]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/include/asm/bitops.h
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / arch / x86 / include / asm / bitops.h
CommitLineData
1965aae3
PA
1#ifndef _ASM_X86_BITOPS_H
2#define _ASM_X86_BITOPS_H
1c54d770
JF
3
4/*
5 * Copyright 1992, Linus Torvalds.
c8399943
AK
6 *
7 * Note: inlines with more than a single statement should be marked
8 * __always_inline to avoid problems with older gcc's inlining heuristics.
1c54d770
JF
9 */
10
11#ifndef _LINUX_BITOPS_H
12#error only <linux/bitops.h> can be included directly
13#endif
14
15#include <linux/compiler.h>
16#include <asm/alternative.h>
0c44c2d0 17#include <asm/rmwcc.h>
d00a5692 18#include <asm/barrier.h>
1c54d770 19
9b710506
PA
20#if BITS_PER_LONG == 32
21# define _BITOPS_LONG_SHIFT 5
22#elif BITS_PER_LONG == 64
23# define _BITOPS_LONG_SHIFT 6
24#else
25# error "Unexpected BITS_PER_LONG"
26#endif
27
e8f380e0
BP
28#define BIT_64(n) (U64_C(1) << (n))
29
1c54d770
JF
30/*
31 * These have to be done with inline assembly: that way the bit-setting
32 * is guaranteed to be atomic. All bit operations return 0 if the bit
33 * was cleared before the operation and != 0 if it was not.
34 *
35 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
36 */
37
38#if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 1)
39/* Technically wrong, but this avoids compilation errors on some gcc
40 versions. */
1a750e0c 41#define BITOP_ADDR(x) "=m" (*(volatile long *) (x))
1c54d770 42#else
1a750e0c 43#define BITOP_ADDR(x) "+m" (*(volatile long *) (x))
1c54d770
JF
44#endif
45
7dbceaf9 46#define ADDR BITOP_ADDR(addr)
1a750e0c
LT
47
48/*
49 * We do the locked ops that don't return the old value as
50 * a mask operation on a byte.
51 */
7dbceaf9
IM
52#define IS_IMMEDIATE(nr) (__builtin_constant_p(nr))
53#define CONST_MASK_ADDR(nr, addr) BITOP_ADDR((void *)(addr) + ((nr)>>3))
54#define CONST_MASK(nr) (1 << ((nr) & 7))
1a750e0c 55
1c54d770
JF
56/**
57 * set_bit - Atomically set a bit in memory
58 * @nr: the bit to set
59 * @addr: the address to start counting from
60 *
61 * This function is atomic and may not be reordered. See __set_bit()
62 * if you do not require the atomic guarantees.
63 *
64 * Note: there are no guarantees that this function will not be reordered
65 * on non x86 architectures, so if you are writing portable code,
66 * make sure not to rely on its reordering guarantees.
67 *
68 * Note that @nr may be almost arbitrarily large; this function is not
69 * restricted to acting on a single-word quantity.
70 */
c8399943 71static __always_inline void
9b710506 72set_bit(long nr, volatile unsigned long *addr)
1c54d770 73{
7dbceaf9
IM
74 if (IS_IMMEDIATE(nr)) {
75 asm volatile(LOCK_PREFIX "orb %1,%0"
76 : CONST_MASK_ADDR(nr, addr)
437a0a54 77 : "iq" ((u8)CONST_MASK(nr))
7dbceaf9
IM
78 : "memory");
79 } else {
80 asm volatile(LOCK_PREFIX "bts %1,%0"
81 : BITOP_ADDR(addr) : "Ir" (nr) : "memory");
82 }
1c54d770
JF
83}
84
85/**
86 * __set_bit - Set a bit in memory
87 * @nr: the bit to set
88 * @addr: the address to start counting from
89 *
90 * Unlike set_bit(), this function is non-atomic and may be reordered.
91 * If it's called on the same region of memory simultaneously, the effect
92 * may be that only one operation succeeds.
