]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - arch/x86/entry/entry_64.S
Revert "x86/retpoline: Simplify vmexit_fill_RSB()"
[mirror_ubuntu-focal-kernel.git] / arch / x86 / entry / entry_64.S
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2/*
3 * linux/arch/x86_64/entry.S
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
7 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
4d732138 8 *
1da177e4
LT
9 * entry.S contains the system-call and fault low-level handling routines.
10 *
8b4777a4
AL
11 * Some of this is documented in Documentation/x86/entry_64.txt
12 *
0bd7b798 13 * A note on terminology:
4d732138
IM
14 * - iret frame: Architecture defined interrupt frame from SS to RIP
15 * at the top of the kernel process stack.
2e91a17b
AK
16 *
17 * Some macro usage:
4d732138
IM
18 * - ENTRY/END: Define functions in the symbol table.
19 * - TRACE_IRQ_*: Trace hardirq state for lock debugging.
20 * - idtentry: Define exception entry points.
1da177e4 21 */
1da177e4
LT
22#include <linux/linkage.h>
23#include <asm/segment.h>
1da177e4
LT
24#include <asm/cache.h>
25#include <asm/errno.h>
e2d5df93 26#include <asm/asm-offsets.h>
1da177e4
LT
27#include <asm/msr.h>
28#include <asm/unistd.h>
29#include <asm/thread_info.h>
30#include <asm/hw_irq.h>
0341c14d 31#include <asm/page_types.h>
2601e64d 32#include <asm/irqflags.h>
72fe4858 33#include <asm/paravirt.h>
9939ddaf 34#include <asm/percpu.h>
d7abc0fa 35#include <asm/asm.h>
63bcff2a 36#include <asm/smap.h>
3891a04a 37#include <asm/pgtable_types.h>
784d5699 38#include <asm/export.h>
8c1f7558 39#include <asm/frame.h>
2641f08b 40#include <asm/nospec-branch.h>
d7e7528b 41#include <linux/err.h>
1da177e4 42
6fd166aa
PZ
43#include "calling.h"
44
4d732138
IM
45.code64
46.section .entry.text, "ax"
16444a8a 47
72fe4858 48#ifdef CONFIG_PARAVIRT
2be29982 49ENTRY(native_usergs_sysret64)
8c1f7558 50 UNWIND_HINT_EMPTY
72fe4858
GOC
51 swapgs
52 sysretq
8c1f7558 53END(native_usergs_sysret64)
72fe4858
GOC
54#endif /* CONFIG_PARAVIRT */
55
ca37e57b 56.macro TRACE_IRQS_FLAGS flags:req
2601e64d 57#ifdef CONFIG_TRACE_IRQFLAGS
ca37e57b 58 bt $9, \flags /* interrupts off? */
4d732138 59 jnc 1f
2601e64d
IM
60 TRACE_IRQS_ON
611:
62#endif
63.endm
64
ca37e57b
AL
65.macro TRACE_IRQS_IRETQ
66 TRACE_IRQS_FLAGS EFLAGS(%rsp)
67.endm
68
5963e317
SR
69/*
70 * When dynamic function tracer is enabled it will add a breakpoint
71 * to all locations that it is about to modify, sync CPUs, update
72 * all the code, sync CPUs, then remove the breakpoints. In this time
73 * if lockdep is enabled, it might jump back into the debug handler
74 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
75 *
76 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
77 * make sure the stack pointer does not get reset back to the top
78 * of the debug stack, and instead just reuses the current stack.
79 */
80#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
81
82.macro TRACE_IRQS_OFF_DEBUG
4d732138 83 call debug_stack_set_zero
5963e317 84 TRACE_IRQS_OFF
4d732138 85 call debug_stack_reset
5963e317
SR
86.endm
87
88.macro TRACE_IRQS_ON_DEBUG
4d732138 89 call debug_stack_set_zero
5963e317 90 TRACE_IRQS_ON
4d732138 91 call debug_stack_reset
5963e317
SR
92.endm
93
f2db9382 94.macro TRACE_IRQS_IRETQ_DEBUG
4d732138
IM
95 bt $9, EFLAGS(%rsp) /* interrupts off? */
96 jnc 1f
5963e317
SR
97 TRACE_IRQS_ON_DEBUG
981:
99.endm
100
101#else
4d732138
IM
102# define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF
103# define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON
104# define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ
5963e317
SR
105#endif
106
1da177e4 107/*
4d732138 108 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
1da177e4 109 *
fda57b22
AL
110 * This is the only entry point used for 64-bit system calls. The
111 * hardware interface is reasonably well designed and the register to
112 * argument mapping Linux uses fits well with the registers that are
113 * available when SYSCALL is used.
114 *
115 * SYSCALL instructions can be found inlined in libc implementations as
116 * well as some other programs and libraries. There are also a handful
117 * of SYSCALL instructions in the vDSO used, for example, as a
118 * clock_gettimeofday fallback.
119 *
4d732138 120 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
b87cf63e
DV
121 * then loads new ss, cs, and rip from previously programmed MSRs.
122 * rflags gets masked by a value from another MSR (so CLD and CLAC
123 * are not needed). SYSCALL does not save anything on the stack
124 * and does not change rsp.
125 *
126 * Registers on entry:
1da177e4 127 * rax system call number
b87cf63e
DV
128 * rcx return address
129 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
1da177e4 130 * rdi arg0
1da177e4 131 * rsi arg1
0bd7b798 132 * rdx arg2
b87cf63e 133 * r10 arg3 (needs to be moved to rcx to conform to C ABI)
1da177e4
LT
134 * r8 arg4
135 * r9 arg5
4d732138 136 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
0bd7b798 137 *
1da177e4
LT
138 * Only called from user space.
139 *
7fcb3bc3 140 * When user can change pt_regs->foo always force IRET. That is because
7bf36bbc
AK
141 * it deals with uncanonical addresses better. SYSRET has trouble
142 * with them due to bugs in both AMD and Intel CPUs.
0bd7b798 143 */
1da177e4 144
3386bc8a
AL
145 .pushsection .entry_trampoline, "ax"
146
147/*
148 * The code in here gets remapped into cpu_entry_area's trampoline. This means
149 * that the assembler and linker have the wrong idea as to where this code
150 * lives (and, in fact, it's mapped more than once, so it's not even at a
151 * fixed address). So we can't reference any symbols outside the entry
152 * trampoline and expect it to work.
153 *
154 * Instead, we carefully abuse %rip-relative addressing.
155 * _entry_trampoline(%rip) refers to the start of the remapped) entry
156 * trampoline. We can thus find cpu_entry_area with this macro:
157 */
158
159#define CPU_ENTRY_AREA \
160 _entry_trampoline - CPU_ENTRY_AREA_entry_trampoline(%rip)
161
162/* The top word of the SYSENTER stack is hot and is usable as scratch space. */
4fe2d8b1
DH
163#define RSP_SCRATCH CPU_ENTRY_AREA_entry_stack + \
164 SIZEOF_entry_stack - 8 + CPU_ENTRY_AREA
3386bc8a
AL
165
166ENTRY(entry_SYSCALL_64_trampoline)
167 UNWIND_HINT_EMPTY
168 swapgs
169
170 /* Stash the user RSP. */
171 movq %rsp, RSP_SCRATCH
172
8a09317b
DH
173 /* Note: using %rsp as a scratch reg. */
174 SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
175
3386bc8a
AL
176 /* Load the top of the task stack into RSP */
177 movq CPU_ENTRY_AREA_tss + TSS_sp1 + CPU_ENTRY_AREA, %rsp
178
179 /* Start building the simulated IRET frame. */
180 pushq $__USER_DS /* pt_regs->ss */
181 pushq RSP_SCRATCH /* pt_regs->sp */
182 pushq %r11 /* pt_regs->flags */
183 pushq $__USER_CS /* pt_regs->cs */
184 pushq %rcx /* pt_regs->ip */
185
186 /*
187 * x86 lacks a near absolute jump, and we can't jump to the real
188 * entry text with a relative jump. We could push the target
189 * address and then use retq, but this destroys the pipeline on
190 * many CPUs (wasting over 20 cycles on Sandy Bridge). Instead,
191 * spill RDI and restore it in a second-stage trampoline.
192 */
193 pushq %rdi
194 movq $entry_SYSCALL_64_stage2, %rdi
2641f08b 195 JMP_NOSPEC %rdi
3386bc8a
AL
196END(entry_SYSCALL_64_trampoline)
197
198 .popsection
199
200ENTRY(entry_SYSCALL_64_stage2)
201 UNWIND_HINT_EMPTY
202 popq %rdi
203 jmp entry_SYSCALL_64_after_hwframe
204END(entry_SYSCALL_64_stage2)
205
b2502b41 206ENTRY(entry_SYSCALL_64)
8c1f7558 207 UNWIND_HINT_EMPTY
9ed8e7d8
DV
208 /*
209 * Interrupts are off on entry.
