]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/kernel/alternative.c
x86/alternative: Use ALTERNATIVE_TERNARY() in _static_cpu_has()
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kernel / alternative.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
c767a54b
JP
2#define pr_fmt(fmt) "SMP alternatives: " fmt
3
9a0b5817 4#include <linux/module.h>
f6a57033 5#include <linux/sched.h>
d769811c 6#include <linux/perf_event.h>
2f1dafe5 7#include <linux/mutex.h>
9a0b5817 8#include <linux/list.h>
8b5a10fc 9#include <linux/stringify.h>
ca15ca40 10#include <linux/highmem.h>
19d36ccd
AK
11#include <linux/mm.h>
12#include <linux/vmalloc.h>
3945dab4 13#include <linux/memory.h>
3d55cc8a 14#include <linux/stop_machine.h>
5a0e3ad6 15#include <linux/slab.h>
fd4363ff 16#include <linux/kdebug.h>
c13324a5 17#include <linux/kprobes.h>
b3fd8e83 18#include <linux/mmu_context.h>
c0213b0a 19#include <linux/bsearch.h>
9998a983 20#include <linux/sync_core.h>
35de5b06 21#include <asm/text-patching.h>
9a0b5817
GH
22#include <asm/alternative.h>
23#include <asm/sections.h>
8f4e956b
AK
24#include <asm/mce.h>
25#include <asm/nmi.h>
e587cadd 26#include <asm/cacheflush.h>
78ff7fae 27#include <asm/tlbflush.h>
3a125539 28#include <asm/insn.h>
e587cadd 29#include <asm/io.h>
78ff7fae 30#include <asm/fixmap.h>
9a0b5817 31
5e907bb0
IM
32int __read_mostly alternatives_patched;
33
34EXPORT_SYMBOL_GPL(alternatives_patched);
35
ab144f5e
AK
36#define MAX_PATCH_LEN (255-1)
37
8b5a10fc 38static int __initdata_or_module debug_alternative;
b7fb4af0 39
d167a518
GH
40static int __init debug_alt(char *str)
41{
42 debug_alternative = 1;
43 return 1;
44}
d167a518
GH
45__setup("debug-alternative", debug_alt);
46
09488165
JB
47static int noreplace_smp;
48
b7fb4af0
JF
49static int __init setup_noreplace_smp(char *str)
50{
51 noreplace_smp = 1;
52 return 1;
53}
54__setup("noreplace-smp", setup_noreplace_smp);
55
db477a33
BP
56#define DPRINTK(fmt, args...) \
57do { \
58 if (debug_alternative) \
1b2e335e 59 printk(KERN_DEBUG pr_fmt(fmt) "\n", ##args); \
c767a54b 60} while (0)
d167a518 61
48c7a250
BP
62#define DUMP_BYTES(buf, len, fmt, args...) \
63do { \
64 if (unlikely(debug_alternative)) { \
65 int j; \
66 \
67 if (!(len)) \
68 break; \
69 \
1b2e335e 70 printk(KERN_DEBUG pr_fmt(fmt), ##args); \
48c7a250
BP
71 for (j = 0; j < (len) - 1; j++) \
72 printk(KERN_CONT "%02hhx ", buf[j]); \
73 printk(KERN_CONT "%02hhx\n", buf[j]); \
74 } \
75} while (0)
76
dc326fca
PA
77/*
78 * Each GENERIC_NOPX is of X bytes, and defined as an array of bytes
79 * that correspond to that nop. Getting from one nop to the next, we
80 * add to the array the offset that is equal to the sum of all sizes of
81 * nops preceding the one we are after.
82 *
83 * Note: The GENERIC_NOP5_ATOMIC is at the end, as it breaks the
84 * nice symmetry of sizes of the previous nops.
85 */
8b5a10fc 86#if defined(GENERIC_NOP1) && !defined(CONFIG_X86_64)
dc326fca
PA
87static const unsigned char intelnops[] =
88{
89 GENERIC_NOP1,
90 GENERIC_NOP2,
91 GENERIC_NOP3,
92 GENERIC_NOP4,
93 GENERIC_NOP5,
94 GENERIC_NOP6,
95 GENERIC_NOP7,
96 GENERIC_NOP8,
97 GENERIC_NOP5_ATOMIC
98};
99static const unsigned char * const intel_nops[ASM_NOP_MAX+2] =
100{
9a0b5817
GH
101 NULL,
102 intelnops,
103 intelnops + 1,
104 intelnops + 1 + 2,
105 intelnops + 1 + 2 + 3,
106 intelnops + 1 + 2 + 3 + 4,
107 intelnops + 1 + 2 + 3 + 4 + 5,
108 intelnops + 1 + 2 + 3 + 4 + 5 + 6,
109 intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
dc326fca 110 intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
9a0b5817 111};
d167a518
GH
112#endif
113
114#ifdef K8_NOP1
dc326fca
PA
115static const unsigned char k8nops[] =
116{
117 K8_NOP1,
118 K8_NOP2,
119 K8_NOP3,
120 K8_NOP4,
121 K8_NOP5,
122 K8_NOP6,
123 K8_NOP7,
124 K8_NOP8,
125 K8_NOP5_ATOMIC
126};
127static const unsigned char * const k8_nops[ASM_NOP_MAX+2] =
128{
9a0b5817
GH
129 NULL,
130 k8nops,
131 k8nops + 1,
132 k8nops + 1 + 2,
133 k8nops + 1 + 2 + 3,
134 k8nops + 1 + 2 + 3 + 4,
135 k8nops + 1 + 2 + 3 + 4 + 5,
136 k8nops + 1 + 2 + 3 + 4 + 5 + 6,
137 k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
dc326fca 138 k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
9a0b5817 139};
d167a518
GH
140#endif
141
8b5a10fc 142#if defined(K7_NOP1) && !defined(CONFIG_X86_64)
dc326fca
PA
143static const unsigned char k7nops[] =
144{
145 K7_NOP1,
146 K7_NOP2,
147 K7_NOP3,
148 K7_NOP4,
149 K7_NOP5,
150 K7_NOP6,
151 K7_NOP7,
152 K7_NOP8,
153 K7_NOP5_ATOMIC
154};
155static const unsigned char * const k7_nops[ASM_NOP_MAX+2] =
156{
9a0b5817
GH
157 NULL,
158 k7nops,
159 k7nops + 1,
160 k7nops + 1 + 2,
161 k7nops + 1 + 2 + 3,
162 k7nops + 1 + 2 + 3 + 4,
163 k7nops + 1 + 2 + 3 + 4 + 5,
164 k7nops + 1 + 2 + 3 + 4 + 5 + 6,
165 k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
dc326fca 166 k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
9a0b5817 167};
d167a518
GH
168#endif
169
32c464f5 170#ifdef P6_NOP1
cb09cad4 171static const unsigned char p6nops[] =
dc326fca
PA
172{
173 P6_NOP1,
174 P6_NOP2,
175 P6_NOP3,
176 P6_NOP4,
177 P6_NOP5,
178 P6_NOP6,
179 P6_NOP7,
180 P6_NOP8,
181 P6_NOP5_ATOMIC
182};
183static const unsigned char * const p6_nops[ASM_NOP_MAX+2] =
184{
32c464f5
JB
185 NULL,
186 p6nops,
187 p6nops + 1,
188 p6nops + 1 + 2,
189 p6nops + 1 + 2 + 3,
190 p6nops + 1 + 2 + 3 + 4,
191 p6nops + 1 + 2 + 3 + 4 + 5,
192 p6nops + 1 + 2 + 3 + 4 + 5 + 6,
193 p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
dc326fca 194 p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
32c464f5
JB
195};
196#endif
197
dc326fca 198/* Initialize these to a safe default */
d167a518 199#ifdef CONFIG_X86_64
dc326fca
PA
200const unsigned char * const *ideal_nops = p6_nops;
201#else
202const unsigned char * const *ideal_nops = intel_nops;
203#endif
d167a518 204
dc326fca 205void __init arch_init_ideal_nops(void)
d167a518 206{
dc326fca
PA
207 switch (boot_cpu_data.x86_vendor) {
208 case X86_VENDOR_INTEL:
d8d9766c
PA
209 /*
210 * Due to a decoder implementation quirk, some
211 * specific Intel CPUs actually perform better with
212 * the "k8_nops" than with the SDM-recommended NOPs.
