]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/include/asm/i387.h
i387: fix x86-64 preemption-unsafe user stack save/restore
[mirror_ubuntu-artful-kernel.git] / arch / x86 / include / asm / i387.h
CommitLineData
1eeaed76
RM
1/*
2 * Copyright (C) 1994 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * General FPU state handling cleanups
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 * x86-64 work by Andi Kleen 2002
8 */
9
1965aae3
PA
10#ifndef _ASM_X86_I387_H
11#define _ASM_X86_I387_H
1eeaed76 12
3b0d6596
HX
13#ifndef __ASSEMBLY__
14
1eeaed76
RM
15#include <linux/sched.h>
16#include <linux/kernel_stat.h>
17#include <linux/regset.h>
e4914012 18#include <linux/hardirq.h>
86603283 19#include <linux/slab.h>
92c37fa3 20#include <asm/asm.h>
c9775b4c 21#include <asm/cpufeature.h>
1eeaed76
RM
22#include <asm/processor.h>
23#include <asm/sigcontext.h>
24#include <asm/user.h>
25#include <asm/uaccess.h>
dc1e35c6 26#include <asm/xsave.h>
1eeaed76 27
3c1c7f10 28extern unsigned int sig_xstate_size;
1eeaed76 29extern void fpu_init(void);
1eeaed76 30extern void mxcsr_feature_mask_init(void);
aa283f49 31extern int init_fpu(struct task_struct *child);
be98c2cd 32extern void math_state_restore(void);
e6e9cac8 33extern void __math_state_restore(void);
36454936 34extern int dump_fpu(struct pt_regs *, struct user_i387_struct *);
1eeaed76
RM
35
36extern user_regset_active_fn fpregs_active, xfpregs_active;
5b3efd50
SS
37extern user_regset_get_fn fpregs_get, xfpregs_get, fpregs_soft_get,
38 xstateregs_get;
39extern user_regset_set_fn fpregs_set, xfpregs_set, fpregs_soft_set,
40 xstateregs_set;
41
42/*
43 * xstateregs_active == fpregs_active. Please refer to the comment
44 * at the definition of fpregs_active.
45 */
46#define xstateregs_active fpregs_active
1eeaed76 47
c37b5efe 48extern struct _fpx_sw_bytes fx_sw_reserved;
1eeaed76 49#ifdef CONFIG_IA32_EMULATION
3c1c7f10 50extern unsigned int sig_xstate_ia32_size;
c37b5efe 51extern struct _fpx_sw_bytes fx_sw_reserved_ia32;
1eeaed76 52struct _fpstate_ia32;
ab513701
SS
53struct _xstate_ia32;
54extern int save_i387_xstate_ia32(void __user *buf);
55extern int restore_i387_xstate_ia32(void __user *buf);
1eeaed76
RM
56#endif
57
8eb91a57
BG
58#ifdef CONFIG_MATH_EMULATION
59extern void finit_soft_fpu(struct i387_soft_struct *soft);
60#else
61static inline void finit_soft_fpu(struct i387_soft_struct *soft) {}
62#endif
63
b359e8a4
SS
64#define X87_FSW_ES (1 << 7) /* Exception Summary */
65
29104e10
SS
66static __always_inline __pure bool use_xsaveopt(void)
67{
6bad06b7 68 return static_cpu_has(X86_FEATURE_XSAVEOPT);
29104e10
SS
69}
70
c9775b4c 71static __always_inline __pure bool use_xsave(void)
c9ad4882 72{
c9775b4c 73 return static_cpu_has(X86_FEATURE_XSAVE);
c9ad4882
AK
74}
75
58a992b9
BG
76static __always_inline __pure bool use_fxsr(void)
77{
78 return static_cpu_has(X86_FEATURE_FXSR);
79}
80
29104e10
SS
81extern void __sanitize_i387_state(struct task_struct *);
82
83static inline void sanitize_i387_state(struct task_struct *tsk)
