]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/kernel/amd_iommu.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/lethal/sh-2.6
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / amd_iommu.c
CommitLineData
b6c02715
JR
1/*
2 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/pci.h>
21#include <linux/gfp.h>
22#include <linux/bitops.h>
7f26508b 23#include <linux/debugfs.h>
b6c02715 24#include <linux/scatterlist.h>
51491367 25#include <linux/dma-mapping.h>
b6c02715 26#include <linux/iommu-helper.h>
c156e347 27#include <linux/iommu.h>
b6c02715 28#include <asm/proto.h>
46a7fa27 29#include <asm/iommu.h>
1d9b16d1 30#include <asm/gart.h>
b6c02715 31#include <asm/amd_iommu_types.h>
c6da992e 32#include <asm/amd_iommu.h>
b6c02715
JR
33
34#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
35
136f78a1
JR
36#define EXIT_LOOP_COUNT 10000000
37
b6c02715
JR
38static DEFINE_RWLOCK(amd_iommu_devtable_lock);
39
bd60b735
JR
40/* A list of preallocated protection domains */
41static LIST_HEAD(iommu_pd_list);
42static DEFINE_SPINLOCK(iommu_pd_list_lock);
43
26961efe
JR
44#ifdef CONFIG_IOMMU_API
45static struct iommu_ops amd_iommu_ops;
46#endif
47
431b2a20
JR
48/*
49 * general struct to manage commands send to an IOMMU
50 */
d6449536 51struct iommu_cmd {
b6c02715
JR
52 u32 data[4];
53};
54
bd0e5211
JR
55static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
56 struct unity_map_entry *e);
e275a2a0 57static struct dma_ops_domain *find_protection_domain(u16 devid);
8bda3092
JR
58static u64* alloc_pte(struct protection_domain *dom,
59 unsigned long address, u64
60 **pte_page, gfp_t gfp);
00cd122a
JR
61static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
62 unsigned long start_page,
63 unsigned int pages);
bd0e5211 64
c1eee67b
CW
65#ifndef BUS_NOTIFY_UNBOUND_DRIVER
66#define BUS_NOTIFY_UNBOUND_DRIVER 0x0005
67#endif
68
7f26508b
JR
69#ifdef CONFIG_AMD_IOMMU_STATS
70
71/*
72 * Initialization code for statistics collection
73 */
74
da49f6df 75DECLARE_STATS_COUNTER(compl_wait);
0f2a86f2 76DECLARE_STATS_COUNTER(cnt_map_single);
146a6917 77DECLARE_STATS_COUNTER(cnt_unmap_single);
d03f067a 78DECLARE_STATS_COUNTER(cnt_map_sg);
55877a6b 79DECLARE_STATS_COUNTER(cnt_unmap_sg);
c8f0fb36 80DECLARE_STATS_COUNTER(cnt_alloc_coherent);
5d31ee7e 81DECLARE_STATS_COUNTER(cnt_free_coherent);
c1858976 82DECLARE_STATS_COUNTER(cross_page);
f57d98ae 83DECLARE_STATS_COUNTER(domain_flush_single);
18811f55 84DECLARE_STATS_COUNTER(domain_flush_all);
5774f7c5 85DECLARE_STATS_COUNTER(alloced_io_mem);
8ecaf8f1 86DECLARE_STATS_COUNTER(total_map_requests);
da49f6df 87
7f26508b
JR
88static struct dentry *stats_dir;
89static struct dentry *de_isolate;
90static struct dentry *de_fflush;
91
92static void amd_iommu_stats_add(struct __iommu_counter *cnt)
93{
94 if (stats_dir == NULL)
95 return;
96
97 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
98 &cnt->value);
99}
100
101static void amd_iommu_stats_init(void)
102{
103 stats_dir = debugfs_create_dir("amd-iommu", NULL);
104 if (stats_dir == NULL)
105 return;
106
107 de_isolate = debugfs_create_bool("isolation", 0444, stats_dir,
108 (u32 *)&amd_iommu_isolate);
109
110 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
111 (u32 *)&amd_iommu_unmap_flush);
da49f6df
JR
112
113 amd_iommu_stats_add(&compl_wait);
0f2a86f2 114 amd_iommu_stats_add(&cnt_map_single);
146a6917 115 amd_iommu_stats_add(&cnt_unmap_single);
d03f067a 116 amd_iommu_stats_add(&cnt_map_sg);
55877a6b 117 amd_iommu_stats_add(&cnt_unmap_sg);
c8f0fb36 118 amd_iommu_stats_add(&cnt_alloc_coherent);
5d31ee7e 119 amd_iommu_stats_add(&cnt_free_coherent);
c1858976 120 amd_iommu_stats_add(&cross_page);
f57d98ae 121 amd_iommu_stats_add(&domain_flush_single);
18811f55 122 amd_iommu_stats_add(&domain_flush_all);
5774f7c5 123 amd_iommu_stats_add(&alloced_io_mem);
8ecaf8f1 124 amd_iommu_stats_add(&total_map_requests);
