]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/include/asm/mmu_context.h
Merge tag 'linux-kselftest-4.13-rc6-fixes' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-artful-kernel.git] / arch / x86 / include / asm / mmu_context.h
CommitLineData
1965aae3
PA
1#ifndef _ASM_X86_MMU_CONTEXT_H
2#define _ASM_X86_MMU_CONTEXT_H
c3c2fee3
JF
3
4#include <asm/desc.h>
60063497 5#include <linux/atomic.h>
d17d8f9d 6#include <linux/mm_types.h>
7d06d9c9 7#include <linux/pkeys.h>
d17d8f9d
DH
8
9#include <trace/events/tlb.h>
10
c3c2fee3
JF
11#include <asm/pgalloc.h>
12#include <asm/tlbflush.h>
13#include <asm/paravirt.h>
fe3d197f 14#include <asm/mpx.h>
c3c2fee3 15#ifndef CONFIG_PARAVIRT
c3c2fee3
JF
16static inline void paravirt_activate_mm(struct mm_struct *prev,
17 struct mm_struct *next)
18{
19}
20#endif /* !CONFIG_PARAVIRT */
21
7911d3f7 22#ifdef CONFIG_PERF_EVENTS
a6673429
AL
23extern struct static_key rdpmc_always_available;
24
7911d3f7
AL
25static inline void load_mm_cr4(struct mm_struct *mm)
26{
a833581e 27 if (static_key_false(&rdpmc_always_available) ||
a6673429 28 atomic_read(&mm->context.perf_rdpmc_allowed))
7911d3f7
AL
29 cr4_set_bits(X86_CR4_PCE);
30 else
31 cr4_clear_bits(X86_CR4_PCE);
32}
33#else
34static inline void load_mm_cr4(struct mm_struct *mm) {}
35#endif
36
a5b9e5a2 37#ifdef CONFIG_MODIFY_LDT_SYSCALL
37868fe1
AL
38/*
39 * ldt_structs can be allocated, used, and freed, but they are never
40 * modified while live.
41 */
42struct ldt_struct {
43 /*
44 * Xen requires page-aligned LDTs with special permissions. This is
45 * needed to prevent us from installing evil descriptors such as
46 * call gates. On native, we could merge the ldt_struct and LDT
47 * allocations, but it's not worth trying to optimize.
48 */
49 struct desc_struct *entries;
bbf79d21 50 unsigned int nr_entries;
37868fe1
AL
51};
52
a5b9e5a2
AL
53/*
54 * Used for LDT copy/destruction.
55 */
39a0526f
DH
56int init_new_context_ldt(struct task_struct *tsk, struct mm_struct *mm);
57void destroy_context_ldt(struct mm_struct *mm);
a5b9e5a2 58#else /* CONFIG_MODIFY_LDT_SYSCALL */
39a0526f
DH
59static inline int init_new_context_ldt(struct task_struct *tsk,
60 struct mm_struct *mm)
a5b9e5a2
AL
61{
62 return 0;
63}
39a0526f 64static inline void destroy_context_ldt(struct mm_struct *mm) {}
a5b9e5a2
AL
65#endif
66
37868fe1
AL
67static inline void load_mm_ldt(struct mm_struct *mm)
68{
a5b9e5a2 69#ifdef CONFIG_MODIFY_LDT_SYSCALL
37868fe1
AL
70 struct ldt_struct *ldt;
71
72 /* lockless_dereference synchronizes with smp_store_release */
73 ldt = lockless_dereference(mm->context.ldt);
74
75 /*
76 * Any change to mm->context.ldt is followed by an IPI to all
77 * CPUs with the mm active. The LDT will not be freed until
78 * after the IPI is handled by all such CPUs. This means that,
79 * if the ldt_struct changes before we return, the values we see
80 * will be safe, and the new values will be loaded before we run
81 * any user code.
82 *
83 * NB: don't try to convert this to use RCU without extreme care.
84 * We would still need IRQs off, because we don't want to change
85 * the local LDT after an IPI loaded a newer value than the one
86 * that we can see.