210 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
211 * it is too small to ever cause noticeable irq latency.
212 */
72fe4858 213
8a9949bc 214 swapgs
8a09317b 215 /*
14b1fcc6 216 * This path is only taken when PAGE_TABLE_ISOLATION is disabled so it
8a09317b
DH
217 * is not required to switch CR3.
218 */
4d732138
IM
219 movq %rsp, PER_CPU_VAR(rsp_scratch)
220 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
9ed8e7d8
DV
221
222 /* Construct struct pt_regs on stack */
4d732138
IM
223 pushq $__USER_DS /* pt_regs->ss */
224 pushq PER_CPU_VAR(rsp_scratch) /* pt_regs->sp */
4d732138
IM
225 pushq %r11 /* pt_regs->flags */
226 pushq $__USER_CS /* pt_regs->cs */
227 pushq %rcx /* pt_regs->ip */
8a9949bc 228GLOBAL(entry_SYSCALL_64_after_hwframe)
4d732138 229 pushq %rax /* pt_regs->orig_ax */
30907fd1
DB
230
231 PUSH_AND_CLEAR_REGS rax=$-ENOSYS
4d732138 232
548c3050
AL
233 TRACE_IRQS_OFF
234
1e423bff 235 /* IRQs are off. */
29ea1b25 236 movq %rsp, %rdi
1e423bff
AL
237 call do_syscall_64 /* returns with IRQs disabled */
238
29ea1b25 239 TRACE_IRQS_IRETQ /* we're about to change IF */
fffbb5dc
DV
240
241 /*
242 * Try to use SYSRET instead of IRET if we're returning to
8a055d7f
AL
243 * a completely clean 64-bit userspace context. If we're not,
244 * go to the slow exit path.
fffbb5dc 245 */
4d732138
IM
246 movq RCX(%rsp), %rcx
247 movq RIP(%rsp), %r11
8a055d7f
AL
248
249 cmpq %rcx, %r11 /* SYSRET requires RCX == RIP */
250 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc
DV
251
252 /*
253 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
254 * in kernel space. This essentially lets the user take over
17be0aec 255 * the kernel, since userspace controls RSP.
fffbb5dc 256 *
17be0aec 257 * If width of "canonical tail" ever becomes variable, this will need
fffbb5dc 258 * to be updated to remain correct on both old and new CPUs.
361b4b58 259 *
cbe0317b
KS
260 * Change top bits to match most significant bit (47th or 56th bit
261 * depending on paging mode) in the address.
fffbb5dc 262 */
17be0aec
DV
263 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
264 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
4d732138 265
17be0aec
DV
266 /* If this changed %rcx, it was not canonical */
267 cmpq %rcx, %r11
8a055d7f 268 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc 269
4d732138 270 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
8a055d7f 271 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc 272
4d732138
IM
273 movq R11(%rsp), %r11
274 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
8a055d7f 275 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc
DV
276
277 /*
3e035305
BP
278 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
279 * restore RF properly. If the slowpath sets it for whatever reason, we
280 * need to restore it correctly.
281 *
282 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
283 * trap from userspace immediately after SYSRET. This would cause an
284 * infinite loop whenever #DB happens with register state that satisfies
285 * the opportunistic SYSRET conditions. For example, single-stepping
286 * this user code:
fffbb5dc 287 *
4d732138 288 * movq $stuck_here, %rcx
fffbb5dc
DV
289 * pushfq
290 * popq %r11
291 * stuck_here:
292 *
293 * would never get past 'stuck_here'.
294 */
4d732138 295 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
8a055d7f 296 jnz swapgs_restore_regs_and_return_to_usermode
fffbb5dc
DV
297
298 /* nothing to check for RSP */
299
4d732138 300 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
8a055d7f 301 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc
DV
302
303 /*
4d732138
IM
304 * We win! This label is here just for ease of understanding
305 * perf profiles. Nothing jumps here.
fffbb5dc
DV
306 */
307syscall_return_via_sysret:
17be0aec 308 /* rcx and r11 are already restored (see code above) */
8c1f7558 309 UNWIND_HINT_EMPTY
502af0d7 310 POP_REGS pop_rdi=0 skip_r11rcx=1
3e3b9293
AL
311
312 /*
313 * Now all regs are restored except RSP and RDI.
314 * Save old stack pointer and switch to trampoline stack.
315 */
316 movq %rsp, %rdi
c482feef 317 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
3e3b9293
AL
318
319 pushq RSP-RDI(%rdi) /* RSP */
320 pushq (%rdi) /* RDI */
321
322 /*
323 * We are on the trampoline stack. All regs except RDI are live.
324 * We can do future final exit work right here.
325 */
6fd166aa 326 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
3e3b9293 327
4fbb3910 328 popq %rdi
3e3b9293 329 popq %rsp
fffbb5dc 330 USERGS_SYSRET64
b2502b41 331END(entry_SYSCALL_64)
0bd7b798 332
0100301b
BG
333/*
334 * %rdi: prev task
335 * %rsi: next task
336 */
337ENTRY(__switch_to_asm)
8c1f7558 338 UNWIND_HINT_FUNC
0100301b
BG
339 /*
340 * Save callee-saved registers
341 * This must match the order in inactive_task_frame
342 */
343 pushq %rbp
344 pushq %rbx
345 pushq %r12
346 pushq %r13
347 pushq %r14
348 pushq %r15
349
350 /* switch stack */
351 movq %rsp, TASK_threadsp(%rdi)
352 movq TASK_threadsp(%rsi), %rsp
353
354#ifdef CONFIG_CC_STACKPROTECTOR
355 movq TASK_stack_canary(%rsi), %rbx
356 movq %rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
357#endif
358
c995efd5
DW
359#ifdef CONFIG_RETPOLINE
360 /*
361 * When switching from a shallower to a deeper call stack
362 * the RSB may either underflow or use entries populated
363 * with userspace addresses. On CPUs where those concerns
364 * exist, overwrite the RSB with entries which capture
365 * speculative execution to prevent attack.
366 */
d1c99108 367 FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
c995efd5
DW
368#endif
369
0100301b
BG
370 /* restore callee-saved registers */
371 popq %r15
372 popq %r14
373 popq %r13
374 popq %r12
375 popq %rbx
376 popq %rbp
377
378 jmp __switch_to
379END(__switch_to_asm)
380
1eeb207f
DV
381/*
382 * A newly forked process directly context switches into this address.
383 *
0100301b 384 * rax: prev task we switched from
616d2483
BG
385 * rbx: kernel thread func (NULL for user thread)
386 * r12: kernel thread arg
1eeb207f
DV
387 */
388ENTRY(ret_from_fork)
8c1f7558 389 UNWIND_HINT_EMPTY
0100301b 390 movq %rax, %rdi
ebd57499 391 call schedule_tail /* rdi: 'prev' task parameter */
1eeb207f 392
ebd57499
JP
393 testq %rbx, %rbx /* from kernel_thread? */
394 jnz 1f /* kernel threads are uncommon */
24d978b7 395
616d2483 3962:
8c1f7558 397 UNWIND_HINT_REGS
ebd57499 398 movq %rsp, %rdi
24d978b7
AL
399 call syscall_return_slowpath /* returns with IRQs disabled */
400 TRACE_IRQS_ON /* user mode is traced as IRQS on */
8a055d7f 401 jmp swapgs_restore_regs_and_return_to_usermode
616d2483
BG
402
4031:
404 /* kernel thread */
405 movq %r12, %rdi
2641f08b 406 CALL_NOSPEC %rbx
616d2483
BG
407 /*
408 * A kernel thread is allowed to return here after successfully
409 * calling do_execve(). Exit to userspace to complete the execve()
410 * syscall.
411 */
412 movq $0, RAX(%rsp)
413 jmp 2b
1eeb207f
DV
414END(ret_from_fork)
415
939b7871 416/*
3304c9c3
DV
417 * Build the entry stubs with some assembler magic.
418 * We pack 1 stub into every 8-byte block.
939b7871 419 */
3304c9c3 420 .align 8
939b7871 421ENTRY(irq_entries_start)
3304c9c3
DV
422 vector=FIRST_EXTERNAL_VECTOR
423 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
8c1f7558 424 UNWIND_HINT_IRET_REGS
4d732138 425 pushq $(~vector+0x80) /* Note: always in signed byte range */
3304c9c3 426 jmp common_interrupt
3304c9c3 427 .align 8
8c1f7558 428 vector=vector+1
3304c9c3 429 .endr
939b7871
PA
430END(irq_entries_start)
431
1d3e53e8
AL
432.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
433#ifdef CONFIG_DEBUG_ENTRY
e17f8234
BO
434 pushq %rax
435 SAVE_FLAGS(CLBR_RAX)
436 testl $X86_EFLAGS_IF, %eax
1d3e53e8
AL
437 jz .Lokay_\@
438 ud2
439.Lokay_\@:
e17f8234 440 popq %rax
1d3e53e8
AL
441#endif
442.endm
443
444/*
445 * Enters the IRQ stack if we're not already using it. NMI-safe. Clobbers
446 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
447 * Requires kernel GSBASE.