7f26508b
JR
125}
126
127#endif
128
431b2a20 129/* returns !0 if the IOMMU is caching non-present entries in its TLB */
4da70b9e
JR
130static int iommu_has_npcache(struct amd_iommu *iommu)
131{
ae9b9403 132 return iommu->cap & (1UL << IOMMU_CAP_NPCACHE);
4da70b9e
JR
133}
134
a80dc3e0
JR
135/****************************************************************************
136 *
137 * Interrupt handling functions
138 *
139 ****************************************************************************/
140
90008ee4
JR
141static void iommu_print_event(void *__evt)
142{
143 u32 *event = __evt;
144 int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
145 int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
146 int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
147 int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
148 u64 address = (u64)(((u64)event[3]) << 32) | event[2];
149
150 printk(KERN_ERR "AMD IOMMU: Event logged [");
151
152 switch (type) {
153 case EVENT_TYPE_ILL_DEV:
154 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
155 "address=0x%016llx flags=0x%04x]\n",
156 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
157 address, flags);
158 break;
159 case EVENT_TYPE_IO_FAULT:
160 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
161 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
162 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
163 domid, address, flags);
164 break;
165 case EVENT_TYPE_DEV_TAB_ERR:
166 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
167 "address=0x%016llx flags=0x%04x]\n",
168 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
169 address, flags);
170 break;
171 case EVENT_TYPE_PAGE_TAB_ERR:
172 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
173 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
174 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
175 domid, address, flags);
176 break;
177 case EVENT_TYPE_ILL_CMD:
178 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
179 break;
180 case EVENT_TYPE_CMD_HARD_ERR:
181 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
182 "flags=0x%04x]\n", address, flags);
183 break;
184 case EVENT_TYPE_IOTLB_INV_TO:
185 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
186 "address=0x%016llx]\n",
187 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
188 address);
189 break;
190 case EVENT_TYPE_INV_DEV_REQ:
191 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
192 "address=0x%016llx flags=0x%04x]\n",
193 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
194 address, flags);
195 break;
196 default:
197 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
198 }
199}
200
201static void iommu_poll_events(struct amd_iommu *iommu)
202{
203 u32 head, tail;
204 unsigned long flags;
205
206 spin_lock_irqsave(&iommu->lock, flags);
207
208 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
209 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
210
211 while (head != tail) {
212 iommu_print_event(iommu->evt_buf + head);
213 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
214 }
215
216 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
217
218 spin_unlock_irqrestore(&iommu->lock, flags);
219}
220
a80dc3e0
JR
221irqreturn_t amd_iommu_int_handler(int irq, void *data)
222{
90008ee4
JR
223 struct amd_iommu *iommu;
224
3bd22172 225 for_each_iommu(iommu)
90008ee4
JR
226 iommu_poll_events(iommu);
227
228 return IRQ_HANDLED;
a80dc3e0
JR
229}
230
431b2a20
JR
231/****************************************************************************
232 *
233 * IOMMU command queuing functions
234 *
235 ****************************************************************************/
236
237/*
238 * Writes the command to the IOMMUs command buffer and informs the
239 * hardware about the new command. Must be called with iommu->lock held.