213 */
214 if (boot_cpu_data.x86 == 6 &&
215 boot_cpu_data.x86_model >= 0x0f &&
216 boot_cpu_data.x86_model != 0x1c &&
217 boot_cpu_data.x86_model != 0x26 &&
218 boot_cpu_data.x86_model != 0x27 &&
219 boot_cpu_data.x86_model < 0x30) {
220 ideal_nops = k8_nops;
221 } else if (boot_cpu_has(X86_FEATURE_NOPL)) {
dc326fca
PA
222 ideal_nops = p6_nops;
223 } else {
224#ifdef CONFIG_X86_64
225 ideal_nops = k8_nops;
226#else
227 ideal_nops = intel_nops;
228#endif
229 }
d6250a3f 230 break;
f21262b8 231
c3fecca4
PW
232 case X86_VENDOR_HYGON:
233 ideal_nops = p6_nops;
234 return;
235
f21262b8
BP
236 case X86_VENDOR_AMD:
237 if (boot_cpu_data.x86 > 0xf) {
238 ideal_nops = p6_nops;
239 return;
240 }
241
df561f66 242 fallthrough;
f21262b8 243
dc326fca
PA
244 default:
245#ifdef CONFIG_X86_64
246 ideal_nops = k8_nops;
247#else
248 if (boot_cpu_has(X86_FEATURE_K8))
249 ideal_nops = k8_nops;
250 else if (boot_cpu_has(X86_FEATURE_K7))
251 ideal_nops = k7_nops;
252 else
253 ideal_nops = intel_nops;
254#endif
255 }
9a0b5817
GH
256}
257
ab144f5e 258/* Use this to add nops to a buffer, then text_poke the whole buffer. */
8b5a10fc 259static void __init_or_module add_nops(void *insns, unsigned int len)
139ec7c4 260{
139ec7c4
RR
261 while (len > 0) {
262 unsigned int noplen = len;
263 if (noplen > ASM_NOP_MAX)
264 noplen = ASM_NOP_MAX;
dc326fca 265 memcpy(insns, ideal_nops[noplen], noplen);
139ec7c4
RR
266 insns += noplen;
267 len -= noplen;
268 }
269}
270
d167a518 271extern struct alt_instr __alt_instructions[], __alt_instructions_end[];
5967ed87 272extern s32 __smp_locks[], __smp_locks_end[];
0a203df5 273void text_poke_early(void *addr, const void *opcode, size_t len);
d167a518 274
48c7a250
BP
275/*
276 * Are we looking at a near JMP with a 1 or 4-byte displacement.
277 */
278static inline bool is_jmp(const u8 opcode)
279{
280 return opcode == 0xeb || opcode == 0xe9;
281}
282
283static void __init_or_module
1fc654cf 284recompute_jump(struct alt_instr *a, u8 *orig_insn, u8 *repl_insn, u8 *insn_buff)
48c7a250
BP
285{
286 u8 *next_rip, *tgt_rip;
287 s32 n_dspl, o_dspl;
288 int repl_len;
289
290 if (a->replacementlen != 5)
291 return;
292
1fc654cf 293 o_dspl = *(s32 *)(insn_buff + 1);
48c7a250
BP
294
295 /* next_rip of the replacement JMP */
296 next_rip = repl_insn + a->replacementlen;
297 /* target rip of the replacement JMP */
298 tgt_rip = next_rip + o_dspl;
299 n_dspl = tgt_rip - orig_insn;
300
0e6c16c6 301 DPRINTK("target RIP: %px, new_displ: 0x%x", tgt_rip, n_dspl);
48c7a250
BP
302
303 if (tgt_rip - orig_insn >= 0) {
304 if (n_dspl - 2 <= 127)
305 goto two_byte_jmp;
306 else
307 goto five_byte_jmp;
308 /* negative offset */
309 } else {
310 if (((n_dspl - 2) & 0xff) == (n_dspl - 2))
311 goto two_byte_jmp;
312 else
313 goto five_byte_jmp;
314 }
315
316two_byte_jmp:
317 n_dspl -= 2;
318
1fc654cf
IM
319 insn_buff[0] = 0xeb;
320 insn_buff[1] = (s8)n_dspl;
321 add_nops(insn_buff + 2, 3);
48c7a250
BP
322
323 repl_len = 2;
324 goto done;
325
326five_byte_jmp:
327 n_dspl -= 5;
328
1fc654cf
IM
329 insn_buff[0] = 0xe9;
330 *(s32 *)&insn_buff[1] = n_dspl;
48c7a250
BP
331
332 repl_len = 5;
333
334done:
335
336 DPRINTK("final displ: 0x%08x, JMP 0x%lx",
337 n_dspl, (unsigned long)orig_insn + n_dspl + repl_len);
338}
339
34bfab0e
BP
340/*
341 * "noinline" to cause control flow change and thus invalidate I$ and
342 * cause refetch after modification.
343 */
344static void __init_or_module noinline optimize_nops(struct alt_instr *a, u8 *instr)
4fd4b6e5 345{
66c117d7 346 unsigned long flags;
612e8e93 347 int i;
66c117d7 348
612e8e93
BP
349 for (i = 0; i < a->padlen; i++) {
350 if (instr[i] != 0x90)
351 return;
352 }
69df353f 353
66c117d7 354 local_irq_save(flags);
4fd4b6e5 355 add_nops(instr + (a->instrlen - a->padlen), a->padlen);
66c117d7 356 local_irq_restore(flags);
4fd4b6e5 357
0e6c16c6 358 DUMP_BYTES(instr, a->instrlen, "%px: [%d:%d) optimized NOPs: ",
4fd4b6e5
BP
359 instr, a->instrlen - a->padlen, a->padlen);
360}
361
db477a33
BP
362/*
363 * Replace instructions with better alternatives for this CPU type. This runs
364 * before SMP is initialized to avoid SMP problems with self modifying code.
365 * This implies that asymmetric systems where APs have less capabilities than
366 * the boot processor are not handled. Tough. Make sure you disable such
367 * features by hand.
