]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/events/core.c
Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / events / core.c
CommitLineData
241771ef 1/*
cdd6c482 2 * Performance events x86 architecture code
241771ef 3 *
98144511
IM
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
90eec103 8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
30dd568c 9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
1da53e02 10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
241771ef
IM
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
cdd6c482 15#include <linux/perf_event.h>
241771ef
IM
16#include <linux/capability.h>
17#include <linux/notifier.h>
18#include <linux/hardirq.h>
19#include <linux/kprobes.h>
eb008eb6
PG
20#include <linux/export.h>
21#include <linux/init.h>
241771ef 22#include <linux/kdebug.h>
589ee628 23#include <linux/sched/mm.h>
e6017571 24#include <linux/sched/clock.h>
d7d59fb3 25#include <linux/uaccess.h>
5a0e3ad6 26#include <linux/slab.h>
30dd568c 27#include <linux/cpu.h>
272d30be 28#include <linux/bitops.h>
0c9d42ed 29#include <linux/device.h>
241771ef 30
241771ef 31#include <asm/apic.h>
d7d59fb3 32#include <asm/stacktrace.h>
4e935e47 33#include <asm/nmi.h>
69092624 34#include <asm/smp.h>
c8e5910e 35#include <asm/alternative.h>
7911d3f7 36#include <asm/mmu_context.h>
375074cc 37#include <asm/tlbflush.h>
e3f3541c 38#include <asm/timer.h>
d07bdfd3
PZ
39#include <asm/desc.h>
40#include <asm/ldt.h>
35f4d9b3 41#include <asm/unwind.h>
241771ef 42
27f6d22b 43#include "perf_event.h"
de0428a7 44
de0428a7 45struct x86_pmu x86_pmu __read_mostly;
efc9f05d 46
de0428a7 47DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
b0f3f28e
PZ
48 .enabled = 1,
49};
241771ef 50
a6673429
AL
51struct static_key rdpmc_always_available = STATIC_KEY_INIT_FALSE;
52
de0428a7 53u64 __read_mostly hw_cache_event_ids
8326f44d
IM
54 [PERF_COUNT_HW_CACHE_MAX]
55 [PERF_COUNT_HW_CACHE_OP_MAX]
56 [PERF_COUNT_HW_CACHE_RESULT_MAX];
de0428a7 57u64 __read_mostly hw_cache_extra_regs
e994d7d2
AK
58 [PERF_COUNT_HW_CACHE_MAX]
59 [PERF_COUNT_HW_CACHE_OP_MAX]
60 [PERF_COUNT_HW_CACHE_RESULT_MAX];
8326f44d 61
ee06094f 62/*
cdd6c482
IM
63 * Propagate event elapsed time into the generic event.
64 * Can only be executed on the CPU where the event is active.
ee06094f
IM
65 * Returns the delta events processed.
66 */
de0428a7 67u64 x86_perf_event_update(struct perf_event *event)
ee06094f 68{
cc2ad4ba 69 struct hw_perf_event *hwc = &event->hw;
948b1bb8 70 int shift = 64 - x86_pmu.cntval_bits;
ec3232bd 71 u64 prev_raw_count, new_raw_count;
cc2ad4ba 72 int idx = hwc->idx;
7f612a7f 73 u64 delta;
ee06094f 74
15c7ad51 75 if (idx == INTEL_PMC_IDX_FIXED_BTS)
30dd568c
MM
76 return 0;
77
ee06094f 78 /*
cdd6c482 79 * Careful: an NMI might modify the previous event value.
ee06094f
IM
80 *
81 * Our tactic to handle this is to first atomically read and
82 * exchange a new raw count - then add that new-prev delta
cdd6c482 83 * count to the generic event atomically:
ee06094f
IM
84 */
85again:
e7850595 86 prev_raw_count = local64_read(&hwc->prev_count);
c48b6053 87 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
ee06094f 88
e7850595 89 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
ee06094f
IM
90 new_raw_count) != prev_raw_count)
91 goto again;
92
93 /*
94 * Now we have the new raw value and have updated the prev
95 * timestamp already. We can now calculate the elapsed delta
cdd6c482 96 * (event-)time and add that to the generic event.
ee06094f
IM
97 *
98 * Careful, not all hw sign-extends above the physical width
ec3232bd 99 * of the count.
ee06094f 100 */
ec3232bd
PZ
101 delta = (new_raw_count << shift) - (prev_raw_count << shift);
102 delta >>= shift;
ee06094f 103
e7850595
PZ
104 local64_add(delta, &event->count);
105 local64_sub(delta, &hwc->period_left);
4b7bfd0d
RR
106
107 return new_raw_count;
ee06094f
IM
108}
109
a7e3ed1e
AK
110/*
111 * Find and validate any extra registers to set up.
112 */
113static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
114{
efc9f05d 115 struct hw_perf_event_extra *reg;
a7e3ed1e
AK
116 struct extra_reg *er;
117
efc9f05d 118 reg = &event->hw.extra_reg;
a7e3ed1e
AK
119
120 if (!x86_pmu.extra_regs)
121 return 0;
122
123 for (er = x86_pmu.extra_regs; er->msr; er++) {
124 if (er->event != (config & er->config_mask))
125 continue;
126 if (event->attr.config1 & ~er->valid_mask)
127 return -EINVAL;
338b522c
KL
128 /* Check if the extra msrs can be safely accessed*/
129 if (!er->extra_msr_access)
130 return -ENXIO;
efc9f05d
SE
131
132 reg->idx = er->idx;
133 reg->config = event->attr.config1;
134 reg->reg = er->msr;
a7e3ed1e
AK
135 break;
136 }
137 return 0;
138}
139
cdd6c482 140static atomic_t active_events;
1b7b938f 141static atomic_t pmc_refcount;
4e935e47
PZ
142static DEFINE_MUTEX(pmc_reserve_mutex);
143
b27ea29c
RR
144#ifdef CONFIG_X86_LOCAL_APIC
145
4e935e47
PZ
146static bool reserve_pmc_hardware(void)
147{
148 int i;
149
948b1bb8 150 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989 151 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
4e935e47
PZ
152 goto perfctr_fail;
153 }
154
948b1bb8 155 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989 156 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
4e935e47
PZ
157 goto eventsel_fail;
158 }
159
160 return true;
161
162eventsel_fail:
163 for (i--; i >= 0; i--)
41bf4989 164 release_evntsel_nmi(x86_pmu_config_addr(i));
4e935e47 165
948b1bb8 166 i = x86_pmu.num_counters;
4e935e47
PZ
167
168perfctr_fail:
169 for (i--; i >= 0; i--)
41bf4989 170 release_perfctr_nmi(x86_pmu_event_addr(i));
4e935e47 171
4e935e47
PZ
172 return false;
173}
174
175static void release_pmc_hardware(void)
176{
177 int i;
178
948b1bb8 179 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989
RR
180 release_perfctr_nmi(x86_pmu_event_addr(i));
181 release_evntsel_nmi(x86_pmu_config_addr(i));
4e935e47 182 }
4e935e47
PZ
183}
184
b27ea29c
RR
185#else
186
187static bool reserve_pmc_hardware(void) { return true; }
188static void release_pmc_hardware(void) {}
189
190#endif
191
33c6d6a7
DZ
192static bool check_hw_exists(void)
193{
a5ebe0ba
GD
194 u64 val, val_fail, val_new= ~0;
195 int i, reg, reg_fail, ret = 0;
196 int bios_fail = 0;
68ab7476 197 int reg_safe = -1;
33c6d6a7 198
4407204c
PZ
199 /*
200 * Check to see if the BIOS enabled any of the counters, if so
201 * complain and bail.
202 */
203 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989 204 reg = x86_pmu_config_addr(i);
4407204c
PZ
205 ret = rdmsrl_safe(reg, &val);
206 if (ret)
207 goto msr_fail;
a5ebe0ba
GD
208 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
209 bios_fail = 1;
210 val_fail = val;
211 reg_fail = reg;
68ab7476
DZ
212 } else {
213 reg_safe = i;
a5ebe0ba 214 }
4407204c
PZ
215 }
216
217 if (x86_pmu.num_counters_fixed) {
218 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
219 ret = rdmsrl_safe(reg, &val);
220 if (ret)
221 goto msr_fail;
222 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
a5ebe0ba
GD
223 if (val & (0x03 << i*4)) {
224 bios_fail = 1;
225 val_fail = val;
226 reg_fail = reg;
227 }
4407204c
PZ
228 }
229 }
230
68ab7476
DZ
231 /*
232 * If all the counters are enabled, the below test will always
233 * fail. The tools will also become useless in this scenario.
234 * Just fail and disable the hardware counters.
235 */
236
237 if (reg_safe == -1) {
238 reg = reg_safe;
239 goto msr_fail;
240 }
241
4407204c 242 /*
bffd5fc2
AP
243 * Read the current value, change it and read it back to see if it
244 * matches, this is needed to detect certain hardware emulators
245 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
4407204c 246 */
68ab7476 247 reg = x86_pmu_event_addr(reg_safe);
bffd5fc2
AP
248 if (rdmsrl_safe(reg, &val))
249 goto msr_fail;
250 val ^= 0xffffUL;
f285f92f
RR
251 ret = wrmsrl_safe(reg, val);
252 ret |= rdmsrl_safe(reg, &val_new);
33c6d6a7 253 if (ret || val != val_new)
4407204c 254 goto msr_fail;
33c6d6a7 255
45daae57
IM
256 /*
257 * We still allow the PMU driver to operate:
258 */
a5ebe0ba 259 if (bios_fail) {
1b74dde7
CY
260 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
261 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
262 reg_fail, val_fail);
a5ebe0ba 263 }
45daae57
IM
264
265 return true;
4407204c
PZ
266
267msr_fail:
005bd007
JG
268 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
269 pr_cont("PMU not available due to virtualization, using software events only.\n");
270 } else {
271 pr_cont("Broken PMU hardware detected, using software events only.\n");
272 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
273 reg, val_new);
274 }
45daae57 275
4407204c 276 return false;
33c6d6a7
DZ
277}
278
cdd6c482 279static void hw_perf_event_destroy(struct perf_event *event)
4e935e47 280{
6b099d9b 281 x86_release_hardware();
1b7b938f 282 atomic_dec(&active_events);
4e935e47
PZ
283}
284
48070342
AS
285void hw_perf_lbr_event_destroy(struct perf_event *event)
286{
287 hw_perf_event_destroy(event);
288
289 /* undo the lbr/bts event accounting */
290 x86_del_exclusive(x86_lbr_exclusive_lbr);
291}
292
85cf9dba
RR
293static inline int x86_pmu_initialized(void)
294{
295 return x86_pmu.handle_irq != NULL;
296}
297
8326f44d 298static inline int
e994d7d2 299set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
8326f44d 300{
e994d7d2 301 struct perf_event_attr *attr = &event->attr;
8326f44d
IM
302 unsigned int cache_type, cache_op, cache_result;
303 u64 config, val;
304
305 config = attr->config;
306
307 cache_type = (config >> 0) & 0xff;
308 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
309 return -EINVAL;
310
311 cache_op = (config >> 8) & 0xff;
312 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
313 return -EINVAL;
314
315 cache_result = (config >> 16) & 0xff;
316 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
317 return -EINVAL;
318
319 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
320
321 if (val == 0)
322 return -ENOENT;
323
324 if (val == -1)
325 return -EINVAL;
326
327 hwc->config |= val;
e994d7d2
AK
328 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
329 return x86_pmu_extra_regs(val, event);
8326f44d
IM
330}
331
6b099d9b
AS
332int x86_reserve_hardware(void)
333{
334 int err = 0;
335
1b7b938f 336 if (!atomic_inc_not_zero(&pmc_refcount)) {
6b099d9b 337 mutex_lock(&pmc_reserve_mutex);
1b7b938f 338 if (atomic_read(&pmc_refcount) == 0) {
6b099d9b
AS
339 if (!reserve_pmc_hardware())
340 err = -EBUSY;
341 else
342 reserve_ds_buffers();
343 }
344 if (!err)
1b7b938f 345 atomic_inc(&pmc_refcount);
6b099d9b
AS
346 mutex_unlock(&pmc_reserve_mutex);
347 }
348
349 return err;
350}
351
352void x86_release_hardware(void)
353{
1b7b938f 354 if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
6b099d9b
AS
355 release_pmc_hardware();
356 release_ds_buffers();
357 mutex_unlock(&pmc_reserve_mutex);
358 }
359}
360
48070342
AS
361/*
362 * Check if we can create event of a certain type (that no conflicting events
363 * are present).