240 */
d6449536 241static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
242{
243 u32 tail, head;
244 u8 *target;
245
246 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
8a7c5ef3 247 target = iommu->cmd_buf + tail;
a19ae1ec
JR
248 memcpy_toio(target, cmd, sizeof(*cmd));
249 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
250 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
251 if (tail == head)
252 return -ENOMEM;
253 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
254
255 return 0;
256}
257
431b2a20
JR
258/*
259 * General queuing function for commands. Takes iommu->lock and calls
260 * __iommu_queue_command().
261 */
d6449536 262static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
263{
264 unsigned long flags;
265 int ret;
266
267 spin_lock_irqsave(&iommu->lock, flags);
268 ret = __iommu_queue_command(iommu, cmd);
09ee17eb 269 if (!ret)
0cfd7aa9 270 iommu->need_sync = true;
a19ae1ec
JR
271 spin_unlock_irqrestore(&iommu->lock, flags);
272
273 return ret;
274}
275
8d201968
JR
276/*
277 * This function waits until an IOMMU has completed a completion
278 * wait command
279 */
280static void __iommu_wait_for_completion(struct amd_iommu *iommu)
281{
282 int ready = 0;
283 unsigned status = 0;
284 unsigned long i = 0;
285
da49f6df
JR
286 INC_STATS_COUNTER(compl_wait);
287
8d201968
JR
288 while (!ready && (i < EXIT_LOOP_COUNT)) {
289 ++i;
290 /* wait for the bit to become one */
291 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
292 ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
293 }
294
295 /* set bit back to zero */
296 status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
297 writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);
298
299 if (unlikely(i == EXIT_LOOP_COUNT))
300 panic("AMD IOMMU: Completion wait loop failed\n");
301}
302
303/*
304 * This function queues a completion wait command into the command
305 * buffer of an IOMMU
306 */
307static int __iommu_completion_wait(struct amd_iommu *iommu)
308{
309 struct iommu_cmd cmd;
310
311 memset(&cmd, 0, sizeof(cmd));
312 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
313 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);
314
315 return __iommu_queue_command(iommu, &cmd);
316}
317
431b2a20
JR
318/*
319 * This function is called whenever we need to ensure that the IOMMU has
320 * completed execution of all commands we sent. It sends a
321 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
322 * us about that by writing a value to a physical address we pass with
323 * the command.
324 */
a19ae1ec
JR
325static int iommu_completion_wait(struct amd_iommu *iommu)
326{
8d201968
JR
327 int ret = 0;
328 unsigned long flags;
a19ae1ec 329
7e4f88da
JR
330 spin_lock_irqsave(&iommu->lock, flags);
331
09ee17eb
JR
332 if (!iommu->need_sync)
333 goto out;
334
8d201968 335 ret = __iommu_completion_wait(iommu);
09ee17eb 336
0cfd7aa9 337 iommu->need_sync = false;
a19ae1ec
JR
338
339 if (ret)
7e4f88da 340 goto out;
a19ae1ec 341
8d201968 342 __iommu_wait_for_completion(iommu);
84df8175 343
7e4f88da
JR
344out:
345 spin_unlock_irqrestore(&iommu->lock, flags);
a19ae1ec
JR
346
347 return 0;
348}
349
431b2a20
JR
350/*
351 * Command send function for invalidating a device table entry
352 */
a19ae1ec
JR
353static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
354{
d6449536 355 struct iommu_cmd cmd;
ee2fa743 356 int ret;
a19ae1ec
JR
357
358 BUG_ON(iommu == NULL);
359
360 memset(&cmd, 0, sizeof(cmd));
361 CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
362 cmd.data[0] = devid;
363
ee2fa743
JR
364 ret = iommu_queue_command(iommu, &cmd);
365
ee2fa743 366 return ret;
a19ae1ec
JR
367}
368
237b6f33
JR
369static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
370 u16 domid, int pde, int s)
371{
372 memset(cmd, 0, sizeof(*cmd));
373 address &= PAGE_MASK;
374 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
375 cmd->data[1] |= domid;
376 cmd->data[2] = lower_32_bits(address);
377 cmd->data[3] = upper_32_bits(address);
378 if (s) /* size bit - we flush more than one 4kb page */
379 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
380 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
381 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
382}
383
431b2a20
JR
384/*
385 * Generic command send function for invalidaing TLB entries
386 */
a19ae1ec
JR
387static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
388 u64 address, u16 domid, int pde, int s)
389{
d6449536 390 struct iommu_cmd cmd;
ee2fa743 391 int ret;
a19ae1ec 392
237b6f33 393 __iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
a19ae1ec 394
ee2fa743
JR
395 ret = iommu_queue_command(iommu, &cmd);
396
ee2fa743 397 return ret;
a19ae1ec
JR
398}
399
431b2a20
JR
400/*
401 * TLB invalidation function which is called from the mapping functions.