93 */
8dd5032d 94static __always_inline void __set_bit(long nr, volatile unsigned long *addr)
1c54d770 95{
f19dcf4a 96 asm volatile("bts %1,%0" : ADDR : "Ir" (nr) : "memory");
1c54d770
JF
97}
98
1c54d770
JF
99/**
100 * clear_bit - Clears a bit in memory
101 * @nr: Bit to clear
102 * @addr: Address to start counting from
103 *
104 * clear_bit() is atomic and may not be reordered. However, it does
105 * not contain a memory barrier, so if it is used for locking purposes,
d00a5692 106 * you should call smp_mb__before_atomic() and/or smp_mb__after_atomic()
1c54d770
JF
107 * in order to ensure changes are visible on other processors.
108 */
c8399943 109static __always_inline void
9b710506 110clear_bit(long nr, volatile unsigned long *addr)
1c54d770 111{
7dbceaf9
IM
112 if (IS_IMMEDIATE(nr)) {
113 asm volatile(LOCK_PREFIX "andb %1,%0"
114 : CONST_MASK_ADDR(nr, addr)
437a0a54 115 : "iq" ((u8)~CONST_MASK(nr)));
7dbceaf9
IM
116 } else {
117 asm volatile(LOCK_PREFIX "btr %1,%0"
118 : BITOP_ADDR(addr)
119 : "Ir" (nr));
120 }
1c54d770
JF
121}
122
123/*
124 * clear_bit_unlock - Clears a bit in memory
125 * @nr: Bit to clear
126 * @addr: Address to start counting from
127 *
128 * clear_bit() is atomic and implies release semantics before the memory
129 * operation. It can be used for an unlock.
130 */
8dd5032d 131static __always_inline void clear_bit_unlock(long nr, volatile unsigned long *addr)
1c54d770
JF
132{
133 barrier();
134 clear_bit(nr, addr);
135}
136
8dd5032d 137static __always_inline void __clear_bit(long nr, volatile unsigned long *addr)
1c54d770 138{
eb2b4e68 139 asm volatile("btr %1,%0" : ADDR : "Ir" (nr));
1c54d770
JF
140}
141
b91e1302
LT
142static __always_inline bool clear_bit_unlock_is_negative_byte(long nr, volatile unsigned long *addr)
143{
144 bool negative;
1c3f29ec 145 asm volatile(LOCK_PREFIX "andb %2,%1"
b91e1302
LT
146 CC_SET(s)
147 : CC_OUT(s) (negative), ADDR
148 : "ir" ((char) ~(1 << nr)) : "memory");
149 return negative;
150}
151
152// Let everybody know we have it
153#define clear_bit_unlock_is_negative_byte clear_bit_unlock_is_negative_byte
154
1c54d770
JF
155/*
156 * __clear_bit_unlock - Clears a bit in memory
157 * @nr: Bit to clear
158 * @addr: Address to start counting from
159 *
160 * __clear_bit() is non-atomic and implies release semantics before the memory
161 * operation. It can be used for an unlock if no other CPUs can concurrently
162 * modify other bits in the word.
163 *
164 * No memory barrier is required here, because x86 cannot reorder stores past
165 * older loads. Same principle as spin_unlock.
166 */
8dd5032d 167static __always_inline void __clear_bit_unlock(long nr, volatile unsigned long *addr)
1c54d770
JF
168{
169 barrier();
170 __clear_bit(nr, addr);
171}
172
1c54d770
JF
173/**
174 * __change_bit - Toggle a bit in memory
175 * @nr: the bit to change
176 * @addr: the address to start counting from
177 *
178 * Unlike change_bit(), this function is non-atomic and may be reordered.
179 * If it's called on the same region of memory simultaneously, the effect
180 * may be that only one operation succeeds.
181 */
8dd5032d 182static __always_inline void __change_bit(long nr, volatile unsigned long *addr)
1c54d770 183{
eb2b4e68 184 asm volatile("btc %1,%0" : ADDR : "Ir" (nr));
1c54d770
JF
185}
186
187/**
188 * change_bit - Toggle a bit in memory
189 * @nr: Bit to change
190 * @addr: Address to start counting from
191 *
192 * change_bit() is atomic and may not be reordered.
193 * Note that @nr may be almost arbitrarily large; this function is not
194 * restricted to acting on a single-word quantity.