448 *
449 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
450 */
8c1f7558 451.macro ENTER_IRQ_STACK regs=1 old_rsp
1d3e53e8
AL
452 DEBUG_ENTRY_ASSERT_IRQS_OFF
453 movq %rsp, \old_rsp
8c1f7558
JP
454
455 .if \regs
456 UNWIND_HINT_REGS base=\old_rsp
457 .endif
458
1d3e53e8 459 incl PER_CPU_VAR(irq_count)
29955909 460 jnz .Lirq_stack_push_old_rsp_\@
1d3e53e8
AL
461
462 /*
463 * Right now, if we just incremented irq_count to zero, we've
464 * claimed the IRQ stack but we haven't switched to it yet.
465 *
466 * If anything is added that can interrupt us here without using IST,
467 * it must be *extremely* careful to limit its stack usage. This
468 * could include kprobes and a hypothetical future IST-less #DB
469 * handler.
29955909
AL
470 *
471 * The OOPS unwinder relies on the word at the top of the IRQ
472 * stack linking back to the previous RSP for the entire time we're
473 * on the IRQ stack. For this to work reliably, we need to write
474 * it before we actually move ourselves to the IRQ stack.
475 */
476
477 movq \old_rsp, PER_CPU_VAR(irq_stack_union + IRQ_STACK_SIZE - 8)
478 movq PER_CPU_VAR(irq_stack_ptr), %rsp
479
480#ifdef CONFIG_DEBUG_ENTRY
481 /*
482 * If the first movq above becomes wrong due to IRQ stack layout
483 * changes, the only way we'll notice is if we try to unwind right
484 * here. Assert that we set up the stack right to catch this type
485 * of bug quickly.
1d3e53e8 486 */
29955909
AL
487 cmpq -8(%rsp), \old_rsp
488 je .Lirq_stack_okay\@
489 ud2
490 .Lirq_stack_okay\@:
491#endif
1d3e53e8 492
29955909 493.Lirq_stack_push_old_rsp_\@:
1d3e53e8 494 pushq \old_rsp
8c1f7558
JP
495
496 .if \regs
497 UNWIND_HINT_REGS indirect=1
498 .endif
1d3e53e8
AL
499.endm
500
501/*
502 * Undoes ENTER_IRQ_STACK.
503 */
8c1f7558 504.macro LEAVE_IRQ_STACK regs=1
1d3e53e8
AL
505 DEBUG_ENTRY_ASSERT_IRQS_OFF
506 /* We need to be off the IRQ stack before decrementing irq_count. */
507 popq %rsp
508
8c1f7558
JP
509 .if \regs
510 UNWIND_HINT_REGS
511 .endif
512
1d3e53e8
AL
513 /*
514 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
515 * the irq stack but we're not on it.
516 */
517
518 decl PER_CPU_VAR(irq_count)
519.endm
520
d99015b1 521/*
1da177e4
LT
522 * Interrupt entry/exit.
523 *
524 * Interrupt entry points save only callee clobbered registers in fast path.
d99015b1
AH
525 *
526 * Entry runs with interrupts off.
527 */
1da177e4 528
722024db 529/* 0(%rsp): ~(interrupt number) */
1da177e4 530 .macro interrupt func
f6f64681 531 cld
7f2590a1
AL
532
533 testb $3, CS-ORIG_RAX(%rsp)
534 jz 1f
535 SWAPGS
536 call switch_to_thread_stack
5371:
538
3f01daec 539 PUSH_AND_CLEAR_REGS
946c1911 540 ENCODE_FRAME_POINTER
76f5df43 541
ff467594 542 testb $3, CS(%rsp)
dde74f2e 543 jz 1f
02bc7768
AL
544
545 /*
7f2590a1
AL
546 * IRQ from user mode.
547 *
f1075053
AL
548 * We need to tell lockdep that IRQs are off. We can't do this until
549 * we fix gsbase, and we should do it before enter_from_user_mode
550 * (which can take locks). Since TRACE_IRQS_OFF idempotent,
551 * the simplest way to handle it is to just call it twice if
552 * we enter from user mode. There's no reason to optimize this since
553 * TRACE_IRQS_OFF is a no-op if lockdep is off.
554 */
555 TRACE_IRQS_OFF
556
478dc89c 557 CALL_enter_from_user_mode
02bc7768 558
76f5df43 5591:
1d3e53e8 560 ENTER_IRQ_STACK old_rsp=%rdi
f6f64681
DV
561 /* We entered an interrupt context - irqs are off: */
562 TRACE_IRQS_OFF
563
a586f98e 564 call \func /* rdi points to pt_regs */
1da177e4
LT
565 .endm
566
722024db
AH
567 /*
568 * The interrupt stubs push (~vector+0x80) onto the stack and
569 * then jump to common_interrupt.
570 */
939b7871
PA
571 .p2align CONFIG_X86_L1_CACHE_SHIFT
572common_interrupt:
ee4eb87b 573 ASM_CLAC
4d732138 574 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
1da177e4 575 interrupt do_IRQ
34061f13 576 /* 0(%rsp): old RSP */
7effaa88 577ret_from_intr:
2140a994 578 DISABLE_INTERRUPTS(CLBR_ANY)
2601e64d 579 TRACE_IRQS_OFF
625dbc3b 580
1d3e53e8 581 LEAVE_IRQ_STACK
625dbc3b 582
03335e95 583 testb $3, CS(%rsp)
dde74f2e 584 jz retint_kernel
4d732138 585
02bc7768 586 /* Interrupt came from user space */
02bc7768
AL
587GLOBAL(retint_user)
588 mov %rsp,%rdi
589 call prepare_exit_to_usermode
2601e64d 590 TRACE_IRQS_IRETQ
26c4ef9c 591
8a055d7f 592GLOBAL(swapgs_restore_regs_and_return_to_usermode)
26c4ef9c
AL
593#ifdef CONFIG_DEBUG_ENTRY
594 /* Assert that pt_regs indicates user mode. */
1e4c4f61 595 testb $3, CS(%rsp)
26c4ef9c
AL
596 jnz 1f
597 ud2
5981:
599#endif
502af0d7 600 POP_REGS pop_rdi=0
3e3b9293
AL
601
602 /*
603 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
604 * Save old stack pointer and switch to trampoline stack.
605 */
606 movq %rsp, %rdi
c482feef 607 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
3e3b9293
AL
608
609 /* Copy the IRET frame to the trampoline stack. */
610 pushq 6*8(%rdi) /* SS */
611 pushq 5*8(%rdi) /* RSP */
612 pushq 4*8(%rdi) /* EFLAGS */
613 pushq 3*8(%rdi) /* CS */
614 pushq 2*8(%rdi) /* RIP */
615
616 /* Push user RDI on the trampoline stack. */
617 pushq (%rdi)
618
619 /*
620 * We are on the trampoline stack. All regs except RDI are live.
621 * We can do future final exit work right here.
622 */
623
6fd166aa 624 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
8a09317b 625
3e3b9293
AL
626 /* Restore RDI. */
627 popq %rdi
628 SWAPGS
26c4ef9c
AL
629 INTERRUPT_RETURN
630
2601e64d 631
627276cb 632/* Returning to kernel space */
6ba71b76 633retint_kernel:
627276cb
DV
634#ifdef CONFIG_PREEMPT
635 /* Interrupts are off */
636 /* Check if we need preemption */
4d732138 637 bt $9, EFLAGS(%rsp) /* were interrupts off? */
6ba71b76 638 jnc 1f
4d732138 6390: cmpl $0, PER_CPU_VAR(__preempt_count)
36acef25 640 jnz 1f
627276cb 641 call preempt_schedule_irq
36acef25 642 jmp 0b
6ba71b76 6431:
627276cb 644#endif
2601e64d
IM
645 /*
646 * The iretq could re-enable interrupts:
647 */
648 TRACE_IRQS_IRETQ
fffbb5dc 649
26c4ef9c
AL
650GLOBAL(restore_regs_and_return_to_kernel)
651#ifdef CONFIG_DEBUG_ENTRY
652 /* Assert that pt_regs indicates kernel mode. */
1e4c4f61 653 testb $3, CS(%rsp)
26c4ef9c
AL
654 jz 1f
655 ud2
6561:
657#endif
502af0d7 658 POP_REGS
e872045b 659 addq $8, %rsp /* skip regs->orig_ax */
10bcc80e
MD
660 /*
661 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
662 * when returning from IPI handler.