364 */
365int x86_add_exclusive(unsigned int what)
366{
93472aff 367 int i;
48070342 368
b0c1ef52
AK
369 /*
370 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
371 * LBR and BTS are still mutually exclusive.
372 */
373 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
ccbebba4
AS
374 return 0;
375
93472aff
PZ
376 if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
377 mutex_lock(&pmc_reserve_mutex);
378 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
379 if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
380 goto fail_unlock;
381 }
382 atomic_inc(&x86_pmu.lbr_exclusive[what]);
383 mutex_unlock(&pmc_reserve_mutex);
6b099d9b 384 }
48070342 385
93472aff
PZ
386 atomic_inc(&active_events);
387 return 0;
48070342 388
93472aff 389fail_unlock:
48070342 390 mutex_unlock(&pmc_reserve_mutex);
93472aff 391 return -EBUSY;
48070342
AS
392}
393
394void x86_del_exclusive(unsigned int what)
395{
b0c1ef52 396 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
ccbebba4
AS
397 return;
398
48070342 399 atomic_dec(&x86_pmu.lbr_exclusive[what]);
1b7b938f 400 atomic_dec(&active_events);
48070342
AS
401}
402
de0428a7 403int x86_setup_perfctr(struct perf_event *event)
c1726f34
RR
404{
405 struct perf_event_attr *attr = &event->attr;
406 struct hw_perf_event *hwc = &event->hw;
407 u64 config;
408
6c7e550f 409 if (!is_sampling_event(event)) {
c1726f34
RR
410 hwc->sample_period = x86_pmu.max_period;
411 hwc->last_period = hwc->sample_period;
e7850595 412 local64_set(&hwc->period_left, hwc->sample_period);
c1726f34
RR
413 }
414
415 if (attr->type == PERF_TYPE_RAW)
ed13ec58 416 return x86_pmu_extra_regs(event->attr.config, event);
c1726f34
RR
417
418 if (attr->type == PERF_TYPE_HW_CACHE)
e994d7d2 419 return set_ext_hw_attr(hwc, event);
c1726f34
RR
420
421 if (attr->config >= x86_pmu.max_events)
422 return -EINVAL;
423
424 /*
425 * The generic map:
426 */
427 config = x86_pmu.event_map(attr->config);
428
429 if (config == 0)
430 return -ENOENT;
431
432 if (config == -1LL)
433 return -EINVAL;
434
435 /*
436 * Branch tracing:
437 */
18a073a3
PZ
438 if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
439 !attr->freq && hwc->sample_period == 1) {
c1726f34 440 /* BTS is not supported by this architecture. */
6809b6ea 441 if (!x86_pmu.bts_active)
c1726f34
RR
442 return -EOPNOTSUPP;
443
444 /* BTS is currently only allowed for user-mode. */
445 if (!attr->exclude_kernel)
446 return -EOPNOTSUPP;
48070342
AS
447
448 /* disallow bts if conflicting events are present */
449 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
450 return -EBUSY;
451
452 event->destroy = hw_perf_lbr_event_destroy;
c1726f34
RR
453 }
454
455 hwc->config |= config;
456
457 return 0;
458}
4261e0e0 459
ff3fb511
SE
460/*
461 * check that branch_sample_type is compatible with
462 * settings needed for precise_ip > 1 which implies
463 * using the LBR to capture ALL taken branches at the
464 * priv levels of the measurement
465 */
466static inline int precise_br_compat(struct perf_event *event)
467{
468 u64 m = event->attr.branch_sample_type;
469 u64 b = 0;
470
471 /* must capture all branches */
472 if (!(m & PERF_SAMPLE_BRANCH_ANY))
473 return 0;
474
475 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
476
477 if (!event->attr.exclude_user)
478 b |= PERF_SAMPLE_BRANCH_USER;
479
480 if (!event->attr.exclude_kernel)
481 b |= PERF_SAMPLE_BRANCH_KERNEL;
482
483 /*
484 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
485 */
486
487 return m == b;
488}
489
de0428a7 490int x86_pmu_hw_config(struct perf_event *event)
a072738e 491{
ab608344
PZ
492 if (event->attr.precise_ip) {
493 int precise = 0;
494
495 /* Support for constant skid */
c93dc84c 496 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
ab608344
PZ
497 precise++;
498
5553be26 499 /* Support for IP fixup */
03de874a 500 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
5553be26 501 precise++;
72469764
AK
502
503 if (x86_pmu.pebs_prec_dist)
504 precise++;
5553be26 505 }
ab608344
PZ
506
507 if (event->attr.precise_ip > precise)
508 return -EOPNOTSUPP;
18e7a45a
JO
509
510 /* There's no sense in having PEBS for non sampling events: */
511 if (!is_sampling_event(event))
512 return -EINVAL;
4b854900
YZ
513 }
514 /*
515 * check that PEBS LBR correction does not conflict with
516 * whatever the user is asking with attr->branch_sample_type
517 */
518 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
519 u64 *br_type = &event->attr.branch_sample_type;
520
521 if (has_branch_stack(event)) {
522 if (!precise_br_compat(event))
523 return -EOPNOTSUPP;
524
525 /* branch_sample_type is compatible */
526
527 } else {
528 /*
529 * user did not specify branch_sample_type
530 *
531 * For PEBS fixups, we capture all
532 * the branches at the priv level of the
533 * event.
534 */
535 *br_type = PERF_SAMPLE_BRANCH_ANY;
536
537 if (!event->attr.exclude_user)
538 *br_type |= PERF_SAMPLE_BRANCH_USER;
539
540 if (!event->attr.exclude_kernel)
541 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
ff3fb511 542 }
ab608344
PZ
543 }
544
e18bf526
YZ
545 if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
546 event->attach_state |= PERF_ATTACH_TASK_DATA;
547
a072738e
CG
548 /*
549 * Generate PMC IRQs:
550 * (keep 'enabled' bit clear for now)
551 */
b4cdc5c2 552 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
a072738e
CG
553
554 /*
555 * Count user and OS events unless requested not to
556 */
b4cdc5c2
PZ
557 if (!event->attr.exclude_user)
558 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
559 if (!event->attr.exclude_kernel)
560 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
a072738e 561
b4cdc5c2
PZ
562 if (event->attr.type == PERF_TYPE_RAW)
563 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
a072738e 564
294fe0f5
AK
565 if (event->attr.sample_period && x86_pmu.limit_period) {
566 if (x86_pmu.limit_period(event, event->attr.sample_period) >
567 event->attr.sample_period)
568 return -EINVAL;
569 }
570
9d0fcba6 571 return x86_setup_perfctr(event);
a098f448
RR
572}
573
241771ef 574/*
0d48696f 575 * Setup the hardware configuration for a given attr_type
241771ef 576 */
b0a873eb 577static int __x86_pmu_event_init(struct perf_event *event)
241771ef 578{
4e935e47 579 int err;
241771ef 580
85cf9dba
RR
581 if (!x86_pmu_initialized())
582 return -ENODEV;
241771ef 583
6b099d9b 584 err = x86_reserve_hardware();
4e935e47
PZ
585 if (err)
586 return err;
587
1b7b938f 588 atomic_inc(&active_events);
cdd6c482 589 event->destroy = hw_perf_event_destroy;
a1792cda 590
4261e0e0
RR
591 event->hw.idx = -1;
592 event->hw.last_cpu = -1;
593 event->hw.last_tag = ~0ULL;
b690081d 594
efc9f05d
SE
595 /* mark unused */
596 event->hw.extra_reg.idx = EXTRA_REG_NONE;
b36817e8
SE
597 event->hw.branch_reg.idx = EXTRA_REG_NONE;
598
9d0fcba6 599 return x86_pmu.hw_config(event);
4261e0e0
RR
600}
601
de0428a7 602void x86_pmu_disable_all(void)
f87ad35d 603{
89cbc767 604 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
9e35ad38
PZ
605 int idx;
606
948b1bb8 607 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
b0f3f28e
PZ
608 u64 val;
609
43f6201a 610 if (!test_bit(idx, cpuc->active_mask))
4295ee62 611 continue;
41bf4989 612 rdmsrl(x86_pmu_config_addr(idx), val);
bb1165d6 613 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
4295ee62 614 continue;
bb1165d6 615 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
41bf4989 616 wrmsrl(x86_pmu_config_addr(idx), val);
f87ad35d 617 }
f87ad35d
JSR
618}
619
c3d266c8
KL
620/*
621 * There may be PMI landing after enabled=0. The PMI hitting could be before or
622 * after disable_all.
623 *
624 * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
625 * It will not be re-enabled in the NMI handler again, because enabled=0. After
626 * handling the NMI, disable_all will be called, which will not change the
627 * state either. If PMI hits after disable_all, the PMU is already disabled
628 * before entering NMI handler. The NMI handler will not change the state
629 * either.
630 *
631 * So either situation is harmless.
632 */
a4eaf7f1 633static void x86_pmu_disable(struct pmu *pmu)
b56a3802 634{
89cbc767 635 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1da53e02 636
85cf9dba 637 if (!x86_pmu_initialized())
9e35ad38 638 return;
1da53e02 639
1a6e21f7
PZ
640 if (!cpuc->enabled)
641 return;
642
643 cpuc->n_added = 0;
644 cpuc->enabled = 0;
645 barrier();
1da53e02
SE
646
647 x86_pmu.disable_all();
b56a3802 648}
241771ef 649
de0428a7 650void x86_pmu_enable_all(int added)
f87ad35d 651{
89cbc767 652 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
f87ad35d
JSR
653 int idx;
654
948b1bb8 655 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
d45dd923 656 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
b0f3f28e 657
43f6201a 658 if (!test_bit(idx, cpuc->active_mask))
4295ee62 659 continue;
984b838c 660
d45dd923 661 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
f87ad35d
JSR
662 }
663}
664
51b0fe39 665static struct pmu pmu;
1da53e02
SE
666
667static inline int is_x86_event(struct perf_event *event)
668{
669 return event->pmu == &pmu;
670}
671
1e2ad28f
RR
672/*
673 * Event scheduler state:
674 *
675 * Assign events iterating over all events and counters, beginning
676 * with events with least weights first. Keep the current iterator
677 * state in struct sched_state.
