]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/kernel/alternative.c
treewide: Use fallthrough pseudo-keyword
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kernel / alternative.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
c767a54b
JP
2#define pr_fmt(fmt) "SMP alternatives: " fmt
3
9a0b5817 4#include <linux/module.h>
f6a57033 5#include <linux/sched.h>
d769811c 6#include <linux/perf_event.h>
2f1dafe5 7#include <linux/mutex.h>
9a0b5817 8#include <linux/list.h>
8b5a10fc 9#include <linux/stringify.h>
ca15ca40 10#include <linux/highmem.h>
19d36ccd
AK
11#include <linux/mm.h>
12#include <linux/vmalloc.h>
3945dab4 13#include <linux/memory.h>
3d55cc8a 14#include <linux/stop_machine.h>
5a0e3ad6 15#include <linux/slab.h>
fd4363ff 16#include <linux/kdebug.h>
c13324a5 17#include <linux/kprobes.h>
b3fd8e83 18#include <linux/mmu_context.h>
c0213b0a 19#include <linux/bsearch.h>
9998a983 20#include <linux/sync_core.h>
35de5b06 21#include <asm/text-patching.h>
9a0b5817
GH
22#include <asm/alternative.h>
23#include <asm/sections.h>
8f4e956b
AK
24#include <asm/mce.h>
25#include <asm/nmi.h>
e587cadd 26#include <asm/cacheflush.h>
78ff7fae 27#include <asm/tlbflush.h>
3a125539 28#include <asm/insn.h>
e587cadd 29#include <asm/io.h>
78ff7fae 30#include <asm/fixmap.h>
9a0b5817 31
5e907bb0
IM
32int __read_mostly alternatives_patched;
33
34EXPORT_SYMBOL_GPL(alternatives_patched);
35
ab144f5e
AK
36#define MAX_PATCH_LEN (255-1)
37
8b5a10fc 38static int __initdata_or_module debug_alternative;
b7fb4af0 39
d167a518
GH
40static int __init debug_alt(char *str)
41{
42 debug_alternative = 1;
43 return 1;
44}
d167a518
GH
45__setup("debug-alternative", debug_alt);
46
09488165
JB
47static int noreplace_smp;
48
b7fb4af0
JF
49static int __init setup_noreplace_smp(char *str)
50{
51 noreplace_smp = 1;
52 return 1;
53}
54__setup("noreplace-smp", setup_noreplace_smp);
55
db477a33
BP
56#define DPRINTK(fmt, args...) \
57do { \
58 if (debug_alternative) \
1b2e335e 59 printk(KERN_DEBUG pr_fmt(fmt) "\n", ##args); \
c767a54b 60} while (0)
d167a518 61
48c7a250
BP
62#define DUMP_BYTES(buf, len, fmt, args...) \
63do { \
64 if (unlikely(debug_alternative)) { \
65 int j; \
66 \
67 if (!(len)) \
68 break; \
69 \
1b2e335e 70 printk(KERN_DEBUG pr_fmt(fmt), ##args); \
48c7a250
BP
71 for (j = 0; j < (len) - 1; j++) \
72 printk(KERN_CONT "%02hhx ", buf[j]); \
73 printk(KERN_CONT "%02hhx\n", buf[j]); \
74 } \
75} while (0)
76
dc326fca
PA
77/*
78 * Each GENERIC_NOPX is of X bytes, and defined as an array of bytes
79 * that correspond to that nop. Getting from one nop to the next, we
80 * add to the array the offset that is equal to the sum of all sizes of
81 * nops preceding the one we are after.
82 *
83 * Note: The GENERIC_NOP5_ATOMIC is at the end, as it breaks the
84 * nice symmetry of sizes of the previous nops.
85 */
8b5a10fc 86#if defined(GENERIC_NOP1) && !defined(CONFIG_X86_64)
dc326fca
PA
87static const unsigned char intelnops[] =
88{
89 GENERIC_NOP1,
90 GENERIC_NOP2,
91 GENERIC_NOP3,
92 GENERIC_NOP4,
93 GENERIC_NOP5,
94 GENERIC_NOP6,
95 GENERIC_NOP7,
96 GENERIC_NOP8,
97 GENERIC_NOP5_ATOMIC
98};
99static const unsigned char * const intel_nops[ASM_NOP_MAX+2] =
100{
9a0b5817
GH
101 NULL,
102 intelnops,
103 intelnops + 1,
104 intelnops + 1 + 2,
105 intelnops + 1 + 2 + 3,
106 intelnops + 1 + 2 + 3 + 4,
107 intelnops + 1 + 2 + 3 + 4 + 5,
108 intelnops + 1 + 2 + 3 + 4 + 5 + 6,
109 intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
dc326fca 110 intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
9a0b5817 111};
d167a518
GH
112#endif
113
114#ifdef K8_NOP1
dc326fca
PA
115static const unsigned char k8nops[] =
116{
117 K8_NOP1,
118 K8_NOP2,
119 K8_NOP3,
120 K8_NOP4,
121 K8_NOP5,
122 K8_NOP6,
123 K8_NOP7,
124 K8_NOP8,
125 K8_NOP5_ATOMIC
126};
127static const unsigned char * const k8_nops[ASM_NOP_MAX+2] =
128{
9a0b5817
GH
129 NULL,
130 k8nops,
131 k8nops + 1,
132 k8nops + 1 + 2,
133 k8nops + 1 + 2 + 3,
134 k8nops + 1 + 2 + 3 + 4,
135 k8nops + 1 + 2 + 3 + 4 + 5,
136 k8nops + 1 + 2 + 3 + 4 + 5 + 6,
137 k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
dc326fca 138 k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
9a0b5817 139};
d167a518
GH
140#endif
141
8b5a10fc 142#if defined(K7_NOP1) && !defined(CONFIG_X86_64)
dc326fca
PA
143static const unsigned char k7nops[] =
144{
145 K7_NOP1,
146 K7_NOP2,
147 K7_NOP3,
148 K7_NOP4,
149 K7_NOP5,
150 K7_NOP6,
151 K7_NOP7,
152 K7_NOP8,
153 K7_NOP5_ATOMIC
154};
155static const unsigned char * const k7_nops[ASM_NOP_MAX+2] =
156{
9a0b5817
GH
157 NULL,
158 k7nops,
159 k7nops + 1,
160 k7nops + 1 + 2,
161 k7nops + 1 + 2 + 3,
162 k7nops + 1 + 2 + 3 + 4,
163 k7nops + 1 + 2 + 3 + 4 + 5,
164 k7nops + 1 + 2 + 3 + 4 + 5 + 6,
165 k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
dc326fca 166 k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
9a0b5817 167};
d167a518
GH
168#endif
169
32c464f5 170#ifdef P6_NOP1
cb09cad4 171static const unsigned char p6nops[] =
dc326fca
PA
172{
173 P6_NOP1,
174 P6_NOP2,
175 P6_NOP3,
176 P6_NOP4,
177 P6_NOP5,
178 P6_NOP6,
179 P6_NOP7,
180 P6_NOP8,
181 P6_NOP5_ATOMIC
182};
183static const unsigned char * const p6_nops[ASM_NOP_MAX+2] =
184{
32c464f5
JB
185 NULL,
186 p6nops,
187 p6nops + 1,
188 p6nops + 1 + 2,
189 p6nops + 1 + 2 + 3,
190 p6nops + 1 + 2 + 3 + 4,
191 p6nops + 1 + 2 + 3 + 4 + 5,
192 p6nops + 1 + 2 + 3 + 4 + 5 + 6,
193 p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
dc326fca 194 p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
32c464f5
JB
195};
196#endif
197
dc326fca 198/* Initialize these to a safe default */
d167a518 199#ifdef CONFIG_X86_64
dc326fca
PA
200const unsigned char * const *ideal_nops = p6_nops;
201#else
202const unsigned char * const *ideal_nops = intel_nops;
203#endif
d167a518 204
dc326fca 205void __init arch_init_ideal_nops(void)
d167a518 206{
dc326fca
PA
207 switch (boot_cpu_data.x86_vendor) {
208 case X86_VENDOR_INTEL:
d8d9766c
PA
209 /*
210 * Due to a decoder implementation quirk, some
211 * specific Intel CPUs actually perform better with
212 * the "k8_nops" than with the SDM-recommended NOPs.
