]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/include/asm/mmu_context.h
Merge branch 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / include / asm / mmu_context.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1965aae3
PA
2#ifndef _ASM_X86_MMU_CONTEXT_H
3#define _ASM_X86_MMU_CONTEXT_H
c3c2fee3
JF
4
5#include <asm/desc.h>
60063497 6#include <linux/atomic.h>
d17d8f9d 7#include <linux/mm_types.h>
7d06d9c9 8#include <linux/pkeys.h>
d17d8f9d
DH
9
10#include <trace/events/tlb.h>
11
c3c2fee3
JF
12#include <asm/pgalloc.h>
13#include <asm/tlbflush.h>
14#include <asm/paravirt.h>
fe3d197f 15#include <asm/mpx.h>
f39681ed
AL
16
17extern atomic64_t last_mm_ctx_id;
18
c3c2fee3 19#ifndef CONFIG_PARAVIRT
c3c2fee3
JF
20static inline void paravirt_activate_mm(struct mm_struct *prev,
21 struct mm_struct *next)
22{
23}
24#endif /* !CONFIG_PARAVIRT */
25
7911d3f7 26#ifdef CONFIG_PERF_EVENTS
a6673429
AL
27extern struct static_key rdpmc_always_available;
28
7911d3f7
AL
29static inline void load_mm_cr4(struct mm_struct *mm)
30{
a833581e 31 if (static_key_false(&rdpmc_always_available) ||
a6673429 32 atomic_read(&mm->context.perf_rdpmc_allowed))
7911d3f7
AL
33 cr4_set_bits(X86_CR4_PCE);
34 else
35 cr4_clear_bits(X86_CR4_PCE);
36}
37#else
38static inline void load_mm_cr4(struct mm_struct *mm) {}
39#endif
40
a5b9e5a2 41#ifdef CONFIG_MODIFY_LDT_SYSCALL
37868fe1
AL
42/*
43 * ldt_structs can be allocated, used, and freed, but they are never
44 * modified while live.
45 */
46struct ldt_struct {
47 /*
48 * Xen requires page-aligned LDTs with special permissions. This is
49 * needed to prevent us from installing evil descriptors such as
50 * call gates. On native, we could merge the ldt_struct and LDT
51 * allocations, but it's not worth trying to optimize.
52 */
f55f0501
AL
53 struct desc_struct *entries;
54 unsigned int nr_entries;
55
56 /*
57 * If PTI is in use, then the entries array is not mapped while we're
58 * in user mode. The whole array will be aliased at the addressed
59 * given by ldt_slot_va(slot). We use two slots so that we can allocate
60 * and map, and enable a new LDT without invalidating the mapping
61 * of an older, still-in-use LDT.
62 *
63 * slot will be -1 if this LDT doesn't have an alias mapping.
64 */
65 int slot;
37868fe1
AL
66};
67
f55f0501
AL
68/* This is a multiple of PAGE_SIZE. */
69#define LDT_SLOT_STRIDE (LDT_ENTRIES * LDT_ENTRY_SIZE)
70
71static inline void *ldt_slot_va(int slot)
72{
73#ifdef CONFIG_X86_64
74 return (void *)(LDT_BASE_ADDR + LDT_SLOT_STRIDE * slot);
75#else
76 BUG();
77#endif
78}
79
a5b9e5a2
AL
80/*
81 * Used for LDT copy/destruction.
82 */
a4828f81
TG
83static inline void init_new_context_ldt(struct mm_struct *mm)
84{
85 mm->context.ldt = NULL;
86 init_rwsem(&mm->context.ldt_usr_sem);
87}
88int ldt_dup_context(struct mm_struct *oldmm, struct mm_struct *mm);
39a0526f 89void destroy_context_ldt(struct mm_struct *mm);
f55f0501 90void ldt_arch_exit_mmap(struct mm_struct *mm);
a5b9e5a2 91#else /* CONFIG_MODIFY_LDT_SYSCALL */
a4828f81
TG
92static inline void init_new_context_ldt(struct mm_struct *mm) { }
93static inline int ldt_dup_context(struct mm_struct *oldmm,
94 struct mm_struct *mm)
a5b9e5a2
AL
95{
96 return 0;
97}
f55f0501
AL
98static inline void destroy_context_ldt(struct mm_struct *mm) { }
99static inline void ldt_arch_exit_mmap(struct mm_struct *mm) { }
a5b9e5a2
AL
100#endif
101
37868fe1
AL
102static inline void load_mm_ldt(struct mm_struct *mm)
103{
a5b9e5a2 104#ifdef CONFIG_MODIFY_LDT_SYSCALL
37868fe1
AL
105 struct ldt_struct *ldt;
106
3382290e
WD
107 /* READ_ONCE synchronizes with smp_store_release */
108 ldt = READ_ONCE(mm->context.ldt);
37868fe1
AL
109
110 /*
111 * Any change to mm->context.ldt is followed by an IPI to all
112 * CPUs with the mm active. The LDT will not be freed until
113 * after the IPI is handled by all such CPUs. This means that,
114 * if the ldt_struct changes before we return, the values we see
115 * will be safe, and the new values will be loaded before we run
116 * any user code.