34bfab0e
BP
368 *
369 * Marked "noinline" to cause control flow change and thus insn cache
370 * to refetch changed I$ lines.
db477a33 371 */
34bfab0e
BP
372void __init_or_module noinline apply_alternatives(struct alt_instr *start,
373 struct alt_instr *end)
9a0b5817 374{
9a0b5817 375 struct alt_instr *a;
59e97e4d 376 u8 *instr, *replacement;
1fc654cf 377 u8 insn_buff[MAX_PATCH_LEN];
9a0b5817 378
0e6c16c6 379 DPRINTK("alt table %px, -> %px", start, end);
50973133
FY
380 /*
381 * The scan order should be from start to end. A later scanned
db477a33 382 * alternative code can overwrite previously scanned alternative code.
50973133
FY
383 * Some kernel functions (e.g. memcpy, memset, etc) use this order to
384 * patch code.
385 *
386 * So be careful if you want to change the scan order to any other
387 * order.
388 */
9a0b5817 389 for (a = start; a < end; a++) {
1fc654cf 390 int insn_buff_sz = 0;
dda7bb76
JG
391 /* Mask away "NOT" flag bit for feature to test. */
392 u16 feature = a->cpuid & ~ALTINSTR_FLAG_INV;
48c7a250 393
59e97e4d
AL
394 instr = (u8 *)&a->instr_offset + a->instr_offset;
395 replacement = (u8 *)&a->repl_offset + a->repl_offset;
1fc654cf 396 BUG_ON(a->instrlen > sizeof(insn_buff));
dda7bb76
JG
397 BUG_ON(feature >= (NCAPINTS + NBUGINTS) * 32);
398
399 /*
400 * Patch if either:
401 * - feature is present
402 * - feature not present but ALTINSTR_FLAG_INV is set to mean,
403 * patch if feature is *NOT* present.
404 */
405 if (!boot_cpu_has(feature) == !(a->cpuid & ALTINSTR_FLAG_INV)) {
4fd4b6e5
BP
406 if (a->padlen > 1)
407 optimize_nops(a, instr);
408
9a0b5817 409 continue;
4fd4b6e5 410 }
59e97e4d 411
dda7bb76
JG
412 DPRINTK("feat: %s%d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d), pad: %d",
413 (a->cpuid & ALTINSTR_FLAG_INV) ? "!" : "",
414 feature >> 5,
415 feature & 0x1f,
c1d4e419 416 instr, instr, a->instrlen,
dbe4058a 417 replacement, a->replacementlen, a->padlen);
db477a33 418
0e6c16c6
BP
419 DUMP_BYTES(instr, a->instrlen, "%px: old_insn: ", instr);
420 DUMP_BYTES(replacement, a->replacementlen, "%px: rpl_insn: ", replacement);
48c7a250 421
1fc654cf
IM
422 memcpy(insn_buff, replacement, a->replacementlen);
423 insn_buff_sz = a->replacementlen;
59e97e4d 424
fc152d22
MJ
425 /*
426 * 0xe8 is a relative jump; fix the offset.
427 *
428 * Instruction length is checked before the opcode to avoid
429 * accessing uninitialized bytes for zero-length replacements.
430 */
1fc654cf
IM
431 if (a->replacementlen == 5 && *insn_buff == 0xe8) {
432 *(s32 *)(insn_buff + 1) += replacement - instr;
48c7a250 433 DPRINTK("Fix CALL offset: 0x%x, CALL 0x%lx",
1fc654cf
IM
434 *(s32 *)(insn_buff + 1),
435 (unsigned long)instr + *(s32 *)(insn_buff + 1) + 5);
db477a33 436 }
59e97e4d 437
48c7a250 438 if (a->replacementlen && is_jmp(replacement[0]))
1fc654cf 439 recompute_jump(a, instr, replacement, insn_buff);
48c7a250
BP
440
441 if (a->instrlen > a->replacementlen) {
1fc654cf 442 add_nops(insn_buff + a->replacementlen,
4332195c 443 a->instrlen - a->replacementlen);
1fc654cf 444 insn_buff_sz += a->instrlen - a->replacementlen;
48c7a250 445 }
1fc654cf 446 DUMP_BYTES(insn_buff, insn_buff_sz, "%px: final_insn: ", instr);
59e97e4d 447
1fc654cf 448 text_poke_early(instr, insn_buff, insn_buff_sz);
9a0b5817
GH
449 }
450}
451
8ec4d41f 452#ifdef CONFIG_SMP
5967ed87
JB
453static void alternatives_smp_lock(const s32 *start, const s32 *end,
454 u8 *text, u8 *text_end)
9a0b5817 455{
5967ed87 456 const s32 *poff;
9a0b5817 457
5967ed87
JB
458 for (poff = start; poff < end; poff++) {
459 u8 *ptr = (u8 *)poff + *poff;
460
461 if (!*poff || ptr < text || ptr >= text_end)
9a0b5817 462 continue;
f88f07e0 463 /* turn DS segment override prefix into lock prefix */
d9c5841e
PA
464 if (*ptr == 0x3e)
465 text_poke(ptr, ((unsigned char []){0xf0}), 1);
4b8073e4 466 }
9a0b5817
GH
467}
468
5967ed87
JB
469static void alternatives_smp_unlock(const s32 *start, const s32 *end,
470 u8 *text, u8 *text_end)
9a0b5817 471{
5967ed87 472 const s32 *poff;
9a0b5817 473
5967ed87
JB
474 for (poff = start; poff < end; poff++) {
475 u8 *ptr = (u8 *)poff + *poff;
476
477 if (!*poff || ptr < text || ptr >= text_end)
9a0b5817 478 continue;
f88f07e0 479 /* turn lock prefix into DS segment override prefix */
d9c5841e
PA
480 if (*ptr == 0xf0)
481 text_poke(ptr, ((unsigned char []){0x3E}), 1);
4b8073e4 482 }
9a0b5817
GH
483}
484
485struct smp_alt_module {
486 /* what is this ??? */
487 struct module *mod;
488 char *name;
489
490 /* ptrs to lock prefixes */
5967ed87
JB
491 const s32 *locks;
492 const s32 *locks_end;
9a0b5817
GH
493
494 /* .text segment, needed to avoid patching init code ;) */
495 u8 *text;
496 u8 *text_end;
497
498 struct list_head next;
499};
500static LIST_HEAD(smp_alt_modules);
e846d139 501static bool uniproc_patched = false; /* protected by text_mutex */
9a0b5817 502
8b5a10fc
JB
503void __init_or_module alternatives_smp_module_add(struct module *mod,
504 char *name,
505 void *locks, void *locks_end,
506 void *text, void *text_end)
9a0b5817
GH
507{
508 struct smp_alt_module *smp;
9a0b5817 509
e846d139 510 mutex_lock(&text_mutex);
816afe4f
RR
511 if (!uniproc_patched)
512 goto unlock;
b7fb4af0 513
816afe4f
RR
514 if (num_possible_cpus() == 1)
515 /* Don't bother remembering, we'll never have to undo it. */
516 goto smp_unlock;
9a0b5817
GH
517
518 smp = kzalloc(sizeof(*smp), GFP_KERNEL);
519 if (NULL == smp)
816afe4f
RR
520 /* we'll run the (safe but slow) SMP code then ... */
521 goto unlock;
9a0b5817
GH
522
523 smp->mod = mod;
524 smp->name = name;
