentry xen_int3 do_int3 has_error_code=0
927idtentry xen_stack_segment do_stack_segment has_error_code=1
6cac5a92 928#endif
4d732138
IM
929
930idtentry general_protection do_general_protection has_error_code=1
931trace_idtentry page_fault do_page_fault has_error_code=1
932
631bc487 933#ifdef CONFIG_KVM_GUEST
4d732138 934idtentry async_page_fault do_async_page_fault has_error_code=1
631bc487 935#endif
4d732138 936
ddeb8f21 937#ifdef CONFIG_X86_MCE
4d732138 938idtentry machine_check has_error_code=0 paranoid=1 do_sym=*machine_check_vector(%rip)
ddeb8f21
AH
939#endif
940
ebfc453e
DV
941/*
942 * Save all registers in pt_regs, and switch gs if needed.
943 * Use slow, but surefire "are we in kernel?" check.
944 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
945 */
946ENTRY(paranoid_entry)
1eeb207f
DV
947 cld
948 SAVE_C_REGS 8
949 SAVE_EXTRA_REGS 8
4d732138
IM
950 movl $1, %ebx
951 movl $MSR_GS_BASE, %ecx
1eeb207f 952 rdmsr
4d732138
IM
953 testl %edx, %edx
954 js 1f /* negative -> in kernel */
1eeb207f 955 SWAPGS
4d732138 956 xorl %ebx, %ebx
1eeb207f 9571: ret
ebfc453e 958END(paranoid_entry)
ddeb8f21 959
ebfc453e
DV
960/*
961 * "Paranoid" exit path from exception stack. This is invoked
962 * only on return from non-NMI IST interrupts that came
963 * from kernel space.
964 *
965 * We may be returning to very strange contexts (e.g. very early
966 * in syscall entry), so checking for preemption here would
967 * be complicated. Fortunately, we there's no good reason
968 * to try to handle preemption here.
4d732138
IM
969 *
970 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
ebfc453e 971 */
ddeb8f21 972ENTRY(paranoid_exit)
ddeb8f21 973 DISABLE_INTERRUPTS(CLBR_NONE)
5963e317 974 TRACE_IRQS_OFF_DEBUG
4d732138
IM
975 testl %ebx, %ebx /* swapgs needed? */
976 jnz paranoid_exit_no_swapgs
f2db9382 977 TRACE_IRQS_IRETQ
ddeb8f21 978 SWAPGS_UNSAFE_STACK
4d732138 979 jmp paranoid_exit_restore
0d550836 980paranoid_exit_no_swapgs:
f2db9382 981 TRACE_IRQS_IRETQ_DEBUG
0d550836 982paranoid_exit_restore:
76f5df43
DV
983 RESTORE_EXTRA_REGS
984 RESTORE_C_REGS
985 REMOVE_PT_GPREGS_FROM_STACK 8
48e08d0f 986 INTERRUPT_RETURN
ddeb8f21
AH
987END(paranoid_exit)
988
989/*
ebfc453e 990 * Save all registers in pt_regs, and switch gs if needed.
539f5113 991 * Return: EBX=0: came from user mode; EBX=1: otherwise
ddeb8f21
AH
992 */
993ENTRY(error_entry)
ddeb8f21 994 cld
76f5df43
DV
995 SAVE_C_REGS 8
996 SAVE_EXTRA_REGS 8
4d732138 997 xorl %ebx, %ebx
03335e95 998 testb $3, CS+8(%rsp)
cb6f64ed 999 jz .Lerror_kernelspace
539f5113 1000
cb6f64ed
AL
1001.Lerror_entry_from_usermode_swapgs:
1002 /*
1003 * We entered from user mode or we're pretending to have entered
1004 * from user mode due to an IRET fault.
1005 */
ddeb8f21 1006 SWAPGS
539f5113 1007
cb6f64ed 1008.Lerror_entry_from_usermode_after_swapgs:
f1075053
AL
1009 /*
1010 * We need to tell lockdep that IRQs are off. We can't do this until
1011 * we fix gsbase, and we should do it before enter_from_user_mode
1012 * (which can take locks).