213 */
214 if (boot_cpu_data.x86 == 6 &&
215 boot_cpu_data.x86_model >= 0x0f &&
216 boot_cpu_data.x86_model != 0x1c &&
217 boot_cpu_data.x86_model != 0x26 &&
218 boot_cpu_data.x86_model != 0x27 &&
219 boot_cpu_data.x86_model < 0x30) {
220 ideal_nops = k8_nops;
221 } else if (boot_cpu_has(X86_FEATURE_NOPL)) {
dc326fca
PA
222 ideal_nops = p6_nops;
223 } else {
224#ifdef CONFIG_X86_64
225 ideal_nops = k8_nops;
226#else
227 ideal_nops = intel_nops;
228#endif
229 }
d6250a3f 230 break;
f21262b8 231
c3fecca4
PW
232 case X86_VENDOR_HYGON:
233 ideal_nops = p6_nops;
234 return;
235
f21262b8
BP
236 case X86_VENDOR_AMD:
237 if (boot_cpu_data.x86 > 0xf) {
238 ideal_nops = p6_nops;
239 return;
240 }
241
df561f66 242 fallthrough;
f21262b8 243
dc326fca
PA
244 default:
245#ifdef CONFIG_X86_64
246 ideal_nops = k8_nops;
247#else
248 if (boot_cpu_has(X86_FEATURE_K8))
249 ideal_nops = k8_nops;
250 else if (boot_cpu_has(X86_FEATURE_K7))
251 ideal_nops = k7_nops;
252 else
253 ideal_nops = intel_nops;
254#endif
255 }
9a0b5817
GH
256}
257
ab144f5e 258/* Use this to add nops to a buffer, then text_poke the whole buffer. */
8b5a10fc 259static void __init_or_module add_nops(void *insns, unsigned int len)
139ec7c4 260{
139ec7c4
RR
261 while (len > 0) {
262 unsigned int noplen = len;
263 if (noplen > ASM_NOP_MAX)
264 noplen = ASM_NOP_MAX;
dc326fca 265 memcpy(insns, ideal_nops[noplen], noplen);
139ec7c4
RR
266 insns += noplen;
267 len -= noplen;
268 }
269}
270
d167a518 271extern struct alt_instr __alt_instructions[], __alt_instructions_end[];
5967ed87 272extern s32 __smp_locks[], __smp_locks_end[];
0a203df5 273void text_poke_early(void *addr, const void *opcode, size_t len);
d167a518 274
48c7a250
BP
275/*
276 * Are we looking at a near JMP with a 1 or 4-byte displacement.
277 */
278static inline bool is_jmp(const u8 opcode)
279{
280 return opcode == 0xeb || opcode == 0xe9;
281}
282
283static void __init_or_module
1fc654cf 284recompute_jump(struct alt_instr *a, u8 *orig_insn, u8 *repl_insn, u8 *insn_buff)
48c7a250
BP
285{
286 u8 *next_rip, *tgt_rip;
287 s32 n_dspl, o_dspl;
288 int repl_len;
289
290 if (a->replacementlen != 5)
291 return;
292
1fc654cf 293 o_dspl = *(s32 *)(insn_buff + 1);
48c7a250
BP
294
295 /* next_rip of the replacement JMP */
296 next_rip = repl_insn + a->replacementlen;
297 /* target rip of the replacement JMP */
298 tgt_rip = next_rip + o_dspl;
299 n_dspl = tgt_rip - orig_insn;
300
0e6c16c6 301 DPRINTK("target RIP: %px, new_displ: 0x%x", tgt_rip, n_dspl);
48c7a250
BP
302
303 if (tgt_rip - orig_insn >= 0) {
304 if (n_dspl - 2 <= 127)
305 goto two_byte_jmp;
306 else
307 goto five_byte_jmp;
308 /* negative offset */
309 } else {
310 if (((n_dspl - 2) & 0xff) == (n_dspl - 2))
311 goto two_byte_jmp;
312 else
313 goto five_byte_jmp;
314 }
315
316two_byte_jmp:
317 n_dspl -= 2;
318
1fc654cf
IM
319 insn_buff[0] = 0xeb;
320 insn_buff[1] = (s8)n_dspl;
321 add_nops(insn_buff + 2, 3);
48c7a250
BP
322
323 repl_len = 2;
324 goto done;
325
326five_byte_jmp:
327 n_dspl -= 5;
328
1fc654cf
IM
329 insn_buff[0] = 0xe9;
330 *(s32 *)&insn_buff[1] = n_dspl;
48c7a250
BP
331
332 repl_len = 5;
333
334done:
335
336 DPRINTK("final displ: 0x%08x, JMP 0x%lx",
337 n_dspl, (unsigned long)orig_insn + n_dspl + repl_len);
338}
339
34bfab0e
BP
340/*
341 * "noinline" to cause control flow change and thus invalidate I$ and
342 * cause refetch after modification.
343 */
344static void __init_or_module noinline optimize_nops(struct alt_instr *a, u8 *instr)
4fd4b6e5 345{
66c117d7 346 unsigned long flags;
612e8e93 347 int i;
66c117d7 348
612e8e93
BP
349 for (i = 0; i < a->padlen; i++) {
350 if (instr[i] != 0x90)
351 return;
352 }
69df353f 353
66c117d7 354 local_irq_save(flags);
4fd4b6e5 355 add_nops(instr + (a->instrlen - a->padlen), a->padlen);
66c117d7 356 local_irq_restore(flags);
4fd4b6e5 357
0e6c16c6 358 DUMP_BYTES(instr, a->instrlen, "%px: [%d:%d) optimized NOPs: ",
4fd4b6e5
BP
359 instr, a->instrlen - a->padlen, a->padlen);
360}
361
db477a33
BP
362/*
363 * Replace instructions with better alternatives for this CPU type. This runs
364 * before SMP is initialized to avoid SMP problems with self modifying code.