195 */
8dd5032d 196static __always_inline void change_bit(long nr, volatile unsigned long *addr)
1c54d770 197{
838e8bb7
UB
198 if (IS_IMMEDIATE(nr)) {
199 asm volatile(LOCK_PREFIX "xorb %1,%0"
200 : CONST_MASK_ADDR(nr, addr)
201 : "iq" ((u8)CONST_MASK(nr)));
202 } else {
203 asm volatile(LOCK_PREFIX "btc %1,%0"
204 : BITOP_ADDR(addr)
205 : "Ir" (nr));
206 }
1c54d770
JF
207}
208
209/**
210 * test_and_set_bit - Set a bit and return its old value
211 * @nr: Bit to set
212 * @addr: Address to count from
213 *
214 * This operation is atomic and cannot be reordered.
215 * It also implies a memory barrier.
216 */
117780ee 217static __always_inline bool test_and_set_bit(long nr, volatile unsigned long *addr)
1c54d770 218{
18fe5822 219 GEN_BINARY_RMWcc(LOCK_PREFIX "bts", *addr, "Ir", nr, "%0", c);
1c54d770
JF
220}
221
222/**
223 * test_and_set_bit_lock - Set a bit and return its old value for lock
224 * @nr: Bit to set
225 * @addr: Address to count from
226 *
227 * This is the same as test_and_set_bit on x86.
228 */
117780ee 229static __always_inline bool
9b710506 230test_and_set_bit_lock(long nr, volatile unsigned long *addr)
1c54d770
JF
231{
232 return test_and_set_bit(nr, addr);
233}
234
235/**
236 * __test_and_set_bit - Set a bit and return its old value
237 * @nr: Bit to set
238 * @addr: Address to count from
239 *
240 * This operation is non-atomic and can be reordered.
241 * If two examples of this operation race, one can appear to succeed
242 * but actually fail. You must protect multiple accesses with a lock.
243 */
117780ee 244static __always_inline bool __test_and_set_bit(long nr, volatile unsigned long *addr)
1c54d770 245{
117780ee 246 bool oldbit;
1c54d770 247
1c3f29ec 248 asm("bts %2,%1"
86b61240
PA
249 CC_SET(c)
250 : CC_OUT(c) (oldbit), ADDR
eb2b4e68 251 : "Ir" (nr));
1c54d770
JF
252 return oldbit;
253}
254
255/**
256 * test_and_clear_bit - Clear a bit and return its old value
257 * @nr: Bit to clear
258 * @addr: Address to count from
259 *
260 * This operation is atomic and cannot be reordered.
261 * It also implies a memory barrier.
262 */
117780ee 263static __always_inline bool test_and_clear_bit(long nr, volatile unsigned long *addr)
1c54d770 264{
18fe5822 265 GEN_BINARY_RMWcc(LOCK_PREFIX "btr", *addr, "Ir", nr, "%0", c);
1c54d770
JF
266}
267
268/**
269 * __test_and_clear_bit - Clear a bit and return its old value
270 * @nr: Bit to clear
271 * @addr: Address to count from
272 *
273 * This operation is non-atomic and can be reordered.
274 * If two examples of this operation race, one can appear to succeed
275 * but actually fail. You must protect multiple accesses with a lock.
d0a69d63
MT
276 *
277 * Note: the operation is performed atomically with respect to
278 * the local CPU, but not other CPUs. Portable code should not
279 * rely on this behaviour.
280 * KVM relies on this behaviour on x86 for modifying memory that is also
281 * accessed from a hypervisor on the same CPU if running in a VM: don't change
282 * this without also updating arch/x86/kernel/kvm.c
1c54d770 283 */
117780ee 284static __always_inline bool __test_and_clear_bit(long nr, volatile unsigned long *addr)
1c54d770 285{
117780ee 286 bool oldbit;
1c54d770 287
1c3f29ec 288 asm volatile("btr %2,%1"
86b61240
PA
289 CC_SET(c)
290 : CC_OUT(c) (oldbit), ADDR
eb2b4e68 291 : "Ir" (nr));
1c54d770
JF
292 return oldbit;
293}
294
295/* WARNING: non atomic and it can be reordered! */
117780ee 296static __always_inline bool __test_and_change_bit(long nr, volatile unsigned long *addr)
1c54d770 297{
117780ee 298 bool oldbit;
1c54d770 299
1c3f29ec 300 asm volatile("btc %2,%1"
86b61240
PA
301 CC_SET(c)
302 : CC_OUT(c) (oldbit), ADDR
eb2b4e68 303 : "Ir" (nr) : "memory");
1c54d770
JF
304
305 return oldbit;
306}
307
308/**
309 * test_and_change_bit - Change a bit and return its old value
310 * @nr: Bit to change
311 * @addr: Address to count from
312 *
313 * This operation is atomic and cannot be reordered.