1013 */
1014 TRACE_IRQS_OFF
478dc89c 1015 CALL_enter_from_user_mode
f1075053 1016 ret
02bc7768 1017
cb6f64ed 1018.Lerror_entry_done:
ddeb8f21
AH
1019 TRACE_IRQS_OFF
1020 ret
ddeb8f21 1021
ebfc453e
DV
1022 /*
1023 * There are two places in the kernel that can potentially fault with
1024 * usergs. Handle them here. B stepping K8s sometimes report a
1025 * truncated RIP for IRET exceptions returning to compat mode. Check
1026 * for these here too.
1027 */
cb6f64ed 1028.Lerror_kernelspace:
4d732138
IM
1029 incl %ebx
1030 leaq native_irq_return_iret(%rip), %rcx
1031 cmpq %rcx, RIP+8(%rsp)
cb6f64ed 1032 je .Lerror_bad_iret
4d732138
IM
1033 movl %ecx, %eax /* zero extend */
1034 cmpq %rax, RIP+8(%rsp)
cb6f64ed 1035 je .Lbstep_iret
42c748bb 1036 cmpq $.Lgs_change, RIP+8(%rsp)
cb6f64ed 1037 jne .Lerror_entry_done
539f5113
AL
1038
1039 /*
42c748bb 1040 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up
539f5113 1041 * gsbase and proceed. We'll fix up the exception and land in
42c748bb 1042 * .Lgs_change's error handler with kernel gsbase.
539f5113 1043 */
cb6f64ed 1044 jmp .Lerror_entry_from_usermode_swapgs
ae24ffe5 1045
cb6f64ed 1046.Lbstep_iret:
ae24ffe5 1047 /* Fix truncated RIP */
4d732138 1048 movq %rcx, RIP+8(%rsp)
b645af2d
AL
1049 /* fall through */
1050
cb6f64ed 1051.Lerror_bad_iret:
539f5113
AL
1052 /*
1053 * We came from an IRET to user mode, so we have user gsbase.
1054 * Switch to kernel gsbase:
1055 */
b645af2d 1056 SWAPGS
539f5113
AL
1057
1058 /*
1059 * Pretend that the exception came from user mode: set up pt_regs
1060 * as if we faulted immediately after IRET and clear EBX so that
1061 * error_exit knows that we will be returning to user mode.
1062 */
4d732138
IM
1063 mov %rsp, %rdi
1064 call fixup_bad_iret
1065 mov %rax, %rsp
539f5113 1066 decl %ebx
cb6f64ed 1067 jmp .Lerror_entry_from_usermode_after_swapgs
ddeb8f21
AH
1068END(error_entry)
1069
1070
539f5113
AL
1071/*
1072 * On entry, EBS is a "return to kernel mode" flag:
1073 * 1: already in kernel mode, don't need SWAPGS
1074 * 0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
1075 */
ddeb8f21 1076ENTRY(error_exit)
4d732138 1077 movl %ebx, %eax
ddeb8f21
AH
1078 DISABLE_INTERRUPTS(CLBR_NONE)
1079 TRACE_IRQS_OFF
4d732138
IM
1080 testl %eax, %eax
1081 jnz retint_kernel
1082 jmp retint_user
ddeb8f21
AH
1083END(error_exit)
1084
0784b364 1085/* Runs on exception stack */
ddeb8f21 1086ENTRY(nmi)
fc57a7c6
AL
1087 /*
1088 * Fix up the exception frame if we're on Xen.
1089 * PARAVIRT_ADJUST_EXCEPTION_FRAME is guaranteed to push at most
1090 * one value to the stack on native, so it may clobber the rdx
1091 * scratch slot, but it won't clobber any of the important
1092 * slots past it.
1093 *
1094 * Xen is a different story, because the Xen frame itself overlaps
1095 * the "NMI executing" variable.