402 * It invalidates a single PTE if the range to flush is within a single
403 * page. Otherwise it flushes the whole TLB of the IOMMU.
404 */
a19ae1ec
JR
405static int iommu_flush_pages(struct amd_iommu *iommu, u16 domid,
406 u64 address, size_t size)
407{
999ba417 408 int s = 0;
e3c449f5 409 unsigned pages = iommu_num_pages(address, size, PAGE_SIZE);
a19ae1ec
JR
410
411 address &= PAGE_MASK;
412
999ba417
JR
413 if (pages > 1) {
414 /*
415 * If we have to flush more than one page, flush all
416 * TLB entries for this domain
417 */
418 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
419 s = 1;
a19ae1ec
JR
420 }
421
999ba417
JR
422 iommu_queue_inv_iommu_pages(iommu, address, domid, 0, s);
423
a19ae1ec
JR
424 return 0;
425}
b6c02715 426
1c655773
JR
427/* Flush the whole IO/TLB for a given protection domain */
428static void iommu_flush_tlb(struct amd_iommu *iommu, u16 domid)
429{
430 u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
431
f57d98ae
JR
432 INC_STATS_COUNTER(domain_flush_single);
433
1c655773
JR
434 iommu_queue_inv_iommu_pages(iommu, address, domid, 0, 1);
435}
436
43f49609
JR
437/*
438 * This function is used to flush the IO/TLB for a given protection domain
439 * on every IOMMU in the system
440 */
441static void iommu_flush_domain(u16 domid)
442{
443 unsigned long flags;
444 struct amd_iommu *iommu;
445 struct iommu_cmd cmd;
446
18811f55
JR
447 INC_STATS_COUNTER(domain_flush_all);
448
43f49609
JR
449 __iommu_build_inv_iommu_pages(&cmd, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
450 domid, 1, 1);
451
3bd22172 452 for_each_iommu(iommu) {
43f49609
JR
453 spin_lock_irqsave(&iommu->lock, flags);
454 __iommu_queue_command(iommu, &cmd);
455 __iommu_completion_wait(iommu);
456 __iommu_wait_for_completion(iommu);
457 spin_unlock_irqrestore(&iommu->lock, flags);
458 }
459}
43f49609 460
bfd1be18
JR
461void amd_iommu_flush_all_domains(void)
462{
463 int i;
464
465 for (i = 1; i < MAX_DOMAIN_ID; ++i) {
466 if (!test_bit(i, amd_iommu_pd_alloc_bitmap))
467 continue;
468 iommu_flush_domain(i);
469 }
470}
471
7d7a110c
JR
472void amd_iommu_flush_all_devices(void)
473{
474 struct amd_iommu *iommu;
475 int i;
476
477 for (i = 0; i <= amd_iommu_last_bdf; ++i) {
478 if (amd_iommu_pd_table[i] == NULL)
479 continue;
480
481 iommu = amd_iommu_rlookup_table[i];
482 if (!iommu)
483 continue;
484
485 iommu_queue_inv_dev_entry(iommu, i);
486 iommu_completion_wait(iommu);
487 }
488}
489
431b2a20
JR
490/****************************************************************************
491 *
492 * The functions below are used the create the page table mappings for
493 * unity mapped regions.