525 smp->locks = locks;
526 smp->locks_end = locks_end;
527 smp->text = text;
528 smp->text_end = text_end;
db477a33
BP
529 DPRINTK("locks %p -> %p, text %p -> %p, name %s\n",
530 smp->locks, smp->locks_end,
9a0b5817
GH
531 smp->text, smp->text_end, smp->name);
532
9a0b5817 533 list_add_tail(&smp->next, &smp_alt_modules);
816afe4f
RR
534smp_unlock:
535 alternatives_smp_unlock(locks, locks_end, text, text_end);
536unlock:
e846d139 537 mutex_unlock(&text_mutex);
9a0b5817
GH
538}
539
8b5a10fc 540void __init_or_module alternatives_smp_module_del(struct module *mod)
9a0b5817
GH
541{
542 struct smp_alt_module *item;
9a0b5817 543
e846d139 544 mutex_lock(&text_mutex);
9a0b5817
GH
545 list_for_each_entry(item, &smp_alt_modules, next) {
546 if (mod != item->mod)
547 continue;
548 list_del(&item->next);
9a0b5817 549 kfree(item);
816afe4f 550 break;
9a0b5817 551 }
e846d139 552 mutex_unlock(&text_mutex);
9a0b5817
GH
553}
554
816afe4f 555void alternatives_enable_smp(void)
9a0b5817
GH
556{
557 struct smp_alt_module *mod;
9a0b5817 558
816afe4f
RR
559 /* Why bother if there are no other CPUs? */
560 BUG_ON(num_possible_cpus() == 1);
9a0b5817 561
e846d139 562 mutex_lock(&text_mutex);
ca74a6f8 563
816afe4f 564 if (uniproc_patched) {
c767a54b 565 pr_info("switching to SMP code\n");
816afe4f 566 BUG_ON(num_online_cpus() != 1);
53756d37
JF
567 clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
568 clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
9a0b5817
GH
569 list_for_each_entry(mod, &smp_alt_modules, next)
570 alternatives_smp_lock(mod->locks, mod->locks_end,
571 mod->text, mod->text_end);
816afe4f 572 uniproc_patched = false;
9a0b5817 573 }
e846d139 574 mutex_unlock(&text_mutex);
9a0b5817
GH
575}
576
e846d139
ZC
577/*
578 * Return 1 if the address range is reserved for SMP-alternatives.
579 * Must hold text_mutex.
580 */
2cfa1978
MH
581int alternatives_text_reserved(void *start, void *end)
582{
583 struct smp_alt_module *mod;
5967ed87 584 const s32 *poff;
076dc4a6
MH
585 u8 *text_start = start;
586 u8 *text_end = end;
2cfa1978 587
e846d139
ZC
588 lockdep_assert_held(&text_mutex);
589
2cfa1978 590 list_for_each_entry(mod, &smp_alt_modules, next) {
076dc4a6 591 if (mod->text > text_end || mod->text_end < text_start)
2cfa1978 592 continue;
5967ed87
JB
593 for (poff = mod->locks; poff < mod->locks_end; poff++) {
594 const u8 *ptr = (const u8 *)poff + *poff;
595
596 if (text_start <= ptr && text_end > ptr)
2cfa1978 597 return 1;
5967ed87 598 }
2cfa1978
MH
599 }
600
601 return 0;
602}
48c7a250 603#endif /* CONFIG_SMP */
8ec4d41f 604
139ec7c4 605#ifdef CONFIG_PARAVIRT
8b5a10fc
JB
606void __init_or_module apply_paravirt(struct paravirt_patch_site *start,
607 struct paravirt_patch_site *end)
139ec7c4 608{
98de032b 609 struct paravirt_patch_site *p;
1fc654cf 610 char insn_buff[MAX_PATCH_LEN];
139ec7c4
RR
611
612 for (p = start; p < end; p++) {
613 unsigned int used;
614
ab144f5e 615 BUG_ON(p->len > MAX_PATCH_LEN);
d34fda4a 616 /* prep the buffer with the original instructions */
1fc654cf 617 memcpy(insn_buff, p->instr, p->len);
46938cc8 618 used = pv_ops.init.patch(p->type, insn_buff, (unsigned long)p->instr, p->len);
7f63c41c 619
63f70270
JF
620 BUG_ON(used > p->len);
621
139ec7c4 622 /* Pad the rest with nops */
1fc654cf
IM
623 add_nops(insn_buff + used, p->len - used);
624 text_poke_early(p->instr, insn_buff, p->len);
139ec7c4 625 }
139ec7c4 626}
98de032b 627extern struct paravirt_patch_site __start_parainstructions[],
139ec7c4
RR
628 __stop_parainstructions[];
629#endif /* CONFIG_PARAVIRT */
630
7457c0da
PZ
631/*
632 * Self-test for the INT3 based CALL emulation code.
633 *
634 * This exercises int3_emulate_call() to make sure INT3 pt_regs are set up
635 * properly and that there is a stack gap between the INT3 frame and the
636 * previous context. Without this gap doing a virtual PUSH on the interrupted
637 * stack would corrupt the INT3 IRET frame.
638 *
639 * See entry_{32,64}.S for more details.
640 */
ecc60610
PZ
641
642/*
643 * We define the int3_magic() function in assembly to control the calling
644 * convention such that we can 'call' it from assembly.
645 */
646
647extern void int3_magic(unsigned int *ptr); /* defined in asm */
648
649asm (
650" .pushsection .init.text, \"ax\", @progbits\n"
651" .type int3_magic, @function\n"
652"int3_magic:\n"
653" movl $1, (%" _ASM_ARG1 ")\n"
654" ret\n"
655" .size int3_magic, .-int3_magic\n"
656" .popsection\n"
657);
7457c0da
PZ
658
659extern __initdata unsigned long int3_selftest_ip; /* defined in asm below */
660
661static int __init
662int3_exception_notify(struct notifier_block *self, unsigned long val, void *data)
663{
664 struct die_args *args = data;
665 struct pt_regs *regs = args->regs;
666
667 if (!regs || user_mode(regs))
668 return NOTIFY_DONE;
669
670 if (val != DIE_INT3)
671 return NOTIFY_DONE;
672
673 if (regs->ip - INT3_INSN_SIZE != int3_selftest_ip)
674 return NOTIFY_DONE;
675
676 int3_emulate_call(regs, (unsigned long)&int3_magic);
677 return NOTIFY_STOP;
678}
679
680static void __init int3_selftest(void)
681{
682 static __initdata struct notifier_block int3_exception_nb = {
683 .notifier_call = int3_exception_notify,
684 .priority = INT_MAX-1, /* last */
685 };
686 unsigned int val = 0;
687
688 BUG_ON(register_die_notifier(&int3_exception_nb));
689
690 /*
691 * Basically: int3_magic(&val); but really complicated :-)
692 *
693 * Stick the address of the INT3 instruction into int3_selftest_ip,
694 * then trigger the INT3, padded with NOPs to match a CALL instruction
695 * length.
