]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/include/asm/mmu_context.h
x86/ldt: Enable LDT user-mapping for PAE
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / include / asm / mmu_context.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1965aae3
PA
2#ifndef _ASM_X86_MMU_CONTEXT_H
3#define _ASM_X86_MMU_CONTEXT_H
c3c2fee3
JF
4
5#include <asm/desc.h>
60063497 6#include <linux/atomic.h>
d17d8f9d 7#include <linux/mm_types.h>
7d06d9c9 8#include <linux/pkeys.h>
d17d8f9d
DH
9
10#include <trace/events/tlb.h>
11
c3c2fee3
JF
12#include <asm/pgalloc.h>
13#include <asm/tlbflush.h>
14#include <asm/paravirt.h>
fe3d197f 15#include <asm/mpx.h>
f39681ed
AL
16
17extern atomic64_t last_mm_ctx_id;
18
c3c2fee3 19#ifndef CONFIG_PARAVIRT
c3c2fee3
JF
20static inline void paravirt_activate_mm(struct mm_struct *prev,
21 struct mm_struct *next)
22{
23}
24#endif /* !CONFIG_PARAVIRT */
25
7911d3f7 26#ifdef CONFIG_PERF_EVENTS
a6673429
AL
27extern struct static_key rdpmc_always_available;
28
7911d3f7
AL
29static inline void load_mm_cr4(struct mm_struct *mm)
30{
a833581e 31 if (static_key_false(&rdpmc_always_available) ||
a6673429 32 atomic_read(&mm->context.perf_rdpmc_allowed))
7911d3f7
AL
33 cr4_set_bits(X86_CR4_PCE);
34 else
35 cr4_clear_bits(X86_CR4_PCE);
36}
37#else
38static inline void load_mm_cr4(struct mm_struct *mm) {}
39#endif
40
a5b9e5a2 41#ifdef CONFIG_MODIFY_LDT_SYSCALL
37868fe1
AL
42/*
43 * ldt_structs can be allocated, used, and freed, but they are never
44 * modified while live.
45 */
46struct ldt_struct {
47 /*
48 * Xen requires page-aligned LDTs with special permissions. This is
49 * needed to prevent us from installing evil descriptors such as
50 * call gates. On native, we could merge the ldt_struct and LDT
51 * allocations, but it's not worth trying to optimize.
52 */
f55f0501
AL
53 struct desc_struct *entries;
54 unsigned int nr_entries;
55
56 /*
57 * If PTI is in use, then the entries array is not mapped while we're
58 * in user mode. The whole array will be aliased at the addressed
59 * given by ldt_slot_va(slot). We use two slots so that we can allocate
60 * and map, and enable a new LDT without invalidating the mapping
61 * of an older, still-in-use LDT.
62 *
63 * slot will be -1 if this LDT doesn't have an alias mapping.
64 */
65 int slot;
37868fe1
AL
66};
67
f55f0501
AL
68/* This is a multiple of PAGE_SIZE. */
69#define LDT_SLOT_STRIDE (LDT_ENTRIES * LDT_ENTRY_SIZE)
70
71static inline void *ldt_slot_va(int slot)
72{
f55f0501 73 return (void *)(LDT_BASE_ADDR + LDT_SLOT_STRIDE * slot);
f55f0501
AL
74}
75
a5b9e5a2
AL
76/*
77 * Used for LDT copy/destruction.
78 */
a4828f81
TG
79static inline void init_new_context_ldt(struct mm_struct *mm)
80{
81 mm->context.ldt = NULL;
82 init_rwsem(&mm->context.ldt_usr_sem);
83}
84int ldt_dup_context(struct mm_struct *oldmm, struct mm_struct *mm);
39a0526f 85void destroy_context_ldt(struct mm_struct *mm);
f55f0501 86void ldt_arch_exit_mmap(struct mm_struct *mm);
a5b9e5a2 87#else /* CONFIG_MODIFY_LDT_SYSCALL */
a4828f81
TG
88static inline void init_new_context_ldt(struct mm_struct *mm) { }
89static inline int ldt_dup_context(struct mm_struct *oldmm,
90 struct mm_struct *mm)
a5b9e5a2
AL
91{
92 return 0;
93}
f55f0501
AL
94static inline void destroy_context_ldt(struct mm_struct *mm) { }
95static inline void ldt_arch_exit_mmap(struct mm_struct *mm) { }
a5b9e5a2
AL
96#endif
97
37868fe1
AL
98static inline void load_mm_ldt(struct mm_struct *mm)
99{
a5b9e5a2 100#ifdef CONFIG_MODIFY_LDT_SYSCALL
37868fe1
AL
101 struct ldt_struct *ldt;
102
3382290e
WD
103 /* READ_ONCE synchronizes with smp_store_release */
104 ldt = READ_ONCE(mm->context.ldt);
37868fe1
AL
105
106 /*
107 * Any change to mm->context.ldt is followed by an IPI to all
108 * CPUs with the mm active. The LDT will not be freed until
109 * after the IPI is handled by all such CPUs. This means that,
110 * if the ldt_struct changes before we return, the values we see
111 * will be safe, and the new values will be loaded before we run
112 * any user code.