494 *
495 ****************************************************************************/
496
497/*
498 * Generic mapping functions. It maps a physical address into a DMA
499 * address space. It allocates the page table pages if necessary.
500 * In the future it can be extended to a generic mapping function
501 * supporting all features of AMD IOMMU page tables like level skipping
502 * and full 64 bit address spaces.
503 */
38e817fe
JR
504static int iommu_map_page(struct protection_domain *dom,
505 unsigned long bus_addr,
506 unsigned long phys_addr,
507 int prot)
bd0e5211 508{
8bda3092 509 u64 __pte, *pte;
bd0e5211
JR
510
511 bus_addr = PAGE_ALIGN(bus_addr);
bb9d4ff8 512 phys_addr = PAGE_ALIGN(phys_addr);
bd0e5211
JR
513
514 /* only support 512GB address spaces for now */
515 if (bus_addr > IOMMU_MAP_SIZE_L3 || !(prot & IOMMU_PROT_MASK))
516 return -EINVAL;
517
8bda3092 518 pte = alloc_pte(dom, bus_addr, NULL, GFP_KERNEL);
bd0e5211
JR
519
520 if (IOMMU_PTE_PRESENT(*pte))
521 return -EBUSY;
522
523 __pte = phys_addr | IOMMU_PTE_P;
524 if (prot & IOMMU_PROT_IR)
525 __pte |= IOMMU_PTE_IR;
526 if (prot & IOMMU_PROT_IW)
527 __pte |= IOMMU_PTE_IW;
528
529 *pte = __pte;
530
531 return 0;
532}
533
eb74ff6c
JR
534static void iommu_unmap_page(struct protection_domain *dom,
535 unsigned long bus_addr)
536{
537 u64 *pte;
538
539 pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(bus_addr)];
540
541 if (!IOMMU_PTE_PRESENT(*pte))
542 return;
543
544 pte = IOMMU_PTE_PAGE(*pte);
545 pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];
546
547 if (!IOMMU_PTE_PRESENT(*pte))
548 return;
549
550 pte = IOMMU_PTE_PAGE(*pte);
551 pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];
552
553 *pte = 0;
554}
eb74ff6c 555
431b2a20
JR
556/*
557 * This function checks if a specific unity mapping entry is needed for
558 * this specific IOMMU.
559 */
bd0e5211
JR
560static int iommu_for_unity_map(struct amd_iommu *iommu,
561 struct unity_map_entry *entry)
562{
563 u16 bdf, i;
564
565 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
566 bdf = amd_iommu_alias_table[i];
567 if (amd_iommu_rlookup_table[bdf] == iommu)
568 return 1;
569 }
570
571 return 0;
572}
573
431b2a20
JR
574/*
575 * Init the unity mappings for a specific IOMMU in the system
576 *
577 * Basically iterates over all unity mapping entries and applies them to
578 * the default domain DMA of that IOMMU if necessary.
579 */
bd0e5211
JR
580static int iommu_init_unity_mappings(struct amd_iommu *iommu)
581{
582 struct unity_map_entry *entry;
583 int ret;
584
585 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
586 if (!iommu_for_unity_map(iommu, entry))
587 continue;
588 ret = dma_ops_unity_map(iommu->default_dom, entry);
589 if (ret)
590 return ret;
591 }
592
593 return 0;
594}
595
431b2a20
JR
596/*
597 * This function actually applies the mapping to the page table of the
598 * dma_ops domain.