84{
85 if (!use_xsaveopt())
86 return;
87 __sanitize_i387_state(tsk);
88}
89
1eeaed76 90#ifdef CONFIG_X86_64
b359e8a4 91static inline int fxrstor_checking(struct i387_fxsave_struct *fx)
1eeaed76
RM
92{
93 int err;
94
82024135 95 /* See comment in fxsave() below. */
fd35fbcd
PA
96#ifdef CONFIG_AS_FXSAVEQ
97 asm volatile("1: fxrstorq %[fx]\n\t"
98 "2:\n"
99 ".section .fixup,\"ax\"\n"
100 "3: movl $-1,%[err]\n"
101 " jmp 2b\n"
102 ".previous\n"
103 _ASM_EXTABLE(1b, 3b)
104 : [err] "=r" (err)
105 : [fx] "m" (*fx), "0" (0));
106#else
1eeaed76
RM
107 asm volatile("1: rex64/fxrstor (%[fx])\n\t"
108 "2:\n"
109 ".section .fixup,\"ax\"\n"
110 "3: movl $-1,%[err]\n"
111 " jmp 2b\n"
112 ".previous\n"
affe6637 113 _ASM_EXTABLE(1b, 3b)
1eeaed76 114 : [err] "=r" (err)
82024135 115 : [fx] "R" (fx), "m" (*fx), "0" (0));
fd35fbcd 116#endif
1eeaed76
RM
117 return err;
118}
119
c37b5efe 120static inline int fxsave_user(struct i387_fxsave_struct __user *fx)
1eeaed76
RM
121{
122 int err;
123
8e221b6d
SS
124 /*
125 * Clear the bytes not touched by the fxsave and reserved
126 * for the SW usage.
127 */
128 err = __clear_user(&fx->sw_reserved,
129 sizeof(struct _fpx_sw_bytes));
130 if (unlikely(err))
131 return -EFAULT;
132
82024135 133 /* See comment in fxsave() below. */
fd35fbcd
PA
134#ifdef CONFIG_AS_FXSAVEQ
135 asm volatile("1: fxsaveq %[fx]\n\t"
136 "2:\n"
137 ".section .fixup,\"ax\"\n"
138 "3: movl $-1,%[err]\n"
139 " jmp 2b\n"
140 ".previous\n"
141 _ASM_EXTABLE(1b, 3b)
142 : [err] "=r" (err), [fx] "=m" (*fx)
143 : "0" (0));
144#else
1eeaed76
RM
145 asm volatile("1: rex64/fxsave (%[fx])\n\t"
146 "2:\n"
147 ".section .fixup,\"ax\"\n"
148 "3: movl $-1,%[err]\n"
149 " jmp 2b\n"
150 ".previous\n"
affe6637 151 _ASM_EXTABLE(1b, 3b)
1eeaed76 152 : [err] "=r" (err), "=m" (*fx)
82024135 153 : [fx] "R" (fx), "0" (0));
fd35fbcd 154#endif
affe6637
JP
155 if (unlikely(err) &&
156 __clear_user(fx, sizeof(struct i387_fxsave_struct)))
1eeaed76
RM
157 err = -EFAULT;
158 /* No need to clear here because the caller clears USED_MATH */
159 return err;
160}
161
86603283 162static inline void fpu_fxsave(struct fpu *fpu)
1eeaed76
RM
163{
164 /* Using "rex64; fxsave %0" is broken because, if the memory operand
165 uses any extended registers for addressing, a second REX prefix
166 will be generated (to the assembler, rex64 followed by semicolon
167 is a separate instruction), and hence the 64-bitness is lost. */
b6f7e38d 168
d7acb92f 169#ifdef CONFIG_AS_FXSAVEQ
1eeaed76
RM
170 /* Using "fxsaveq %0" would be the ideal choice, but is only supported
171 starting with gas 2.16. */
172 __asm__ __volatile__("fxsaveq %0"
86603283 173 : "=m" (fpu->state->fxsave));
b6f7e38d 174#else
1eeaed76
RM
175 /* Using, as a workaround, the properly prefixed form below isn't
176 accepted by any binutils version so far released, complaining that
177 the same type of prefix is used twice if an extended register is
82024135
BG
178 needed for addressing (fix submitted to mainline 2005-11-21).