314 * It also implies a memory barrier.
315 */
117780ee 316static __always_inline bool test_and_change_bit(long nr, volatile unsigned long *addr)
1c54d770 317{
18fe5822 318 GEN_BINARY_RMWcc(LOCK_PREFIX "btc", *addr, "Ir", nr, "%0", c);
1c54d770
JF
319}
320
117780ee 321static __always_inline bool constant_test_bit(long nr, const volatile unsigned long *addr)
1c54d770 322{
9b710506
PA
323 return ((1UL << (nr & (BITS_PER_LONG-1))) &
324 (addr[nr >> _BITOPS_LONG_SHIFT])) != 0;
1c54d770
JF
325}
326
117780ee 327static __always_inline bool variable_test_bit(long nr, volatile const unsigned long *addr)
1c54d770 328{
117780ee 329 bool oldbit;
1c54d770 330
1c3f29ec 331 asm volatile("bt %2,%1"
86b61240
PA
332 CC_SET(c)
333 : CC_OUT(c) (oldbit)
eb2b4e68 334 : "m" (*(unsigned long *)addr), "Ir" (nr));
1c54d770
JF
335
336 return oldbit;
337}
338
339#if 0 /* Fool kernel-doc since it doesn't do macros yet */
340/**
341 * test_bit - Determine whether a bit is set
342 * @nr: bit number to test
343 * @addr: Address to start counting from
344 */
117780ee 345static bool test_bit(int nr, const volatile unsigned long *addr);
1c54d770
JF
346#endif
347
f19dcf4a
JP
348#define test_bit(nr, addr) \
349 (__builtin_constant_p((nr)) \
350 ? constant_test_bit((nr), (addr)) \
351 : variable_test_bit((nr), (addr)))
1c54d770 352
12d9c842
AH
353/**
354 * __ffs - find first set bit in word
355 * @word: The word to search
356 *
357 * Undefined if no bit exists, so code should check against 0 first.
358 */
8dd5032d 359static __always_inline unsigned long __ffs(unsigned long word)
12d9c842 360{
e26a44a2 361 asm("rep; bsf %1,%0"
f19dcf4a
JP
362 : "=r" (word)
363 : "rm" (word));
12d9c842
AH
364 return word;
365}
366
367/**
368 * ffz - find first zero bit in word
369 * @word: The word to search
370 *
371 * Undefined if no zero exists, so code should check against ~0UL first.
372 */
8dd5032d 373static __always_inline unsigned long ffz(unsigned long word)
12d9c842 374{
e26a44a2 375 asm("rep; bsf %1,%0"
f19dcf4a
JP
376 : "=r" (word)
377 : "r" (~word));
12d9c842
AH
378 return word;
379}
380
381/*
382 * __fls: find last set bit in word
383 * @word: The word to search
384 *
8450e853 385 * Undefined if no set bit exists, so code should check against 0 first.
12d9c842 386 */
8dd5032d 387static __always_inline unsigned long __fls(unsigned long word)
12d9c842 388{
f19dcf4a
JP
389 asm("bsr %1,%0"
390 : "=r" (word)
391 : "rm" (word));
12d9c842
AH
392 return word;
393}
394
83d99df7
PA
395#undef ADDR
396
12d9c842
AH
397#ifdef __KERNEL__
398/**
399 * ffs - find first set bit in word
400 * @x: the word to search
401 *
402 * This is defined the same way as the libc and compiler builtin ffs
403 * routines, therefore differs in spirit from the other bitops.
404 *
405 * ffs(value) returns 0 if value is 0 or the position of the first
406 * set bit if value is nonzero. The first (least significant) bit
407 * is at position 1.
408 */
8dd5032d 409static __always_inline int ffs(int x)
12d9c842
AH
410{
411 int r;
ca3d30cc
DH
412
413#ifdef CONFIG_X86_64
414 /*
415 * AMD64 says BSFL won't clobber the dest reg if x==0; Intel64 says the
416 * dest reg is undefined if x==0, but their CPU architect says its
417 * value is written to set it to the same as before, except that the
418 * top 32 bits will be cleared.