117 *
118 * NB: don't try to convert this to use RCU without extreme care.
119 * We would still need IRQs off, because we don't want to change
120 * the local LDT after an IPI loaded a newer value than the one
121 * that we can see.
122 */
123
f55f0501
AL
124 if (unlikely(ldt)) {
125 if (static_cpu_has(X86_FEATURE_PTI)) {
126 if (WARN_ON_ONCE((unsigned long)ldt->slot > 1)) {
127 /*
128 * Whoops -- either the new LDT isn't mapped
129 * (if slot == -1) or is mapped into a bogus
130 * slot (if slot > 1).
131 */
132 clear_LDT();
133 return;
134 }
135
136 /*
137 * If page table isolation is enabled, ldt->entries
138 * will not be mapped in the userspace pagetables.
139 * Tell the CPU to access the LDT through the alias
140 * at ldt_slot_va(ldt->slot).
141 */
142 set_ldt(ldt_slot_va(ldt->slot), ldt->nr_entries);
143 } else {
144 set_ldt(ldt->entries, ldt->nr_entries);
145 }
146 } else {
37868fe1 147 clear_LDT();
f55f0501 148 }
a5b9e5a2
AL
149#else
150 clear_LDT();
151#endif
73534258
AL
152}
153
154static inline void switch_ldt(struct mm_struct *prev, struct mm_struct *next)
155{
156#ifdef CONFIG_MODIFY_LDT_SYSCALL
157 /*
158 * Load the LDT if either the old or new mm had an LDT.
159 *
160 * An mm will never go from having an LDT to not having an LDT. Two
161 * mms never share an LDT, so we don't gain anything by checking to
162 * see whether the LDT changed. There's also no guarantee that
163 * prev->context.ldt actually matches LDTR, but, if LDTR is non-NULL,
164 * then prev->context.ldt will also be non-NULL.
165 *
166 * If we really cared, we could optimize the case where prev == next
167 * and we're exiting lazy mode. Most of the time, if this happens,
168 * we don't actually need to reload LDTR, but modify_ldt() is mostly
169 * used by legacy code and emulators where we don't need this level of
170 * performance.
171 *
172 * This uses | instead of || because it generates better code.
173 */
174 if (unlikely((unsigned long)prev->context.ldt |
175 (unsigned long)next->context.ldt))
176 load_mm_ldt(next);
177#endif
37868fe1
AL
178
179 DEBUG_LOCKS_WARN_ON(preemptible());
180}
181
b956575b 182void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk);
6826c8ff 183
39a0526f
DH
184static inline int init_new_context(struct task_struct *tsk,
185 struct mm_struct *mm)
186{
c2b3496b
PZ
187 mutex_init(&mm->context.lock);
188
f39681ed
AL
189 mm->context.ctx_id = atomic64_inc_return(&last_mm_ctx_id);
190 atomic64_set(&mm->context.tlb_gen, 0);
191
a4828f81 192#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
e8c24d3a
DH
193 if (cpu_feature_enabled(X86_FEATURE_OSPKE)) {
194 /* pkey 0 is the default and always allocated */
195 mm->context.pkey_allocation_map = 0x1;
196 /* -1 means unallocated or invalid */
197 mm->context.execute_only_pkey = -1;
198 }
a4828f81
TG
199#endif
200 init_new_context_ldt(mm);
201 return 0;
39a0526f
DH
202}
203static inline void destroy_context(struct mm_struct *mm)
204{
205 destroy_context_ldt(mm);
206}
207
69c0319a
AL
208extern void switch_mm(struct mm_struct *prev, struct mm_struct *next,
209 struct task_struct *tsk);
6826c8ff 210
078194f8
AL
211extern void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
212 struct task_struct *tsk);
213#define switch_mm_irqs_off switch_mm_irqs_off
c3c2fee3
JF
214
215#define activate_mm(prev, next) \
216do { \
217 paravirt_activate_mm((prev), (next)); \
218 switch_mm((prev), (next), NULL); \
219} while (0);
220
6826c8ff
BG
221#ifdef CONFIG_X86_32
222#define deactivate_mm(tsk, mm) \
223do { \
ccbeed3a 224 lazy_load_gs(0); \
6826c8ff
BG
225} while (0)
226#else
227#define deactivate_mm(tsk, mm) \
228do { \
229 load_gs_index(0); \
230 loadsegment(fs, 0); \
231} while (0)
232#endif
c3c2fee3 233
c10e83f5 234static inline int arch_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
a1ea1c03
DH
235{
236 paravirt_arch_dup_mmap(oldmm, mm);
a4828f81 237 return ldt_dup_context(oldmm, mm);
a1ea1c03
DH
238}
239
240static inline void arch_exit_mmap(struct mm_struct *mm)
241{
242 paravirt_arch_exit_mmap(mm);
f55f0501 243 ldt_arch_exit_mmap(mm);
a1ea1c03
DH
244}
245
b0e9b09b
DH
246#ifdef CONFIG_X86_64
247static inline bool is_64bit_mm(struct mm_struct *mm)
248{
97f2645f 249 return !IS_ENABLED(CONFIG_IA32_EMULATION) ||
b0e9b09b
DH
250 !(mm->context.ia32_compat == TIF_IA32);
251}
252#else
253static inline bool is_64bit_mm(struct mm_struct *mm)
254{
255 return false;
256}
257#endif
258
fe3d197f
DH
259static inline void arch_bprm_mm_init(struct mm_struct *mm,
260 struct vm_area_struct *vma)
261{
262 mpx_mm_init(mm);
263}
264
1de4fa14
DH
265static inline void arch_unmap(struct mm_struct *mm, struct vm_area_struct *vma,
266 unsigned long start, unsigned long end)
267{
c922228e
DH
268 /*
269 * mpx_notify_unmap() goes and reads a rarely-hot
270 * cacheline in the mm_struct. That can be expensive
271 * enough to be seen in profiles.