179 asm volatile("rex64/fxsave %0"
180 : "=m" (fpu->state->fxsave));
181 This, however, we can work around by forcing the compiler to select
1eeaed76 182 an addressing mode that doesn't require extended registers. */
82024135
BG
183 asm volatile("rex64/fxsave (%[fx])"
184 : "=m" (fpu->state->fxsave)
185 : [fx] "R" (&fpu->state->fxsave));
1eeaed76 186#endif
b359e8a4
SS
187}
188
1eeaed76
RM
189#else /* CONFIG_X86_32 */
190
34ba476a
JS
191/* perform fxrstor iff the processor has extended states, otherwise frstor */
192static inline int fxrstor_checking(struct i387_fxsave_struct *fx)
1eeaed76
RM
193{
194 /*
195 * The "nop" is needed to make the instructions the same
196 * length.
197 */
198 alternative_input(
199 "nop ; frstor %1",
200 "fxrstor %1",
201 X86_FEATURE_FXSR,
34ba476a
JS
202 "m" (*fx));
203
fcb2ac5b 204 return 0;
1eeaed76
RM
205}
206
58a992b9
BG
207static inline void fpu_fxsave(struct fpu *fpu)
208{
209 asm volatile("fxsave %[fx]"
210 : [fx] "=m" (fpu->state->fxsave));
211}
212
b2b57fe0
BG
213#endif /* CONFIG_X86_64 */
214
1eeaed76
RM
215/* We need a safe address that is cheap to find and that is already
216 in L1 during context switch. The best choices are unfortunately
217 different for UP and SMP */
218#ifdef CONFIG_SMP
219#define safe_address (__per_cpu_offset[0])
220#else
3292beb3 221#define safe_address (__get_cpu_var(kernel_cpustat).cpustat[CPUTIME_USER])
1eeaed76
RM
222#endif
223
224/*
225 * These must be called with preempt disabled
226 */
86603283 227static inline void fpu_save_init(struct fpu *fpu)
1eeaed76 228{
c9ad4882 229 if (use_xsave()) {
86603283 230 fpu_xsave(fpu);
b359e8a4
SS
231
232 /*
233 * xsave header may indicate the init state of the FP.
234 */
58a992b9
BG
235 if (!(fpu->state->xsave.xsave_hdr.xstate_bv & XSTATE_FP))
236 return;
237 } else if (use_fxsr()) {
238 fpu_fxsave(fpu);
239 } else {
f994d99c 240 asm volatile("fnsave %[fx]; fwait"
58a992b9
BG
241 : [fx] "=m" (fpu->state->fsave));
242 return;
b359e8a4
SS
243 }
244
58a992b9
BG
245 if (unlikely(fpu->state->fxsave.swd & X87_FSW_ES))
246 asm volatile("fnclex");
247
1eeaed76
RM
248 /* AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception
249 is pending. Clear the x87 state here by setting it to fixed
250 values. safe_address is a random variable that should be in L1 */
251 alternative_input(
b2b57fe0 252 ASM_NOP8 ASM_NOP2,
1eeaed76 253 "emms\n\t" /* clear stack tags */
b2b57fe0 254 "fildl %P[addr]", /* set F?P to defined value */
1eeaed76
RM
255 X86_FEATURE_FXSAVE_LEAK,
256 [addr] "m" (safe_address));
86603283
AK
257}
258
259static inline void __save_init_fpu(struct task_struct *tsk)
260{
261 fpu_save_init(&tsk->thread.fpu);
1eeaed76
RM
262 task_thread_info(tsk)->status &= ~TS_USEDFPU;
263}
264
86603283
AK
265static inline int fpu_fxrstor_checking(struct fpu *fpu)
266{
267 return fxrstor_checking(&fpu->state->fxsave);
268}
269
270static inline int fpu_restore_checking(struct fpu *fpu)
34ba476a 271{
c9ad4882 272 if (use_xsave())
86603283 273 return fpu_xrstor_checking(fpu);
34ba476a 274 else
86603283
AK
275 return fpu_fxrstor_checking(fpu);
276}
277
278static inline int restore_fpu_checking(struct task_struct *tsk)
279{
280 return fpu_restore_checking(&tsk->thread.fpu);
34ba476a
JS
281}
282
1eeaed76
RM
283/*
284 * Signal frame handlers...