365 * This implies that asymmetric systems where APs have less capabilities than
366 * the boot processor are not handled. Tough. Make sure you disable such
367 * features by hand.
34bfab0e
BP
368 *
369 * Marked "noinline" to cause control flow change and thus insn cache
370 * to refetch changed I$ lines.
db477a33 371 */
34bfab0e
BP
372void __init_or_module noinline apply_alternatives(struct alt_instr *start,
373 struct alt_instr *end)
9a0b5817 374{
9a0b5817 375 struct alt_instr *a;
59e97e4d 376 u8 *instr, *replacement;
1fc654cf 377 u8 insn_buff[MAX_PATCH_LEN];
9a0b5817 378
0e6c16c6 379 DPRINTK("alt table %px, -> %px", start, end);
50973133
FY
380 /*
381 * The scan order should be from start to end. A later scanned
db477a33 382 * alternative code can overwrite previously scanned alternative code.
50973133
FY
383 * Some kernel functions (e.g. memcpy, memset, etc) use this order to
384 * patch code.
385 *
386 * So be careful if you want to change the scan order to any other
387 * order.
388 */
9a0b5817 389 for (a = start; a < end; a++) {
1fc654cf 390 int insn_buff_sz = 0;
48c7a250 391
59e97e4d
AL
392 instr = (u8 *)&a->instr_offset + a->instr_offset;
393 replacement = (u8 *)&a->repl_offset + a->repl_offset;
1fc654cf 394 BUG_ON(a->instrlen > sizeof(insn_buff));
65fc985b 395 BUG_ON(a->cpuid >= (NCAPINTS + NBUGINTS) * 32);
4fd4b6e5
BP
396 if (!boot_cpu_has(a->cpuid)) {
397 if (a->padlen > 1)
398 optimize_nops(a, instr);
399
9a0b5817 400 continue;
4fd4b6e5 401 }
59e97e4d 402
c1d4e419 403 DPRINTK("feat: %d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d), pad: %d",
db477a33
BP
404 a->cpuid >> 5,
405 a->cpuid & 0x1f,
c1d4e419 406 instr, instr, a->instrlen,
dbe4058a 407 replacement, a->replacementlen, a->padlen);
db477a33 408
0e6c16c6
BP
409 DUMP_BYTES(instr, a->instrlen, "%px: old_insn: ", instr);
410 DUMP_BYTES(replacement, a->replacementlen, "%px: rpl_insn: ", replacement);
48c7a250 411
1fc654cf
IM
412 memcpy(insn_buff, replacement, a->replacementlen);
413 insn_buff_sz = a->replacementlen;
59e97e4d 414
fc152d22
MJ
415 /*
416 * 0xe8 is a relative jump; fix the offset.
417 *
418 * Instruction length is checked before the opcode to avoid
419 * accessing uninitialized bytes for zero-length replacements.
420 */
1fc654cf
IM
421 if (a->replacementlen == 5 && *insn_buff == 0xe8) {
422 *(s32 *)(insn_buff + 1) += replacement - instr;
48c7a250 423 DPRINTK("Fix CALL offset: 0x%x, CALL 0x%lx",
1fc654cf
IM
424 *(s32 *)(insn_buff + 1),
425 (unsigned long)instr + *(s32 *)(insn_buff + 1) + 5);
db477a33 426 }
59e97e4d 427
48c7a250 428 if (a->replacementlen && is_jmp(replacement[0]))
1fc654cf 429 recompute_jump(a, instr, replacement, insn_buff);
48c7a250
BP
430
431 if (a->instrlen > a->replacementlen) {
1fc654cf 432 add_nops(insn_buff + a->replacementlen,
4332195c 433 a->instrlen - a->replacementlen);
1fc654cf 434 insn_buff_sz += a->instrlen - a->replacementlen;
48c7a250 435 }
1fc654cf 436 DUMP_BYTES(insn_buff, insn_buff_sz, "%px: final_insn: ", instr);
59e97e4d 437
1fc654cf 438 text_poke_early(instr, insn_buff, insn_buff_sz);
9a0b5817
GH
439 }
440}
441
8ec4d41f 442#ifdef CONFIG_SMP
5967ed87
JB
443static void alternatives_smp_lock(const s32 *start, const s32 *end,
444 u8 *text, u8 *text_end)
9a0b5817 445{
5967ed87 446 const s32 *poff;
9a0b5817 447
5967ed87
JB
448 for (poff = start; poff < end; poff++) {
449 u8 *ptr = (u8 *)poff + *poff;
450
451 if (!*poff || ptr < text || ptr >= text_end)
9a0b5817 452 continue;
f88f07e0 453 /* turn DS segment override prefix into lock prefix */
d9c5841e
PA
454 if (*ptr == 0x3e)
455 text_poke(ptr, ((unsigned char []){0xf0}), 1);
4b8073e4 456 }
9a0b5817
GH
457}
458
5967ed87
JB
459static void alternatives_smp_unlock(const s32 *start, const s32 *end,
460 u8 *text, u8 *text_end)
9a0b5817 461{
5967ed87 462 const s32 *poff;
9a0b5817 463
5967ed87
JB
464 for (poff = start; poff < end; poff++) {
465 u8 *ptr = (u8 *)poff + *poff;
466
467 if (!*poff || ptr < text || ptr >= text_end)
9a0b5817 468 continue;
f88f07e0 469 /* turn lock prefix into DS segment override prefix */
d9c5841e
PA
470 if (*ptr == 0xf0)
471 text_poke(ptr, ((unsigned char []){0x3E}), 1);
4b8073e4 472 }
9a0b5817
GH
473}
474
475struct smp_alt_module {
476 /* what is this ??? */
477 struct module *mod;
478 char *name;
479
480 /* ptrs to lock prefixes */
5967ed87
JB
481 const s32 *locks;
482 const s32 *locks_end;
9a0b5817
GH
483
484 /* .text segment, needed to avoid patching init code ;) */
485 u8 *text;
486 u8 *text_end;
487
488 struct list_head next;
489};
490static LIST_HEAD(smp_alt_modules);
e846d139 491static bool uniproc_patched = false; /* protected by text_mutex */
9a0b5817 492
8b5a10fc
JB
493void __init_or_module alternatives_smp_module_add(struct module *mod,
494 char *name,
495 void *locks, void *locks_end,
496 void *text, void *text_end)
9a0b5817
GH
497{
498 struct smp_alt_module *smp;
9a0b5817 499
e846d139 500 mutex_lock(&text_mutex);
816afe4f
RR
501 if (!uniproc_patched)
502 goto unlock;
b7fb4af0 503
816afe4f
RR
504 if (num_possible_cpus() == 1)
505 /* Don't bother remembering, we'll never have to undo it. */
506 goto smp_unlock;
9a0b5817
GH
507
508 smp = kzalloc(sizeof(*smp), GFP_KERNEL);
509 if (NULL == smp)
816afe4f
RR
510 /* we'll run the (safe but slow) SMP code then ... */
511 goto unlock;
9a0b5817
GH
512
513 smp->mod = mod;
514 smp->name = name;
515 smp->locks = locks;
516 smp->locks_end = locks_end;
517 smp->text = text;
518 smp->text_end = text_end;