419 *
420 * We cannot do this on 32 bits because at the very least some
421 * 486 CPUs did not behave this way.
422 */
ca3d30cc
DH
423 asm("bsfl %1,%0"
424 : "=r" (r)
1edfbb41 425 : "rm" (x), "0" (-1));
ca3d30cc 426#elif defined(CONFIG_X86_CMOV)
f19dcf4a
JP
427 asm("bsfl %1,%0\n\t"
428 "cmovzl %2,%0"
ca3d30cc 429 : "=&r" (r) : "rm" (x), "r" (-1));
12d9c842 430#else
f19dcf4a
JP
431 asm("bsfl %1,%0\n\t"
432 "jnz 1f\n\t"
433 "movl $-1,%0\n"
434 "1:" : "=r" (r) : "rm" (x));
12d9c842
AH
435#endif
436 return r + 1;
437}
438
439/**
440 * fls - find last set bit in word
441 * @x: the word to search
442 *
443 * This is defined in a similar way as the libc and compiler builtin
444 * ffs, but returns the position of the most significant set bit.
445 *
446 * fls(value) returns 0 if value is 0 or the position of the last
447 * set bit if value is nonzero. The last (most significant) bit is
448 * at position 32.
449 */
8dd5032d 450static __always_inline int fls(int x)
12d9c842
AH
451{
452 int r;
ca3d30cc
DH
453
454#ifdef CONFIG_X86_64
455 /*
456 * AMD64 says BSRL won't clobber the dest reg if x==0; Intel64 says the
457 * dest reg is undefined if x==0, but their CPU architect says its
458 * value is written to set it to the same as before, except that the
459 * top 32 bits will be cleared.
460 *
461 * We cannot do this on 32 bits because at the very least some
462 * 486 CPUs did not behave this way.
463 */
ca3d30cc
DH
464 asm("bsrl %1,%0"
465 : "=r" (r)
1edfbb41 466 : "rm" (x), "0" (-1));
ca3d30cc 467#elif defined(CONFIG_X86_CMOV)
f19dcf4a
JP
468 asm("bsrl %1,%0\n\t"
469 "cmovzl %2,%0"
470 : "=&r" (r) : "rm" (x), "rm" (-1));
12d9c842 471#else
f19dcf4a
JP
472 asm("bsrl %1,%0\n\t"
473 "jnz 1f\n\t"
474 "movl $-1,%0\n"
475 "1:" : "=r" (r) : "rm" (x));
12d9c842
AH
476#endif
477 return r + 1;
478}
d66462f5 479
ca3d30cc
DH
480/**
481 * fls64 - find last set bit in a 64-bit word
482 * @x: the word to search
483 *
484 * This is defined in a similar way as the libc and compiler builtin
485 * ffsll, but returns the position of the most significant set bit.
486 *
487 * fls64(value) returns 0 if value is 0 or the position of the last
488 * set bit if value is nonzero. The last (most significant) bit is
489 * at position 64.
490 */
491#ifdef CONFIG_X86_64
492static __always_inline int fls64(__u64 x)
493{
1edfbb41 494 int bitpos = -1;
ca3d30cc
DH
495 /*
496 * AMD64 says BSRQ won't clobber the dest reg if x==0; Intel64 says the
497 * dest reg is undefined if x==0, but their CPU architect says its
498 * value is written to set it to the same as before.
499 */
1edfbb41 500 asm("bsrq %1,%q0"
ca3d30cc
DH
501 : "+r" (bitpos)
502 : "rm" (x));
503 return bitpos + 1;
504}
505#else
506#include <asm-generic/bitops/fls64.h>
507#endif
508
708ff2a0
AM
509#include <asm-generic/bitops/find.h>
510
d66462f5
AH
511#include <asm-generic/bitops/sched.h>
512
d61931d8
BP
513#include <asm/arch_hweight.h>
514
515#include <asm-generic/bitops/const_hweight.h>
1c54d770 516
861b5ae7 517#include <asm-generic/bitops/le.h>
d66462f5 518
148817ba 519#include <asm-generic/bitops/ext2-atomic-setbit.h>
d66462f5 520
d66462f5 521#endif /* __KERNEL__ */
1965aae3 522#endif /* _ASM_X86_BITOPS_H */