678 */
679struct sched_state {
680 int weight;
681 int event; /* event index */
682 int counter; /* counter index */
683 int unassigned; /* number of events to be assigned left */
cc1790cf 684 int nr_gp; /* number of GP counters used */
1e2ad28f
RR
685 unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
686};
687
bc1738f6
RR
688/* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
689#define SCHED_STATES_MAX 2
690
1e2ad28f
RR
691struct perf_sched {
692 int max_weight;
693 int max_events;
cc1790cf
PZ
694 int max_gp;
695 int saved_states;
b371b594 696 struct event_constraint **constraints;
1e2ad28f 697 struct sched_state state;
bc1738f6 698 struct sched_state saved[SCHED_STATES_MAX];
1e2ad28f
RR
699};
700
701/*
702 * Initialize interator that runs through all events and counters.
703 */
b371b594 704static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
cc1790cf 705 int num, int wmin, int wmax, int gpmax)
1e2ad28f
RR
706{
707 int idx;
708
709 memset(sched, 0, sizeof(*sched));
710 sched->max_events = num;
711 sched->max_weight = wmax;
cc1790cf 712 sched->max_gp = gpmax;
b371b594 713 sched->constraints = constraints;
1e2ad28f
RR
714
715 for (idx = 0; idx < num; idx++) {
b371b594 716 if (constraints[idx]->weight == wmin)
1e2ad28f
RR
717 break;
718 }
719
720 sched->state.event = idx; /* start with min weight */
721 sched->state.weight = wmin;
722 sched->state.unassigned = num;
723}
724
bc1738f6
RR
725static void perf_sched_save_state(struct perf_sched *sched)
726{
727 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
728 return;
729
730 sched->saved[sched->saved_states] = sched->state;
731 sched->saved_states++;
732}
733
734static bool perf_sched_restore_state(struct perf_sched *sched)
735{
736 if (!sched->saved_states)
737 return false;
738
739 sched->saved_states--;
740 sched->state = sched->saved[sched->saved_states];
741
742 /* continue with next counter: */
743 clear_bit(sched->state.counter++, sched->state.used);
744
745 return true;
746}
747
1e2ad28f
RR
748/*
749 * Select a counter for the current event to schedule. Return true on
750 * success.
751 */
bc1738f6 752static bool __perf_sched_find_counter(struct perf_sched *sched)
1e2ad28f
RR
753{
754 struct event_constraint *c;
755 int idx;
756
757 if (!sched->state.unassigned)
758 return false;
759
760 if (sched->state.event >= sched->max_events)
761 return false;
762
b371b594 763 c = sched->constraints[sched->state.event];
4defea85 764 /* Prefer fixed purpose counters */
15c7ad51
RR
765 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
766 idx = INTEL_PMC_IDX_FIXED;
307b1cd7 767 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
4defea85
PZ
768 if (!__test_and_set_bit(idx, sched->state.used))
769 goto done;
770 }
771 }
cc1790cf 772
1e2ad28f
RR
773 /* Grab the first unused counter starting with idx */
774 idx = sched->state.counter;
15c7ad51 775 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
cc1790cf
PZ
776 if (!__test_and_set_bit(idx, sched->state.used)) {
777 if (sched->state.nr_gp++ >= sched->max_gp)
778 return false;
779
4defea85 780 goto done;
cc1790cf 781 }
1e2ad28f 782 }
1e2ad28f 783
4defea85
PZ
784 return false;
785
786done:
787 sched->state.counter = idx;
1e2ad28f 788
bc1738f6
RR
789 if (c->overlap)
790 perf_sched_save_state(sched);
791
792 return true;
793}
794
795static bool perf_sched_find_counter(struct perf_sched *sched)
796{
797 while (!__perf_sched_find_counter(sched)) {
798 if (!perf_sched_restore_state(sched))
799 return false;
800 }
801
1e2ad28f
RR
802 return true;
803}
804
805/*
806 * Go through all unassigned events and find the next one to schedule.
807 * Take events with the least weight first. Return true on success.
808 */
809static bool perf_sched_next_event(struct perf_sched *sched)
810{
811 struct event_constraint *c;
812
813 if (!sched->state.unassigned || !--sched->state.unassigned)
814 return false;
815
816 do {
817 /* next event */
818 sched->state.event++;
819 if (sched->state.event >= sched->max_events) {
820 /* next weight */
821 sched->state.event = 0;
822 sched->state.weight++;
823 if (sched->state.weight > sched->max_weight)
824 return false;
825 }
b371b594 826 c = sched->constraints[sched->state.event];
1e2ad28f
RR
827 } while (c->weight != sched->state.weight);
828
829 sched->state.counter = 0; /* start with first counter */
830
831 return true;
832}
833
834/*
835 * Assign a counter for each event.
836 */
b371b594 837int perf_assign_events(struct event_constraint **constraints, int n,
cc1790cf 838 int wmin, int wmax, int gpmax, int *assign)
1e2ad28f
RR
839{
840 struct perf_sched sched;
841
cc1790cf 842 perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
1e2ad28f
RR
843
844 do {
845 if (!perf_sched_find_counter(&sched))
846 break; /* failed */
847 if (assign)
848 assign[sched.state.event] = sched.state.counter;
849 } while (perf_sched_next_event(&sched));
850
851 return sched.state.unassigned;
852}
4a3dc121 853EXPORT_SYMBOL_GPL(perf_assign_events);
1e2ad28f 854
de0428a7 855int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
1da53e02 856{
43b45780 857 struct event_constraint *c;
1da53e02 858 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
2f7f73a5 859 struct perf_event *e;
e979121b 860 int i, wmin, wmax, unsched = 0;
1da53e02
SE
861 struct hw_perf_event *hwc;
862
863 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
864
c5362c0c
MD
865 if (x86_pmu.start_scheduling)
866 x86_pmu.start_scheduling(cpuc);
867
1e2ad28f 868 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
b371b594 869 cpuc->event_constraint[i] = NULL;
79cba822 870 c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
b371b594 871 cpuc->event_constraint[i] = c;
43b45780 872
1e2ad28f
RR
873 wmin = min(wmin, c->weight);
874 wmax = max(wmax, c->weight);
1da53e02
SE
875 }
876
8113070d
SE
877 /*
878 * fastpath, try to reuse previous register
879 */
c933c1a6 880 for (i = 0; i < n; i++) {
8113070d 881 hwc = &cpuc->event_list[i]->hw;
b371b594 882 c = cpuc->event_constraint[i];
8113070d
SE
883
884 /* never assigned */
885 if (hwc->idx == -1)
886 break;
887
888 /* constraint still honored */
63b14649 889 if (!test_bit(hwc->idx, c->idxmsk))
8113070d
SE
890 break;
891
892 /* not already used */
893 if (test_bit(hwc->idx, used_mask))
894 break;
895
34538ee7 896 __set_bit(hwc->idx, used_mask);
8113070d
SE
897 if (assign)
898 assign[i] = hwc->idx;
899 }
8113070d 900
1e2ad28f 901 /* slow path */
b371b594 902 if (i != n) {
cc1790cf
PZ
903 int gpmax = x86_pmu.num_counters;
904
905 /*
906 * Do not allow scheduling of more than half the available
907 * generic counters.
908 *
909 * This helps avoid counter starvation of sibling thread by
910 * ensuring at most half the counters cannot be in exclusive
911 * mode. There is no designated counters for the limits. Any
912 * N/2 counters can be used. This helps with events with
913 * specific counter constraints.
914 */
915 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
916 READ_ONCE(cpuc->excl_cntrs->exclusive_present))
917 gpmax /= 2;
918
b371b594 919 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
cc1790cf 920 wmax, gpmax, assign);
b371b594 921 }
8113070d 922
2f7f73a5 923 /*
e979121b
MD
924 * In case of success (unsched = 0), mark events as committed,
925 * so we do not put_constraint() in case new events are added
926 * and fail to be scheduled
927 *
928 * We invoke the lower level commit callback to lock the resource
929 *
930 * We do not need to do all of this in case we are called to
931 * validate an event group (assign == NULL)
2f7f73a5 932 */
e979121b 933 if (!unsched && assign) {
2f7f73a5
SE
934 for (i = 0; i < n; i++) {
935 e = cpuc->event_list[i];
936 e->hw.flags |= PERF_X86_EVENT_COMMITTED;
c5362c0c 937 if (x86_pmu.commit_scheduling)
b371b594 938 x86_pmu.commit_scheduling(cpuc, i, assign[i]);
2f7f73a5 939 }
8736e548 940 } else {
1da53e02 941 for (i = 0; i < n; i++) {
2f7f73a5
SE
942 e = cpuc->event_list[i];
943 /*
944 * do not put_constraint() on comitted events,
945 * because they are good to go
946 */
947 if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
948 continue;
949
e979121b
MD
950 /*
951 * release events that failed scheduling
952 */
1da53e02 953 if (x86_pmu.put_event_constraints)
2f7f73a5 954 x86_pmu.put_event_constraints(cpuc, e);
1da53e02
SE
955 }
956 }
c5362c0c
MD
957
958 if (x86_pmu.stop_scheduling)
959 x86_pmu.stop_scheduling(cpuc);
960
e979121b 961 return unsched ? -EINVAL : 0;
1da53e02
SE
962}
963
964/*
965 * dogrp: true if must collect siblings events (group)
966 * returns total number of events and error code
967 */
968static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
969{
970 struct perf_event *event;
971 int n, max_count;
972
948b1bb8 973 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
1da53e02
SE
974
975 /* current number of events already accepted */
976 n = cpuc->n_events;
977
978 if (is_x86_event(leader)) {
979 if (n >= max_count)
aa2bc1ad 980 return -EINVAL;
1da53e02
SE
981 cpuc->event_list[n] = leader;
982 n++;
983 }
984 if (!dogrp)
985 return n;
986
987 list_for_each_entry(event, &leader->sibling_list, group_entry) {
988 if (!is_x86_event(event) ||
8113070d 989 event->state <= PERF_EVENT_STATE_OFF)
1da53e02
SE
990 continue;
991
992 if (n >= max_count)
aa2bc1ad 993 return -EINVAL;
1da53e02
SE
994
995 cpuc->event_list[n] = event;
996 n++;
997 }
998 return n;
999}
1000
1da53e02 1001static inline void x86_assign_hw_event(struct perf_event *event,
447a194b 1002 struct cpu_hw_events *cpuc, int i)
1da53e02 1003{
447a194b
SE
1004 struct hw_perf_event *hwc = &event->hw;
1005
1006 hwc->idx = cpuc->assign[i];
1007 hwc->last_cpu = smp_processor_id();
1008 hwc->last_tag = ++cpuc->tags[i];
1da53e02 1009
15c7ad51 1010 if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
1da53e02
SE
1011 hwc->config_base = 0;
1012 hwc->event_base = 0;
15c7ad51 1013 } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1da53e02 1014 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
15c7ad51
RR
1015 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
1016 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1da53e02 1017 } else {
73d6e522
RR
1018 hwc->config_base = x86_pmu_config_addr(hwc->idx);
1019 hwc->event_base = x86_pmu_event_addr(hwc->idx);
0fbdad07 1020 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1da53e02
SE
1021 }
1022}
1023
447a194b
SE
1024static inline int match_prev_assignment(struct hw_perf_event *hwc,
1025 struct cpu_hw_events *cpuc,
1026 int i)
1027{
1028 return hwc->idx == cpuc->assign[i] &&
1029 hwc->last_cpu == smp_processor_id() &&
1030 hwc->last_tag == cpuc->tags[i];
1031}
1032
a4eaf7f1 1033static void x86_pmu_start(struct perf_event *event, int flags);
2e841873 1034
a4eaf7f1 1035static void x86_pmu_enable(struct pmu *pmu)
ee06094f 1036{
89cbc767 1037 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1da53e02
SE
1038 struct perf_event *event;
1039 struct hw_perf_event *hwc;
11164cd4 1040 int i, added = cpuc->n_added;
1da53e02 1041
85cf9dba 1042 if (!x86_pmu_initialized())
2b9ff0db 1043 return;
1a6e21f7
PZ
1044
1045 if (cpuc->enabled)
1046 return;
1047
1da53e02 1048 if (cpuc->n_added) {
19925ce7 1049 int n_running = cpuc->n_events - cpuc->n_added;
1da53e02
SE
1050 /*
1051 * apply assignment obtained either from
1052 * hw_perf_group_sched_in() or x86_pmu_enable()
1053 *
1054 * step1: save events moving to new counters
1da53e02 1055 */
19925ce7 1056 for (i = 0; i < n_running; i++) {
1da53e02
SE
1057 event = cpuc->event_list[i];
1058 hwc = &event->hw;
1059
447a194b
SE
1060 /*
1061 * we can avoid reprogramming counter if:
1062 * - assigned same counter as last time
1063 * - running on same CPU as last time
1064 * - no other event has used the counter since
1065 */
1066 if (hwc->idx == -1 ||
1067 match_prev_assignment(hwc, cpuc, i))
1da53e02
SE
1068 continue;
1069
a4eaf7f1
PZ
1070 /*
1071 * Ensure we don't accidentally enable a stopped
1072 * counter simply because we rescheduled.
