]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/include/asm/mmu_context.h
x86/bugs, KVM: Support the combination of guest and host IBRS
[mirror_ubuntu-artful-kernel.git] / arch / x86 / include / asm / mmu_context.h
CommitLineData
1965aae3
PA
1#ifndef _ASM_X86_MMU_CONTEXT_H
2#define _ASM_X86_MMU_CONTEXT_H
c3c2fee3
JF
3
4#include <asm/desc.h>
60063497 5#include <linux/atomic.h>
d17d8f9d 6#include <linux/mm_types.h>
7d06d9c9 7#include <linux/pkeys.h>
d17d8f9d
DH
8
9#include <trace/events/tlb.h>
10
c3c2fee3
JF
11#include <asm/pgalloc.h>
12#include <asm/tlbflush.h>
13#include <asm/paravirt.h>
fe3d197f 14#include <asm/mpx.h>
e566a0df
AL
15
16extern atomic64_t last_mm_ctx_id;
17
c3c2fee3 18#ifndef CONFIG_PARAVIRT
c3c2fee3
JF
19static inline void paravirt_activate_mm(struct mm_struct *prev,
20 struct mm_struct *next)
21{
22}
23#endif /* !CONFIG_PARAVIRT */
24
7911d3f7 25#ifdef CONFIG_PERF_EVENTS
a6673429
AL
26extern struct static_key rdpmc_always_available;
27
7911d3f7
AL
28static inline void load_mm_cr4(struct mm_struct *mm)
29{
a833581e 30 if (static_key_false(&rdpmc_always_available) ||
a6673429 31 atomic_read(&mm->context.perf_rdpmc_allowed))
7911d3f7
AL
32 cr4_set_bits(X86_CR4_PCE);
33 else
34 cr4_clear_bits(X86_CR4_PCE);
35}
36#else
37static inline void load_mm_cr4(struct mm_struct *mm) {}
38#endif
39
a5b9e5a2 40#ifdef CONFIG_MODIFY_LDT_SYSCALL
37868fe1
AL
41/*
42 * ldt_structs can be allocated, used, and freed, but they are never
43 * modified while live.
44 */
45struct ldt_struct {
46 /*
47 * Xen requires page-aligned LDTs with special permissions. This is
48 * needed to prevent us from installing evil descriptors such as
49 * call gates. On native, we could merge the ldt_struct and LDT
50 * allocations, but it's not worth trying to optimize.
51 */
c2506438
AL
52 struct desc_struct *entries;
53 unsigned int nr_entries;
54
55 /*
56 * If PTI is in use, then the entries array is not mapped while we're
57 * in user mode. The whole array will be aliased at the addressed
58 * given by ldt_slot_va(slot). We use two slots so that we can allocate
59 * and map, and enable a new LDT without invalidating the mapping
60 * of an older, still-in-use LDT.
61 *
62 * slot will be -1 if this LDT doesn't have an alias mapping.
63 */
64 int slot;
37868fe1
AL
65};
66
c2506438
AL
67/* This is a multiple of PAGE_SIZE. */
68#define LDT_SLOT_STRIDE (LDT_ENTRIES * LDT_ENTRY_SIZE)
69
70static inline void *ldt_slot_va(int slot)
71{
72#ifdef CONFIG_X86_64
73 return (void *)(LDT_BASE_ADDR + LDT_SLOT_STRIDE * slot);
74#else
75 BUG();
76#endif
77}
78
a5b9e5a2
AL
79/*
80 * Used for LDT copy/destruction.
81 */
f90d2542
TG
82static inline void init_new_context_ldt(struct mm_struct *mm)
83{
84 mm->context.ldt = NULL;
85 init_rwsem(&mm->context.ldt_usr_sem);
86}
87int ldt_dup_context(struct mm_struct *oldmm, struct mm_struct *mm);
39a0526f 88void destroy_context_ldt(struct mm_struct *mm);
c2506438 89void ldt_arch_exit_mmap(struct mm_struct *mm);
a5b9e5a2 90#else /* CONFIG_MODIFY_LDT_SYSCALL */
f90d2542
TG
91static inline void init_new_context_ldt(struct mm_struct *mm) { }
92static inline int ldt_dup_context(struct mm_struct *oldmm,
93 struct mm_struct *mm)
a5b9e5a2
AL
94{
95 return 0;
96}
c2506438
AL
97static inline void destroy_context_ldt(struct mm_struct *mm) { }
98static inline void ldt_arch_exit_mmap(struct mm_struct *mm) { }
a5b9e5a2
AL
99#endif
100
37868fe1
AL
101static inline void load_mm_ldt(struct mm_struct *mm)
102{
a5b9e5a2 103#ifdef CONFIG_MODIFY_LDT_SYSCALL
37868fe1
AL
104 struct ldt_struct *ldt;
105
7252704b
WD
106 /* READ_ONCE synchronizes with smp_store_release */
107 ldt = READ_ONCE(mm->context.ldt);
37868fe1
AL
108
109 /*
110 * Any change to mm->context.ldt is followed by an IPI to all
111 * CPUs with the mm active. The LDT will not be freed until
112 * after the IPI is handled by all such CPUs. This means that,
113 * if the ldt_struct changes before we return, the values we see
114 * will be safe, and the new values will be loaded before we run
115 * any user code.