696 */
697 asm volatile ("1: int3; nop; nop; nop; nop\n\t"
698 ".pushsection .init.data,\"aw\"\n\t"
699 ".align " __ASM_SEL(4, 8) "\n\t"
700 ".type int3_selftest_ip, @object\n\t"
701 ".size int3_selftest_ip, " __ASM_SEL(4, 8) "\n\t"
702 "int3_selftest_ip:\n\t"
703 __ASM_SEL(.long, .quad) " 1b\n\t"
704 ".popsection\n\t"
ecc60610
PZ
705 : ASM_CALL_CONSTRAINT
706 : __ASM_SEL_RAW(a, D) (&val)
707 : "memory");
7457c0da
PZ
708
709 BUG_ON(val != 1);
710
711 unregister_die_notifier(&int3_exception_nb);
712}
713
9a0b5817
GH
714void __init alternative_instructions(void)
715{
7457c0da
PZ
716 int3_selftest();
717
718 /*
719 * The patching is not fully atomic, so try to avoid local
720 * interruptions that might execute the to be patched code.
721 * Other CPUs are not running.
722 */
8f4e956b 723 stop_nmi();
123aa76e
AK
724
725 /*
726 * Don't stop machine check exceptions while patching.
727 * MCEs only happen when something got corrupted and in this
728 * case we must do something about the corruption.
32b1cbe3 729 * Ignoring it is worse than an unlikely patching race.
123aa76e
AK
730 * Also machine checks tend to be broadcast and if one CPU
731 * goes into machine check the others follow quickly, so we don't
732 * expect a machine check to cause undue problems during to code
733 * patching.
734 */
8f4e956b 735
9a0b5817
GH
736 apply_alternatives(__alt_instructions, __alt_instructions_end);
737
8ec4d41f 738#ifdef CONFIG_SMP
816afe4f
RR
739 /* Patch to UP if other cpus not imminent. */
740 if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
741 uniproc_patched = true;
9a0b5817
GH
742 alternatives_smp_module_add(NULL, "core kernel",
743 __smp_locks, __smp_locks_end,
744 _text, _etext);
9a0b5817 745 }
8f4e956b 746
7457c0da 747 if (!uniproc_patched || num_possible_cpus() == 1) {
f68fd5f4
FW
748 free_init_pages("SMP alternatives",
749 (unsigned long)__smp_locks,
750 (unsigned long)__smp_locks_end);
7457c0da 751 }
816afe4f
RR
752#endif
753
754 apply_paravirt(__parainstructions, __parainstructions_end);
f68fd5f4 755
8f4e956b 756 restart_nmi();
5e907bb0 757 alternatives_patched = 1;
9a0b5817 758}
19d36ccd 759
e587cadd
MD
760/**
761 * text_poke_early - Update instructions on a live kernel at boot time
762 * @addr: address to modify
763 * @opcode: source of the copy
764 * @len: length to copy
765 *
19d36ccd
AK
766 * When you use this code to patch more than one byte of an instruction
767 * you need to make sure that other CPUs cannot execute this code in parallel.
e587cadd 768 * Also no thread must be currently preempted in the middle of these
32b1cbe3
MA
769 * instructions. And on the local CPU you need to be protected against NMI or
770 * MCE handlers seeing an inconsistent instruction while you patch.
19d36ccd 771 */
0a203df5
NA
772void __init_or_module text_poke_early(void *addr, const void *opcode,
773 size_t len)
19d36ccd 774{
e587cadd 775 unsigned long flags;
f2c65fb3
NA
776
777 if (boot_cpu_has(X86_FEATURE_NX) &&
778 is_module_text_address((unsigned long)addr)) {
779 /*
780 * Modules text is marked initially as non-executable, so the
781 * code cannot be running and speculative code-fetches are
782 * prevented. Just change the code.
783 */
784 memcpy(addr, opcode, len);
785 } else {
786 local_irq_save(flags);
787 memcpy(addr, opcode, len);
788 local_irq_restore(flags);
789 sync_core();
790
791 /*
792 * Could also do a CLFLUSH here to speed up CPU recovery; but
793 * that causes hangs on some VIA CPUs.
794 */
795 }
e587cadd
MD
796}
797
9020d395
TG
798typedef struct {
799 struct mm_struct *mm;
800} temp_mm_state_t;
801
802/*
803 * Using a temporary mm allows to set temporary mappings that are not accessible
804 * by other CPUs. Such mappings are needed to perform sensitive memory writes
805 * that override the kernel memory protections (e.g., W^X), without exposing the
806 * temporary page-table mappings that are required for these write operations to
807 * other CPUs. Using a temporary mm also allows to avoid TLB shootdowns when the
808 * mapping is torn down.
809 *
810 * Context: The temporary mm needs to be used exclusively by a single core. To
811 * harden security IRQs must be disabled while the temporary mm is
812 * loaded, thereby preventing interrupt handler bugs from overriding
813 * the kernel memory protection.
814 */
815static inline temp_mm_state_t use_temporary_mm(struct mm_struct *mm)
816{
817 temp_mm_state_t temp_state;
818
819 lockdep_assert_irqs_disabled();
abee7c49
JG
820
821 /*
822 * Make sure not to be in TLB lazy mode, as otherwise we'll end up
823 * with a stale address space WITHOUT being in lazy mode after
824 * restoring the previous mm.
825 */
826 if (this_cpu_read(cpu_tlbstate.is_lazy))
827 leave_mm(smp_processor_id());
828
9020d395
TG
829 temp_state.mm = this_cpu_read(cpu_tlbstate.loaded_mm);
830 switch_mm_irqs_off(NULL, mm, current);
831
832 /*
833 * If breakpoints are enabled, disable them while the temporary mm is
834 * used. Userspace might set up watchpoints on addresses that are used
835 * in the temporary mm, which would lead to wrong signals being sent or
836 * crashes.
837 *
838 * Note that breakpoints are not disabled selectively, which also causes
839 * kernel breakpoints (e.g., perf's) to be disabled. This might be
840 * undesirable, but still seems reasonable as the code that runs in the
841 * temporary mm should be short.
842 */
843 if (hw_breakpoint_active())
844 hw_breakpoint_disable();
845
846 return temp_state;
847}
848
849static inline void unuse_temporary_mm(temp_mm_state_t prev_state)
850{
851 lockdep_assert_irqs_disabled();
852 switch_mm_irqs_off(NULL, prev_state.mm, current);
853
854 /*
855 * Restore the breakpoints if they were disabled before the temporary mm
856 * was loaded.
857 */
858 if (hw_breakpoint_active())
859 hw_breakpoint_restore();
860}
861
4fc19708
NA
862__ro_after_init struct mm_struct *poking_mm;
863__ro_after_init unsigned long poking_addr;
864
e836673c 865static void *__text_poke(void *addr, const void *opcode, size_t len)
e587cadd 866{
b3fd8e83
NA
867 bool cross_page_boundary = offset_in_page(addr) + len > PAGE_SIZE;
868 struct page *pages[2] = {NULL};
869 temp_mm_state_t prev;
78ff7fae 870 unsigned long flags;
b3fd8e83
NA
871 pte_t pte, *ptep;
872 spinlock_t *ptl;
873 pgprot_t pgprot;
e587cadd 874
6fffacb3 875 /*
b3fd8e83
NA
876 * While boot memory allocator is running we cannot use struct pages as
877 * they are not yet initialized. There is no way to recover.