1073 */
1074 if (hwc->state & PERF_HES_STOPPED)
1075 hwc->state |= PERF_HES_ARCH;
1076
1077 x86_pmu_stop(event, PERF_EF_UPDATE);
1da53e02
SE
1078 }
1079
c347a2f1
PZ
1080 /*
1081 * step2: reprogram moved events into new counters
1082 */
1da53e02 1083 for (i = 0; i < cpuc->n_events; i++) {
1da53e02
SE
1084 event = cpuc->event_list[i];
1085 hwc = &event->hw;
1086
45e16a68 1087 if (!match_prev_assignment(hwc, cpuc, i))
447a194b 1088 x86_assign_hw_event(event, cpuc, i);
45e16a68
PZ
1089 else if (i < n_running)
1090 continue;
1da53e02 1091
a4eaf7f1
PZ
1092 if (hwc->state & PERF_HES_ARCH)
1093 continue;
1094
1095 x86_pmu_start(event, PERF_EF_RELOAD);
1da53e02
SE
1096 }
1097 cpuc->n_added = 0;
1098 perf_events_lapic_init();
1099 }
1a6e21f7
PZ
1100
1101 cpuc->enabled = 1;
1102 barrier();
1103
11164cd4 1104 x86_pmu.enable_all(added);
ee06094f 1105}
ee06094f 1106
245b2e70 1107static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
241771ef 1108
ee06094f
IM
1109/*
1110 * Set the next IRQ period, based on the hwc->period_left value.
cdd6c482 1111 * To be called with the event disabled in hw:
ee06094f 1112 */
de0428a7 1113int x86_perf_event_set_period(struct perf_event *event)
241771ef 1114{
07088edb 1115 struct hw_perf_event *hwc = &event->hw;
e7850595 1116 s64 left = local64_read(&hwc->period_left);
e4abb5d4 1117 s64 period = hwc->sample_period;
7645a24c 1118 int ret = 0, idx = hwc->idx;
ee06094f 1119
15c7ad51 1120 if (idx == INTEL_PMC_IDX_FIXED_BTS)
30dd568c
MM
1121 return 0;
1122
ee06094f 1123 /*
af901ca1 1124 * If we are way outside a reasonable range then just skip forward:
ee06094f
IM
1125 */
1126 if (unlikely(left <= -period)) {
1127 left = period;
e7850595 1128 local64_set(&hwc->period_left, left);
9e350de3 1129 hwc->last_period = period;
e4abb5d4 1130 ret = 1;
ee06094f
IM
1131 }
1132
1133 if (unlikely(left <= 0)) {
1134 left += period;
e7850595 1135 local64_set(&hwc->period_left, left);
9e350de3 1136 hwc->last_period = period;
e4abb5d4 1137 ret = 1;
ee06094f 1138 }
1c80f4b5 1139 /*
dfc65094 1140 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1c80f4b5
IM
1141 */
1142 if (unlikely(left < 2))
1143 left = 2;
241771ef 1144
e4abb5d4
PZ
1145 if (left > x86_pmu.max_period)
1146 left = x86_pmu.max_period;
1147
294fe0f5
AK
1148 if (x86_pmu.limit_period)
1149 left = x86_pmu.limit_period(event, left);
1150
245b2e70 1151 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
ee06094f 1152
851559e3
YZ
1153 if (!(hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) ||
1154 local64_read(&hwc->prev_count) != (u64)-left) {
1155 /*
1156 * The hw event starts counting from this event offset,
1157 * mark it to be able to extra future deltas:
1158 */
1159 local64_set(&hwc->prev_count, (u64)-left);
ee06094f 1160
851559e3
YZ
1161 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1162 }
68aa00ac
CG
1163
1164 /*
1165 * Due to erratum on certan cpu we need
1166 * a second write to be sure the register
1167 * is updated properly
1168 */
1169 if (x86_pmu.perfctr_second_write) {
73d6e522 1170 wrmsrl(hwc->event_base,
948b1bb8 1171 (u64)(-left) & x86_pmu.cntval_mask);
68aa00ac 1172 }
e4abb5d4 1173
cdd6c482 1174 perf_event_update_userpage(event);
194002b2 1175
e4abb5d4 1176 return ret;
2f18d1e8
IM
1177}
1178
de0428a7 1179void x86_pmu_enable_event(struct perf_event *event)
7c90cc45 1180{
0a3aee0d 1181 if (__this_cpu_read(cpu_hw_events.enabled))
31fa58af
RR
1182 __x86_pmu_enable_event(&event->hw,
1183 ARCH_PERFMON_EVENTSEL_ENABLE);
241771ef
IM
1184}
1185
b690081d 1186/*
a4eaf7f1 1187 * Add a single event to the PMU.
1da53e02
SE
1188 *
1189 * The event is added to the group of enabled events
1190 * but only if it can be scehduled with existing events.
fe9081cc 1191 */
a4eaf7f1 1192static int x86_pmu_add(struct perf_event *event, int flags)
fe9081cc 1193{
89cbc767 1194 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1da53e02
SE
1195 struct hw_perf_event *hwc;
1196 int assign[X86_PMC_IDX_MAX];
1197 int n, n0, ret;
fe9081cc 1198
1da53e02 1199 hwc = &event->hw;
fe9081cc 1200
1da53e02 1201 n0 = cpuc->n_events;
24cd7f54
PZ
1202 ret = n = collect_events(cpuc, event, false);
1203 if (ret < 0)
1204 goto out;
53b441a5 1205
a4eaf7f1
PZ
1206 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1207 if (!(flags & PERF_EF_START))
1208 hwc->state |= PERF_HES_ARCH;
1209
4d1c52b0
LM
1210 /*
1211 * If group events scheduling transaction was started,
0d2eb44f 1212 * skip the schedulability test here, it will be performed
c347a2f1 1213 * at commit time (->commit_txn) as a whole.
68f7082f
PZ
1214 *
1215 * If commit fails, we'll call ->del() on all events
1216 * for which ->add() was called.
4d1c52b0 1217 */
8f3e5684 1218 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
24cd7f54 1219 goto done_collect;
4d1c52b0 1220
a072738e 1221 ret = x86_pmu.schedule_events(cpuc, n, assign);
1da53e02 1222 if (ret)
24cd7f54 1223 goto out;
1da53e02
SE
1224 /*
1225 * copy new assignment, now we know it is possible
1226 * will be used by hw_perf_enable()
1227 */
1228 memcpy(cpuc->assign, assign, n*sizeof(int));
7e2ae347 1229
24cd7f54 1230done_collect:
c347a2f1
PZ
1231 /*
1232 * Commit the collect_events() state. See x86_pmu_del() and
1233 * x86_pmu_*_txn().
1234 */
1da53e02 1235 cpuc->n_events = n;
356e1f2e 1236 cpuc->n_added += n - n0;
90151c35 1237 cpuc->n_txn += n - n0;
95cdd2e7 1238
68f7082f
PZ
1239 if (x86_pmu.add) {
1240 /*
1241 * This is before x86_pmu_enable() will call x86_pmu_start(),
1242 * so we enable LBRs before an event needs them etc..
1243 */
1244 x86_pmu.add(event);
1245 }
1246
24cd7f54
PZ
1247 ret = 0;
1248out:
24cd7f54 1249 return ret;
241771ef
IM
1250}
1251
a4eaf7f1 1252static void x86_pmu_start(struct perf_event *event, int flags)
d76a0812 1253{
89cbc767 1254 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
c08053e6
PZ
1255 int idx = event->hw.idx;
1256
a4eaf7f1
PZ
1257 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1258 return;
1259
1260 if (WARN_ON_ONCE(idx == -1))
1261 return;
1262
1263 if (flags & PERF_EF_RELOAD) {
1264 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1265 x86_perf_event_set_period(event);
1266 }
1267
1268 event->hw.state = 0;
d76a0812 1269
c08053e6
PZ
1270 cpuc->events[idx] = event;
1271 __set_bit(idx, cpuc->active_mask);
63e6be6d 1272 __set_bit(idx, cpuc->running);
aff3d91a 1273 x86_pmu.enable(event);
c08053e6 1274 perf_event_update_userpage(event);
a78ac325
PZ
1275}
1276
cdd6c482 1277void perf_event_print_debug(void)
241771ef 1278{
2f18d1e8 1279 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
da3e606d 1280 u64 pebs, debugctl;
cdd6c482 1281 struct cpu_hw_events *cpuc;
5bb9efe3 1282 unsigned long flags;
1e125676
IM
1283 int cpu, idx;
1284
948b1bb8 1285 if (!x86_pmu.num_counters)
1e125676 1286 return;
241771ef 1287
5bb9efe3 1288 local_irq_save(flags);
241771ef
IM
1289
1290 cpu = smp_processor_id();
cdd6c482 1291 cpuc = &per_cpu(cpu_hw_events, cpu);
241771ef 1292
faa28ae0 1293 if (x86_pmu.version >= 2) {
a1ef58f4
JSR
1294 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1295 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1296 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1297 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1298
1299 pr_info("\n");
1300 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1301 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1302 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1303 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
15fde110
AK
1304 if (x86_pmu.pebs_constraints) {
1305 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1306 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1307 }
da3e606d
AK
1308 if (x86_pmu.lbr_nr) {
1309 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1310 pr_info("CPU#%d: debugctl: %016llx\n", cpu, debugctl);
1311 }
f87ad35d 1312 }
7645a24c 1313 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
241771ef 1314
948b1bb8 1315 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
41bf4989
RR
1316 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1317 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
241771ef 1318
245b2e70 1319 prev_left = per_cpu(pmc_prev_left[idx], cpu);
241771ef 1320
a1ef58f4 1321 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
241771ef 1322 cpu, idx, pmc_ctrl);
a1ef58f4 1323 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
241771ef 1324 cpu, idx, pmc_count);
a1ef58f4 1325 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
ee06094f 1326 cpu, idx, prev_left);
241771ef 1327 }
948b1bb8 1328 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
2f18d1e8
IM
1329 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1330
a1ef58f4 1331 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
2f18d1e8
IM
1332 cpu, idx, pmc_count);
1333 }
5bb9efe3 1334 local_irq_restore(flags);
241771ef
IM
1335}
1336
de0428a7 1337void x86_pmu_stop(struct perf_event *event, int flags)
241771ef 1338{
89cbc767 1339 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
cdd6c482 1340 struct hw_perf_event *hwc = &event->hw;
241771ef 1341
a4eaf7f1
PZ
1342 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1343 x86_pmu.disable(event);
1344 cpuc->events[hwc->idx] = NULL;
1345 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1346 hwc->state |= PERF_HES_STOPPED;
1347 }
30dd568c 1348
a4eaf7f1
PZ
1349 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1350 /*
1351 * Drain the remaining delta count out of a event
1352 * that we are disabling:
1353 */
1354 x86_perf_event_update(event);
1355 hwc->state |= PERF_HES_UPTODATE;
1356 }
2e841873
PZ
1357}
1358
a4eaf7f1 1359static void x86_pmu_del(struct perf_event *event, int flags)
2e841873 1360{
89cbc767 1361 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2e841873
PZ
1362 int i;
1363
2f7f73a5
SE
1364 /*
1365 * event is descheduled
1366 */
1367 event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1368
90151c35 1369 /*
68f7082f 1370 * If we're called during a txn, we only need to undo x86_pmu.add.