663 */
7209a75d
AL
664 INTERRUPT_RETURN
665
666ENTRY(native_iret)
8c1f7558 667 UNWIND_HINT_IRET_REGS
3891a04a
PA
668 /*
669 * Are we returning to a stack segment from the LDT? Note: in
670 * 64-bit mode SS:RSP on the exception stack is always valid.
671 */
34273f41 672#ifdef CONFIG_X86_ESPFIX64
4d732138
IM
673 testb $4, (SS-RIP)(%rsp)
674 jnz native_irq_return_ldt
34273f41 675#endif
3891a04a 676
af726f21 677.global native_irq_return_iret
7209a75d 678native_irq_return_iret:
b645af2d
AL
679 /*
680 * This may fault. Non-paranoid faults on return to userspace are
681 * handled by fixup_bad_iret. These include #SS, #GP, and #NP.
682 * Double-faults due to espfix64 are handled in do_double_fault.
683 * Other faults here are fatal.
684 */
1da177e4 685 iretq
3701d863 686
34273f41 687#ifdef CONFIG_X86_ESPFIX64
7209a75d 688native_irq_return_ldt:
85063fac
AL
689 /*
690 * We are running with user GSBASE. All GPRs contain their user
691 * values. We have a percpu ESPFIX stack that is eight slots
692 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom
693 * of the ESPFIX stack.
694 *
695 * We clobber RAX and RDI in this code. We stash RDI on the
696 * normal stack and RAX on the ESPFIX stack.
697 *
698 * The ESPFIX stack layout we set up looks like this:
699 *
700 * --- top of ESPFIX stack ---
701 * SS
702 * RSP
703 * RFLAGS
704 * CS
705 * RIP <-- RSP points here when we're done
706 * RAX <-- espfix_waddr points here
707 * --- bottom of ESPFIX stack ---
708 */
709
710 pushq %rdi /* Stash user RDI */
8a09317b
DH
711 SWAPGS /* to kernel GS */
712 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi /* to kernel CR3 */
713
4d732138 714 movq PER_CPU_VAR(espfix_waddr), %rdi
85063fac
AL
715 movq %rax, (0*8)(%rdi) /* user RAX */
716 movq (1*8)(%rsp), %rax /* user RIP */
4d732138 717 movq %rax, (1*8)(%rdi)
85063fac 718 movq (2*8)(%rsp), %rax /* user CS */
4d732138 719 movq %rax, (2*8)(%rdi)
85063fac 720 movq (3*8)(%rsp), %rax /* user RFLAGS */
4d732138 721 movq %rax, (3*8)(%rdi)
85063fac 722 movq (5*8)(%rsp), %rax /* user SS */
4d732138 723 movq %rax, (5*8)(%rdi)
85063fac 724 movq (4*8)(%rsp), %rax /* user RSP */
4d732138 725 movq %rax, (4*8)(%rdi)
85063fac
AL
726 /* Now RAX == RSP. */
727
728 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */
85063fac
AL
729
730 /*
731 * espfix_stack[31:16] == 0. The page tables are set up such that
732 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
733 * espfix_waddr for any X. That is, there are 65536 RO aliases of
734 * the same page. Set up RSP so that RSP[31:16] contains the
735 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
736 * still points to an RO alias of the ESPFIX stack.
737 */
4d732138 738 orq PER_CPU_VAR(espfix_stack), %rax
8a09317b 739
6fd166aa 740 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
8a09317b
DH
741 SWAPGS /* to user GS */
742 popq %rdi /* Restore user RDI */
743
4d732138 744 movq %rax, %rsp
8c1f7558 745 UNWIND_HINT_IRET_REGS offset=8
85063fac
AL
746
747 /*
748 * At this point, we cannot write to the stack any more, but we can
749 * still read.
750 */
751 popq %rax /* Restore user RAX */
752
753 /*
754 * RSP now points to an ordinary IRET frame, except that the page
755 * is read-only and RSP[31:16] are preloaded with the userspace
756 * values. We can now IRET back to userspace.
757 */
4d732138 758 jmp native_irq_return_iret
34273f41 759#endif
4b787e0b 760END(common_interrupt)
3891a04a 761
1da177e4
LT
762/*
763 * APIC interrupts.
0bd7b798 764 */
cf910e83 765.macro apicinterrupt3 num sym do_sym
322648d1 766ENTRY(\sym)
8c1f7558 767 UNWIND_HINT_IRET_REGS
ee4eb87b 768 ASM_CLAC
4d732138 769 pushq $~(\num)
39e95433 770.Lcommon_\sym:
322648d1 771 interrupt \do_sym
4d732138 772 jmp ret_from_intr
322648d1
AH
773END(\sym)
774.endm
1da177e4 775
469f0023 776/* Make sure APIC interrupt handlers end up in the irqentry section: */
229a7186
MH
777#define PUSH_SECTION_IRQENTRY .pushsection .irqentry.text, "ax"
778#define POP_SECTION_IRQENTRY .popsection
469f0023 779
cf910e83 780.macro apicinterrupt num sym do_sym
469f0023 781PUSH_SECTION_IRQENTRY
cf910e83 782apicinterrupt3 \num \sym \do_sym
469f0023 783POP_SECTION_IRQENTRY
cf910e83
SA
784.endm
785
322648d1 786#ifdef CONFIG_SMP
4d732138
IM
787apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt
788apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt
322648d1 789#endif
1da177e4 790
03b48632 791#ifdef CONFIG_X86_UV
4d732138 792apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt
03b48632 793#endif
4d732138
IM
794
795apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt
796apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi
89b831ef 797
d78f2664 798#ifdef CONFIG_HAVE_KVM
4d732138
IM
799apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi
800apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi
210f84b0 801apicinterrupt3 POSTED_INTR_NESTED_VECTOR kvm_posted_intr_nested_ipi smp_kvm_posted_intr_nested_ipi
d78f2664
YZ
802#endif
803
33e5ff63 804#ifdef CONFIG_X86_MCE_THRESHOLD
4d732138 805apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt
33e5ff63
SA
806#endif
807
24fd78a8 808#ifdef CONFIG_X86_MCE_AMD
4d732138 809apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt
24fd78a8
AG
810#endif
811
33e5ff63 812#ifdef CONFIG_X86_THERMAL_VECTOR
4d732138 813apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt
33e5ff63 814#endif
1812924b 815
322648d1 816#ifdef CONFIG_SMP
4d732138
IM
817apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt
818apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt
819apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt
322648d1 820#endif
1da177e4 821
4d732138
IM
822apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt
823apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt
0bd7b798 824
e360adbe 825#ifdef CONFIG_IRQ_WORK
4d732138 826apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
241771ef
IM
827#endif
828
1da177e4
LT
829/*
830 * Exception entry points.
0bd7b798 831 */
c482feef 832#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss_rw) + (TSS_ist + ((x) - 1) * 8)
577ed45e 833
7f2590a1
AL
834/*
835 * Switch to the thread stack. This is called with the IRET frame and
836 * orig_ax on the stack. (That is, RDI..R12 are not on the stack and
837 * space has not been allocated for them.)