1096 */
ddeb8f21 1097 PARAVIRT_ADJUST_EXCEPTION_FRAME
fc57a7c6 1098
3f3c8b8c
SR
1099 /*
1100 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1101 * the iretq it performs will take us out of NMI context.
1102 * This means that we can have nested NMIs where the next
1103 * NMI is using the top of the stack of the previous NMI. We
1104 * can't let it execute because the nested NMI will corrupt the
1105 * stack of the previous NMI. NMI handlers are not re-entrant
1106 * anyway.
1107 *
1108 * To handle this case we do the following:
1109 * Check the a special location on the stack that contains
1110 * a variable that is set when NMIs are executing.
1111 * The interrupted task's stack is also checked to see if it
1112 * is an NMI stack.
1113 * If the variable is not set and the stack is not the NMI
1114 * stack then:
1115 * o Set the special variable on the stack
0b22930e
AL
1116 * o Copy the interrupt frame into an "outermost" location on the
1117 * stack
1118 * o Copy the interrupt frame into an "iret" location on the stack
3f3c8b8c
SR
1119 * o Continue processing the NMI
1120 * If the variable is set or the previous stack is the NMI stack:
0b22930e 1121 * o Modify the "iret" location to jump to the repeat_nmi
3f3c8b8c
SR
1122 * o return back to the first NMI
1123 *
1124 * Now on exit of the first NMI, we first clear the stack variable
1125 * The NMI stack will tell any nested NMIs at that point that it is
1126 * nested. Then we pop the stack normally with iret, and if there was
1127 * a nested NMI that updated the copy interrupt stack frame, a
1128 * jump will be made to the repeat_nmi code that will handle the second
1129 * NMI.
9b6e6a83
AL
1130 *
1131 * However, espfix prevents us from directly returning to userspace
1132 * with a single IRET instruction. Similarly, IRET to user mode
1133 * can fault. We therefore handle NMIs from user space like
1134 * other IST entries.
3f3c8b8c
SR
1135 */
1136
146b2b09 1137 /* Use %rdx as our temp variable throughout */
4d732138 1138 pushq %rdx
3f3c8b8c 1139
9b6e6a83
AL
1140 testb $3, CS-RIP+8(%rsp)
1141 jz .Lnmi_from_kernel
1142
1143 /*
1144 * NMI from user mode. We need to run on the thread stack, but we
1145 * can't go through the normal entry paths: NMIs are masked, and
1146 * we don't want to enable interrupts, because then we'll end
1147 * up in an awkward situation in which IRQs are on but NMIs
1148 * are off.
83c133cf
AL
1149 *
1150 * We also must not push anything to the stack before switching
1151 * stacks lest we corrupt the "NMI executing" variable.
9b6e6a83
AL
1152 */
1153
83c133cf 1154 SWAPGS_UNSAFE_STACK
9b6e6a83
AL
1155 cld
1156 movq %rsp, %rdx
1157 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1158 pushq 5*8(%rdx) /* pt_regs->ss */
1159 pushq 4*8(%rdx) /* pt_regs->rsp */
1160 pushq 3*8(%rdx) /* pt_regs->flags */
1161 pushq 2*8(%rdx) /* pt_regs->cs */
1162 pushq 1*8(%rdx) /* pt_regs->rip */
1163 pushq $-1 /* pt_regs->orig_ax */
1164 pushq %rdi /* pt_regs->di */
1165 pushq %rsi /* pt_regs->si */
1166 pushq (%rdx) /* pt_regs->dx */
1167 pushq %rcx /* pt_regs->cx */
1168 pushq %rax /* pt_regs->ax */
1169 pushq %r8 /* pt_regs->r8 */
1170 pushq %r9 /* pt_regs->r9 */
1171 pushq %r10 /* pt_regs->r10 */
1172 pushq %r11 /* pt_regs->r11 */
1173 pushq %rbx /* pt_regs->rbx */
1174 pushq %rbp /* pt_regs->rbp */
1175 pushq %r12 /* pt_regs->r12 */
1176 pushq %r13 /* pt_regs->r13 */
1177 pushq %r14 /* pt_regs->r14 */
1178 pushq %r15 /* pt_regs->r15 */
1179
1180 /*
1181 * At this point we no longer need to worry about stack damage
1182 * due to nesting -- we're on the normal thread stack and we're
1183 * done with the NMI stack.