90151c35
SE
1371 * The events never got scheduled and ->cancel_txn will truncate
1372 * the event_list.
c347a2f1
PZ
1373 *
1374 * XXX assumes any ->del() called during a TXN will only be on
1375 * an event added during that same TXN.
90151c35 1376 */
8f3e5684 1377 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
68f7082f 1378 goto do_del;
90151c35 1379
c347a2f1
PZ
1380 /*
1381 * Not a TXN, therefore cleanup properly.
1382 */
a4eaf7f1 1383 x86_pmu_stop(event, PERF_EF_UPDATE);
194002b2 1384
1da53e02 1385 for (i = 0; i < cpuc->n_events; i++) {
c347a2f1
PZ
1386 if (event == cpuc->event_list[i])
1387 break;
1388 }
1da53e02 1389
c347a2f1
PZ
1390 if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1391 return;
26e61e89 1392
c347a2f1
PZ
1393 /* If we have a newly added event; make sure to decrease n_added. */
1394 if (i >= cpuc->n_events - cpuc->n_added)
1395 --cpuc->n_added;
1da53e02 1396
c347a2f1
PZ
1397 if (x86_pmu.put_event_constraints)
1398 x86_pmu.put_event_constraints(cpuc, event);
1399
1400 /* Delete the array entry. */
b371b594 1401 while (++i < cpuc->n_events) {
c347a2f1 1402 cpuc->event_list[i-1] = cpuc->event_list[i];
b371b594
PZ
1403 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1404 }
c347a2f1 1405 --cpuc->n_events;
1da53e02 1406
cdd6c482 1407 perf_event_update_userpage(event);
68f7082f
PZ
1408
1409do_del:
1410 if (x86_pmu.del) {
1411 /*
1412 * This is after x86_pmu_stop(); so we disable LBRs after any
1413 * event can need them etc..
1414 */
1415 x86_pmu.del(event);
1416 }
241771ef
IM
1417}
1418
de0428a7 1419int x86_pmu_handle_irq(struct pt_regs *regs)
a29aa8a7 1420{
df1a132b 1421 struct perf_sample_data data;
cdd6c482
IM
1422 struct cpu_hw_events *cpuc;
1423 struct perf_event *event;
11d1578f 1424 int idx, handled = 0;
9029a5e3
IM
1425 u64 val;
1426
89cbc767 1427 cpuc = this_cpu_ptr(&cpu_hw_events);
962bf7a6 1428
2bce5dac
DZ
1429 /*
1430 * Some chipsets need to unmask the LVTPC in a particular spot
1431 * inside the nmi handler. As a result, the unmasking was pushed
1432 * into all the nmi handlers.
1433 *
1434 * This generic handler doesn't seem to have any issues where the
1435 * unmasking occurs so it was left at the top.
1436 */
1437 apic_write(APIC_LVTPC, APIC_DM_NMI);
1438
948b1bb8 1439 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
63e6be6d
RR
1440 if (!test_bit(idx, cpuc->active_mask)) {
1441 /*
1442 * Though we deactivated the counter some cpus
1443 * might still deliver spurious interrupts still
1444 * in flight. Catch them:
1445 */
1446 if (__test_and_clear_bit(idx, cpuc->running))
1447 handled++;
a29aa8a7 1448 continue;
63e6be6d 1449 }
962bf7a6 1450
cdd6c482 1451 event = cpuc->events[idx];
a4016a79 1452
cc2ad4ba 1453 val = x86_perf_event_update(event);
948b1bb8 1454 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
48e22d56 1455 continue;
962bf7a6 1456
9e350de3 1457 /*
cdd6c482 1458 * event overflow
9e350de3 1459 */
4177c42a 1460 handled++;
fd0d000b 1461 perf_sample_data_init(&data, 0, event->hw.last_period);
9e350de3 1462
07088edb 1463 if (!x86_perf_event_set_period(event))
e4abb5d4
PZ
1464 continue;
1465
a8b0ca17 1466 if (perf_event_overflow(event, &data, regs))
a4eaf7f1 1467 x86_pmu_stop(event, 0);
a29aa8a7 1468 }
962bf7a6 1469
9e350de3
PZ
1470 if (handled)
1471 inc_irq_stat(apic_perf_irqs);
1472
a29aa8a7
RR
1473 return handled;
1474}
39d81eab 1475
cdd6c482 1476void perf_events_lapic_init(void)
241771ef 1477{
04da8a43 1478 if (!x86_pmu.apic || !x86_pmu_initialized())
241771ef 1479 return;
85cf9dba 1480
241771ef 1481 /*
c323d95f 1482 * Always use NMI for PMU
241771ef 1483 */
c323d95f 1484 apic_write(APIC_LVTPC, APIC_DM_NMI);
241771ef
IM
1485}
1486
9326638c 1487static int
9c48f1c6 1488perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
241771ef 1489{
14c63f17
DH
1490 u64 start_clock;
1491 u64 finish_clock;
e8a923cc 1492 int ret;
14c63f17 1493
1b7b938f
AS
1494 /*
1495 * All PMUs/events that share this PMI handler should make sure to
1496 * increment active_events for their events.
1497 */
cdd6c482 1498 if (!atomic_read(&active_events))
9c48f1c6 1499 return NMI_DONE;
4177c42a 1500
e8a923cc 1501 start_clock = sched_clock();
14c63f17 1502 ret = x86_pmu.handle_irq(regs);
e8a923cc 1503 finish_clock = sched_clock();
14c63f17
DH
1504
1505 perf_sample_event_took(finish_clock - start_clock);
1506
1507 return ret;
241771ef 1508}
9326638c 1509NOKPROBE_SYMBOL(perf_event_nmi_handler);
241771ef 1510
de0428a7
KW
1511struct event_constraint emptyconstraint;
1512struct event_constraint unconstrained;
f87ad35d 1513
95ca792c 1514static int x86_pmu_prepare_cpu(unsigned int cpu)
3f6da390 1515{
7fdba1ca 1516 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
95ca792c 1517 int i;
3f6da390 1518
95ca792c
TG
1519 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1520 cpuc->kfree_on_online[i] = NULL;
1521 if (x86_pmu.cpu_prepare)
1522 return x86_pmu.cpu_prepare(cpu);
1523 return 0;
1524}
7fdba1ca 1525
95ca792c
TG
1526static int x86_pmu_dead_cpu(unsigned int cpu)
1527{
1528 if (x86_pmu.cpu_dead)
1529 x86_pmu.cpu_dead(cpu);
1530 return 0;
1531}
3f6da390 1532
95ca792c
TG
1533static int x86_pmu_online_cpu(unsigned int cpu)
1534{
1535 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1536 int i;
3f6da390 1537
95ca792c
TG
1538 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1539 kfree(cpuc->kfree_on_online[i]);
1540 cpuc->kfree_on_online[i] = NULL;
3f6da390 1541 }
95ca792c
TG
1542 return 0;
1543}
3f6da390 1544
95ca792c
TG
1545static int x86_pmu_starting_cpu(unsigned int cpu)
1546{
1547 if (x86_pmu.cpu_starting)
1548 x86_pmu.cpu_starting(cpu);
1549 return 0;
1550}
1551
1552static int x86_pmu_dying_cpu(unsigned int cpu)
1553{
1554 if (x86_pmu.cpu_dying)
1555 x86_pmu.cpu_dying(cpu);
1556 return 0;
3f6da390
PZ
1557}
1558
12558038
CG
1559static void __init pmu_check_apic(void)
1560{
93984fbd 1561 if (boot_cpu_has(X86_FEATURE_APIC))
12558038
CG
1562 return;
1563
1564 x86_pmu.apic = 0;
1565 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1566 pr_info("no hardware sampling interrupt available.\n");
c184c980
VW
1567
1568 /*
1569 * If we have a PMU initialized but no APIC
1570 * interrupts, we cannot sample hardware
1571 * events (user-space has to fall back and
1572 * sample via a hrtimer based software event):
1573 */
1574 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1575
12558038
CG
1576}
1577
641cc938
JO
1578static struct attribute_group x86_pmu_format_group = {
1579 .name = "format",
1580 .attrs = NULL,
1581};
1582
8300daa2
JO
1583/*
1584 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1585 * out of events_attr attributes.