87 */
88
89 if (unlikely(ldt))
bbf79d21 90 set_ldt(ldt->entries, ldt->nr_entries);
37868fe1
AL
91 else
92 clear_LDT();
a5b9e5a2
AL
93#else
94 clear_LDT();
95#endif
73534258
AL
96}
97
98static inline void switch_ldt(struct mm_struct *prev, struct mm_struct *next)
99{
100#ifdef CONFIG_MODIFY_LDT_SYSCALL
101 /*
102 * Load the LDT if either the old or new mm had an LDT.
103 *
104 * An mm will never go from having an LDT to not having an LDT. Two
105 * mms never share an LDT, so we don't gain anything by checking to
106 * see whether the LDT changed. There's also no guarantee that
107 * prev->context.ldt actually matches LDTR, but, if LDTR is non-NULL,
108 * then prev->context.ldt will also be non-NULL.
109 *
110 * If we really cared, we could optimize the case where prev == next
111 * and we're exiting lazy mode. Most of the time, if this happens,
112 * we don't actually need to reload LDTR, but modify_ldt() is mostly
113 * used by legacy code and emulators where we don't need this level of
114 * performance.
115 *
116 * This uses | instead of || because it generates better code.
117 */
118 if (unlikely((unsigned long)prev->context.ldt |
119 (unsigned long)next->context.ldt))
120 load_mm_ldt(next);
121#endif
37868fe1
AL
122
123 DEBUG_LOCKS_WARN_ON(preemptible());
124}
125
6826c8ff
BG
126static inline void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
127{
c6ae41e7
AS
128 if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
129 this_cpu_write(cpu_tlbstate.state, TLBSTATE_LAZY);
6826c8ff
BG
130}
131
39a0526f
DH
132static inline int init_new_context(struct task_struct *tsk,
133 struct mm_struct *mm)
134{
e8c24d3a
DH
135 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
136 if (cpu_feature_enabled(X86_FEATURE_OSPKE)) {
137 /* pkey 0 is the default and always allocated */
138 mm->context.pkey_allocation_map = 0x1;
139 /* -1 means unallocated or invalid */
140 mm->context.execute_only_pkey = -1;
141 }
142 #endif
39a0526f 143 init_new_context_ldt(tsk, mm);
e8c24d3a 144
39a0526f
DH
145 return 0;
146}
147static inline void destroy_context(struct mm_struct *mm)
148{
149 destroy_context_ldt(mm);
150}
151
69c0319a
AL
152extern void switch_mm(struct mm_struct *prev, struct mm_struct *next,
153 struct task_struct *tsk);
6826c8ff 154
078194f8
AL
155extern void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
156 struct task_struct *tsk);
157#define switch_mm_irqs_off switch_mm_irqs_off
c3c2fee3
JF
158
159#define activate_mm(prev, next) \
160do { \
161 paravirt_activate_mm((prev), (next)); \
162 switch_mm((prev), (next), NULL); \
163} while (0);
164
6826c8ff
BG
165#ifdef CONFIG_X86_32
166#define deactivate_mm(tsk, mm) \
167do { \
ccbeed3a 168 lazy_load_gs(0); \
6826c8ff
BG
169} while (0)
170#else
171#define deactivate_mm(tsk, mm) \
172do { \
173 load_gs_index(0); \
174 loadsegment(fs, 0); \
175} while (0)
176#endif
c3c2fee3 177
a1ea1c03
DH
178static inline void arch_dup_mmap(struct mm_struct *oldmm,
179 struct mm_struct *mm)
180{
181 paravirt_arch_dup_mmap(oldmm, mm);
182}
183
184static inline void arch_exit_mmap(struct mm_struct *mm)
185{
186 paravirt_arch_exit_mmap(mm);
187}
188
b0e9b09b
DH
189#ifdef CONFIG_X86_64
190static inline bool is_64bit_mm(struct mm_struct *mm)
191{
97f2645f 192 return !IS_ENABLED(CONFIG_IA32_EMULATION) ||
b0e9b09b
DH
193 !(mm->context.ia32_compat == TIF_IA32);
194}
195#else
196static inline bool is_64bit_mm(struct mm_struct *mm)
197{
198 return false;
199}
200#endif
201
fe3d197f
DH
202static inline void arch_bprm_mm_init(struct mm_struct *mm,
203 struct vm_area_struct *vma)
204{
205 mpx_mm_init(mm);
206}
207
1de4fa14
DH
208static inline void arch_unmap(struct mm_struct *mm, struct vm_area_struct *vma,
209 unsigned long start, unsigned long end)
210{
c922228e
DH
211 /*
212 * mpx_notify_unmap() goes and reads a rarely-hot
213 * cacheline in the mm_struct. That can be expensive
214 * enough to be seen in profiles.