db477a33
BP
519 DPRINTK("locks %p -> %p, text %p -> %p, name %s\n",
520 smp->locks, smp->locks_end,
9a0b5817
GH
521 smp->text, smp->text_end, smp->name);
522
9a0b5817 523 list_add_tail(&smp->next, &smp_alt_modules);
816afe4f
RR
524smp_unlock:
525 alternatives_smp_unlock(locks, locks_end, text, text_end);
526unlock:
e846d139 527 mutex_unlock(&text_mutex);
9a0b5817
GH
528}
529
8b5a10fc 530void __init_or_module alternatives_smp_module_del(struct module *mod)
9a0b5817
GH
531{
532 struct smp_alt_module *item;
9a0b5817 533
e846d139 534 mutex_lock(&text_mutex);
9a0b5817
GH
535 list_for_each_entry(item, &smp_alt_modules, next) {
536 if (mod != item->mod)
537 continue;
538 list_del(&item->next);
9a0b5817 539 kfree(item);
816afe4f 540 break;
9a0b5817 541 }
e846d139 542 mutex_unlock(&text_mutex);
9a0b5817
GH
543}
544
816afe4f 545void alternatives_enable_smp(void)
9a0b5817
GH
546{
547 struct smp_alt_module *mod;
9a0b5817 548
816afe4f
RR
549 /* Why bother if there are no other CPUs? */
550 BUG_ON(num_possible_cpus() == 1);
9a0b5817 551
e846d139 552 mutex_lock(&text_mutex);
ca74a6f8 553
816afe4f 554 if (uniproc_patched) {
c767a54b 555 pr_info("switching to SMP code\n");
816afe4f 556 BUG_ON(num_online_cpus() != 1);
53756d37
JF
557 clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
558 clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
9a0b5817
GH
559 list_for_each_entry(mod, &smp_alt_modules, next)
560 alternatives_smp_lock(mod->locks, mod->locks_end,
561 mod->text, mod->text_end);
816afe4f 562 uniproc_patched = false;
9a0b5817 563 }
e846d139 564 mutex_unlock(&text_mutex);
9a0b5817
GH
565}
566
e846d139
ZC
567/*
568 * Return 1 if the address range is reserved for SMP-alternatives.
569 * Must hold text_mutex.
570 */
2cfa1978
MH
571int alternatives_text_reserved(void *start, void *end)
572{
573 struct smp_alt_module *mod;
5967ed87 574 const s32 *poff;
076dc4a6
MH
575 u8 *text_start = start;
576 u8 *text_end = end;
2cfa1978 577
e846d139
ZC
578 lockdep_assert_held(&text_mutex);
579
2cfa1978 580 list_for_each_entry(mod, &smp_alt_modules, next) {
076dc4a6 581 if (mod->text > text_end || mod->text_end < text_start)
2cfa1978 582 continue;
5967ed87
JB
583 for (poff = mod->locks; poff < mod->locks_end; poff++) {
584 const u8 *ptr = (const u8 *)poff + *poff;
585
586 if (text_start <= ptr && text_end > ptr)
2cfa1978 587 return 1;
5967ed87 588 }
2cfa1978
MH
589 }
590
591 return 0;
592}
48c7a250 593#endif /* CONFIG_SMP */
8ec4d41f 594
139ec7c4 595#ifdef CONFIG_PARAVIRT
8b5a10fc
JB
596void __init_or_module apply_paravirt(struct paravirt_patch_site *start,
597 struct paravirt_patch_site *end)
139ec7c4 598{
98de032b 599 struct paravirt_patch_site *p;
1fc654cf 600 char insn_buff[MAX_PATCH_LEN];
139ec7c4
RR
601
602 for (p = start; p < end; p++) {
603 unsigned int used;
604
ab144f5e 605 BUG_ON(p->len > MAX_PATCH_LEN);
d34fda4a 606 /* prep the buffer with the original instructions */
1fc654cf 607 memcpy(insn_buff, p->instr, p->len);
46938cc8 608 used = pv_ops.init.patch(p->type, insn_buff, (unsigned long)p->instr, p->len);
7f63c41c 609
63f70270
JF
610 BUG_ON(used > p->len);
611
139ec7c4 612 /* Pad the rest with nops */
1fc654cf
IM
613 add_nops(insn_buff + used, p->len - used);
614 text_poke_early(p->instr, insn_buff, p->len);
139ec7c4 615 }
139ec7c4 616}
98de032b 617extern struct paravirt_patch_site __start_parainstructions[],
139ec7c4
RR
618 __stop_parainstructions[];
619#endif /* CONFIG_PARAVIRT */
620
7457c0da
PZ
621/*
622 * Self-test for the INT3 based CALL emulation code.
623 *
624 * This exercises int3_emulate_call() to make sure INT3 pt_regs are set up
625 * properly and that there is a stack gap between the INT3 frame and the
626 * previous context. Without this gap doing a virtual PUSH on the interrupted
627 * stack would corrupt the INT3 IRET frame.
628 *
629 * See entry_{32,64}.S for more details.
630 */
ecc60610
PZ
631
632/*
633 * We define the int3_magic() function in assembly to control the calling
634 * convention such that we can 'call' it from assembly.
635 */
636
637extern void int3_magic(unsigned int *ptr); /* defined in asm */
638
639asm (
640" .pushsection .init.text, \"ax\", @progbits\n"
641" .type int3_magic, @function\n"
642"int3_magic:\n"
643" movl $1, (%" _ASM_ARG1 ")\n"
644" ret\n"
645" .size int3_magic, .-int3_magic\n"
646" .popsection\n"
647);
7457c0da
PZ
648
649extern __initdata unsigned long int3_selftest_ip; /* defined in asm below */
650
651static int __init
652int3_exception_notify(struct notifier_block *self, unsigned long val, void *data)
653{
654 struct die_args *args = data;
655 struct pt_regs *regs = args->regs;
656
657 if (!regs || user_mode(regs))
658 return NOTIFY_DONE;
659
660 if (val != DIE_INT3)
661 return NOTIFY_DONE;
662
663 if (regs->ip - INT3_INSN_SIZE != int3_selftest_ip)
664 return NOTIFY_DONE;
665
666 int3_emulate_call(regs, (unsigned long)&int3_magic);
667 return NOTIFY_STOP;
668}
669
670static void __init int3_selftest(void)
671{
672 static __initdata struct notifier_block int3_exception_nb = {
673 .notifier_call = int3_exception_notify,
674 .priority = INT_MAX-1, /* last */
675 };
676 unsigned int val = 0;
677
678 BUG_ON(register_die_notifier(&int3_exception_nb));
679
680 /*
681 * Basically: int3_magic(&val); but really complicated :-)
682 *
683 * Stick the address of the INT3 instruction into int3_selftest_ip,
684 * then trigger the INT3, padded with NOPs to match a CALL instruction
685 * length.