838 */
839ENTRY(switch_to_thread_stack)
840 UNWIND_HINT_FUNC
841
842 pushq %rdi
8a09317b
DH
843 /* Need to switch before accessing the thread stack. */
844 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi
7f2590a1
AL
845 movq %rsp, %rdi
846 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
847 UNWIND_HINT sp_offset=16 sp_reg=ORC_REG_DI
848
849 pushq 7*8(%rdi) /* regs->ss */
850 pushq 6*8(%rdi) /* regs->rsp */
851 pushq 5*8(%rdi) /* regs->eflags */
852 pushq 4*8(%rdi) /* regs->cs */
853 pushq 3*8(%rdi) /* regs->ip */
854 pushq 2*8(%rdi) /* regs->orig_ax */
855 pushq 8(%rdi) /* return address */
856 UNWIND_HINT_FUNC
857
858 movq (%rdi), %rdi
859 ret
860END(switch_to_thread_stack)
577ed45e
AL
861
862.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
322648d1 863ENTRY(\sym)
98990a33 864 UNWIND_HINT_IRET_REGS offset=\has_error_code*8
8c1f7558 865
577ed45e
AL
866 /* Sanity check */
867 .if \shift_ist != -1 && \paranoid == 0
868 .error "using shift_ist requires paranoid=1"
869 .endif
870
ee4eb87b 871 ASM_CLAC
cb5dd2c5 872
82c62fa0 873 .if \has_error_code == 0
4d732138 874 pushq $-1 /* ORIG_RAX: no syscall to restart */
cb5dd2c5
AL
875 .endif
876
7f2590a1 877 .if \paranoid < 2
9e809d15 878 testb $3, CS-ORIG_RAX(%rsp) /* If coming from userspace, switch stacks */
7f2590a1 879 jnz .Lfrom_usermode_switch_stack_\@
48e08d0f 880 .endif
7f2590a1
AL
881
882 .if \paranoid
4d732138 883 call paranoid_entry
cb5dd2c5 884 .else
4d732138 885 call error_entry
cb5dd2c5 886 .endif
8c1f7558 887 UNWIND_HINT_REGS
ebfc453e 888 /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
cb5dd2c5 889
cb5dd2c5 890 .if \paranoid
577ed45e 891 .if \shift_ist != -1
4d732138 892 TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */
577ed45e 893 .else
b8b1d08b 894 TRACE_IRQS_OFF
cb5dd2c5 895 .endif
577ed45e 896 .endif
cb5dd2c5 897
4d732138 898 movq %rsp, %rdi /* pt_regs pointer */
cb5dd2c5
AL
899
900 .if \has_error_code
4d732138
IM
901 movq ORIG_RAX(%rsp), %rsi /* get error code */
902 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
cb5dd2c5 903 .else
4d732138 904 xorl %esi, %esi /* no error code */
cb5dd2c5
AL
905 .endif
906
577ed45e 907 .if \shift_ist != -1
4d732138 908 subq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
577ed45e
AL
909 .endif
910
4d732138 911 call \do_sym
cb5dd2c5 912
577ed45e 913 .if \shift_ist != -1
4d732138 914 addq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
577ed45e
AL
915 .endif
916
ebfc453e 917 /* these procedures expect "no swapgs" flag in ebx */
cb5dd2c5 918 .if \paranoid
4d732138 919 jmp paranoid_exit
cb5dd2c5 920 .else
4d732138 921 jmp error_exit
cb5dd2c5
AL
922 .endif
923
7f2590a1 924 .if \paranoid < 2
48e08d0f 925 /*
7f2590a1 926 * Entry from userspace. Switch stacks and treat it
48e08d0f
AL
927 * as a normal entry. This means that paranoid handlers
928 * run in real process context if user_mode(regs).
929 */
7f2590a1 930.Lfrom_usermode_switch_stack_\@:
4d732138 931 call error_entry
48e08d0f 932
4d732138 933 movq %rsp, %rdi /* pt_regs pointer */
48e08d0f
AL
934
935 .if \has_error_code
4d732138
IM
936 movq ORIG_RAX(%rsp), %rsi /* get error code */
937 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
48e08d0f 938 .else
4d732138 939 xorl %esi, %esi /* no error code */
48e08d0f
AL
940 .endif
941
4d732138 942 call \do_sym
48e08d0f 943
4d732138 944 jmp error_exit /* %ebx: no swapgs flag */
48e08d0f 945 .endif
ddeb8f21 946END(\sym)
322648d1 947.endm
b8b1d08b 948
4d732138
IM
949idtentry divide_error do_divide_error has_error_code=0
950idtentry overflow do_overflow has_error_code=0
951idtentry bounds do_bounds has_error_code=0
952idtentry invalid_op do_invalid_op has_error_code=0
953idtentry device_not_available do_device_not_available has_error_code=0
954idtentry double_fault do_double_fault has_error_code=1 paranoid=2
955idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0
956idtentry invalid_TSS do_invalid_TSS has_error_code=1
957idtentry segment_not_present do_segment_not_present has_error_code=1
958idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0
959idtentry coprocessor_error do_coprocessor_error has_error_code=0
960idtentry alignment_check do_alignment_check has_error_code=1
961idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0
962
963
964 /*
965 * Reload gs selector with exception handling
966 * edi: new selector
967 */
9f9d489a 968ENTRY(native_load_gs_index)
8c1f7558 969 FRAME_BEGIN
131484c8 970 pushfq
b8aa287f 971 DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
ca37e57b 972 TRACE_IRQS_OFF
9f1e87ea 973 SWAPGS
42c748bb 974.Lgs_change:
4d732138 975 movl %edi, %gs
96e5d28a 9762: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
72fe4858 977 SWAPGS
ca37e57b 978 TRACE_IRQS_FLAGS (%rsp)
131484c8 979 popfq
8c1f7558 980 FRAME_END
9f1e87ea 981 ret
8c1f7558 982ENDPROC(native_load_gs_index)
784d5699 983EXPORT_SYMBOL(native_load_gs_index)
0bd7b798 984
42c748bb 985 _ASM_EXTABLE(.Lgs_change, bad_gs)
4d732138 986 .section .fixup, "ax"
1da177e4 987 /* running with kernelgs */
0bd7b798 988bad_gs:
4d732138 989 SWAPGS /* switch back to user gs */
b038c842
AL
990.macro ZAP_GS
991 /* This can't be a string because the preprocessor needs to see it. */
992 movl $__USER_DS, %eax
993 movl %eax, %gs
994.endm
995 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
4d732138
IM
996 xorl %eax, %eax
997 movl %eax, %gs
998 jmp 2b
9f1e87ea 999 .previous
0bd7b798 1000
2699500b 1001/* Call softirq on interrupt stack. Interrupts are off. */
7d65f4a6 1002ENTRY(do_softirq_own_stack)
4d732138
IM
1003 pushq %rbp
1004 mov %rsp, %rbp
8c1f7558 1005 ENTER_IRQ_STACK regs=0 old_rsp=%r11
4d732138 1006 call __do_softirq
8c1f7558 1007 LEAVE_IRQ_STACK regs=0
2699500b 1008 leaveq
ed6b676c 1009 ret
8c1f7558 1010ENDPROC(do_softirq_own_stack)
75154f40 1011
3d75e1b8 1012#ifdef CONFIG_XEN
5878d5d6 1013idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
3d75e1b8
JF
1014
1015/*
9f1e87ea
CG
1016 * A note on the "critical region" in our callback handler.
1017 * We want to avoid stacking callback handlers due to events occurring
1018 * during handling of the last event. To do this, we keep events disabled
1019 * until we've done all processing. HOWEVER, we must enable events before
1020 * popping the stack frame (can't be done atomically) and so it would still
1021 * be possible to get enough handler activations to overflow the stack.
1022 * Although unlikely, bugs of that kind are hard to track down, so we'd
1023 * like to avoid the possibility.
1024 * So, on entry to the handler we detect whether we interrupted an
1025 * existing activation in its critical region -- if so, we pop the current
1026 * activation and restart the handler using the previous one.
1027 */
4d732138
IM
1028ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */
1029
9f1e87ea
CG
1030/*
1031 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
1032 * see the correct pointer to the pt_regs
1033 */
8c1f7558 1034 UNWIND_HINT_FUNC
4d732138 1035 movq %rdi, %rsp /* we don't return, adjust the stack frame */
8c1f7558 1036 UNWIND_HINT_REGS
1d3e53e8
AL
1037
1038 ENTER_IRQ_STACK old_rsp=%r10
4d732138 1039 call xen_evtchn_do_upcall
1d3e53e8
AL
1040 LEAVE_IRQ_STACK
1041
fdfd811d 1042#ifndef CONFIG_PREEMPT
4d732138 1043 call xen_maybe_preempt_hcall
fdfd811d 1044#endif
4d732138 1045 jmp error_exit
371c394a 1046END(xen_do_hypervisor_callback)
3d75e1b8
JF
1047
1048/*
9f1e87ea
CG
1049 * Hypervisor uses this for application faults while it executes.
1050 * We get here for two reasons:
1051 * 1. Fault while reloading DS, ES, FS or GS
1052 * 2. Fault while executing IRET
1053 * Category 1 we do not need to fix up as Xen has already reloaded all segment
1054 * registers that could be reloaded and zeroed the others.
1055 * Category 2 we fix up by killing the current process. We cannot use the
1056 * normal Linux return path in this case because if we use the IRET hypercall
1057 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
1058 * We distinguish between categories by comparing each saved segment register
1059 * with its current contents: any discrepancy means we in category 1.