113 *
114 * NB: don't try to convert this to use RCU without extreme care.
115 * We would still need IRQs off, because we don't want to change
116 * the local LDT after an IPI loaded a newer value than the one
117 * that we can see.
118 */
119
f55f0501
AL
120 if (unlikely(ldt)) {
121 if (static_cpu_has(X86_FEATURE_PTI)) {
122 if (WARN_ON_ONCE((unsigned long)ldt->slot > 1)) {
123 /*
124 * Whoops -- either the new LDT isn't mapped
125 * (if slot == -1) or is mapped into a bogus
126 * slot (if slot > 1).
127 */
128 clear_LDT();
129 return;
130 }
131
132 /*
133 * If page table isolation is enabled, ldt->entries
134 * will not be mapped in the userspace pagetables.
135 * Tell the CPU to access the LDT through the alias
136 * at ldt_slot_va(ldt->slot).
137 */
138 set_ldt(ldt_slot_va(ldt->slot), ldt->nr_entries);
139 } else {
140 set_ldt(ldt->entries, ldt->nr_entries);
141 }
142 } else {
37868fe1 143 clear_LDT();
f55f0501 144 }
a5b9e5a2
AL
145#else
146 clear_LDT();
147#endif
73534258
AL
148}
149
150static inline void switch_ldt(struct mm_struct *prev, struct mm_struct *next)
151{
152#ifdef CONFIG_MODIFY_LDT_SYSCALL
153 /*
154 * Load the LDT if either the old or new mm had an LDT.
155 *
156 * An mm will never go from having an LDT to not having an LDT. Two
157 * mms never share an LDT, so we don't gain anything by checking to
158 * see whether the LDT changed. There's also no guarantee that
159 * prev->context.ldt actually matches LDTR, but, if LDTR is non-NULL,
160 * then prev->context.ldt will also be non-NULL.
161 *
162 * If we really cared, we could optimize the case where prev == next
163 * and we're exiting lazy mode. Most of the time, if this happens,
164 * we don't actually need to reload LDTR, but modify_ldt() is mostly
165 * used by legacy code and emulators where we don't need this level of
166 * performance.
167 *
168 * This uses | instead of || because it generates better code.
169 */
170 if (unlikely((unsigned long)prev->context.ldt |
171 (unsigned long)next->context.ldt))
172 load_mm_ldt(next);
173#endif
37868fe1
AL
174
175 DEBUG_LOCKS_WARN_ON(preemptible());
176}
177
b956575b 178void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk);
6826c8ff 179
39a0526f
DH
180static inline int init_new_context(struct task_struct *tsk,
181 struct mm_struct *mm)
182{
c2b3496b
PZ
183 mutex_init(&mm->context.lock);
184
f39681ed
AL
185 mm->context.ctx_id = atomic64_inc_return(&last_mm_ctx_id);
186 atomic64_set(&mm->context.tlb_gen, 0);
187
a4828f81 188#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
e8c24d3a 189 if (cpu_feature_enabled(X86_FEATURE_OSPKE)) {
8fc96d16 190 /* pkey 0 is the default and allocated implicitly */
e8c24d3a
DH
191 mm->context.pkey_allocation_map = 0x1;
192 /* -1 means unallocated or invalid */
193 mm->context.execute_only_pkey = -1;
194 }
a4828f81
TG
195#endif
196 init_new_context_ldt(mm);
197 return 0;
39a0526f
DH
198}
199static inline void destroy_context(struct mm_struct *mm)
200{
201 destroy_context_ldt(mm);
202}
203
69c0319a
AL
204extern void switch_mm(struct mm_struct *prev, struct mm_struct *next,
205 struct task_struct *tsk);
6826c8ff 206
078194f8
AL
207extern void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
208 struct task_struct *tsk);
209#define switch_mm_irqs_off switch_mm_irqs_off
c3c2fee3
JF
210
211#define activate_mm(prev, next) \
212do { \
213 paravirt_activate_mm((prev), (next)); \
214 switch_mm((prev), (next), NULL); \
215} while (0);
216
6826c8ff
BG
217#ifdef CONFIG_X86_32
218#define deactivate_mm(tsk, mm) \
219do { \
ccbeed3a 220 lazy_load_gs(0); \
6826c8ff
BG
221} while (0)
222#else
223#define deactivate_mm(tsk, mm) \
224do { \
225 load_gs_index(0); \
226 loadsegment(fs, 0); \
227} while (0)
228#endif
c3c2fee3 229
c10e83f5 230static inline int arch_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
a1ea1c03
DH
231{
232 paravirt_arch_dup_mmap(oldmm, mm);
a4828f81 233 return ldt_dup_context(oldmm, mm);
a1ea1c03
DH
234}
235
236static inline void arch_exit_mmap(struct mm_struct *mm)
237{
238 paravirt_arch_exit_mmap(mm);
f55f0501 239 ldt_arch_exit_mmap(mm);
a1ea1c03
DH
240}
241
b0e9b09b
DH
242#ifdef CONFIG_X86_64
243static inline bool is_64bit_mm(struct mm_struct *mm)
244{
97f2645f 245 return !IS_ENABLED(CONFIG_IA32_EMULATION) ||
b0e9b09b
DH
246 !(mm->context.ia32_compat == TIF_IA32);
247}
248#else
249static inline bool is_64bit_mm(struct mm_struct *mm)
250{
251 return false;
252}
253#endif
254
fe3d197f
DH
255static inline void arch_bprm_mm_init(struct mm_struct *mm,
256 struct vm_area_struct *vma)
257{
258 mpx_mm_init(mm);
259}
260
1de4fa14
DH
261static inline void arch_unmap(struct mm_struct *mm, struct vm_area_struct *vma,
262 unsigned long start, unsigned long end)
263{
c922228e
DH
264 /*
265 * mpx_notify_unmap() goes and reads a rarely-hot
266 * cacheline in the mm_struct. That can be expensive
267 * enough to be seen in profiles.