1586 */
1587static void __init filter_events(struct attribute **attrs)
1588{
3a54aaa0
SE
1589 struct device_attribute *d;
1590 struct perf_pmu_events_attr *pmu_attr;
61b87cae 1591 int offset = 0;
8300daa2
JO
1592 int i, j;
1593
1594 for (i = 0; attrs[i]; i++) {
3a54aaa0
SE
1595 d = (struct device_attribute *)attrs[i];
1596 pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1597 /* str trumps id */
1598 if (pmu_attr->event_str)
1599 continue;
61b87cae 1600 if (x86_pmu.event_map(i + offset))
8300daa2
JO
1601 continue;
1602
1603 for (j = i; attrs[j]; j++)
1604 attrs[j] = attrs[j + 1];
1605
1606 /* Check the shifted attr. */
1607 i--;
61b87cae
SE
1608
1609 /*
1610 * event_map() is index based, the attrs array is organized
1611 * by increasing event index. If we shift the events, then
1612 * we need to compensate for the event_map(), otherwise
1613 * we are looking up the wrong event in the map
1614 */
1615 offset++;
8300daa2
JO
1616 }
1617}
1618
1a6461b1 1619/* Merge two pointer arrays */
47732d88 1620__init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1a6461b1
AK
1621{
1622 struct attribute **new;
1623 int j, i;
1624
1625 for (j = 0; a[j]; j++)
1626 ;
1627 for (i = 0; b[i]; i++)
1628 j++;
1629 j++;
1630
1631 new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1632 if (!new)
1633 return NULL;
1634
1635 j = 0;
1636 for (i = 0; a[i]; i++)
1637 new[j++] = a[i];
1638 for (i = 0; b[i]; i++)
1639 new[j++] = b[i];
1640 new[j] = NULL;
1641
1642 return new;
1643}
1644
c7ab62bf 1645ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
a4747393
JO
1646{
1647 struct perf_pmu_events_attr *pmu_attr = \
1648 container_of(attr, struct perf_pmu_events_attr, attr);
a4747393 1649 u64 config = x86_pmu.event_map(pmu_attr->id);
a4747393 1650
3a54aaa0
SE
1651 /* string trumps id */
1652 if (pmu_attr->event_str)
1653 return sprintf(page, "%s", pmu_attr->event_str);
a4747393 1654
3a54aaa0
SE
1655 return x86_pmu.events_sysfs_show(page, config);
1656}
c7ab62bf 1657EXPORT_SYMBOL_GPL(events_sysfs_show);
a4747393 1658
fc07e9f9
AK
1659ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1660 char *page)
1661{
1662 struct perf_pmu_events_ht_attr *pmu_attr =
1663 container_of(attr, struct perf_pmu_events_ht_attr, attr);
1664
1665 /*
1666 * Report conditional events depending on Hyper-Threading.
1667 *
1668 * This is overly conservative as usually the HT special
1669 * handling is not needed if the other CPU thread is idle.
1670 *
1671 * Note this does not (and cannot) handle the case when thread
1672 * siblings are invisible, for example with virtualization
1673 * if they are owned by some other guest. The user tool
1674 * has to re-read when a thread sibling gets onlined later.
1675 */
1676 return sprintf(page, "%s",
1677 topology_max_smt_threads() > 1 ?
1678 pmu_attr->event_str_ht :
1679 pmu_attr->event_str_noht);
1680}
1681
a4747393
JO
1682EVENT_ATTR(cpu-cycles, CPU_CYCLES );
1683EVENT_ATTR(instructions, INSTRUCTIONS );
1684EVENT_ATTR(cache-references, CACHE_REFERENCES );
1685EVENT_ATTR(cache-misses, CACHE_MISSES );
1686EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS );
1687EVENT_ATTR(branch-misses, BRANCH_MISSES );
1688EVENT_ATTR(bus-cycles, BUS_CYCLES );
1689EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
1690EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND );
1691EVENT_ATTR(ref-cycles, REF_CPU_CYCLES );
1692
1693static struct attribute *empty_attrs;
1694
95d18aa2 1695static struct attribute *events_attr[] = {
a4747393
JO
1696 EVENT_PTR(CPU_CYCLES),
1697 EVENT_PTR(INSTRUCTIONS),
1698 EVENT_PTR(CACHE_REFERENCES),
1699 EVENT_PTR(CACHE_MISSES),
1700 EVENT_PTR(BRANCH_INSTRUCTIONS),
1701 EVENT_PTR(BRANCH_MISSES),
1702 EVENT_PTR(BUS_CYCLES),
1703 EVENT_PTR(STALLED_CYCLES_FRONTEND),
1704 EVENT_PTR(STALLED_CYCLES_BACKEND),
1705 EVENT_PTR(REF_CPU_CYCLES),
1706 NULL,
1707};
1708
1709static struct attribute_group x86_pmu_events_group = {
1710 .name = "events",
1711 .attrs = events_attr,
1712};
1713
0bf79d44 1714ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
43c032fe 1715{
43c032fe
JO
1716 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1717 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1718 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1719 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1720 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY);
1721 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV);
1722 ssize_t ret;
1723
1724 /*
1725 * We have whole page size to spend and just little data
1726 * to write, so we can safely use sprintf.
1727 */
1728 ret = sprintf(page, "event=0x%02llx", event);
1729
1730 if (umask)
1731 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1732
1733 if (edge)
1734 ret += sprintf(page + ret, ",edge");
1735
1736 if (pc)
1737 ret += sprintf(page + ret, ",pc");
1738
1739 if (any)
1740 ret += sprintf(page + ret, ",any");
1741
1742 if (inv)
1743 ret += sprintf(page + ret, ",inv");
1744
1745 if (cmask)
1746 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1747
1748 ret += sprintf(page + ret, "\n");
1749
1750 return ret;
1751}
1752
dda99116 1753static int __init init_hw_perf_events(void)
b56a3802 1754{
c1d6f42f 1755 struct x86_pmu_quirk *quirk;
72eae04d
RR
1756 int err;
1757
cdd6c482 1758 pr_info("Performance Events: ");
1123e3ad 1759
b56a3802
JSR
1760 switch (boot_cpu_data.x86_vendor) {
1761 case X86_VENDOR_INTEL:
72eae04d 1762 err = intel_pmu_init();
b56a3802 1763 break;
f87ad35d 1764 case X86_VENDOR_AMD:
72eae04d 1765 err = amd_pmu_init();
f87ad35d 1766 break;
4138960a 1767 default:
8a3da6c7 1768 err = -ENOTSUPP;
b56a3802 1769 }
1123e3ad 1770 if (err != 0) {
cdd6c482 1771 pr_cont("no PMU driver, software events only.\n");
004417a6 1772 return 0;
1123e3ad 1773 }
b56a3802 1774
12558038
CG
1775 pmu_check_apic();
1776
33c6d6a7 1777 /* sanity check that the hardware exists or is emulated */
4407204c 1778 if (!check_hw_exists())
004417a6 1779 return 0;
33c6d6a7 1780
1123e3ad 1781 pr_cont("%s PMU driver.\n", x86_pmu.name);
faa28ae0 1782
e97df763
PZ
1783 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1784
c1d6f42f
PZ
1785 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1786 quirk->func();
3c44780b 1787
a1eac7ac
RR
1788 if (!x86_pmu.intel_ctrl)
1789 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
241771ef 1790
cdd6c482 1791 perf_events_lapic_init();
9c48f1c6 1792 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1123e3ad 1793
63b14649 1794 unconstrained = (struct event_constraint)
948b1bb8 1795 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
9fac2cf3 1796 0, x86_pmu.num_counters, 0, 0);
63b14649 1797
641cc938 1798 x86_pmu_format_group.attrs = x86_pmu.format_attrs;
0c9d42ed 1799
f20093ee
SE
1800 if (x86_pmu.event_attrs)
1801 x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1802
a4747393
JO
1803 if (!x86_pmu.events_sysfs_show)
1804 x86_pmu_events_group.attrs = &empty_attrs;
8300daa2
JO
1805 else
1806 filter_events(x86_pmu_events_group.attrs);
a4747393 1807
1a6461b1
AK
1808 if (x86_pmu.cpu_events) {
1809 struct attribute **tmp;
1810
1811 tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1812 if (!WARN_ON(!tmp))
1813 x86_pmu_events_group.attrs = tmp;
1814 }
1815
57c0c15b 1816 pr_info("... version: %d\n", x86_pmu.version);
948b1bb8
RR
1817 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1818 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1819 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
57c0c15b 1820 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
948b1bb8 1821 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
d6dc0b4e 1822 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
3f6da390 1823
95ca792c
TG
1824 /*
1825 * Install callbacks. Core will call them for each online
1826 * cpu.
1827 */
73c1b41e 1828 err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
95ca792c
TG
1829 x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
1830 if (err)
1831 return err;
1832
1833 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
73c1b41e 1834 "perf/x86:starting", x86_pmu_starting_cpu,
95ca792c
TG
1835 x86_pmu_dying_cpu);
1836 if (err)
1837 goto out;
1838
73c1b41e 1839 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
95ca792c
TG
1840 x86_pmu_online_cpu, NULL);
1841 if (err)
1842 goto out1;
1843
1844 err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1845 if (err)
1846 goto out2;
004417a6
PZ
1847
1848 return 0;
95ca792c
TG
1849
1850out2:
1851 cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
1852out1:
1853 cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
1854out:
1855 cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
1856 return err;
241771ef 1857}
004417a6 1858early_initcall(init_hw_perf_events);
621a01ea 1859
cdd6c482 1860static inline void x86_pmu_read(struct perf_event *event)
ee06094f 1861{
cc2ad4ba 1862 x86_perf_event_update(event);
ee06094f
IM
1863}
1864
4d1c52b0
LM
1865/*
1866 * Start group events scheduling transaction
1867 * Set the flag to make pmu::enable() not perform the
1868 * schedulability test, it will be performed at commit time
fbbe0701
SB
1869 *
1870 * We only support PERF_PMU_TXN_ADD transactions. Save the
1871 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1872 * transactions.
4d1c52b0 1873 */
fbbe0701 1874static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
4d1c52b0 1875{
fbbe0701
SB
1876 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1877
1878 WARN_ON_ONCE(cpuc->txn_flags); /* txn already in flight */
1879
1880 cpuc->txn_flags = txn_flags;
1881 if (txn_flags & ~PERF_PMU_TXN_ADD)
1882 return;
1883
33696fc0 1884 perf_pmu_disable(pmu);
0a3aee0d 1885 __this_cpu_write(cpu_hw_events.n_txn, 0);
4d1c52b0
LM
1886}
1887
1888/*
1889 * Stop group events scheduling transaction
1890 * Clear the flag and pmu::enable() will perform the
1891 * schedulability test.
1892 */
51b0fe39 1893static void x86_pmu_cancel_txn(struct pmu *pmu)
4d1c52b0 1894{
fbbe0701
SB
1895 unsigned int txn_flags;
1896 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1897
1898 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1899
1900 txn_flags = cpuc->txn_flags;
1901 cpuc->txn_flags = 0;
1902 if (txn_flags & ~PERF_PMU_TXN_ADD)
1903 return;
1904
90151c35 1905 /*
c347a2f1
PZ
1906 * Truncate collected array by the number of events added in this
1907 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
90151c35 1908 */
0a3aee0d
TH
1909 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1910 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
33696fc0 1911 perf_pmu_enable(pmu);
4d1c52b0
LM
1912}
1913
1914/*
1915 * Commit group events scheduling transaction
1916 * Perform the group schedulability test as a whole
1917 * Return 0 if success
c347a2f1
PZ
1918 *
1919 * Does not cancel the transaction on failure; expects the caller to do this.