285 */
ab513701
SS
286extern int save_i387_xstate(void __user *buf);
287extern int restore_i387_xstate(void __user *buf);
1eeaed76
RM
288
289static inline void __unlazy_fpu(struct task_struct *tsk)
290{
291 if (task_thread_info(tsk)->status & TS_USEDFPU) {
292 __save_init_fpu(tsk);
293 stts();
294 } else
295 tsk->fpu_counter = 0;
296}
297
298static inline void __clear_fpu(struct task_struct *tsk)
299{
300 if (task_thread_info(tsk)->status & TS_USEDFPU) {
51115d4d
BG
301 /* Ignore delayed exceptions from user space */
302 asm volatile("1: fwait\n"
303 "2:\n"
304 _ASM_EXTABLE(1b, 2b));
1eeaed76
RM
305 task_thread_info(tsk)->status &= ~TS_USEDFPU;
306 stts();
307 }
308}
309
5b1cbac3
LT
310/*
311 * Were we in an interrupt that interrupted kernel mode?
312 *
313 * We can do a kernel_fpu_begin/end() pair *ONLY* if that
314 * pair does nothing at all: TS_USEDFPU must be clear (so
315 * that we don't try to save the FPU state), and TS must
316 * be set (so that the clts/stts pair does nothing that is
317 * visible in the interrupted kernel thread).
318 */
319static inline bool interrupted_kernel_fpu_idle(void)
320{
321 return !(current_thread_info()->status & TS_USEDFPU) &&
322 (read_cr0() & X86_CR0_TS);
323}
324
325/*
326 * Were we in user mode (or vm86 mode) when we were
327 * interrupted?
328 *
329 * Doing kernel_fpu_begin/end() is ok if we are running
330 * in an interrupt context from user mode - we'll just
331 * save the FPU state as required.
332 */
333static inline bool interrupted_user_mode(void)
334{
335 struct pt_regs *regs = get_irq_regs();
336 return regs && user_mode_vm(regs);
337}
338
339/*
340 * Can we use the FPU in kernel mode with the
341 * whole "kernel_fpu_begin/end()" sequence?
342 *
343 * It's always ok in process context (ie "not interrupt")
344 * but it is sometimes ok even from an irq.
345 */
346static inline bool irq_fpu_usable(void)
347{
348 return !in_interrupt() ||
349 interrupted_user_mode() ||
350 interrupted_kernel_fpu_idle();
351}
352
1eeaed76
RM
353static inline void kernel_fpu_begin(void)
354{
355 struct thread_info *me = current_thread_info();
5b1cbac3
LT
356
357 WARN_ON_ONCE(!irq_fpu_usable());
1eeaed76
RM
358 preempt_disable();
359 if (me->status & TS_USEDFPU)
360 __save_init_fpu(me->task);
361 else
362 clts();
363}
364
365static inline void kernel_fpu_end(void)
366{
367 stts();
368 preempt_enable();
369}
370
e4914012
SS
371/*
372 * Some instructions like VIA's padlock instructions generate a spurious
373 * DNA fault but don't modify SSE registers. And these instructions
0b8c3d5a
CE
374 * get used from interrupt context as well. To prevent these kernel instructions
375 * in interrupt context interacting wrongly with other user/kernel fpu usage, we
e4914012
SS
376 * should use them only in the context of irq_ts_save/restore()
377 */
378static inline int irq_ts_save(void)
379{
380 /*
0b8c3d5a
CE
381 * If in process context and not atomic, we can take a spurious DNA fault.
382 * Otherwise, doing clts() in process context requires disabling preemption
383 * or some heavy lifting like kernel_fpu_begin()
e4914012 384 */
0b8c3d5a 385 if (!in_atomic())
e4914012
SS
386 return 0;
387
388 if (read_cr0() & X86_CR0_TS) {
389 clts();
390 return 1;
391 }
392
393 return 0;
394}
395
396static inline void irq_ts_restore(int TS_state)
397{
398 if (TS_state)
399 stts();
400}
401
15d8791c
LT
402/*
403 * The question "does this thread have fpu access?"