686 */
687 asm volatile ("1: int3; nop; nop; nop; nop\n\t"
688 ".pushsection .init.data,\"aw\"\n\t"
689 ".align " __ASM_SEL(4, 8) "\n\t"
690 ".type int3_selftest_ip, @object\n\t"
691 ".size int3_selftest_ip, " __ASM_SEL(4, 8) "\n\t"
692 "int3_selftest_ip:\n\t"
693 __ASM_SEL(.long, .quad) " 1b\n\t"
694 ".popsection\n\t"
ecc60610
PZ
695 : ASM_CALL_CONSTRAINT
696 : __ASM_SEL_RAW(a, D) (&val)
697 : "memory");
7457c0da
PZ
698
699 BUG_ON(val != 1);
700
701 unregister_die_notifier(&int3_exception_nb);
702}
703
9a0b5817
GH
704void __init alternative_instructions(void)
705{
7457c0da
PZ
706 int3_selftest();
707
708 /*
709 * The patching is not fully atomic, so try to avoid local
710 * interruptions that might execute the to be patched code.
711 * Other CPUs are not running.
712 */
8f4e956b 713 stop_nmi();
123aa76e
AK
714
715 /*
716 * Don't stop machine check exceptions while patching.
717 * MCEs only happen when something got corrupted and in this
718 * case we must do something about the corruption.
32b1cbe3 719 * Ignoring it is worse than an unlikely patching race.
123aa76e
AK
720 * Also machine checks tend to be broadcast and if one CPU
721 * goes into machine check the others follow quickly, so we don't
722 * expect a machine check to cause undue problems during to code
723 * patching.
724 */
8f4e956b 725
9a0b5817
GH
726 apply_alternatives(__alt_instructions, __alt_instructions_end);
727
8ec4d41f 728#ifdef CONFIG_SMP
816afe4f
RR
729 /* Patch to UP if other cpus not imminent. */
730 if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
731 uniproc_patched = true;
9a0b5817
GH
732 alternatives_smp_module_add(NULL, "core kernel",
733 __smp_locks, __smp_locks_end,
734 _text, _etext);
9a0b5817 735 }
8f4e956b 736
7457c0da 737 if (!uniproc_patched || num_possible_cpus() == 1) {
f68fd5f4
FW
738 free_init_pages("SMP alternatives",
739 (unsigned long)__smp_locks,
740 (unsigned long)__smp_locks_end);
7457c0da 741 }
816afe4f
RR
742#endif
743
744 apply_paravirt(__parainstructions, __parainstructions_end);
f68fd5f4 745
8f4e956b 746 restart_nmi();
5e907bb0 747 alternatives_patched = 1;
9a0b5817 748}
19d36ccd 749
e587cadd
MD
750/**
751 * text_poke_early - Update instructions on a live kernel at boot time
752 * @addr: address to modify
753 * @opcode: source of the copy
754 * @len: length to copy
755 *
19d36ccd
AK
756 * When you use this code to patch more than one byte of an instruction
757 * you need to make sure that other CPUs cannot execute this code in parallel.
e587cadd 758 * Also no thread must be currently preempted in the middle of these
32b1cbe3
MA
759 * instructions. And on the local CPU you need to be protected against NMI or
760 * MCE handlers seeing an inconsistent instruction while you patch.
19d36ccd 761 */
0a203df5
NA
762void __init_or_module text_poke_early(void *addr, const void *opcode,
763 size_t len)
19d36ccd 764{
e587cadd 765 unsigned long flags;
f2c65fb3
NA
766
767 if (boot_cpu_has(X86_FEATURE_NX) &&
768 is_module_text_address((unsigned long)addr)) {
769 /*
770 * Modules text is marked initially as non-executable, so the
771 * code cannot be running and speculative code-fetches are
772 * prevented. Just change the code.
773 */
774 memcpy(addr, opcode, len);
775 } else {
776 local_irq_save(flags);
777 memcpy(addr, opcode, len);
778 local_irq_restore(flags);
779 sync_core();
780
781 /*
782 * Could also do a CLFLUSH here to speed up CPU recovery; but
783 * that causes hangs on some VIA CPUs.
784 */
785 }
e587cadd
MD
786}
787
9020d395
TG
788typedef struct {
789 struct mm_struct *mm;
790} temp_mm_state_t;
791
792/*
793 * Using a temporary mm allows to set temporary mappings that are not accessible
794 * by other CPUs. Such mappings are needed to perform sensitive memory writes
795 * that override the kernel memory protections (e.g., W^X), without exposing the
796 * temporary page-table mappings that are required for these write operations to
797 * other CPUs. Using a temporary mm also allows to avoid TLB shootdowns when the
798 * mapping is torn down.
799 *
800 * Context: The temporary mm needs to be used exclusively by a single core. To
801 * harden security IRQs must be disabled while the temporary mm is
802 * loaded, thereby preventing interrupt handler bugs from overriding
803 * the kernel memory protection.
804 */
805static inline temp_mm_state_t use_temporary_mm(struct mm_struct *mm)
806{
807 temp_mm_state_t temp_state;
808
809 lockdep_assert_irqs_disabled();
810 temp_state.mm = this_cpu_read(cpu_tlbstate.loaded_mm);
811 switch_mm_irqs_off(NULL, mm, current);
812
813 /*
814 * If breakpoints are enabled, disable them while the temporary mm is
815 * used. Userspace might set up watchpoints on addresses that are used
816 * in the temporary mm, which would lead to wrong signals being sent or
817 * crashes.
818 *
819 * Note that breakpoints are not disabled selectively, which also causes
820 * kernel breakpoints (e.g., perf's) to be disabled. This might be
821 * undesirable, but still seems reasonable as the code that runs in the
822 * temporary mm should be short.
823 */
824 if (hw_breakpoint_active())
825 hw_breakpoint_disable();
826
827 return temp_state;
828}
829
830static inline void unuse_temporary_mm(temp_mm_state_t prev_state)
831{
832 lockdep_assert_irqs_disabled();
833 switch_mm_irqs_off(NULL, prev_state.mm, current);
834
835 /*
836 * Restore the breakpoints if they were disabled before the temporary mm
837 * was loaded.
838 */
839 if (hw_breakpoint_active())
840 hw_breakpoint_restore();
841}
842
4fc19708
NA
843__ro_after_init struct mm_struct *poking_mm;
844__ro_after_init unsigned long poking_addr;
845
e836673c 846static void *__text_poke(void *addr, const void *opcode, size_t len)
e587cadd 847{
b3fd8e83
NA
848 bool cross_page_boundary = offset_in_page(addr) + len > PAGE_SIZE;
849 struct page *pages[2] = {NULL};
850 temp_mm_state_t prev;
78ff7fae 851 unsigned long flags;
b3fd8e83
NA
852 pte_t pte, *ptep;
853 spinlock_t *ptl;
854 pgprot_t pgprot;
e587cadd 855
6fffacb3 856 /*
b3fd8e83
NA
857 * While boot memory allocator is running we cannot use struct pages as
858 * they are not yet initialized. There is no way to recover.