116 *
117 * NB: don't try to convert this to use RCU without extreme care.
118 * We would still need IRQs off, because we don't want to change
119 * the local LDT after an IPI loaded a newer value than the one
120 * that we can see.
121 */
122
c2506438
AL
123 if (unlikely(ldt)) {
124 if (static_cpu_has(X86_FEATURE_PTI)) {
125 if (WARN_ON_ONCE((unsigned long)ldt->slot > 1)) {
126 /*
127 * Whoops -- either the new LDT isn't mapped
128 * (if slot == -1) or is mapped into a bogus
129 * slot (if slot > 1).
130 */
131 clear_LDT();
132 return;
133 }
134
135 /*
136 * If page table isolation is enabled, ldt->entries
137 * will not be mapped in the userspace pagetables.
138 * Tell the CPU to access the LDT through the alias
139 * at ldt_slot_va(ldt->slot).
140 */
141 set_ldt(ldt_slot_va(ldt->slot), ldt->nr_entries);
142 } else {
143 set_ldt(ldt->entries, ldt->nr_entries);
144 }
145 } else {
37868fe1 146 clear_LDT();
c2506438 147 }
a5b9e5a2
AL
148#else
149 clear_LDT();
150#endif
73534258
AL
151}
152
153static inline void switch_ldt(struct mm_struct *prev, struct mm_struct *next)
154{
155#ifdef CONFIG_MODIFY_LDT_SYSCALL
156 /*
157 * Load the LDT if either the old or new mm had an LDT.
158 *
159 * An mm will never go from having an LDT to not having an LDT. Two
160 * mms never share an LDT, so we don't gain anything by checking to
161 * see whether the LDT changed. There's also no guarantee that
162 * prev->context.ldt actually matches LDTR, but, if LDTR is non-NULL,
163 * then prev->context.ldt will also be non-NULL.
164 *
165 * If we really cared, we could optimize the case where prev == next
166 * and we're exiting lazy mode. Most of the time, if this happens,
167 * we don't actually need to reload LDTR, but modify_ldt() is mostly
168 * used by legacy code and emulators where we don't need this level of
169 * performance.
170 *
171 * This uses | instead of || because it generates better code.
172 */
173 if (unlikely((unsigned long)prev->context.ldt |
174 (unsigned long)next->context.ldt))
175 load_mm_ldt(next);
176#endif
37868fe1
AL
177
178 DEBUG_LOCKS_WARN_ON(preemptible());
179}
180
a4bb9409 181void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk);
6826c8ff 182
39a0526f
DH
183static inline int init_new_context(struct task_struct *tsk,
184 struct mm_struct *mm)
185{
bf7ee649
PZ
186 mutex_init(&mm->context.lock);
187
e566a0df
AL
188 mm->context.ctx_id = atomic64_inc_return(&last_mm_ctx_id);
189 atomic64_set(&mm->context.tlb_gen, 0);
190
f90d2542 191#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
e8c24d3a
DH
192 if (cpu_feature_enabled(X86_FEATURE_OSPKE)) {
193 /* pkey 0 is the default and always allocated */
194 mm->context.pkey_allocation_map = 0x1;
195 /* -1 means unallocated or invalid */
196 mm->context.execute_only_pkey = -1;
197 }
f90d2542
TG
198#endif
199 init_new_context_ldt(mm);
200 return 0;
39a0526f
DH
201}
202static inline void destroy_context(struct mm_struct *mm)
203{
204 destroy_context_ldt(mm);
205}
206
69c0319a
AL
207extern void switch_mm(struct mm_struct *prev, struct mm_struct *next,
208 struct task_struct *tsk);
6826c8ff 209
078194f8
AL
210extern void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
211 struct task_struct *tsk);
212#define switch_mm_irqs_off switch_mm_irqs_off
c3c2fee3
JF
213
214#define activate_mm(prev, next) \
215do { \
216 paravirt_activate_mm((prev), (next)); \
217 switch_mm((prev), (next), NULL); \
218} while (0);
219
6826c8ff
BG
220#ifdef CONFIG_X86_32
221#define deactivate_mm(tsk, mm) \
222do { \
ccbeed3a 223 lazy_load_gs(0); \
6826c8ff
BG
224} while (0)
225#else
226#define deactivate_mm(tsk, mm) \
227do { \
228 load_gs_index(0); \
229 loadsegment(fs, 0); \
230} while (0)
231#endif
c3c2fee3 232
b812abb6 233static inline int arch_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
a1ea1c03
DH
234{
235 paravirt_arch_dup_mmap(oldmm, mm);
f90d2542 236 return ldt_dup_context(oldmm, mm);
a1ea1c03
DH
237}
238
239static inline void arch_exit_mmap(struct mm_struct *mm)
240{
241 paravirt_arch_exit_mmap(mm);
c2506438 242 ldt_arch_exit_mmap(mm);
a1ea1c03
DH
243}
244
b0e9b09b
DH
245#ifdef CONFIG_X86_64
246static inline bool is_64bit_mm(struct mm_struct *mm)
247{
97f2645f 248 return !IS_ENABLED(CONFIG_IA32_EMULATION) ||
b0e9b09b
DH
249 !(mm->context.ia32_compat == TIF_IA32);
250}
251#else
252static inline bool is_64bit_mm(struct mm_struct *mm)
253{
254 return false;
255}
256#endif
257
fe3d197f
DH
258static inline void arch_bprm_mm_init(struct mm_struct *mm,
259 struct vm_area_struct *vma)
260{
261 mpx_mm_init(mm);
262}
263
1de4fa14
DH
264static inline void arch_unmap(struct mm_struct *mm, struct vm_area_struct *vma,
265 unsigned long start, unsigned long end)
266{
c922228e
DH
267 /*
268 * mpx_notify_unmap() goes and reads a rarely-hot
269 * cacheline in the mm_struct. That can be expensive
270 * enough to be seen in profiles.