4d1c52b0 1920 */
51b0fe39 1921static int x86_pmu_commit_txn(struct pmu *pmu)
4d1c52b0 1922{
89cbc767 1923 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4d1c52b0
LM
1924 int assign[X86_PMC_IDX_MAX];
1925 int n, ret;
1926
fbbe0701
SB
1927 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1928
1929 if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1930 cpuc->txn_flags = 0;
1931 return 0;
1932 }
1933
4d1c52b0
LM
1934 n = cpuc->n_events;
1935
1936 if (!x86_pmu_initialized())
1937 return -EAGAIN;
1938
1939 ret = x86_pmu.schedule_events(cpuc, n, assign);
1940 if (ret)
1941 return ret;
1942
1943 /*
1944 * copy new assignment, now we know it is possible
1945 * will be used by hw_perf_enable()
1946 */
1947 memcpy(cpuc->assign, assign, n*sizeof(int));
1948
fbbe0701 1949 cpuc->txn_flags = 0;
33696fc0 1950 perf_pmu_enable(pmu);
4d1c52b0
LM
1951 return 0;
1952}
cd8a38d3
SE
1953/*
1954 * a fake_cpuc is used to validate event groups. Due to
1955 * the extra reg logic, we need to also allocate a fake
1956 * per_core and per_cpu structure. Otherwise, group events
1957 * using extra reg may conflict without the kernel being
1958 * able to catch this when the last event gets added to
1959 * the group.
1960 */
1961static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1962{
1963 kfree(cpuc->shared_regs);
1964 kfree(cpuc);
1965}
1966
1967static struct cpu_hw_events *allocate_fake_cpuc(void)
1968{
1969 struct cpu_hw_events *cpuc;
1970 int cpu = raw_smp_processor_id();
1971
1972 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1973 if (!cpuc)
1974 return ERR_PTR(-ENOMEM);
1975
1976 /* only needed, if we have extra_regs */
1977 if (x86_pmu.extra_regs) {
1978 cpuc->shared_regs = allocate_shared_regs(cpu);
1979 if (!cpuc->shared_regs)
1980 goto error;
1981 }
b430f7c4 1982 cpuc->is_fake = 1;
cd8a38d3
SE
1983 return cpuc;
1984error:
1985 free_fake_cpuc(cpuc);
1986 return ERR_PTR(-ENOMEM);
1987}
4d1c52b0 1988
ca037701
PZ
1989/*
1990 * validate that we can schedule this event
1991 */
1992static int validate_event(struct perf_event *event)
1993{
1994 struct cpu_hw_events *fake_cpuc;
1995 struct event_constraint *c;
1996 int ret = 0;
1997
cd8a38d3
SE
1998 fake_cpuc = allocate_fake_cpuc();
1999 if (IS_ERR(fake_cpuc))
2000 return PTR_ERR(fake_cpuc);
ca037701 2001
79cba822 2002 c = x86_pmu.get_event_constraints(fake_cpuc, -1, event);
ca037701
PZ
2003
2004 if (!c || !c->weight)
aa2bc1ad 2005 ret = -EINVAL;
ca037701
PZ
2006
2007 if (x86_pmu.put_event_constraints)
2008 x86_pmu.put_event_constraints(fake_cpuc, event);
2009
cd8a38d3 2010 free_fake_cpuc(fake_cpuc);
ca037701
PZ
2011
2012 return ret;
2013}
2014
1da53e02
SE
2015/*
2016 * validate a single event group
2017 *
2018 * validation include:
184f412c
IM
2019 * - check events are compatible which each other
2020 * - events do not compete for the same counter
2021 * - number of events <= number of counters
1da53e02
SE
2022 *
2023 * validation ensures the group can be loaded onto the
2024 * PMU if it was the only group available.
2025 */
fe9081cc
PZ
2026static int validate_group(struct perf_event *event)
2027{
1da53e02 2028 struct perf_event *leader = event->group_leader;
502568d5 2029 struct cpu_hw_events *fake_cpuc;
aa2bc1ad 2030 int ret = -EINVAL, n;
fe9081cc 2031
cd8a38d3
SE
2032 fake_cpuc = allocate_fake_cpuc();
2033 if (IS_ERR(fake_cpuc))
2034 return PTR_ERR(fake_cpuc);
1da53e02
SE
2035 /*
2036 * the event is not yet connected with its
2037 * siblings therefore we must first collect
2038 * existing siblings, then add the new event
2039 * before we can simulate the scheduling
2040 */
502568d5 2041 n = collect_events(fake_cpuc, leader, true);
1da53e02 2042 if (n < 0)
cd8a38d3 2043 goto out;
fe9081cc 2044
502568d5
PZ
2045 fake_cpuc->n_events = n;
2046 n = collect_events(fake_cpuc, event, false);
1da53e02 2047 if (n < 0)
cd8a38d3 2048 goto out;
fe9081cc 2049
502568d5 2050 fake_cpuc->n_events = n;
1da53e02 2051
a072738e 2052 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
502568d5 2053
502568d5 2054out:
cd8a38d3 2055 free_fake_cpuc(fake_cpuc);
502568d5 2056 return ret;
fe9081cc
PZ
2057}
2058
dda99116 2059static int x86_pmu_event_init(struct perf_event *event)
621a01ea 2060{
51b0fe39 2061 struct pmu *tmp;
621a01ea
IM
2062 int err;
2063
b0a873eb
PZ
2064 switch (event->attr.type) {
2065 case PERF_TYPE_RAW:
2066 case PERF_TYPE_HARDWARE:
2067 case PERF_TYPE_HW_CACHE:
2068 break;
2069
2070 default:
2071 return -ENOENT;
2072 }
2073
2074 err = __x86_pmu_event_init(event);
fe9081cc 2075 if (!err) {
8113070d
SE
2076 /*
2077 * we temporarily connect event to its pmu
2078 * such that validate_group() can classify
2079 * it as an x86 event using is_x86_event()
2080 */
2081 tmp = event->pmu;
2082 event->pmu = &pmu;
2083
fe9081cc
PZ
2084 if (event->group_leader != event)
2085 err = validate_group(event);
ca037701
PZ
2086 else
2087 err = validate_event(event);
8113070d
SE
2088
2089 event->pmu = tmp;
fe9081cc 2090 }
a1792cda 2091 if (err) {
cdd6c482
IM
2092 if (event->destroy)
2093 event->destroy(event);
a1792cda 2094 }
621a01ea 2095
7911d3f7
AL
2096 if (ACCESS_ONCE(x86_pmu.attr_rdpmc))
2097 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2098
b0a873eb 2099 return err;
621a01ea 2100}
d7d59fb3 2101
7911d3f7
AL
2102static void refresh_pce(void *ignored)
2103{
5dc855d4
AL
2104 if (current->active_mm)
2105 load_mm_cr4(current->active_mm);
7911d3f7
AL
2106}
2107
2108static void x86_pmu_event_mapped(struct perf_event *event)
2109{
2110 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2111 return;
2112
4b07372a
AL
2113 /*
2114 * This function relies on not being called concurrently in two
2115 * tasks in the same mm. Otherwise one task could observe
2116 * perf_rdpmc_allowed > 1 and return all the way back to
2117 * userspace with CR4.PCE clear while another task is still
2118 * doing on_each_cpu_mask() to propagate CR4.PCE.
2119 *
2120 * For now, this can't happen because all callers hold mmap_sem
2121 * for write. If this changes, we'll need a different solution.
2122 */
2123 lockdep_assert_held_exclusive(&current->mm->mmap_sem);
2124
7911d3f7
AL
2125 if (atomic_inc_return(&current->mm->context.perf_rdpmc_allowed) == 1)
2126 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
2127}
2128
2129static void x86_pmu_event_unmapped(struct perf_event *event)
2130{
2131 if (!current->mm)
2132 return;
2133
2134 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2135 return;
2136
2137 if (atomic_dec_and_test(&current->mm->context.perf_rdpmc_allowed))
2138 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
2139}
2140
fe4a3308
PZ
2141static int x86_pmu_event_idx(struct perf_event *event)
2142{
2143 int idx = event->hw.idx;
2144
7911d3f7 2145 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
c7206205
PZ
2146 return 0;
2147
15c7ad51
RR
2148 if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2149 idx -= INTEL_PMC_IDX_FIXED;
fe4a3308
PZ
2150 idx |= 1 << 30;
2151 }
2152
2153 return idx + 1;
2154}
2155
0c9d42ed
PZ
2156static ssize_t get_attr_rdpmc(struct device *cdev,
2157 struct device_attribute *attr,
2158 char *buf)
2159{
2160 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2161}
2162
0c9d42ed
PZ
2163static ssize_t set_attr_rdpmc(struct device *cdev,
2164 struct device_attribute *attr,
2165 const char *buf, size_t count)
2166{
e2b297fc
SK
2167 unsigned long val;
2168 ssize_t ret;
2169
2170 ret = kstrtoul(buf, 0, &val);
2171 if (ret)
2172 return ret;
e97df763 2173
a6673429
AL
2174 if (val > 2)
2175 return -EINVAL;
2176
e97df763
PZ
2177 if (x86_pmu.attr_rdpmc_broken)
2178 return -ENOTSUPP;
0c9d42ed 2179
a6673429
AL
2180 if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
2181 /*
2182 * Changing into or out of always available, aka
2183 * perf-event-bypassing mode. This path is extremely slow,
2184 * but only root can trigger it, so it's okay.
2185 */
2186 if (val == 2)
2187 static_key_slow_inc(&rdpmc_always_available);
2188 else
2189 static_key_slow_dec(&rdpmc_always_available);
2190 on_each_cpu(refresh_pce, NULL, 1);
2191 }
2192
2193 x86_pmu.attr_rdpmc = val;
2194
0c9d42ed
PZ
2195 return count;
2196}
2197
2198static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2199
2200static struct attribute *x86_pmu_attrs[] = {
2201 &dev_attr_rdpmc.attr,
2202 NULL,
2203};
2204
2205static struct attribute_group x86_pmu_attr_group = {
2206 .attrs = x86_pmu_attrs,
2207};
2208
2209static const struct attribute_group *x86_pmu_attr_groups[] = {
2210 &x86_pmu_attr_group,
641cc938 2211 &x86_pmu_format_group,
a4747393 2212 &x86_pmu_events_group,
0c9d42ed
PZ
2213 NULL,
2214};
2215
ba532500 2216static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
d010b332 2217{
ba532500
YZ
2218 if (x86_pmu.sched_task)
2219 x86_pmu.sched_task(ctx, sched_in);
d010b332
SE
2220}
2221
c93dc84c
PZ
2222void perf_check_microcode(void)
2223{
2224 if (x86_pmu.check_microcode)
2225 x86_pmu.check_microcode();
2226}
2227EXPORT_SYMBOL_GPL(perf_check_microcode);
2228
b0a873eb 2229static struct pmu pmu = {
d010b332
SE
2230 .pmu_enable = x86_pmu_enable,
2231 .pmu_disable = x86_pmu_disable,
a4eaf7f1 2232
c93dc84c 2233 .attr_groups = x86_pmu_attr_groups,
0c9d42ed 2234
c93dc84c 2235 .event_init = x86_pmu_event_init,
a4eaf7f1 2236
7911d3f7
AL
2237 .event_mapped = x86_pmu_event_mapped,
2238 .event_unmapped = x86_pmu_event_unmapped,
2239
d010b332
SE
2240 .add = x86_pmu_add,
2241 .del = x86_pmu_del,
2242 .start = x86_pmu_start,
2243 .stop = x86_pmu_stop,
2244 .read = x86_pmu_read,
a4eaf7f1 2245
c93dc84c
PZ
2246 .start_txn = x86_pmu_start_txn,
2247 .cancel_txn = x86_pmu_cancel_txn,
2248 .commit_txn = x86_pmu_commit_txn,
fe4a3308 2249
c93dc84c 2250 .event_idx = x86_pmu_event_idx,
ba532500 2251 .sched_task = x86_pmu_sched_task,
e18bf526 2252 .task_ctx_size = sizeof(struct x86_perf_task_context),
b0a873eb
PZ
2253};
2254
c1317ec2
AL
2255void arch_perf_update_userpage(struct perf_event *event,
2256 struct perf_event_mmap_page *userpg, u64 now)
e3f3541c 2257{
20d1c86a 2258 struct cyc2ns_data *data;
698eff63 2259 u64 offset;
20d1c86a 2260
fa731587
PZ
2261 userpg->cap_user_time = 0;
2262 userpg->cap_user_time_zero = 0;
7911d3f7
AL
2263 userpg->cap_user_rdpmc =
2264 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
c7206205
PZ
2265 userpg->pmc_width = x86_pmu.cntval_bits;
2266
698eff63 2267 if (!using_native_sched_clock() || !sched_clock_stable())
e3f3541c
PZ
2268 return;
2269
20d1c86a
PZ
2270 data = cyc2ns_read_begin();
2271
698eff63
PZ
2272 offset = data->cyc2ns_offset + __sched_clock_offset;
2273
34f43927
PZ
2274 /*
2275 * Internal timekeeping for enabled/running/stopped times
2276 * is always in the local_clock domain.