599 */
bd0e5211
JR
600static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
601 struct unity_map_entry *e)
602{
603 u64 addr;
604 int ret;
605
606 for (addr = e->address_start; addr < e->address_end;
607 addr += PAGE_SIZE) {
38e817fe 608 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot);
bd0e5211
JR
609 if (ret)
610 return ret;
611 /*
612 * if unity mapping is in aperture range mark the page
613 * as allocated in the aperture
614 */
615 if (addr < dma_dom->aperture_size)
c3239567 616 __set_bit(addr >> PAGE_SHIFT,
384de729 617 dma_dom->aperture[0]->bitmap);
bd0e5211
JR
618 }
619
620 return 0;
621}
622
431b2a20
JR
623/*
624 * Inits the unity mappings required for a specific device
625 */
bd0e5211
JR
626static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
627 u16 devid)
628{
629 struct unity_map_entry *e;
630 int ret;
631
632 list_for_each_entry(e, &amd_iommu_unity_map, list) {
633 if (!(devid >= e->devid_start && devid <= e->devid_end))
634 continue;
635 ret = dma_ops_unity_map(dma_dom, e);
636 if (ret)
637 return ret;
638 }
639
640 return 0;
641}
642
431b2a20
JR
643/****************************************************************************
644 *
645 * The next functions belong to the address allocator for the dma_ops
646 * interface functions. They work like the allocators in the other IOMMU
647 * drivers. Its basically a bitmap which marks the allocated pages in
648 * the aperture. Maybe it could be enhanced in the future to a more
649 * efficient allocator.
650 *
651 ****************************************************************************/
d3086444 652
431b2a20 653/*
384de729 654 * The address allocator core functions.
431b2a20
JR
655 *
656 * called with domain->lock held
657 */
384de729 658
00cd122a
JR
659/*
660 * This function checks if there is a PTE for a given dma address. If
661 * there is one, it returns the pointer to it.
662 */
663static u64* fetch_pte(struct protection_domain *domain,
664 unsigned long address)
665{
666 u64 *pte;
667
668 pte = &domain->pt_root[IOMMU_PTE_L2_INDEX(address)];
669
670 if (!IOMMU_PTE_PRESENT(*pte))
671 return NULL;
672
673 pte = IOMMU_PTE_PAGE(*pte);
674 pte = &pte[IOMMU_PTE_L1_INDEX(address)];
675
676 if (!IOMMU_PTE_PRESENT(*pte))
677 return NULL;
678
679 pte = IOMMU_PTE_PAGE(*pte);
680 pte = &pte[IOMMU_PTE_L0_INDEX(address)];
681
682 return pte;
683}
684
9cabe89b
JR
685/*
686 * This function is used to add a new aperture range to an existing
687 * aperture in case of dma_ops domain allocation or address allocation
688 * failure.
689 */
00cd122a
JR
690static int alloc_new_range(struct amd_iommu *iommu,
691 struct dma_ops_domain *dma_dom,
9cabe89b
JR
692 bool populate, gfp_t gfp)
693{
694 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
00cd122a 695 int i;
9cabe89b 696
f5e9705c
JR
697#ifdef CONFIG_IOMMU_STRESS
698 populate = false;
699#endif
700
9cabe89b
JR
701 if (index >= APERTURE_MAX_RANGES)
702 return -ENOMEM;
703
704 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
705 if (!dma_dom->aperture[index])
706 return -ENOMEM;
707
708 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
709 if (!dma_dom->aperture[index]->bitmap)
710 goto out_free;
711
712 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
713
714 if (populate) {
715 unsigned long address = dma_dom->aperture_size;
716 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
717 u64 *pte, *pte_page;
718
719 for (i = 0; i < num_ptes; ++i) {
720 pte = alloc_pte(&dma_dom->domain, address,
721 &pte_page, gfp);
722 if (!pte)
723 goto out_free;
724
725 dma_dom->aperture[index]->pte_pages[i] = pte_page;
726
727 address += APERTURE_RANGE_SIZE / 64;
728 }
729 }
730
731 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
732
00cd122a
JR
733 /* Intialize the exclusion range if necessary */
734 if (iommu->exclusion_start &&
735 iommu->exclusion_start >= dma_dom->aperture[index]->offset &&
736 iommu->exclusion_start < dma_dom->aperture_size) {
737 unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
738 int pages = iommu_num_pages(iommu->exclusion_start,
739 iommu->exclusion_length,
740 PAGE_SIZE);
741 dma_ops_reserve_addresses(dma_dom, startpage, pages);
742 }
743
744 /*
745 * Check for areas already mapped as present in the new aperture
746 * range and mark those pages as reserved in the allocator. Such
747 * mappings may already exist as a result of requested unity
748 * mappings for devices.