6fffacb3
PT
859 */
860 BUG_ON(!after_bootmem);
861
b7b66baa
MD
862 if (!core_kernel_text((unsigned long)addr)) {
863 pages[0] = vmalloc_to_page(addr);
b3fd8e83
NA
864 if (cross_page_boundary)
865 pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
15a601eb 866 } else {
b7b66baa 867 pages[0] = virt_to_page(addr);
00c6b2d5 868 WARN_ON(!PageReserved(pages[0]));
b3fd8e83
NA
869 if (cross_page_boundary)
870 pages[1] = virt_to_page(addr + PAGE_SIZE);
e587cadd 871 }
b3fd8e83
NA
872 /*
873 * If something went wrong, crash and burn since recovery paths are not
874 * implemented.
875 */
876 BUG_ON(!pages[0] || (cross_page_boundary && !pages[1]));
877
b3fd8e83
NA
878 /*
879 * Map the page without the global bit, as TLB flushing is done with
880 * flush_tlb_mm_range(), which is intended for non-global PTEs.
881 */
882 pgprot = __pgprot(pgprot_val(PAGE_KERNEL) & ~_PAGE_GLOBAL);
883
884 /*
885 * The lock is not really needed, but this allows to avoid open-coding.
886 */
887 ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
888
889 /*
890 * This must not fail; preallocated in poking_init().
891 */
892 VM_BUG_ON(!ptep);
893
a6d996cb
SAS
894 local_irq_save(flags);
895
b3fd8e83
NA
896 pte = mk_pte(pages[0], pgprot);
897 set_pte_at(poking_mm, poking_addr, ptep, pte);
898
899 if (cross_page_boundary) {
900 pte = mk_pte(pages[1], pgprot);
901 set_pte_at(poking_mm, poking_addr + PAGE_SIZE, ptep + 1, pte);
902 }
903
904 /*
905 * Loading the temporary mm behaves as a compiler barrier, which
906 * guarantees that the PTE will be set at the time memcpy() is done.
907 */
908 prev = use_temporary_mm(poking_mm);
909
910 kasan_disable_current();
911 memcpy((u8 *)poking_addr + offset_in_page(addr), opcode, len);
912 kasan_enable_current();
913
914 /*
915 * Ensure that the PTE is only cleared after the instructions of memcpy
916 * were issued by using a compiler barrier.
917 */
918 barrier();
919
920 pte_clear(poking_mm, poking_addr, ptep);
921 if (cross_page_boundary)
922 pte_clear(poking_mm, poking_addr + PAGE_SIZE, ptep + 1);
923
924 /*
925 * Loading the previous page-table hierarchy requires a serializing
926 * instruction that already allows the core to see the updated version.
927 * Xen-PV is assumed to serialize execution in a similar manner.
928 */
929 unuse_temporary_mm(prev);
930
931 /*
932 * Flushing the TLB might involve IPIs, which would require enabled
933 * IRQs, but not if the mm is not used, as it is in this point.
934 */
935 flush_tlb_mm_range(poking_mm, poking_addr, poking_addr +
936 (cross_page_boundary ? 2 : 1) * PAGE_SIZE,
937 PAGE_SHIFT, false);
938
939 /*
940 * If the text does not match what we just wrote then something is
941 * fundamentally screwy; there's nothing we can really do about that.
942 */
943 BUG_ON(memcmp(addr, opcode, len));
944
7cf49427 945 local_irq_restore(flags);
a6d996cb 946 pte_unmap_unlock(ptep, ptl);
e587cadd 947 return addr;
19d36ccd 948}
3d55cc8a 949
e836673c
NA
950/**
951 * text_poke - Update instructions on a live kernel
952 * @addr: address to modify
953 * @opcode: source of the copy
954 * @len: length to copy
955 *
956 * Only atomic text poke/set should be allowed when not doing early patching.
957 * It means the size must be writable atomically and the address must be aligned
958 * in a way that permits an atomic write. It also makes sure we fit on a single
959 * page.
3950746d
NA
960 *
961 * Note that the caller must ensure that if the modified code is part of a
962 * module, the module would not be removed during poking. This can be achieved
963 * by registering a module notifier, and ordering module removal and patching
964 * trough a mutex.
e836673c
NA
965 */
966void *text_poke(void *addr, const void *opcode, size_t len)
967{
968 lockdep_assert_held(&text_mutex);
969
970 return __text_poke(addr, opcode, len);
971}
972
973/**
974 * text_poke_kgdb - Update instructions on a live kernel by kgdb
975 * @addr: address to modify
976 * @opcode: source of the copy
977 * @len: length to copy
978 *
979 * Only atomic text poke/set should be allowed when not doing early patching.
980 * It means the size must be writable atomically and the address must be aligned
981 * in a way that permits an atomic write. It also makes sure we fit on a single
982 * page.
983 *
984 * Context: should only be used by kgdb, which ensures no other core is running,
985 * despite the fact it does not hold the text_mutex.
986 */
987void *text_poke_kgdb(void *addr, const void *opcode, size_t len)
988{
989 return __text_poke(addr, opcode, len);
990}
991
fd4363ff
JK
992static void do_sync_core(void *info)
993{
994 sync_core();
995}
996
5c02ece8
PZ
997void text_poke_sync(void)
998{
999 on_each_cpu(do_sync_core, NULL, 1);
1000}
1001
18cbc8be 1002struct text_poke_loc {
4531ef6a 1003 s32 rel_addr; /* addr := _stext + rel_addr */
18cbc8be
PZ
1004 s32 rel32;
1005 u8 opcode;
1006 const u8 text[POKE_MAX_OPCODE_SIZE];
d769811c 1007 u8 old;
18cbc8be
PZ
1008};
1009
1f676247 1010struct bp_patching_desc {
c0213b0a
DBO
1011 struct text_poke_loc *vec;
1012 int nr_entries;
1f676247
PZ
1013 atomic_t refs;
1014};
1015
1016static struct bp_patching_desc *bp_desc;
1017
4979fb53
TG
1018static __always_inline
1019struct bp_patching_desc *try_get_desc(struct bp_patching_desc **descp)
1f676247 1020{
ef882bfe 1021 struct bp_patching_desc *desc = __READ_ONCE(*descp); /* rcu_dereference */
1f676247 1022
ef882bfe 1023 if (!desc || !arch_atomic_inc_not_zero(&desc->refs))
1f676247
PZ
1024 return NULL;
1025
1026 return desc;
1027}
1028
4979fb53 1029static __always_inline void put_desc(struct bp_patching_desc *desc)
1f676247
PZ
1030{
1031 smp_mb__before_atomic();
ef882bfe 1032 arch_atomic_dec(&desc->refs);
1f676247 1033}
c0213b0a 1034
4979fb53 1035static __always_inline void *text_poke_addr(struct text_poke_loc *tp)
4531ef6a
PZ
1036{
1037 return _stext + tp->rel_addr;
1038}
1039
f64366ef 1040static __always_inline int patch_cmp(const void *key, const void *elt)
c0213b0a
DBO
1041{
1042 struct text_poke_loc *tp = (struct text_poke_loc *) elt;
1043
4531ef6a 1044 if (key < text_poke_addr(tp))
c0213b0a 1045 return -1;
4531ef6a 1046 if (key > text_poke_addr(tp))
c0213b0a
DBO
1047 return 1;
1048 return 0;
1049}
fd4363ff 1050
7f6fa101 1051noinstr int poke_int3_handler(struct pt_regs *regs)
fd4363ff 1052{
1f676247 1053 struct bp_patching_desc *desc;
c0213b0a 1054 struct text_poke_loc *tp;
1f676247 1055 int len, ret = 0;
c0213b0a 1056 void *ip;
1f676247
PZ
1057
1058 if (user_mode(regs))
1059 return 0;
c0213b0a 1060
01651324
PZ
1061 /*
1062 * Having observed our INT3 instruction, we now must observe
1f676247 1063 * bp_desc:
01651324 1064 *
1f676247 1065 * bp_desc = desc INT3
c3d6324f 1066 * WMB RMB
1f676247 1067 * write INT3 if (desc)
01651324 1068 */
fd4363ff
JK
1069 smp_rmb();
1070
1f676247
PZ
1071 desc = try_get_desc(&bp_desc);
1072 if (!desc)
17f41571 1073 return 0;
fd4363ff 1074
c0213b0a 1075 /*
c3d6324f 1076 * Discount the INT3. See text_poke_bp_batch().