1184 */
1185
1186 movq %rsp, %rdi
1187 movq $-1, %rsi
1188 call do_nmi
1189
45d5a168 1190 /*
9b6e6a83
AL
1191 * Return back to user mode. We must *not* do the normal exit
1192 * work, because we don't want to enable interrupts. Fortunately,
1193 * do_nmi doesn't modify pt_regs.
45d5a168 1194 */
9b6e6a83
AL
1195 SWAPGS
1196 jmp restore_c_regs_and_iret
45d5a168 1197
9b6e6a83 1198.Lnmi_from_kernel:
3f3c8b8c 1199 /*
0b22930e
AL
1200 * Here's what our stack frame will look like:
1201 * +---------------------------------------------------------+
1202 * | original SS |
1203 * | original Return RSP |
1204 * | original RFLAGS |
1205 * | original CS |
1206 * | original RIP |
1207 * +---------------------------------------------------------+
1208 * | temp storage for rdx |
1209 * +---------------------------------------------------------+
1210 * | "NMI executing" variable |
1211 * +---------------------------------------------------------+
1212 * | iret SS } Copied from "outermost" frame |
1213 * | iret Return RSP } on each loop iteration; overwritten |
1214 * | iret RFLAGS } by a nested NMI to force another |
1215 * | iret CS } iteration if needed. |
1216 * | iret RIP } |
1217 * +---------------------------------------------------------+
1218 * | outermost SS } initialized in first_nmi; |
1219 * | outermost Return RSP } will not be changed before |
1220 * | outermost RFLAGS } NMI processing is done. |
1221 * | outermost CS } Copied to "iret" frame on each |
1222 * | outermost RIP } iteration. |
1223 * +---------------------------------------------------------+
1224 * | pt_regs |
1225 * +---------------------------------------------------------+
1226 *
1227 * The "original" frame is used by hardware. Before re-enabling
1228 * NMIs, we need to be done with it, and we need to leave enough
1229 * space for the asm code here.
1230 *
1231 * We return by executing IRET while RSP points to the "iret" frame.
1232 * That will either return for real or it will loop back into NMI
1233 * processing.
1234 *
1235 * The "outermost" frame is copied to the "iret" frame on each
1236 * iteration of the loop, so each iteration starts with the "iret"
1237 * frame pointing to the final return target.
1238 */
1239
45d5a168 1240 /*
0b22930e
AL
1241 * Determine whether we're a nested NMI.
1242 *
a27507ca
AL
1243 * If we interrupted kernel code between repeat_nmi and
1244 * end_repeat_nmi, then we are a nested NMI. We must not
1245 * modify the "iret" frame because it's being written by
1246 * the outer NMI. That's okay; the outer NMI handler is
1247 * about to about to call do_nmi anyway, so we can just
1248 * resume the outer NMI.
45d5a168 1249 */
a27507ca
AL
1250
1251 movq $repeat_nmi, %rdx
1252 cmpq 8(%rsp), %rdx
1253 ja 1f
1254 movq $end_repeat_nmi, %rdx
1255 cmpq 8(%rsp), %rdx
1256 ja nested_nmi_out
12571:
45d5a168 1258
3f3c8b8c 1259 /*
a27507ca 1260 * Now check "NMI executing". If it's set, then we're nested.
0b22930e
AL
1261 * This will not detect if we interrupted an outer NMI just
1262 * before IRET.