404 * is slightly racy, since preemption could come in
405 * and revoke it immediately after the test.
406 *
407 * However, even in that very unlikely scenario,
408 * we can just assume we have FPU access - typically
409 * to save the FP state - we'll just take a #NM
410 * fault and get the FPU access back.
411 *
412 * The actual user_fpu_begin/end() functions
413 * need to be preemption-safe, though.
414 *
415 * NOTE! user_fpu_end() must be used only after you
416 * have saved the FP state, and user_fpu_begin() must
417 * be used only immediately before restoring it.
418 * These functions do not do any save/restore on
419 * their own.
420 */
421static inline int user_has_fpu(void)
422{
423 return current_thread_info()->status & TS_USEDFPU;
424}
425
426static inline void user_fpu_end(void)
427{
428 preempt_disable();
429 current_thread_info()->status &= ~TS_USEDFPU;
430 stts();
431 preempt_enable();
432}
433
434static inline void user_fpu_begin(void)
435{
436 preempt_disable();
437 if (!user_has_fpu()) {
438 clts();
439 current_thread_info()->status |= TS_USEDFPU;
440 }
441 preempt_enable();
442}
443
1eeaed76
RM
444/*
445 * These disable preemption on their own and are safe
446 */
447static inline void save_init_fpu(struct task_struct *tsk)
448{
c38e2345 449 WARN_ON_ONCE(!(task_thread_info(tsk)->status & TS_USEDFPU));
1eeaed76
RM
450 preempt_disable();
451 __save_init_fpu(tsk);
452 stts();
453 preempt_enable();
454}
455
456static inline void unlazy_fpu(struct task_struct *tsk)
457{
458 preempt_disable();
459 __unlazy_fpu(tsk);
460 preempt_enable();
461}
462
463static inline void clear_fpu(struct task_struct *tsk)
464{
465 preempt_disable();
466 __clear_fpu(tsk);
467 preempt_enable();
468}
469
1eeaed76
RM
470/*
471 * i387 state interaction
472 */
473static inline unsigned short get_fpu_cwd(struct task_struct *tsk)
474{
475 if (cpu_has_fxsr) {
86603283 476 return tsk->thread.fpu.state->fxsave.cwd;
1eeaed76 477 } else {
86603283 478 return (unsigned short)tsk->thread.fpu.state->fsave.cwd;
1eeaed76
RM
479 }
480}
481
482static inline unsigned short get_fpu_swd(struct task_struct *tsk)
483{
484 if (cpu_has_fxsr) {
86603283 485 return tsk->thread.fpu.state->fxsave.swd;
1eeaed76 486 } else {
86603283 487 return (unsigned short)tsk->thread.fpu.state->fsave.swd;
1eeaed76
RM
488 }
489}
490
491static inline unsigned short get_fpu_mxcsr(struct task_struct *tsk)
492{
493 if (cpu_has_xmm) {
86603283 494 return tsk->thread.fpu.state->fxsave.mxcsr;
1eeaed76
RM
495 } else {
496 return MXCSR_DEFAULT;
497 }
498}
499
86603283
AK
500static bool fpu_allocated(struct fpu *fpu)
501{
502 return fpu->state != NULL;
503}
504
505static inline int fpu_alloc(struct fpu *fpu)
506{
507 if (fpu_allocated(fpu))
508 return 0;
509 fpu->state = kmem_cache_alloc(task_xstate_cachep, GFP_KERNEL);
510 if (!fpu->state)
511 return -ENOMEM;
512 WARN_ON((unsigned long)fpu->state & 15);
513 return 0;
514}
515
516static inline void fpu_free(struct fpu *fpu)
517{
518 if (fpu->state) {
519 kmem_cache_free(task_xstate_cachep, fpu->state);
520 fpu->state = NULL;
521 }
522}
523
524static inline void fpu_copy(struct fpu *dst, struct fpu *src)
525{
526 memcpy(dst->state, src->state, xstate_size);
527}
528
5ee481da
SY
529extern void fpu_finit(struct fpu *fpu);
530
3b0d6596
HX
531#endif /* __ASSEMBLY__ */
532
1965aae3 533#endif /* _ASM_X86_I387_H */