2277 */
fa731587 2278 userpg->cap_user_time = 1;
20d1c86a
PZ
2279 userpg->time_mult = data->cyc2ns_mul;
2280 userpg->time_shift = data->cyc2ns_shift;
698eff63 2281 userpg->time_offset = offset - now;
c73deb6a 2282
34f43927
PZ
2283 /*
2284 * cap_user_time_zero doesn't make sense when we're using a different
2285 * time base for the records.
2286 */
f454bfdd 2287 if (!event->attr.use_clockid) {
34f43927 2288 userpg->cap_user_time_zero = 1;
698eff63 2289 userpg->time_zero = offset;
34f43927 2290 }
20d1c86a
PZ
2291
2292 cyc2ns_read_end(data);
e3f3541c
PZ
2293}
2294
56962b44 2295void
cfbcf468 2296perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
d7d59fb3 2297{
35f4d9b3
JP
2298 struct unwind_state state;
2299 unsigned long addr;
2300
927c7a9e
FW
2301 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2302 /* TODO: We don't support guest os callchain now */
ed805261 2303 return;
927c7a9e
FW
2304 }
2305
019e579d
JP
2306 if (perf_callchain_store(entry, regs->ip))
2307 return;
d7d59fb3 2308
35f4d9b3
JP
2309 for (unwind_start(&state, current, regs, NULL); !unwind_done(&state);
2310 unwind_next_frame(&state)) {
2311 addr = unwind_get_return_address(&state);
2312 if (!addr || perf_callchain_store(entry, addr))
2313 return;
2314 }
d7d59fb3
PZ
2315}
2316
bc6ca7b3
AS
2317static inline int
2318valid_user_frame(const void __user *fp, unsigned long size)
2319{
2320 return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2321}
2322
d07bdfd3
PZ
2323static unsigned long get_segment_base(unsigned int segment)
2324{
2325 struct desc_struct *desc;
990e9dc3 2326 unsigned int idx = segment >> 3;
d07bdfd3
PZ
2327
2328 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
a5b9e5a2 2329#ifdef CONFIG_MODIFY_LDT_SYSCALL
37868fe1
AL
2330 struct ldt_struct *ldt;
2331
d07bdfd3
PZ
2332 if (idx > LDT_ENTRIES)
2333 return 0;
2334
37868fe1
AL
2335 /* IRQs are off, so this synchronizes with smp_store_release */
2336 ldt = lockless_dereference(current->active_mm->context.ldt);
2337 if (!ldt || idx > ldt->size)
d07bdfd3
PZ
2338 return 0;
2339
37868fe1 2340 desc = &ldt->entries[idx];
a5b9e5a2
AL
2341#else
2342 return 0;
2343#endif
d07bdfd3
PZ
2344 } else {
2345 if (idx > GDT_ENTRIES)
2346 return 0;
2347
37868fe1 2348 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
d07bdfd3
PZ
2349 }
2350
37868fe1 2351 return get_desc_base(desc);
d07bdfd3
PZ
2352}
2353
10ed3493 2354#ifdef CONFIG_IA32_EMULATION
d1a797f3
PA
2355
2356#include <asm/compat.h>
2357
257ef9d2 2358static inline int
cfbcf468 2359perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
74193ef0 2360{
257ef9d2 2361 /* 32-bit process in 64-bit kernel. */
d07bdfd3 2362 unsigned long ss_base, cs_base;
257ef9d2
TE
2363 struct stack_frame_ia32 frame;
2364 const void __user *fp;
74193ef0 2365
257ef9d2
TE
2366 if (!test_thread_flag(TIF_IA32))
2367 return 0;
2368
d07bdfd3
PZ
2369 cs_base = get_segment_base(regs->cs);
2370 ss_base = get_segment_base(regs->ss);
2371
2372 fp = compat_ptr(ss_base + regs->bp);
75925e1a 2373 pagefault_disable();
3b1fff08 2374 while (entry->nr < entry->max_stack) {
257ef9d2
TE
2375 unsigned long bytes;
2376 frame.next_frame = 0;
2377 frame.return_address = 0;
2378
ae31fe51 2379 if (!valid_user_frame(fp, sizeof(frame)))
75925e1a
AK
2380 break;
2381
2382 bytes = __copy_from_user_nmi(&frame.next_frame, fp, 4);
2383 if (bytes != 0)
2384 break;
2385 bytes = __copy_from_user_nmi(&frame.return_address, fp+4, 4);
0a196848 2386 if (bytes != 0)
257ef9d2 2387 break;
74193ef0 2388
d07bdfd3
PZ
2389 perf_callchain_store(entry, cs_base + frame.return_address);
2390 fp = compat_ptr(ss_base + frame.next_frame);
257ef9d2 2391 }
75925e1a 2392 pagefault_enable();
257ef9d2 2393 return 1;
d7d59fb3 2394}
257ef9d2
TE
2395#else
2396static inline int
cfbcf468 2397perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
257ef9d2
TE
2398{
2399 return 0;
2400}
2401#endif
d7d59fb3 2402
56962b44 2403void
cfbcf468 2404perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
d7d59fb3
PZ
2405{
2406 struct stack_frame frame;
fc188225 2407 const unsigned long __user *fp;
d7d59fb3 2408
927c7a9e
FW
2409 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2410 /* TODO: We don't support guest os callchain now */
ed805261 2411 return;
927c7a9e 2412 }
5a6cec3a 2413
d07bdfd3
PZ
2414 /*
2415 * We don't know what to do with VM86 stacks.. ignore them for now.
2416 */
2417 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2418 return;
2419
fc188225 2420 fp = (unsigned long __user *)regs->bp;
d7d59fb3 2421
70791ce9 2422 perf_callchain_store(entry, regs->ip);
d7d59fb3 2423
20afc60f
AV
2424 if (!current->mm)
2425 return;
2426
257ef9d2
TE
2427 if (perf_callchain_user32(regs, entry))
2428 return;
2429
75925e1a 2430 pagefault_disable();
3b1fff08 2431 while (entry->nr < entry->max_stack) {
257ef9d2 2432 unsigned long bytes;
fc188225 2433
038e836e 2434 frame.next_frame = NULL;
d7d59fb3
PZ
2435 frame.return_address = 0;
2436
ae31fe51 2437 if (!valid_user_frame(fp, sizeof(frame)))
75925e1a
AK
2438 break;
2439
fc188225 2440 bytes = __copy_from_user_nmi(&frame.next_frame, fp, sizeof(*fp));
75925e1a
AK
2441 if (bytes != 0)
2442 break;
fc188225 2443 bytes = __copy_from_user_nmi(&frame.return_address, fp + 1, sizeof(*fp));
0a196848 2444 if (bytes != 0)
d7d59fb3
PZ
2445 break;
2446
70791ce9 2447 perf_callchain_store(entry, frame.return_address);
75925e1a 2448 fp = (void __user *)frame.next_frame;
d7d59fb3 2449 }
75925e1a 2450 pagefault_enable();
d7d59fb3
PZ
2451}
2452
d07bdfd3
PZ
2453/*
2454 * Deal with code segment offsets for the various execution modes:
2455 *
2456 * VM86 - the good olde 16 bit days, where the linear address is
2457 * 20 bits and we use regs->ip + 0x10 * regs->cs.
2458 *
2459 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
2460 * to figure out what the 32bit base address is.
2461 *
2462 * X32 - has TIF_X32 set, but is running in x86_64
2463 *
2464 * X86_64 - CS,DS,SS,ES are all zero based.
2465 */
2466static unsigned long code_segment_base(struct pt_regs *regs)
39447b38 2467{
383f3af3
AL
2468 /*
2469 * For IA32 we look at the GDT/LDT segment base to convert the
2470 * effective IP to a linear address.
2471 */
2472
2473#ifdef CONFIG_X86_32
d07bdfd3
PZ
2474 /*
2475 * If we are in VM86 mode, add the segment offset to convert to a
2476 * linear address.
2477 */
2478 if (regs->flags & X86_VM_MASK)
2479 return 0x10 * regs->cs;
2480
55474c48 2481 if (user_mode(regs) && regs->cs != __USER_CS)
d07bdfd3
PZ
2482 return get_segment_base(regs->cs);
2483#else
c56716af
AL
2484 if (user_mode(regs) && !user_64bit_mode(regs) &&
2485 regs->cs != __USER32_CS)
2486 return get_segment_base(regs->cs);
d07bdfd3
PZ
2487#endif
2488 return 0;
2489}
dcf46b94 2490
d07bdfd3
PZ
2491unsigned long perf_instruction_pointer(struct pt_regs *regs)
2492{
39447b38 2493 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
d07bdfd3 2494 return perf_guest_cbs->get_guest_ip();
dcf46b94 2495
d07bdfd3 2496 return regs->ip + code_segment_base(regs);
39447b38
ZY
2497}
2498
2499unsigned long perf_misc_flags(struct pt_regs *regs)
2500{
2501 int misc = 0;
dcf46b94 2502
39447b38 2503 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
dcf46b94
ZY
2504 if (perf_guest_cbs->is_user_mode())
2505 misc |= PERF_RECORD_MISC_GUEST_USER;
2506 else
2507 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2508 } else {
d07bdfd3 2509 if (user_mode(regs))
dcf46b94
ZY
2510 misc |= PERF_RECORD_MISC_USER;
2511 else
2512 misc |= PERF_RECORD_MISC_KERNEL;
2513 }
2514
39447b38 2515 if (regs->flags & PERF_EFLAGS_EXACT)
ab608344 2516 misc |= PERF_RECORD_MISC_EXACT_IP;
39447b38
ZY
2517
2518 return misc;
2519}
b3d9468a
GN
2520
2521void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2522{
2523 cap->version = x86_pmu.version;
2524 cap->num_counters_gp = x86_pmu.num_counters;
2525 cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2526 cap->bit_width_gp = x86_pmu.cntval_bits;
2527 cap->bit_width_fixed = x86_pmu.cntval_bits;
2528 cap->events_mask = (unsigned int)x86_pmu.events_maskl;
2529 cap->events_mask_len = x86_pmu.events_mask_len;
2530}
2531EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);