1060 */
3d75e1b8 1061ENTRY(xen_failsafe_callback)
8c1f7558 1062 UNWIND_HINT_EMPTY
4d732138
IM
1063 movl %ds, %ecx
1064 cmpw %cx, 0x10(%rsp)
1065 jne 1f
1066 movl %es, %ecx
1067 cmpw %cx, 0x18(%rsp)
1068 jne 1f
1069 movl %fs, %ecx
1070 cmpw %cx, 0x20(%rsp)
1071 jne 1f
1072 movl %gs, %ecx
1073 cmpw %cx, 0x28(%rsp)
1074 jne 1f
3d75e1b8 1075 /* All segments match their saved values => Category 2 (Bad IRET). */
4d732138
IM
1076 movq (%rsp), %rcx
1077 movq 8(%rsp), %r11
1078 addq $0x30, %rsp
1079 pushq $0 /* RIP */
8c1f7558 1080 UNWIND_HINT_IRET_REGS offset=8
4d732138 1081 jmp general_protection
3d75e1b8 10821: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
4d732138
IM
1083 movq (%rsp), %rcx
1084 movq 8(%rsp), %r11
1085 addq $0x30, %rsp
8c1f7558 1086 UNWIND_HINT_IRET_REGS
4d732138 1087 pushq $-1 /* orig_ax = -1 => not a system call */
3f01daec 1088 PUSH_AND_CLEAR_REGS
946c1911 1089 ENCODE_FRAME_POINTER
4d732138 1090 jmp error_exit
3d75e1b8
JF
1091END(xen_failsafe_callback)
1092
cf910e83 1093apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
38e20b07
SY
1094 xen_hvm_callback_vector xen_evtchn_do_upcall
1095
3d75e1b8 1096#endif /* CONFIG_XEN */
ddeb8f21 1097
bc2b0331 1098#if IS_ENABLED(CONFIG_HYPERV)
cf910e83 1099apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
bc2b0331 1100 hyperv_callback_vector hyperv_vector_handler
93286261
VK
1101
1102apicinterrupt3 HYPERV_REENLIGHTENMENT_VECTOR \
1103 hyperv_reenlightenment_vector hyperv_reenlightenment_intr
bc2b0331
S
1104#endif /* CONFIG_HYPERV */
1105
4d732138
IM
1106idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
1107idtentry int3 do_int3 has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
1108idtentry stack_segment do_stack_segment has_error_code=1
1109
6cac5a92 1110#ifdef CONFIG_XEN
43e41110 1111idtentry xennmi do_nmi has_error_code=0
5878d5d6
JG
1112idtentry xendebug do_debug has_error_code=0
1113idtentry xenint3 do_int3 has_error_code=0
6cac5a92 1114#endif
4d732138
IM
1115
1116idtentry general_protection do_general_protection has_error_code=1
11a7ffb0 1117idtentry page_fault do_page_fault has_error_code=1
4d732138 1118
631bc487 1119#ifdef CONFIG_KVM_GUEST
4d732138 1120idtentry async_page_fault do_async_page_fault has_error_code=1
631bc487 1121#endif
4d732138 1122
ddeb8f21 1123#ifdef CONFIG_X86_MCE
6f41c34d 1124idtentry machine_check do_mce has_error_code=0 paranoid=1
ddeb8f21
AH
1125#endif
1126
ebfc453e 1127/*
9e809d15 1128 * Save all registers in pt_regs, and switch gs if needed.
ebfc453e
DV
1129 * Use slow, but surefire "are we in kernel?" check.
1130 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
1131 */
1132ENTRY(paranoid_entry)
8c1f7558 1133 UNWIND_HINT_FUNC
1eeb207f 1134 cld
9e809d15
DB
1135 PUSH_AND_CLEAR_REGS save_ret=1
1136 ENCODE_FRAME_POINTER 8
4d732138
IM
1137 movl $1, %ebx
1138 movl $MSR_GS_BASE, %ecx
1eeb207f 1139 rdmsr
4d732138
IM
1140 testl %edx, %edx
1141 js 1f /* negative -> in kernel */
1eeb207f 1142 SWAPGS
4d732138 1143 xorl %ebx, %ebx
8a09317b
DH
1144
11451:
1146 SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14
1147
1148 ret
ebfc453e 1149END(paranoid_entry)
ddeb8f21 1150
ebfc453e
DV
1151/*
1152 * "Paranoid" exit path from exception stack. This is invoked
1153 * only on return from non-NMI IST interrupts that came
1154 * from kernel space.
1155 *
1156 * We may be returning to very strange contexts (e.g. very early
1157 * in syscall entry), so checking for preemption here would
1158 * be complicated. Fortunately, we there's no good reason
1159 * to try to handle preemption here.
4d732138
IM
1160 *
1161 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
ebfc453e 1162 */
ddeb8f21 1163ENTRY(paranoid_exit)
8c1f7558 1164 UNWIND_HINT_REGS
2140a994 1165 DISABLE_INTERRUPTS(CLBR_ANY)
5963e317 1166 TRACE_IRQS_OFF_DEBUG
4d732138 1167 testl %ebx, %ebx /* swapgs needed? */
e5317832 1168 jnz .Lparanoid_exit_no_swapgs
f2db9382 1169 TRACE_IRQS_IRETQ
21e94459 1170 RESTORE_CR3 scratch_reg=%rbx save_reg=%r14
ddeb8f21 1171 SWAPGS_UNSAFE_STACK
e5317832
AL
1172 jmp .Lparanoid_exit_restore
1173.Lparanoid_exit_no_swapgs:
f2db9382 1174 TRACE_IRQS_IRETQ_DEBUG
e4865757 1175 RESTORE_CR3 scratch_reg=%rbx save_reg=%r14
e5317832
AL
1176.Lparanoid_exit_restore:
1177 jmp restore_regs_and_return_to_kernel
ddeb8f21
AH
1178END(paranoid_exit)
1179
1180/*
9e809d15 1181 * Save all registers in pt_regs, and switch GS if needed.
539f5113 1182 * Return: EBX=0: came from user mode; EBX=1: otherwise
ddeb8f21
AH
1183 */
1184ENTRY(error_entry)
9e809d15 1185 UNWIND_HINT_FUNC
ddeb8f21 1186 cld
9e809d15
DB
1187 PUSH_AND_CLEAR_REGS save_ret=1
1188 ENCODE_FRAME_POINTER 8
03335e95 1189 testb $3, CS+8(%rsp)
cb6f64ed 1190 jz .Lerror_kernelspace
539f5113 1191
cb6f64ed
AL
1192 /*
1193 * We entered from user mode or we're pretending to have entered
1194 * from user mode due to an IRET fault.
1195 */
ddeb8f21 1196 SWAPGS
8a09317b
DH
1197 /* We have user CR3. Change to kernel CR3. */
1198 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
539f5113 1199
cb6f64ed 1200.Lerror_entry_from_usermode_after_swapgs:
7f2590a1
AL
1201 /* Put us onto the real thread stack. */
1202 popq %r12 /* save return addr in %12 */
1203 movq %rsp, %rdi /* arg0 = pt_regs pointer */
1204 call sync_regs
1205 movq %rax, %rsp /* switch stack */
1206 ENCODE_FRAME_POINTER
1207 pushq %r12
1208
f1075053
AL
1209 /*
1210 * We need to tell lockdep that IRQs are off. We can't do this until
1211 * we fix gsbase, and we should do it before enter_from_user_mode
1212 * (which can take locks).
1213 */
1214 TRACE_IRQS_OFF
478dc89c 1215 CALL_enter_from_user_mode
f1075053 1216 ret
02bc7768 1217
cb6f64ed 1218.Lerror_entry_done:
ddeb8f21
AH
1219 TRACE_IRQS_OFF
1220 ret
ddeb8f21 1221
ebfc453e
DV
1222 /*
1223 * There are two places in the kernel that can potentially fault with
1224 * usergs. Handle them here. B stepping K8s sometimes report a
1225 * truncated RIP for IRET exceptions returning to compat mode. Check
1226 * for these here too.
1227 */
cb6f64ed 1228.Lerror_kernelspace:
4d732138
IM
1229 incl %ebx
1230 leaq native_irq_return_iret(%rip), %rcx
1231 cmpq %rcx, RIP+8(%rsp)
cb6f64ed 1232 je .Lerror_bad_iret
4d732138
IM
1233 movl %ecx, %eax /* zero extend */
1234 cmpq %rax, RIP+8(%rsp)
cb6f64ed 1235 je .Lbstep_iret
42c748bb 1236 cmpq $.Lgs_change, RIP+8(%rsp)
cb6f64ed 1237 jne .Lerror_entry_done
539f5113
AL
1238
1239 /*
42c748bb 1240 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up
539f5113 1241 * gsbase and proceed. We'll fix up the exception and land in
42c748bb 1242 * .Lgs_change's error handler with kernel gsbase.
539f5113 1243 */
2fa5f04f 1244 SWAPGS
8a09317b 1245 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
2fa5f04f 1246 jmp .Lerror_entry_done
ae24ffe5 1247
cb6f64ed 1248.Lbstep_iret:
ae24ffe5 1249 /* Fix truncated RIP */
4d732138 1250 movq %rcx, RIP+8(%rsp)
b645af2d
AL
1251 /* fall through */
1252
cb6f64ed 1253.Lerror_bad_iret:
539f5113 1254 /*
8a09317b
DH
1255 * We came from an IRET to user mode, so we have user
1256 * gsbase and CR3. Switch to kernel gsbase and CR3:
539f5113 1257 */
b645af2d 1258 SWAPGS
8a09317b 1259 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
539f5113
AL
1260
1261 /*
1262 * Pretend that the exception came from user mode: set up pt_regs
1263 * as if we faulted immediately after IRET and clear EBX so that
1264 * error_exit knows that we will be returning to user mode.