3f3c8b8c 1263 */
4d732138
IM
1264 cmpl $1, -8(%rsp)
1265 je nested_nmi
3f3c8b8c
SR
1266
1267 /*
0b22930e
AL
1268 * Now test if the previous stack was an NMI stack. This covers
1269 * the case where we interrupt an outer NMI after it clears
810bc075
AL
1270 * "NMI executing" but before IRET. We need to be careful, though:
1271 * there is one case in which RSP could point to the NMI stack
1272 * despite there being no NMI active: naughty userspace controls
1273 * RSP at the very beginning of the SYSCALL targets. We can
1274 * pull a fast one on naughty userspace, though: we program
1275 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1276 * if it controls the kernel's RSP. We set DF before we clear
1277 * "NMI executing".
3f3c8b8c 1278 */
0784b364
DV
1279 lea 6*8(%rsp), %rdx
1280 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1281 cmpq %rdx, 4*8(%rsp)
1282 /* If the stack pointer is above the NMI stack, this is a normal NMI */
1283 ja first_nmi
4d732138 1284
0784b364
DV
1285 subq $EXCEPTION_STKSZ, %rdx
1286 cmpq %rdx, 4*8(%rsp)
1287 /* If it is below the NMI stack, it is a normal NMI */
1288 jb first_nmi
810bc075
AL
1289
1290 /* Ah, it is within the NMI stack. */
1291
1292 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1293 jz first_nmi /* RSP was user controlled. */
1294
1295 /* This is a nested NMI. */
0784b364 1296
3f3c8b8c
SR
1297nested_nmi:
1298 /*
0b22930e
AL
1299 * Modify the "iret" frame to point to repeat_nmi, forcing another
1300 * iteration of NMI handling.
3f3c8b8c 1301 */
23a781e9 1302 subq $8, %rsp
4d732138
IM
1303 leaq -10*8(%rsp), %rdx
1304 pushq $__KERNEL_DS
1305 pushq %rdx
131484c8 1306 pushfq
4d732138
IM
1307 pushq $__KERNEL_CS
1308 pushq $repeat_nmi
3f3c8b8c
SR
1309
1310 /* Put stack back */
4d732138 1311 addq $(6*8), %rsp
3f3c8b8c
SR
1312
1313nested_nmi_out:
4d732138 1314 popq %rdx
3f3c8b8c 1315
0b22930e 1316 /* We are returning to kernel mode, so this cannot result in a fault. */
3f3c8b8c
SR
1317 INTERRUPT_RETURN
1318
1319first_nmi:
0b22930e 1320 /* Restore rdx. */
4d732138 1321 movq (%rsp), %rdx
62610913 1322
36f1a77b
AL
1323 /* Make room for "NMI executing". */
1324 pushq $0
3f3c8b8c 1325
0b22930e 1326 /* Leave room for the "iret" frame */
4d732138 1327 subq $(5*8), %rsp
28696f43 1328
0b22930e 1329 /* Copy the "original" frame to the "outermost" frame */
3f3c8b8c 1330 .rept 5
4d732138 1331 pushq 11*8(%rsp)
3f3c8b8c 1332 .endr
62610913 1333
79fb4ad6
SR
1334 /* Everything up to here is safe from nested NMIs */
1335
a97439aa
AL
1336#ifdef CONFIG_DEBUG_ENTRY
1337 /*
1338 * For ease of testing, unmask NMIs right away. Disabled by
1339 * default because IRET is very expensive.
1340 */
1341 pushq $0 /* SS */
1342 pushq %rsp /* RSP (minus 8 because of the previous push) */
1343 addq $8, (%rsp) /* Fix up RSP */
1344 pushfq /* RFLAGS */
1345 pushq $__KERNEL_CS /* CS */
1346 pushq $1f /* RIP */
1347 INTERRUPT_RETURN /* continues at repeat_nmi below */
13481:
1349#endif
1350
0b22930e 1351repeat_nmi:
62610913
JB
1352 /*
1353 * If there was a nested NMI, the first NMI's iret will return
1354 * here. But NMIs are still enabled and we can take another
1355 * nested NMI. The nested NMI checks the interrupted RIP to see
1356 * if it is between repeat_nmi and end_repeat_nmi, and if so
1357 * it will just return, as we are about to repeat an NMI anyway.
1358 * This makes it safe to copy to the stack frame that a nested
1359 * NMI will update.