749 */
750 for (i = dma_dom->aperture[index]->offset;
751 i < dma_dom->aperture_size;
752 i += PAGE_SIZE) {
753 u64 *pte = fetch_pte(&dma_dom->domain, i);
754 if (!pte || !IOMMU_PTE_PRESENT(*pte))
755 continue;
756
757 dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
758 }
759
9cabe89b
JR
760 return 0;
761
762out_free:
763 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
764
765 kfree(dma_dom->aperture[index]);
766 dma_dom->aperture[index] = NULL;
767
768 return -ENOMEM;
769}
770
384de729
JR
771static unsigned long dma_ops_area_alloc(struct device *dev,
772 struct dma_ops_domain *dom,
773 unsigned int pages,
774 unsigned long align_mask,
775 u64 dma_mask,
776 unsigned long start)
777{
803b8cb4 778 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
384de729
JR
779 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
780 int i = start >> APERTURE_RANGE_SHIFT;
781 unsigned long boundary_size;
782 unsigned long address = -1;
783 unsigned long limit;
784
803b8cb4
JR
785 next_bit >>= PAGE_SHIFT;
786
384de729
JR
787 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
788 PAGE_SIZE) >> PAGE_SHIFT;
789
790 for (;i < max_index; ++i) {
791 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
792
793 if (dom->aperture[i]->offset >= dma_mask)
794 break;
795
796 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
797 dma_mask >> PAGE_SHIFT);
798
799 address = iommu_area_alloc(dom->aperture[i]->bitmap,
800 limit, next_bit, pages, 0,
801 boundary_size, align_mask);
802 if (address != -1) {
803 address = dom->aperture[i]->offset +
804 (address << PAGE_SHIFT);
803b8cb4 805 dom->next_address = address + (pages << PAGE_SHIFT);
384de729
JR
806 break;
807 }
808
809 next_bit = 0;
810 }
811
812 return address;
813}
814
d3086444
JR
815static unsigned long dma_ops_alloc_addresses(struct device *dev,
816 struct dma_ops_domain *dom,
6d4f343f 817 unsigned int pages,
832a90c3
JR
818 unsigned long align_mask,
819 u64 dma_mask)
d3086444 820{
d3086444 821 unsigned long address;
d3086444 822
fe16f088
JR
823#ifdef CONFIG_IOMMU_STRESS
824 dom->next_address = 0;
825 dom->need_flush = true;
826#endif
d3086444 827
384de729 828 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
803b8cb4 829 dma_mask, dom->next_address);
d3086444 830
1c655773 831 if (address == -1) {
803b8cb4 832 dom->next_address = 0;
384de729
JR
833 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
834 dma_mask, 0);
1c655773
JR
835 dom->need_flush = true;
836 }
d3086444 837
384de729 838 if (unlikely(address == -1))
d3086444
JR
839 address = bad_dma_address;
840
841 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
842
843 return address;
844}
845
431b2a20
JR
846/*
847 * The address free function.
848 *
849 * called with domain->lock held
850 */
d3086444
JR
851static void dma_ops_free_addresses(struct dma_ops_domain *dom,
852 unsigned long address,
853 unsigned int pages)
854{
384de729
JR
855 unsigned i = address >> APERTURE_RANGE_SHIFT;
856 struct aperture_range *range = dom->aperture[i];
80be308d 857
384de729
JR
858 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
859
47bccd6b
JR
860#ifdef CONFIG_IOMMU_STRESS
861 if (i < 4)
862 return;
863#endif
80be308d 864
803b8cb4 865 if (address >= dom->next_address)
80be308d 866 dom->need_flush = true;
384de729
JR
867
868 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
803b8cb4 869
384de729
JR
870 iommu_area_free(range->bitmap, address, pages);
871
d3086444
JR
872}
873
431b2a20
JR
874/****************************************************************************
875 *
876 * The next functions belong to the domain allocation. A domain is
877 * allocated for every IOMMU as the default domain. If device isolation
878 * is enabled, every device get its own domain. The most important thing
879 * about domains is the page table mapping the DMA address space they
880 * contain.