1265 */
4d732138
IM
1266 mov %rsp, %rdi
1267 call fixup_bad_iret
1268 mov %rax, %rsp
539f5113 1269 decl %ebx
cb6f64ed 1270 jmp .Lerror_entry_from_usermode_after_swapgs
ddeb8f21
AH
1271END(error_entry)
1272
1273
539f5113 1274/*
75ca5b22 1275 * On entry, EBX is a "return to kernel mode" flag:
539f5113
AL
1276 * 1: already in kernel mode, don't need SWAPGS
1277 * 0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
1278 */
ddeb8f21 1279ENTRY(error_exit)
8c1f7558 1280 UNWIND_HINT_REGS
2140a994 1281 DISABLE_INTERRUPTS(CLBR_ANY)
ddeb8f21 1282 TRACE_IRQS_OFF
2140a994 1283 testl %ebx, %ebx
4d732138
IM
1284 jnz retint_kernel
1285 jmp retint_user
ddeb8f21
AH
1286END(error_exit)
1287
929bacec
AL
1288/*
1289 * Runs on exception stack. Xen PV does not go through this path at all,
1290 * so we can use real assembly here.
8a09317b
DH
1291 *
1292 * Registers:
1293 * %r14: Used to save/restore the CR3 of the interrupted context
1294 * when PAGE_TABLE_ISOLATION is in use. Do not clobber.
929bacec 1295 */
ddeb8f21 1296ENTRY(nmi)
8c1f7558 1297 UNWIND_HINT_IRET_REGS
929bacec 1298
3f3c8b8c
SR
1299 /*
1300 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1301 * the iretq it performs will take us out of NMI context.
1302 * This means that we can have nested NMIs where the next
1303 * NMI is using the top of the stack of the previous NMI. We
1304 * can't let it execute because the nested NMI will corrupt the
1305 * stack of the previous NMI. NMI handlers are not re-entrant
1306 * anyway.
1307 *
1308 * To handle this case we do the following:
1309 * Check the a special location on the stack that contains
1310 * a variable that is set when NMIs are executing.
1311 * The interrupted task's stack is also checked to see if it
1312 * is an NMI stack.
1313 * If the variable is not set and the stack is not the NMI
1314 * stack then:
1315 * o Set the special variable on the stack
0b22930e
AL
1316 * o Copy the interrupt frame into an "outermost" location on the
1317 * stack
1318 * o Copy the interrupt frame into an "iret" location on the stack
3f3c8b8c
SR
1319 * o Continue processing the NMI
1320 * If the variable is set or the previous stack is the NMI stack:
0b22930e 1321 * o Modify the "iret" location to jump to the repeat_nmi
3f3c8b8c
SR
1322 * o return back to the first NMI
1323 *
1324 * Now on exit of the first NMI, we first clear the stack variable
1325 * The NMI stack will tell any nested NMIs at that point that it is
1326 * nested. Then we pop the stack normally with iret, and if there was
1327 * a nested NMI that updated the copy interrupt stack frame, a
1328 * jump will be made to the repeat_nmi code that will handle the second
1329 * NMI.
9b6e6a83
AL
1330 *
1331 * However, espfix prevents us from directly returning to userspace
1332 * with a single IRET instruction. Similarly, IRET to user mode
1333 * can fault. We therefore handle NMIs from user space like
1334 * other IST entries.
3f3c8b8c
SR
1335 */
1336
e93c1730
AL
1337 ASM_CLAC
1338
146b2b09 1339 /* Use %rdx as our temp variable throughout */
4d732138 1340 pushq %rdx
3f3c8b8c 1341
9b6e6a83
AL
1342 testb $3, CS-RIP+8(%rsp)
1343 jz .Lnmi_from_kernel
1344
1345 /*
1346 * NMI from user mode. We need to run on the thread stack, but we
1347 * can't go through the normal entry paths: NMIs are masked, and
1348 * we don't want to enable interrupts, because then we'll end
1349 * up in an awkward situation in which IRQs are on but NMIs
1350 * are off.
83c133cf
AL
1351 *
1352 * We also must not push anything to the stack before switching
1353 * stacks lest we corrupt the "NMI executing" variable.
9b6e6a83
AL
1354 */
1355
929bacec 1356 swapgs
9b6e6a83 1357 cld
8a09317b 1358 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
9b6e6a83
AL
1359 movq %rsp, %rdx
1360 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
8c1f7558 1361 UNWIND_HINT_IRET_REGS base=%rdx offset=8
9b6e6a83
AL
1362 pushq 5*8(%rdx) /* pt_regs->ss */
1363 pushq 4*8(%rdx) /* pt_regs->rsp */
1364 pushq 3*8(%rdx) /* pt_regs->flags */
1365 pushq 2*8(%rdx) /* pt_regs->cs */
1366 pushq 1*8(%rdx) /* pt_regs->rip */
8c1f7558 1367 UNWIND_HINT_IRET_REGS
9b6e6a83 1368 pushq $-1 /* pt_regs->orig_ax */
30907fd1 1369 PUSH_AND_CLEAR_REGS rdx=(%rdx)
946c1911 1370 ENCODE_FRAME_POINTER
9b6e6a83
AL
1371
1372 /*
1373 * At this point we no longer need to worry about stack damage
1374 * due to nesting -- we're on the normal thread stack and we're
1375 * done with the NMI stack.
1376 */
1377
1378 movq %rsp, %rdi
1379 movq $-1, %rsi
1380 call do_nmi
1381
45d5a168 1382 /*
9b6e6a83 1383 * Return back to user mode. We must *not* do the normal exit
946c1911 1384 * work, because we don't want to enable interrupts.
45d5a168 1385 */
8a055d7f 1386 jmp swapgs_restore_regs_and_return_to_usermode
45d5a168 1387
9b6e6a83 1388.Lnmi_from_kernel:
3f3c8b8c 1389 /*
0b22930e
AL
1390 * Here's what our stack frame will look like:
1391 * +---------------------------------------------------------+
1392 * | original SS |
1393 * | original Return RSP |
1394 * | original RFLAGS |
1395 * | original CS |
1396 * | original RIP |
1397 * +---------------------------------------------------------+
1398 * | temp storage for rdx |
1399 * +---------------------------------------------------------+
1400 * | "NMI executing" variable |
1401 * +---------------------------------------------------------+
1402 * | iret SS } Copied from "outermost" frame |
1403 * | iret Return RSP } on each loop iteration; overwritten |
1404 * | iret RFLAGS } by a nested NMI to force another |
1405 * | iret CS } iteration if needed. |
1406 * | iret RIP } |
1407 * +---------------------------------------------------------+
1408 * | outermost SS } initialized in first_nmi; |
1409 * | outermost Return RSP } will not be changed before |
1410 * | outermost RFLAGS } NMI processing is done. |
1411 * | outermost CS } Copied to "iret" frame on each |
1412 * | outermost RIP } iteration. |
1413 * +---------------------------------------------------------+
1414 * | pt_regs |
1415 * +---------------------------------------------------------+
1416 *
1417 * The "original" frame is used by hardware. Before re-enabling
1418 * NMIs, we need to be done with it, and we need to leave enough
1419 * space for the asm code here.
1420 *
1421 * We return by executing IRET while RSP points to the "iret" frame.
1422 * That will either return for real or it will loop back into NMI
1423 * processing.
1424 *
1425 * The "outermost" frame is copied to the "iret" frame on each
1426 * iteration of the loop, so each iteration starts with the "iret"
1427 * frame pointing to the final return target.
1428 */
1429
45d5a168 1430 /*
0b22930e
AL
1431 * Determine whether we're a nested NMI.
1432 *
a27507ca
AL
1433 * If we interrupted kernel code between repeat_nmi and
1434 * end_repeat_nmi, then we are a nested NMI. We must not
1435 * modify the "iret" frame because it's being written by
1436 * the outer NMI. That's okay; the outer NMI handler is
1437 * about to about to call do_nmi anyway, so we can just
1438 * resume the outer NMI.
45d5a168 1439 */
a27507ca
AL
1440
1441 movq $repeat_nmi, %rdx
1442 cmpq 8(%rsp), %rdx
1443 ja 1f
1444 movq $end_repeat_nmi, %rdx
1445 cmpq 8(%rsp), %rdx
1446 ja nested_nmi_out
14471:
45d5a168 1448
3f3c8b8c 1449 /*
a27507ca 1450 * Now check "NMI executing". If it's set, then we're nested.