272 *
273 * The mpx_notify_unmap() call and its contents have been
274 * observed to affect munmap() performance on hardware
275 * where MPX is not present.
276 *
277 * The unlikely() optimizes for the fast case: no MPX
278 * in the CPU, or no MPX use in the process. Even if
279 * we get this wrong (in the unlikely event that MPX
280 * is widely enabled on some system) the overhead of
281 * MPX itself (reading bounds tables) is expected to
282 * overwhelm the overhead of getting this unlikely()
283 * consistently wrong.
284 */
285 if (unlikely(cpu_feature_enabled(X86_FEATURE_MPX)))
286 mpx_notify_unmap(mm, vma, start, end);
1de4fa14
DH
287}
288
7d06d9c9 289#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
8f62c883
DH
290static inline int vma_pkey(struct vm_area_struct *vma)
291{
8f62c883
DH
292 unsigned long vma_pkey_mask = VM_PKEY_BIT0 | VM_PKEY_BIT1 |
293 VM_PKEY_BIT2 | VM_PKEY_BIT3;
7d06d9c9
DH
294
295 return (vma->vm_flags & vma_pkey_mask) >> VM_PKEY_SHIFT;
296}
297#else
298static inline int vma_pkey(struct vm_area_struct *vma)
299{
300 return 0;
8f62c883 301}
7d06d9c9 302#endif
8f62c883 303
33a709b2
DH
304/*
305 * We only want to enforce protection keys on the current process
306 * because we effectively have no access to PKRU for other
307 * processes or any way to tell *which * PKRU in a threaded
308 * process we could use.
309 *
310 * So do not enforce things if the VMA is not from the current
311 * mm, or if we are in a kernel thread.
312 */
313static inline bool vma_is_foreign(struct vm_area_struct *vma)
314{
315 if (!current->mm)
316 return true;
317 /*
318 * Should PKRU be enforced on the access to this VMA? If
319 * the VMA is from another process, then PKRU has no
320 * relevance and should not be enforced.
321 */
322 if (current->mm != vma->vm_mm)
323 return true;
324
325 return false;
326}
327
1b2ee126 328static inline bool arch_vma_access_permitted(struct vm_area_struct *vma,
d61172b4 329 bool write, bool execute, bool foreign)
33a709b2 330{
d61172b4
DH
331 /* pkeys never affect instruction fetches */
332 if (execute)
333 return true;
33a709b2 334 /* allow access if the VMA is not one from this process */
1b2ee126 335 if (foreign || vma_is_foreign(vma))
33a709b2
DH
336 return true;
337 return __pkru_allows_pkey(vma_pkey(vma), write);
338}
339
d6e41f11
AL
340/*
341 * This can be used from process context to figure out what the value of
6c690ee1 342 * CR3 is without needing to do a (slow) __read_cr3().
d6e41f11
AL
343 *
344 * It's intended to be used for code like KVM that sneakily changes CR3
345 * and needs to restore it. It needs to be used very carefully.
346 */
347static inline unsigned long __get_current_cr3_fast(void)
348{
50fb83a6 349 unsigned long cr3 = build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd,
47061a24 350 this_cpu_read(cpu_tlbstate.loaded_mm_asid));
10af6235 351
d6e41f11 352 /* For now, be very restrictive about when this can be called. */
4c07f904 353 VM_WARN_ON(in_nmi() || preemptible());
d6e41f11 354
6c690ee1 355 VM_BUG_ON(cr3 != __read_cr3());
d6e41f11
AL
356 return cr3;
357}
358
1965aae3 359#endif /* _ASM_X86_MMU_CONTEXT_H */