0b22930e
AL
1360 *
1361 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
1362 * we're repeating an NMI, gsbase has the same value that it had on
1363 * the first iteration. paranoid_entry will load the kernel
36f1a77b
AL
1364 * gsbase if needed before we call do_nmi. "NMI executing"
1365 * is zero.
62610913 1366 */
36f1a77b 1367 movq $1, 10*8(%rsp) /* Set "NMI executing". */
3f3c8b8c 1368
62610913 1369 /*
0b22930e
AL
1370 * Copy the "outermost" frame to the "iret" frame. NMIs that nest
1371 * here must not modify the "iret" frame while we're writing to
1372 * it or it will end up containing garbage.
62610913 1373 */
4d732138 1374 addq $(10*8), %rsp
3f3c8b8c 1375 .rept 5
4d732138 1376 pushq -6*8(%rsp)
3f3c8b8c 1377 .endr
4d732138 1378 subq $(5*8), %rsp
62610913 1379end_repeat_nmi:
3f3c8b8c
SR
1380
1381 /*
0b22930e
AL
1382 * Everything below this point can be preempted by a nested NMI.
1383 * If this happens, then the inner NMI will change the "iret"
1384 * frame to point back to repeat_nmi.
3f3c8b8c 1385 */
4d732138 1386 pushq $-1 /* ORIG_RAX: no syscall to restart */
76f5df43
DV
1387 ALLOC_PT_GPREGS_ON_STACK
1388
1fd466ef 1389 /*
ebfc453e 1390 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1fd466ef
SR
1391 * as we should not be calling schedule in NMI context.
1392 * Even with normal interrupts enabled. An NMI should not be
1393 * setting NEED_RESCHED or anything that normal interrupts and
1394 * exceptions might do.
1395 */
4d732138 1396 call paranoid_entry
7fbb98c5 1397
ddeb8f21 1398 /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
4d732138
IM
1399 movq %rsp, %rdi
1400 movq $-1, %rsi
1401 call do_nmi
7fbb98c5 1402
4d732138
IM
1403 testl %ebx, %ebx /* swapgs needed? */
1404 jnz nmi_restore
ddeb8f21
AH
1405nmi_swapgs:
1406 SWAPGS_UNSAFE_STACK
1407nmi_restore:
76f5df43
DV
1408 RESTORE_EXTRA_REGS
1409 RESTORE_C_REGS
0b22930e
AL
1410
1411 /* Point RSP at the "iret" frame. */
76f5df43 1412 REMOVE_PT_GPREGS_FROM_STACK 6*8
28696f43 1413
810bc075
AL
1414 /*
1415 * Clear "NMI executing". Set DF first so that we can easily
1416 * distinguish the remaining code between here and IRET from
1417 * the SYSCALL entry and exit paths. On a native kernel, we
1418 * could just inspect RIP, but, on paravirt kernels,
1419 * INTERRUPT_RETURN can translate into a jump into a
1420 * hypercall page.
1421 */
1422 std
1423 movq $0, 5*8(%rsp) /* clear "NMI executing" */
0b22930e
AL
1424
1425 /*
1426 * INTERRUPT_RETURN reads the "iret" frame and exits the NMI
1427 * stack in a single instruction. We are returning to kernel
1428 * mode, so this cannot result in a fault.
1429 */
5ca6f70f 1430 INTERRUPT_RETURN
ddeb8f21
AH
1431END(nmi)
1432
1433ENTRY(ignore_sysret)
4d732138 1434 mov $-ENOSYS, %eax
ddeb8f21 1435 sysret
ddeb8f21 1436END(ignore_sysret)
2deb4be2
AL
1437
1438ENTRY(rewind_stack_do_exit)
1439 /* Prevent any naive code from trying to unwind to our caller. */
1440 xorl %ebp, %ebp
1441
1442 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax
1443 leaq -TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%rax), %rsp
1444
1445 call do_exit
14461: jmp 1b
1447END(rewind_stack_do_exit)