c0213b0a 1077 */
c3d6324f 1078 ip = (void *) regs->ip - INT3_INSN_SIZE;
c0213b0a
DBO
1079
1080 /*
1081 * Skip the binary search if there is a single member in the vector.
1082 */
1f676247 1083 if (unlikely(desc->nr_entries > 1)) {
f64366ef
PZ
1084 tp = __inline_bsearch(ip, desc->vec, desc->nr_entries,
1085 sizeof(struct text_poke_loc),
1086 patch_cmp);
c0213b0a 1087 if (!tp)
1f676247 1088 goto out_put;
c0213b0a 1089 } else {
1f676247 1090 tp = desc->vec;
4531ef6a 1091 if (text_poke_addr(tp) != ip)
1f676247 1092 goto out_put;
c0213b0a
DBO
1093 }
1094
97e6c977
PZ
1095 len = text_opcode_size(tp->opcode);
1096 ip += len;
c3d6324f
PZ
1097
1098 switch (tp->opcode) {
1099 case INT3_INSN_OPCODE:
1100 /*
1101 * Someone poked an explicit INT3, they'll want to handle it,
1102 * do not consume.
1103 */
1f676247 1104 goto out_put;
c3d6324f
PZ
1105
1106 case CALL_INSN_OPCODE:
1107 int3_emulate_call(regs, (long)ip + tp->rel32);
1108 break;
1109
1110 case JMP32_INSN_OPCODE:
1111 case JMP8_INSN_OPCODE:
1112 int3_emulate_jmp(regs, (long)ip + tp->rel32);
1113 break;
1114
1115 default:
1116 BUG();
1117 }
17f41571 1118
1f676247
PZ
1119 ret = 1;
1120
1121out_put:
1122 put_desc(desc);
1123 return ret;
fd4363ff 1124}
17f41571 1125
18cbc8be
PZ
1126#define TP_VEC_MAX (PAGE_SIZE / sizeof(struct text_poke_loc))
1127static struct text_poke_loc tp_vec[TP_VEC_MAX];
1128static int tp_vec_nr;
1129
fd4363ff 1130/**
c0213b0a
DBO
1131 * text_poke_bp_batch() -- update instructions on live kernel on SMP
1132 * @tp: vector of instructions to patch
1133 * @nr_entries: number of entries in the vector
fd4363ff
JK
1134 *
1135 * Modify multi-byte instruction by using int3 breakpoint on SMP.
ea8596bb
MH
1136 * We completely avoid stop_machine() here, and achieve the
1137 * synchronization using int3 breakpoint.
fd4363ff
JK
1138 *
1139 * The way it is done:
c3d6324f 1140 * - For each entry in the vector:
c0213b0a 1141 * - add a int3 trap to the address that will be patched
fd4363ff 1142 * - sync cores
c0213b0a
DBO
1143 * - For each entry in the vector:
1144 * - update all but the first byte of the patched range
fd4363ff 1145 * - sync cores
c0213b0a
DBO
1146 * - For each entry in the vector:
1147 * - replace the first byte (int3) by the first byte of
1148 * replacing opcode
fd4363ff 1149 * - sync cores
fd4363ff 1150 */
18cbc8be 1151static void text_poke_bp_batch(struct text_poke_loc *tp, unsigned int nr_entries)
fd4363ff 1152{
1f676247
PZ
1153 struct bp_patching_desc desc = {
1154 .vec = tp,
1155 .nr_entries = nr_entries,
1156 .refs = ATOMIC_INIT(1),
1157 };
c3d6324f 1158 unsigned char int3 = INT3_INSN_OPCODE;
c0213b0a 1159 unsigned int i;
c3d6324f 1160 int do_sync;
9222f606
JK
1161
1162 lockdep_assert_held(&text_mutex);
1163
1f676247 1164 smp_store_release(&bp_desc, &desc); /* rcu_assign_pointer */
c0213b0a 1165
fd4363ff 1166 /*
01651324 1167 * Corresponding read barrier in int3 notifier for making sure the
c0213b0a 1168 * nr_entries and handler are correctly ordered wrt. patching.
fd4363ff
JK
1169 */
1170 smp_wmb();
1171
c0213b0a
DBO
1172 /*
1173 * First step: add a int3 trap to the address that will be patched.
1174 */
d769811c
AH
1175 for (i = 0; i < nr_entries; i++) {
1176 tp[i].old = *(u8 *)text_poke_addr(&tp[i]);
76ffa720 1177 text_poke(text_poke_addr(&tp[i]), &int3, INT3_INSN_SIZE);
d769811c 1178 }
fd4363ff 1179
5c02ece8 1180 text_poke_sync();
fd4363ff 1181
c0213b0a
DBO
1182 /*
1183 * Second step: update all but the first byte of the patched range.
1184 */
c3d6324f 1185 for (do_sync = 0, i = 0; i < nr_entries; i++) {
d769811c 1186 u8 old[POKE_MAX_OPCODE_SIZE] = { tp[i].old, };
97e6c977
PZ
1187 int len = text_opcode_size(tp[i].opcode);
1188
76ffa720 1189 if (len - INT3_INSN_SIZE > 0) {
d769811c
AH
1190 memcpy(old + INT3_INSN_SIZE,
1191 text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
1192 len - INT3_INSN_SIZE);
76ffa720
PZ
1193 text_poke(text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
1194 (const char *)tp[i].text + INT3_INSN_SIZE,
1195 len - INT3_INSN_SIZE);
c3d6324f 1196 do_sync++;
c0213b0a 1197 }
d769811c
AH
1198
1199 /*
1200 * Emit a perf event to record the text poke, primarily to
1201 * support Intel PT decoding which must walk the executable code
1202 * to reconstruct the trace. The flow up to here is:
1203 * - write INT3 byte
1204 * - IPI-SYNC
1205 * - write instruction tail
1206 * At this point the actual control flow will be through the
1207 * INT3 and handler and not hit the old or new instruction.