0b22930e
AL
1451 * This will not detect if we interrupted an outer NMI just
1452 * before IRET.
3f3c8b8c 1453 */
4d732138
IM
1454 cmpl $1, -8(%rsp)
1455 je nested_nmi
3f3c8b8c
SR
1456
1457 /*
0b22930e
AL
1458 * Now test if the previous stack was an NMI stack. This covers
1459 * the case where we interrupt an outer NMI after it clears
810bc075
AL
1460 * "NMI executing" but before IRET. We need to be careful, though:
1461 * there is one case in which RSP could point to the NMI stack
1462 * despite there being no NMI active: naughty userspace controls
1463 * RSP at the very beginning of the SYSCALL targets. We can
1464 * pull a fast one on naughty userspace, though: we program
1465 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1466 * if it controls the kernel's RSP. We set DF before we clear
1467 * "NMI executing".
3f3c8b8c 1468 */
0784b364
DV
1469 lea 6*8(%rsp), %rdx
1470 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1471 cmpq %rdx, 4*8(%rsp)
1472 /* If the stack pointer is above the NMI stack, this is a normal NMI */
1473 ja first_nmi
4d732138 1474
0784b364
DV
1475 subq $EXCEPTION_STKSZ, %rdx
1476 cmpq %rdx, 4*8(%rsp)
1477 /* If it is below the NMI stack, it is a normal NMI */
1478 jb first_nmi
810bc075
AL
1479
1480 /* Ah, it is within the NMI stack. */
1481
1482 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1483 jz first_nmi /* RSP was user controlled. */
1484
1485 /* This is a nested NMI. */
0784b364 1486
3f3c8b8c
SR
1487nested_nmi:
1488 /*
0b22930e
AL
1489 * Modify the "iret" frame to point to repeat_nmi, forcing another
1490 * iteration of NMI handling.
3f3c8b8c 1491 */
23a781e9 1492 subq $8, %rsp
4d732138
IM
1493 leaq -10*8(%rsp), %rdx
1494 pushq $__KERNEL_DS
1495 pushq %rdx
131484c8 1496 pushfq
4d732138
IM
1497 pushq $__KERNEL_CS
1498 pushq $repeat_nmi
3f3c8b8c
SR
1499
1500 /* Put stack back */
4d732138 1501 addq $(6*8), %rsp
3f3c8b8c
SR
1502
1503nested_nmi_out:
4d732138 1504 popq %rdx
3f3c8b8c 1505
0b22930e 1506 /* We are returning to kernel mode, so this cannot result in a fault. */
929bacec 1507 iretq
3f3c8b8c
SR
1508
1509first_nmi:
0b22930e 1510 /* Restore rdx. */
4d732138 1511 movq (%rsp), %rdx
62610913 1512
36f1a77b
AL
1513 /* Make room for "NMI executing". */
1514 pushq $0
3f3c8b8c 1515
0b22930e 1516 /* Leave room for the "iret" frame */
4d732138 1517 subq $(5*8), %rsp
28696f43 1518
0b22930e 1519 /* Copy the "original" frame to the "outermost" frame */
3f3c8b8c 1520 .rept 5
4d732138 1521 pushq 11*8(%rsp)
3f3c8b8c 1522 .endr
8c1f7558 1523 UNWIND_HINT_IRET_REGS
62610913 1524
79fb4ad6
SR
1525 /* Everything up to here is safe from nested NMIs */
1526
a97439aa
AL
1527#ifdef CONFIG_DEBUG_ENTRY
1528 /*
1529 * For ease of testing, unmask NMIs right away. Disabled by
1530 * default because IRET is very expensive.
1531 */
1532 pushq $0 /* SS */
1533 pushq %rsp /* RSP (minus 8 because of the previous push) */
1534 addq $8, (%rsp) /* Fix up RSP */
1535 pushfq /* RFLAGS */
1536 pushq $__KERNEL_CS /* CS */
1537 pushq $1f /* RIP */
929bacec 1538 iretq /* continues at repeat_nmi below */
8c1f7558 1539 UNWIND_HINT_IRET_REGS
a97439aa
AL
15401:
1541#endif
1542
0b22930e 1543repeat_nmi:
62610913
JB
1544 /*
1545 * If there was a nested NMI, the first NMI's iret will return
1546 * here. But NMIs are still enabled and we can take another
1547 * nested NMI. The nested NMI checks the interrupted RIP to see
1548 * if it is between repeat_nmi and end_repeat_nmi, and if so
1549 * it will just return, as we are about to repeat an NMI anyway.
1550 * This makes it safe to copy to the stack frame that a nested
1551 * NMI will update.
0b22930e
AL
1552 *
1553 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
1554 * we're repeating an NMI, gsbase has the same value that it had on
1555 * the first iteration. paranoid_entry will load the kernel
36f1a77b
AL
1556 * gsbase if needed before we call do_nmi. "NMI executing"
1557 * is zero.
62610913 1558 */
36f1a77b 1559 movq $1, 10*8(%rsp) /* Set "NMI executing". */
3f3c8b8c 1560
62610913 1561 /*
0b22930e
AL
1562 * Copy the "outermost" frame to the "iret" frame. NMIs that nest
1563 * here must not modify the "iret" frame while we're writing to
1564 * it or it will end up containing garbage.
62610913 1565 */
4d732138 1566 addq $(10*8), %rsp
3f3c8b8c 1567 .rept 5
4d732138 1568 pushq -6*8(%rsp)
3f3c8b8c 1569 .endr
4d732138 1570 subq $(5*8), %rsp
62610913 1571end_repeat_nmi:
3f3c8b8c
SR
1572
1573 /*
0b22930e
AL
1574 * Everything below this point can be preempted by a nested NMI.
1575 * If this happens, then the inner NMI will change the "iret"
1576 * frame to point back to repeat_nmi.
3f3c8b8c 1577 */
4d732138 1578 pushq $-1 /* ORIG_RAX: no syscall to restart */
76f5df43 1579
1fd466ef 1580 /*
ebfc453e 1581 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1fd466ef
SR
1582 * as we should not be calling schedule in NMI context.
1583 * Even with normal interrupts enabled. An NMI should not be
1584 * setting NEED_RESCHED or anything that normal interrupts and
1585 * exceptions might do.
1586 */
4d732138 1587 call paranoid_entry
8c1f7558 1588 UNWIND_HINT_REGS
7fbb98c5 1589
ddeb8f21 1590 /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
4d732138
IM
1591 movq %rsp, %rdi
1592 movq $-1, %rsi
1593 call do_nmi
7fbb98c5 1594
21e94459 1595 RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
8a09317b 1596
4d732138
IM
1597 testl %ebx, %ebx /* swapgs needed? */
1598 jnz nmi_restore
ddeb8f21
AH
1599nmi_swapgs:
1600 SWAPGS_UNSAFE_STACK
1601nmi_restore:
502af0d7 1602 POP_REGS
0b22930e 1603
471ee483
AL
1604 /*
1605 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1606 * at the "iret" frame.
1607 */
1608 addq $6*8, %rsp
28696f43 1609
810bc075
AL
1610 /*
1611 * Clear "NMI executing". Set DF first so that we can easily
1612 * distinguish the remaining code between here and IRET from
929bacec
AL
1613 * the SYSCALL entry and exit paths.
1614 *
1615 * We arguably should just inspect RIP instead, but I (Andy) wrote
1616 * this code when I had the misapprehension that Xen PV supported
1617 * NMIs, and Xen PV would break that approach.
810bc075
AL
1618 */
1619 std
1620 movq $0, 5*8(%rsp) /* clear "NMI executing" */
0b22930e
AL
1621
1622 /*
929bacec
AL
1623 * iretq reads the "iret" frame and exits the NMI stack in a
1624 * single instruction. We are returning to kernel mode, so this
1625 * cannot result in a fault. Similarly, we don't need to worry
1626 * about espfix64 on the way back to kernel mode.
0b22930e 1627 */
929bacec 1628 iretq
ddeb8f21
AH
1629END(nmi)
1630
1631ENTRY(ignore_sysret)
8c1f7558 1632 UNWIND_HINT_EMPTY
4d732138 1633 mov $-ENOSYS, %eax
ddeb8f21 1634 sysret
ddeb8f21 1635END(ignore_sysret)
2deb4be2
AL
1636
1637ENTRY(rewind_stack_do_exit)
8c1f7558 1638 UNWIND_HINT_FUNC
2deb4be2
AL
1639 /* Prevent any naive code from trying to unwind to our caller. */
1640 xorl %ebp, %ebp
1641
1642 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax
8c1f7558
JP
1643 leaq -PTREGS_SIZE(%rax), %rsp
1644 UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
2deb4be2
AL
1645
1646 call do_exit
2deb4be2 1647END(rewind_stack_do_exit)