6fffacb3
PT
878 */
879 BUG_ON(!after_bootmem);
880
b7b66baa
MD
881 if (!core_kernel_text((unsigned long)addr)) {
882 pages[0] = vmalloc_to_page(addr);
b3fd8e83
NA
883 if (cross_page_boundary)
884 pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
15a601eb 885 } else {
b7b66baa 886 pages[0] = virt_to_page(addr);
00c6b2d5 887 WARN_ON(!PageReserved(pages[0]));
b3fd8e83
NA
888 if (cross_page_boundary)
889 pages[1] = virt_to_page(addr + PAGE_SIZE);
e587cadd 890 }
b3fd8e83
NA
891 /*
892 * If something went wrong, crash and burn since recovery paths are not
893 * implemented.
894 */
895 BUG_ON(!pages[0] || (cross_page_boundary && !pages[1]));
896
b3fd8e83
NA
897 /*
898 * Map the page without the global bit, as TLB flushing is done with
899 * flush_tlb_mm_range(), which is intended for non-global PTEs.
900 */
901 pgprot = __pgprot(pgprot_val(PAGE_KERNEL) & ~_PAGE_GLOBAL);
902
903 /*
904 * The lock is not really needed, but this allows to avoid open-coding.
905 */
906 ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
907
908 /*
909 * This must not fail; preallocated in poking_init().
910 */
911 VM_BUG_ON(!ptep);
912
a6d996cb
SAS
913 local_irq_save(flags);
914
b3fd8e83
NA
915 pte = mk_pte(pages[0], pgprot);
916 set_pte_at(poking_mm, poking_addr, ptep, pte);
917
918 if (cross_page_boundary) {
919 pte = mk_pte(pages[1], pgprot);
920 set_pte_at(poking_mm, poking_addr + PAGE_SIZE, ptep + 1, pte);
921 }
922
923 /*
924 * Loading the temporary mm behaves as a compiler barrier, which
925 * guarantees that the PTE will be set at the time memcpy() is done.
926 */
927 prev = use_temporary_mm(poking_mm);
928
929 kasan_disable_current();
930 memcpy((u8 *)poking_addr + offset_in_page(addr), opcode, len);
931 kasan_enable_current();
932
933 /*
934 * Ensure that the PTE is only cleared after the instructions of memcpy
935 * were issued by using a compiler barrier.
936 */
937 barrier();
938
939 pte_clear(poking_mm, poking_addr, ptep);
940 if (cross_page_boundary)
941 pte_clear(poking_mm, poking_addr + PAGE_SIZE, ptep + 1);
942
943 /*
944 * Loading the previous page-table hierarchy requires a serializing
945 * instruction that already allows the core to see the updated version.
946 * Xen-PV is assumed to serialize execution in a similar manner.
947 */
948 unuse_temporary_mm(prev);
949
950 /*
951 * Flushing the TLB might involve IPIs, which would require enabled
952 * IRQs, but not if the mm is not used, as it is in this point.
953 */
954 flush_tlb_mm_range(poking_mm, poking_addr, poking_addr +
955 (cross_page_boundary ? 2 : 1) * PAGE_SIZE,
956 PAGE_SHIFT, false);
957
958 /*
959 * If the text does not match what we just wrote then something is
960 * fundamentally screwy; there's nothing we can really do about that.
961 */
962 BUG_ON(memcmp(addr, opcode, len));
963
7cf49427 964 local_irq_restore(flags);
a6d996cb 965 pte_unmap_unlock(ptep, ptl);
e587cadd 966 return addr;
19d36ccd 967}
3d55cc8a 968
e836673c
NA
969/**
970 * text_poke - Update instructions on a live kernel
971 * @addr: address to modify
972 * @opcode: source of the copy
973 * @len: length to copy
974 *
975 * Only atomic text poke/set should be allowed when not doing early patching.
976 * It means the size must be writable atomically and the address must be aligned
977 * in a way that permits an atomic write. It also makes sure we fit on a single
978 * page.
3950746d
NA
979 *
980 * Note that the caller must ensure that if the modified code is part of a
981 * module, the module would not be removed during poking. This can be achieved
982 * by registering a module notifier, and ordering module removal and patching
983 * trough a mutex.
e836673c
NA
984 */
985void *text_poke(void *addr, const void *opcode, size_t len)
986{
987 lockdep_assert_held(&text_mutex);
988
989 return __text_poke(addr, opcode, len);
990}
991
992/**
993 * text_poke_kgdb - Update instructions on a live kernel by kgdb
994 * @addr: address to modify
995 * @opcode: source of the copy
996 * @len: length to copy
997 *
998 * Only atomic text poke/set should be allowed when not doing early patching.
999 * It means the size must be writable atomically and the address must be aligned
1000 * in a way that permits an atomic write. It also makes sure we fit on a single
1001 * page.
1002 *
1003 * Context: should only be used by kgdb, which ensures no other core is running,
1004 * despite the fact it does not hold the text_mutex.
1005 */
1006void *text_poke_kgdb(void *addr, const void *opcode, size_t len)
1007{
1008 return __text_poke(addr, opcode, len);
1009}
1010
fd4363ff
JK
1011static void do_sync_core(void *info)
1012{
1013 sync_core();
1014}
1015
5c02ece8
PZ
1016void text_poke_sync(void)
1017{
1018 on_each_cpu(do_sync_core, NULL, 1);
1019}
1020
18cbc8be 1021struct text_poke_loc {
4531ef6a 1022 s32 rel_addr; /* addr := _stext + rel_addr */
18cbc8be
PZ
1023 s32 rel32;
1024 u8 opcode;
1025 const u8 text[POKE_MAX_OPCODE_SIZE];
d769811c 1026 u8 old;
18cbc8be
PZ
1027};
1028
1f676247 1029struct bp_patching_desc {
c0213b0a
DBO
1030 struct text_poke_loc *vec;
1031 int nr_entries;
1f676247
PZ
1032 atomic_t refs;
1033};
1034
1035static struct bp_patching_desc *bp_desc;
1036
4979fb53
TG
1037static __always_inline
1038struct bp_patching_desc *try_get_desc(struct bp_patching_desc **descp)
1f676247 1039{
ef882bfe 1040 struct bp_patching_desc *desc = __READ_ONCE(*descp); /* rcu_dereference */
1f676247 1041
ef882bfe 1042 if (!desc || !arch_atomic_inc_not_zero(&desc->refs))
1f676247
PZ
1043 return NULL;
1044
1045 return desc;
1046}
1047
4979fb53 1048static __always_inline void put_desc(struct bp_patching_desc *desc)
1f676247
PZ
1049{
1050 smp_mb__before_atomic();
ef882bfe 1051 arch_atomic_dec(&desc->refs);
1f676247 1052}
c0213b0a 1053
4979fb53 1054static __always_inline void *text_poke_addr(struct text_poke_loc *tp)
4531ef6a
PZ
1055{
1056 return _stext + tp->rel_addr;
1057}
1058
f64366ef 1059static __always_inline int patch_cmp(const void *key, const void *elt)
c0213b0a
DBO
1060{
1061 struct text_poke_loc *tp = (struct text_poke_loc *) elt;
1062
4531ef6a 1063 if (key < text_poke_addr(tp))
c0213b0a 1064 return -1;
4531ef6a 1065 if (key > text_poke_addr(tp))
c0213b0a
DBO
1066 return 1;
1067 return 0;
1068}
fd4363ff 1069
7f6fa101 1070noinstr int poke_int3_handler(struct pt_regs *regs)
fd4363ff 1071{
1f676247 1072 struct bp_patching_desc *desc;
c0213b0a 1073 struct text_poke_loc *tp;
1f676247 1074 int len, ret = 0;
c0213b0a 1075 void *ip;
1f676247
PZ
1076
1077 if (user_mode(regs))
1078 return 0;
c0213b0a 1079
01651324
PZ
1080 /*
1081 * Having observed our INT3 instruction, we now must observe
1f676247 1082 * bp_desc:
01651324 1083 *
1f676247 1084 * bp_desc = desc INT3
c3d6324f 1085 * WMB RMB
1f676247 1086 * write INT3 if (desc)
01651324 1087 */
fd4363ff
JK
1088 smp_rmb();
1089
1f676247
PZ
1090 desc = try_get_desc(&bp_desc);
1091 if (!desc)
17f41571 1092 return 0;
fd4363ff 1093
c0213b0a 1094 /*
c3d6324f 1095 * Discount the INT3. See text_poke_bp_batch().