1208 * Intel PT outputs FUP/TIP packets for the INT3, so the flow
1209 * can still be decoded. Subsequently:
1210 * - emit RECORD_TEXT_POKE with the new instruction
1211 * - IPI-SYNC
1212 * - write first byte
1213 * - IPI-SYNC
1214 * So before the text poke event timestamp, the decoder will see
1215 * either the old instruction flow or FUP/TIP of INT3. After the
1216 * text poke event timestamp, the decoder will see either the
1217 * new instruction flow or FUP/TIP of INT3. Thus decoders can
1218 * use the timestamp as the point at which to modify the
1219 * executable code.
1220 * The old instruction is recorded so that the event can be
1221 * processed forwards or backwards.
1222 */
1223 perf_event_text_poke(text_poke_addr(&tp[i]), old, len,
1224 tp[i].text, len);
c0213b0a
DBO
1225 }
1226
c3d6324f 1227 if (do_sync) {
fd4363ff
JK
1228 /*
1229 * According to Intel, this core syncing is very likely
1230 * not necessary and we'd be safe even without it. But
1231 * better safe than sorry (plus there's not only Intel).
1232 */
5c02ece8 1233 text_poke_sync();
fd4363ff
JK
1234 }
1235
c0213b0a
DBO
1236 /*
1237 * Third step: replace the first byte (int3) by the first byte of
1238 * replacing opcode.
1239 */
c3d6324f
PZ
1240 for (do_sync = 0, i = 0; i < nr_entries; i++) {
1241 if (tp[i].text[0] == INT3_INSN_OPCODE)
1242 continue;
1243
76ffa720 1244 text_poke(text_poke_addr(&tp[i]), tp[i].text, INT3_INSN_SIZE);
c3d6324f
PZ
1245 do_sync++;
1246 }
1247
1248 if (do_sync)
5c02ece8 1249 text_poke_sync();
fd4363ff 1250
01651324 1251 /*
1f676247
PZ
1252 * Remove and synchronize_rcu(), except we have a very primitive
1253 * refcount based completion.
01651324 1254 */
1f676247
PZ
1255 WRITE_ONCE(bp_desc, NULL); /* RCU_INIT_POINTER */
1256 if (!atomic_dec_and_test(&desc.refs))
1257 atomic_cond_read_acquire(&desc.refs, !VAL);
fd4363ff
JK
1258}
1259
244febbe
QH
1260static void text_poke_loc_init(struct text_poke_loc *tp, void *addr,
1261 const void *opcode, size_t len, const void *emulate)
c3d6324f
PZ
1262{
1263 struct insn insn;
1264
18cbc8be 1265 memcpy((void *)tp->text, opcode, len);
c3d6324f
PZ
1266 if (!emulate)
1267 emulate = opcode;
1268
1269 kernel_insn_init(&insn, emulate, MAX_INSN_SIZE);
1270 insn_get_length(&insn);
1271
1272 BUG_ON(!insn_complete(&insn));
1273 BUG_ON(len != insn.length);
1274
4531ef6a 1275 tp->rel_addr = addr - (void *)_stext;
c3d6324f
PZ
1276 tp->opcode = insn.opcode.bytes[0];
1277
1278 switch (tp->opcode) {
1279 case INT3_INSN_OPCODE:
1280 break;
1281
1282 case CALL_INSN_OPCODE:
1283 case JMP32_INSN_OPCODE:
1284 case JMP8_INSN_OPCODE:
1285 tp->rel32 = insn.immediate.value;
1286 break;
1287
1288 default: /* assume NOP */
1289 switch (len) {
1290 case 2: /* NOP2 -- emulate as JMP8+0 */
1291 BUG_ON(memcmp(emulate, ideal_nops[len], len));
1292 tp->opcode = JMP8_INSN_OPCODE;
1293 tp->rel32 = 0;
1294 break;
1295
1296 case 5: /* NOP5 -- emulate as JMP32+0 */
1297 BUG_ON(memcmp(emulate, ideal_nops[NOP_ATOMIC5], len));
1298 tp->opcode = JMP32_INSN_OPCODE;
1299 tp->rel32 = 0;
1300 break;
1301
1302 default: /* unknown instruction */
1303 BUG();
1304 }
1305 break;
1306 }
1307}
1308
18cbc8be
PZ
1309/*
1310 * We hard rely on the tp_vec being ordered; ensure this is so by flushing
1311 * early if needed.
1312 */
1313static bool tp_order_fail(void *addr)
1314{
1315 struct text_poke_loc *tp;
1316
1317 if (!tp_vec_nr)
1318 return false;
1319
1320 if (!addr) /* force */
1321 return true;
1322
1323 tp = &tp_vec[tp_vec_nr - 1];
4531ef6a 1324 if ((unsigned long)text_poke_addr(tp) > (unsigned long)addr)
18cbc8be
PZ
1325 return true;
1326
1327 return false;
1328}
1329
1330static void text_poke_flush(void *addr)
1331{
1332 if (tp_vec_nr == TP_VEC_MAX || tp_order_fail(addr)) {
1333 text_poke_bp_batch(tp_vec, tp_vec_nr);
1334 tp_vec_nr = 0;
1335 }
1336}
1337
1338void text_poke_finish(void)
1339{
1340 text_poke_flush(NULL);
1341}
1342
768ae440 1343void __ref text_poke_queue(void *addr, const void *opcode, size_t len, const void *emulate)
18cbc8be
PZ
1344{
1345 struct text_poke_loc *tp;
1346
768ae440
PZ
1347 if (unlikely(system_state == SYSTEM_BOOTING)) {
1348 text_poke_early(addr, opcode, len);
1349 return;
1350 }
1351
18cbc8be
PZ
1352 text_poke_flush(addr);
1353
1354 tp = &tp_vec[tp_vec_nr++];
1355 text_poke_loc_init(tp, addr, opcode, len, emulate);
1356}
1357
c0213b0a
DBO
1358/**
1359 * text_poke_bp() -- update instructions on live kernel on SMP
1360 * @addr: address to patch
1361 * @opcode: opcode of new instruction
1362 * @len: length to copy
1363 * @handler: address to jump to when the temporary breakpoint is hit
1364 *
1365 * Update a single instruction with the vector in the stack, avoiding
1366 * dynamically allocated memory. This function should be used when it is
1367 * not possible to allocate memory.
1368 */
768ae440 1369void __ref text_poke_bp(void *addr, const void *opcode, size_t len, const void *emulate)
c0213b0a 1370{
c3d6324f 1371 struct text_poke_loc tp;
c0213b0a 1372
768ae440
PZ
1373 if (unlikely(system_state == SYSTEM_BOOTING)) {
1374 text_poke_early(addr, opcode, len);
1375 return;
1376 }
1377
c3d6324f 1378 text_poke_loc_init(&tp, addr, opcode, len, emulate);
c0213b0a
DBO
1379 text_poke_bp_batch(&tp, 1);
1380}