215 *
216 * The mpx_notify_unmap() call and its contents have been
217 * observed to affect munmap() performance on hardware
218 * where MPX is not present.
219 *
220 * The unlikely() optimizes for the fast case: no MPX
221 * in the CPU, or no MPX use in the process. Even if
222 * we get this wrong (in the unlikely event that MPX
223 * is widely enabled on some system) the overhead of
224 * MPX itself (reading bounds tables) is expected to
225 * overwhelm the overhead of getting this unlikely()
226 * consistently wrong.
227 */
228 if (unlikely(cpu_feature_enabled(X86_FEATURE_MPX)))
229 mpx_notify_unmap(mm, vma, start, end);
1de4fa14
DH
230}
231
7d06d9c9 232#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
8f62c883
DH
233static inline int vma_pkey(struct vm_area_struct *vma)
234{
8f62c883
DH
235 unsigned long vma_pkey_mask = VM_PKEY_BIT0 | VM_PKEY_BIT1 |
236 VM_PKEY_BIT2 | VM_PKEY_BIT3;
7d06d9c9
DH
237
238 return (vma->vm_flags & vma_pkey_mask) >> VM_PKEY_SHIFT;
239}
240#else
241static inline int vma_pkey(struct vm_area_struct *vma)
242{
243 return 0;
8f62c883 244}
7d06d9c9 245#endif
8f62c883 246
33a709b2
DH
247/*
248 * We only want to enforce protection keys on the current process
249 * because we effectively have no access to PKRU for other
250 * processes or any way to tell *which * PKRU in a threaded
251 * process we could use.
252 *
253 * So do not enforce things if the VMA is not from the current
254 * mm, or if we are in a kernel thread.
255 */
256static inline bool vma_is_foreign(struct vm_area_struct *vma)
257{
258 if (!current->mm)
259 return true;
260 /*
261 * Should PKRU be enforced on the access to this VMA? If
262 * the VMA is from another process, then PKRU has no
263 * relevance and should not be enforced.
264 */
265 if (current->mm != vma->vm_mm)
266 return true;
267
268 return false;
269}
270
1b2ee126 271static inline bool arch_vma_access_permitted(struct vm_area_struct *vma,
d61172b4 272 bool write, bool execute, bool foreign)
33a709b2 273{
d61172b4
DH
274 /* pkeys never affect instruction fetches */
275 if (execute)
276 return true;
33a709b2 277 /* allow access if the VMA is not one from this process */
1b2ee126 278 if (foreign || vma_is_foreign(vma))
33a709b2
DH
279 return true;
280 return __pkru_allows_pkey(vma_pkey(vma), write);
281}
282
d6e41f11
AL
283
284/*
285 * This can be used from process context to figure out what the value of
6c690ee1 286 * CR3 is without needing to do a (slow) __read_cr3().
d6e41f11
AL
287 *
288 * It's intended to be used for code like KVM that sneakily changes CR3
289 * and needs to restore it. It needs to be used very carefully.
290 */
291static inline unsigned long __get_current_cr3_fast(void)
292{
293 unsigned long cr3 = __pa(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd);
294
295 /* For now, be very restrictive about when this can be called. */
4c07f904 296 VM_WARN_ON(in_nmi() || preemptible());
d6e41f11 297
6c690ee1 298 VM_BUG_ON(cr3 != __read_cr3());
d6e41f11
AL
299 return cr3;
300}
301
1965aae3 302#endif /* _ASM_X86_MMU_CONTEXT_H */