c0213b0a 1096 */
c3d6324f 1097 ip = (void *) regs->ip - INT3_INSN_SIZE;
c0213b0a
DBO
1098
1099 /*
1100 * Skip the binary search if there is a single member in the vector.
1101 */
1f676247 1102 if (unlikely(desc->nr_entries > 1)) {
f64366ef
PZ
1103 tp = __inline_bsearch(ip, desc->vec, desc->nr_entries,
1104 sizeof(struct text_poke_loc),
1105 patch_cmp);
c0213b0a 1106 if (!tp)
1f676247 1107 goto out_put;
c0213b0a 1108 } else {
1f676247 1109 tp = desc->vec;
4531ef6a 1110 if (text_poke_addr(tp) != ip)
1f676247 1111 goto out_put;
c0213b0a
DBO
1112 }
1113
97e6c977
PZ
1114 len = text_opcode_size(tp->opcode);
1115 ip += len;
c3d6324f
PZ
1116
1117 switch (tp->opcode) {
1118 case INT3_INSN_OPCODE:
1119 /*
1120 * Someone poked an explicit INT3, they'll want to handle it,
1121 * do not consume.
1122 */
1f676247 1123 goto out_put;
c3d6324f 1124
c43a43e4
PZ
1125 case RET_INSN_OPCODE:
1126 int3_emulate_ret(regs);
1127 break;
1128
c3d6324f
PZ
1129 case CALL_INSN_OPCODE:
1130 int3_emulate_call(regs, (long)ip + tp->rel32);
1131 break;
1132
1133 case JMP32_INSN_OPCODE:
1134 case JMP8_INSN_OPCODE:
1135 int3_emulate_jmp(regs, (long)ip + tp->rel32);
1136 break;
1137
1138 default:
1139 BUG();
1140 }
17f41571 1141
1f676247
PZ
1142 ret = 1;
1143
1144out_put:
1145 put_desc(desc);
1146 return ret;
fd4363ff 1147}
17f41571 1148
18cbc8be
PZ
1149#define TP_VEC_MAX (PAGE_SIZE / sizeof(struct text_poke_loc))
1150static struct text_poke_loc tp_vec[TP_VEC_MAX];
1151static int tp_vec_nr;
1152
fd4363ff 1153/**
c0213b0a
DBO
1154 * text_poke_bp_batch() -- update instructions on live kernel on SMP
1155 * @tp: vector of instructions to patch
1156 * @nr_entries: number of entries in the vector
fd4363ff
JK
1157 *
1158 * Modify multi-byte instruction by using int3 breakpoint on SMP.
ea8596bb
MH
1159 * We completely avoid stop_machine() here, and achieve the
1160 * synchronization using int3 breakpoint.
fd4363ff
JK
1161 *
1162 * The way it is done:
c3d6324f 1163 * - For each entry in the vector:
c0213b0a 1164 * - add a int3 trap to the address that will be patched
fd4363ff 1165 * - sync cores
c0213b0a
DBO
1166 * - For each entry in the vector:
1167 * - update all but the first byte of the patched range
fd4363ff 1168 * - sync cores
c0213b0a
DBO
1169 * - For each entry in the vector:
1170 * - replace the first byte (int3) by the first byte of
1171 * replacing opcode
fd4363ff 1172 * - sync cores
fd4363ff 1173 */
18cbc8be 1174static void text_poke_bp_batch(struct text_poke_loc *tp, unsigned int nr_entries)
fd4363ff 1175{
1f676247
PZ
1176 struct bp_patching_desc desc = {
1177 .vec = tp,
1178 .nr_entries = nr_entries,
1179 .refs = ATOMIC_INIT(1),
1180 };
c3d6324f 1181 unsigned char int3 = INT3_INSN_OPCODE;
c0213b0a 1182 unsigned int i;
c3d6324f 1183 int do_sync;
9222f606
JK
1184
1185 lockdep_assert_held(&text_mutex);
1186
1f676247 1187 smp_store_release(&bp_desc, &desc); /* rcu_assign_pointer */
c0213b0a 1188
fd4363ff 1189 /*
01651324 1190 * Corresponding read barrier in int3 notifier for making sure the
c0213b0a 1191 * nr_entries and handler are correctly ordered wrt. patching.
fd4363ff
JK
1192 */
1193 smp_wmb();
1194
c0213b0a
DBO
1195 /*
1196 * First step: add a int3 trap to the address that will be patched.
1197 */
d769811c
AH
1198 for (i = 0; i < nr_entries; i++) {
1199 tp[i].old = *(u8 *)text_poke_addr(&tp[i]);
76ffa720 1200 text_poke(text_poke_addr(&tp[i]), &int3, INT3_INSN_SIZE);
d769811c 1201 }
fd4363ff 1202
5c02ece8 1203 text_poke_sync();
fd4363ff 1204
c0213b0a
DBO
1205 /*
1206 * Second step: update all but the first byte of the patched range.
1207 */
c3d6324f 1208 for (do_sync = 0, i = 0; i < nr_entries; i++) {
d769811c 1209 u8 old[POKE_MAX_OPCODE_SIZE] = { tp[i].old, };
97e6c977
PZ
1210 int len = text_opcode_size(tp[i].opcode);
1211
76ffa720 1212 if (len - INT3_INSN_SIZE > 0) {
d769811c
AH
1213 memcpy(old + INT3_INSN_SIZE,
1214 text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
1215 len - INT3_INSN_SIZE);
76ffa720
PZ
1216 text_poke(text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
1217 (const char *)tp[i].text + INT3_INSN_SIZE,
1218 len - INT3_INSN_SIZE);
c3d6324f 1219 do_sync++;
c0213b0a 1220 }
d769811c
AH
1221
1222 /*
1223 * Emit a perf event to record the text poke, primarily to
1224 * support Intel PT decoding which must walk the executable code
1225 * to reconstruct the trace. The flow up to here is:
1226 * - write INT3 byte
1227 * - IPI-SYNC
1228 * - write instruction tail
1229 * At this point the actual control flow will be through the
1230 * INT3 and handler and not hit the old or new instruction.