271 *
272 * The mpx_notify_unmap() call and its contents have been
273 * observed to affect munmap() performance on hardware
274 * where MPX is not present.
275 *
276 * The unlikely() optimizes for the fast case: no MPX
277 * in the CPU, or no MPX use in the process. Even if
278 * we get this wrong (in the unlikely event that MPX
279 * is widely enabled on some system) the overhead of
280 * MPX itself (reading bounds tables) is expected to
281 * overwhelm the overhead of getting this unlikely()
282 * consistently wrong.
283 */
284 if (unlikely(cpu_feature_enabled(X86_FEATURE_MPX)))
285 mpx_notify_unmap(mm, vma, start, end);
1de4fa14
DH
286}
287
7d06d9c9 288#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
8f62c883
DH
289static inline int vma_pkey(struct vm_area_struct *vma)
290{
8f62c883
DH
291 unsigned long vma_pkey_mask = VM_PKEY_BIT0 | VM_PKEY_BIT1 |
292 VM_PKEY_BIT2 | VM_PKEY_BIT3;
7d06d9c9
DH
293
294 return (vma->vm_flags & vma_pkey_mask) >> VM_PKEY_SHIFT;
295}
296#else
297static inline int vma_pkey(struct vm_area_struct *vma)
298{
299 return 0;
8f62c883 300}
7d06d9c9 301#endif
8f62c883 302
33a709b2
DH
303/*
304 * We only want to enforce protection keys on the current process
305 * because we effectively have no access to PKRU for other
306 * processes or any way to tell *which * PKRU in a threaded
307 * process we could use.
308 *
309 * So do not enforce things if the VMA is not from the current
310 * mm, or if we are in a kernel thread.
311 */
312static inline bool vma_is_foreign(struct vm_area_struct *vma)
313{
314 if (!current->mm)
315 return true;
316 /*
317 * Should PKRU be enforced on the access to this VMA? If
318 * the VMA is from another process, then PKRU has no
319 * relevance and should not be enforced.
320 */
321 if (current->mm != vma->vm_mm)
322 return true;
323
324 return false;
325}
326
1b2ee126 327static inline bool arch_vma_access_permitted(struct vm_area_struct *vma,
d61172b4 328 bool write, bool execute, bool foreign)
33a709b2 329{
d61172b4
DH
330 /* pkeys never affect instruction fetches */
331 if (execute)
332 return true;
33a709b2 333 /* allow access if the VMA is not one from this process */
1b2ee126 334 if (foreign || vma_is_foreign(vma))
33a709b2
DH
335 return true;
336 return __pkru_allows_pkey(vma_pkey(vma), write);
337}
338
d6e41f11
AL
339/*
340 * This can be used from process context to figure out what the value of
6c690ee1 341 * CR3 is without needing to do a (slow) __read_cr3().
d6e41f11
AL
342 *
343 * It's intended to be used for code like KVM that sneakily changes CR3
344 * and needs to restore it. It needs to be used very carefully.
345 */
346static inline unsigned long __get_current_cr3_fast(void)
347{
f741923a 348 unsigned long cr3 = build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd,
72be211b 349 this_cpu_read(cpu_tlbstate.loaded_mm_asid));
d833a976 350
d6e41f11 351 /* For now, be very restrictive about when this can be called. */
4c07f904 352 VM_WARN_ON(in_nmi() || preemptible());
d6e41f11 353
6c690ee1 354 VM_BUG_ON(cr3 != __read_cr3());
d6e41f11
AL
355 return cr3;
356}
357
1965aae3 358#endif /* _ASM_X86_MMU_CONTEXT_H */