268 *
269 * The mpx_notify_unmap() call and its contents have been
270 * observed to affect munmap() performance on hardware
271 * where MPX is not present.
272 *
273 * The unlikely() optimizes for the fast case: no MPX
274 * in the CPU, or no MPX use in the process. Even if
275 * we get this wrong (in the unlikely event that MPX
276 * is widely enabled on some system) the overhead of
277 * MPX itself (reading bounds tables) is expected to
278 * overwhelm the overhead of getting this unlikely()
279 * consistently wrong.
280 */
281 if (unlikely(cpu_feature_enabled(X86_FEATURE_MPX)))
282 mpx_notify_unmap(mm, vma, start, end);
1de4fa14
DH
283}
284
7d06d9c9 285#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
8f62c883
DH
286static inline int vma_pkey(struct vm_area_struct *vma)
287{
8f62c883
DH
288 unsigned long vma_pkey_mask = VM_PKEY_BIT0 | VM_PKEY_BIT1 |
289 VM_PKEY_BIT2 | VM_PKEY_BIT3;
7d06d9c9
DH
290
291 return (vma->vm_flags & vma_pkey_mask) >> VM_PKEY_SHIFT;
292}
293#else
294static inline int vma_pkey(struct vm_area_struct *vma)
295{
296 return 0;
8f62c883 297}
7d06d9c9 298#endif
8f62c883 299
33a709b2
DH
300/*
301 * We only want to enforce protection keys on the current process
302 * because we effectively have no access to PKRU for other
303 * processes or any way to tell *which * PKRU in a threaded
304 * process we could use.
305 *
306 * So do not enforce things if the VMA is not from the current
307 * mm, or if we are in a kernel thread.
308 */
309static inline bool vma_is_foreign(struct vm_area_struct *vma)
310{
311 if (!current->mm)
312 return true;
313 /*
314 * Should PKRU be enforced on the access to this VMA? If
315 * the VMA is from another process, then PKRU has no
316 * relevance and should not be enforced.
317 */
318 if (current->mm != vma->vm_mm)
319 return true;
320
321 return false;
322}
323
1b2ee126 324static inline bool arch_vma_access_permitted(struct vm_area_struct *vma,
d61172b4 325 bool write, bool execute, bool foreign)
33a709b2 326{
d61172b4
DH
327 /* pkeys never affect instruction fetches */
328 if (execute)
329 return true;
33a709b2 330 /* allow access if the VMA is not one from this process */
1b2ee126 331 if (foreign || vma_is_foreign(vma))
33a709b2
DH
332 return true;
333 return __pkru_allows_pkey(vma_pkey(vma), write);
334}
335
d6e41f11
AL
336/*
337 * This can be used from process context to figure out what the value of
6c690ee1 338 * CR3 is without needing to do a (slow) __read_cr3().
d6e41f11
AL
339 *
340 * It's intended to be used for code like KVM that sneakily changes CR3
341 * and needs to restore it. It needs to be used very carefully.
342 */
343static inline unsigned long __get_current_cr3_fast(void)
344{
50fb83a6 345 unsigned long cr3 = build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd,
47061a24 346 this_cpu_read(cpu_tlbstate.loaded_mm_asid));
10af6235 347
d6e41f11 348 /* For now, be very restrictive about when this can be called. */
4c07f904 349 VM_WARN_ON(in_nmi() || preemptible());
d6e41f11 350
6c690ee1 351 VM_BUG_ON(cr3 != __read_cr3());
d6e41f11
AL
352 return cr3;
353}
354
1965aae3 355#endif /* _ASM_X86_MMU_CONTEXT_H */