1231 * Intel PT outputs FUP/TIP packets for the INT3, so the flow
1232 * can still be decoded. Subsequently:
1233 * - emit RECORD_TEXT_POKE with the new instruction
1234 * - IPI-SYNC
1235 * - write first byte
1236 * - IPI-SYNC
1237 * So before the text poke event timestamp, the decoder will see
1238 * either the old instruction flow or FUP/TIP of INT3. After the
1239 * text poke event timestamp, the decoder will see either the
1240 * new instruction flow or FUP/TIP of INT3. Thus decoders can
1241 * use the timestamp as the point at which to modify the
1242 * executable code.
1243 * The old instruction is recorded so that the event can be
1244 * processed forwards or backwards.
1245 */
1246 perf_event_text_poke(text_poke_addr(&tp[i]), old, len,
1247 tp[i].text, len);
c0213b0a
DBO
1248 }
1249
c3d6324f 1250 if (do_sync) {
fd4363ff
JK
1251 /*
1252 * According to Intel, this core syncing is very likely
1253 * not necessary and we'd be safe even without it. But
1254 * better safe than sorry (plus there's not only Intel).
1255 */
5c02ece8 1256 text_poke_sync();
fd4363ff
JK
1257 }
1258
c0213b0a
DBO
1259 /*
1260 * Third step: replace the first byte (int3) by the first byte of
1261 * replacing opcode.
1262 */
c3d6324f
PZ
1263 for (do_sync = 0, i = 0; i < nr_entries; i++) {
1264 if (tp[i].text[0] == INT3_INSN_OPCODE)
1265 continue;
1266
76ffa720 1267 text_poke(text_poke_addr(&tp[i]), tp[i].text, INT3_INSN_SIZE);
c3d6324f
PZ
1268 do_sync++;
1269 }
1270
1271 if (do_sync)
5c02ece8 1272 text_poke_sync();
fd4363ff 1273
01651324 1274 /*
1f676247
PZ
1275 * Remove and synchronize_rcu(), except we have a very primitive
1276 * refcount based completion.
01651324 1277 */
1f676247
PZ
1278 WRITE_ONCE(bp_desc, NULL); /* RCU_INIT_POINTER */
1279 if (!atomic_dec_and_test(&desc.refs))
1280 atomic_cond_read_acquire(&desc.refs, !VAL);
fd4363ff
JK
1281}
1282
244febbe
QH
1283static void text_poke_loc_init(struct text_poke_loc *tp, void *addr,
1284 const void *opcode, size_t len, const void *emulate)
c3d6324f
PZ
1285{
1286 struct insn insn;
1287
18cbc8be 1288 memcpy((void *)tp->text, opcode, len);
c3d6324f
PZ
1289 if (!emulate)
1290 emulate = opcode;
1291
1292 kernel_insn_init(&insn, emulate, MAX_INSN_SIZE);
1293 insn_get_length(&insn);
1294
1295 BUG_ON(!insn_complete(&insn));
1296 BUG_ON(len != insn.length);
1297
4531ef6a 1298 tp->rel_addr = addr - (void *)_stext;
c3d6324f
PZ
1299 tp->opcode = insn.opcode.bytes[0];
1300
1301 switch (tp->opcode) {
1302 case INT3_INSN_OPCODE:
c43a43e4 1303 case RET_INSN_OPCODE:
c3d6324f
PZ
1304 break;
1305
1306 case CALL_INSN_OPCODE:
1307 case JMP32_INSN_OPCODE:
1308 case JMP8_INSN_OPCODE:
1309 tp->rel32 = insn.immediate.value;
1310 break;
1311
1312 default: /* assume NOP */
1313 switch (len) {
1314 case 2: /* NOP2 -- emulate as JMP8+0 */
1315 BUG_ON(memcmp(emulate, ideal_nops[len], len));
1316 tp->opcode = JMP8_INSN_OPCODE;
1317 tp->rel32 = 0;
1318 break;
1319
1320 case 5: /* NOP5 -- emulate as JMP32+0 */
1321 BUG_ON(memcmp(emulate, ideal_nops[NOP_ATOMIC5], len));
1322 tp->opcode = JMP32_INSN_OPCODE;
1323 tp->rel32 = 0;
1324 break;
1325
1326 default: /* unknown instruction */
1327 BUG();
1328 }
1329 break;
1330 }
1331}
1332
18cbc8be
PZ
1333/*
1334 * We hard rely on the tp_vec being ordered; ensure this is so by flushing
1335 * early if needed.
1336 */
1337static bool tp_order_fail(void *addr)
1338{
1339 struct text_poke_loc *tp;
1340
1341 if (!tp_vec_nr)
1342 return false;
1343
1344 if (!addr) /* force */
1345 return true;
1346
1347 tp = &tp_vec[tp_vec_nr - 1];
4531ef6a 1348 if ((unsigned long)text_poke_addr(tp) > (unsigned long)addr)
18cbc8be
PZ
1349 return true;
1350
1351 return false;
1352}
1353
1354static void text_poke_flush(void *addr)
1355{
1356 if (tp_vec_nr == TP_VEC_MAX || tp_order_fail(addr)) {
1357 text_poke_bp_batch(tp_vec, tp_vec_nr);
1358 tp_vec_nr = 0;
1359 }
1360}
1361
1362void text_poke_finish(void)
1363{
1364 text_poke_flush(NULL);
1365}
1366
768ae440 1367void __ref text_poke_queue(void *addr, const void *opcode, size_t len, const void *emulate)
18cbc8be
PZ
1368{
1369 struct text_poke_loc *tp;
1370
768ae440
PZ
1371 if (unlikely(system_state == SYSTEM_BOOTING)) {
1372 text_poke_early(addr, opcode, len);
1373 return;
1374 }
1375
18cbc8be
PZ
1376 text_poke_flush(addr);
1377
1378 tp = &tp_vec[tp_vec_nr++];
1379 text_poke_loc_init(tp, addr, opcode, len, emulate);
1380}
1381
c0213b0a
DBO
1382/**
1383 * text_poke_bp() -- update instructions on live kernel on SMP
1384 * @addr: address to patch
1385 * @opcode: opcode of new instruction
1386 * @len: length to copy
72ebb5ff 1387 * @emulate: instruction to be emulated
c0213b0a
DBO
1388 *
1389 * Update a single instruction with the vector in the stack, avoiding
1390 * dynamically allocated memory. This function should be used when it is
1391 * not possible to allocate memory.
1392 */
768ae440 1393void __ref text_poke_bp(void *addr, const void *opcode, size_t len, const void *emulate)
c0213b0a 1394{
c3d6324f 1395 struct text_poke_loc tp;
c0213b0a 1396
768ae440
PZ
1397 if (unlikely(system_state == SYSTEM_BOOTING)) {
1398 text_poke_early(addr, opcode, len);
1399 return;
1400 }
1401
c3d6324f 1402 text_poke_loc_init(&tp, addr, opcode, len, emulate);
c0213b0a
DBO
1403 text_poke_bp_batch(&tp, 1);
1404}