881 *
882 ****************************************************************************/
883
ec487d1a
JR
884static u16 domain_id_alloc(void)
885{
886 unsigned long flags;
887 int id;
888
889 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
890 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
891 BUG_ON(id == 0);
892 if (id > 0 && id < MAX_DOMAIN_ID)
893 __set_bit(id, amd_iommu_pd_alloc_bitmap);
894 else
895 id = 0;
896 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
897
898 return id;
899}
900
a2acfb75
JR
901static void domain_id_free(int id)
902{
903 unsigned long flags;
904
905 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
906 if (id > 0 && id < MAX_DOMAIN_ID)
907 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
908 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
909}
a2acfb75 910
431b2a20
JR
911/*
912 * Used to reserve address ranges in the aperture (e.g. for exclusion
913 * ranges.
914 */
ec487d1a
JR
915static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
916 unsigned long start_page,
917 unsigned int pages)
918{
384de729 919 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
ec487d1a
JR
920
921 if (start_page + pages > last_page)
922 pages = last_page - start_page;
923
384de729
JR
924 for (i = start_page; i < start_page + pages; ++i) {
925 int index = i / APERTURE_RANGE_PAGES;
926 int page = i % APERTURE_RANGE_PAGES;
927 __set_bit(page, dom->aperture[index]->bitmap);
928 }
ec487d1a
JR
929}
930
86db2e5d 931static void free_pagetable(struct protection_domain *domain)
ec487d1a
JR
932{
933 int i, j;
934 u64 *p1, *p2, *p3;
935
86db2e5d 936 p1 = domain->pt_root;
ec487d1a
JR
937
938 if (!p1)
939 return;
940
941 for (i = 0; i < 512; ++i) {
942 if (!IOMMU_PTE_PRESENT(p1[i]))
943 continue;
944
945 p2 = IOMMU_PTE_PAGE(p1[i]);
3cc3d84b 946 for (j = 0; j < 512; ++j) {
ec487d1a
JR
947 if (!IOMMU_PTE_PRESENT(p2[j]))
948 continue;
949 p3 = IOMMU_PTE_PAGE(p2[j]);
950 free_page((unsigned long)p3);
951 }
952
953 free_page((unsigned long)p2);
954 }
955
956 free_page((unsigned long)p1);
86db2e5d
JR
957
958 domain->pt_root = NULL;
ec487d1a
JR
959}
960
431b2a20
JR
961/*
962 * Free a domain, only used if something went wrong in the
963 * allocation path and we need to free an already allocated page table
964 */
ec487d1a
JR
965static void dma_ops_domain_free(struct dma_ops_domain *dom)
966{
384de729
JR
967 int i;
968
ec487d1a
JR
969 if (!dom)
970 return;
971
86db2e5d 972 free_pagetable(&dom->domain);
ec487d1a 973
384de729
JR
974 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
975 if (!dom->aperture[i])
976 continue;
977 free_page((unsigned long)dom->aperture[i]->bitmap);
978 kfree(dom->aperture[i]);
979 }
ec487d1a
JR
980
981 kfree(dom);
982}
983
431b2a20
JR
984/*
985 * Allocates a new protection domain usable for the dma_ops functions.
986 * It also intializes the page table and the address allocator data
987 * structures required for the dma_ops interface
988 */
d9cfed92 989static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu)
ec487d1a
JR
990{
991 struct dma_ops_domain *dma_dom;
ec487d1a
JR
992
993 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
994 if (!dma_dom)
995 return NULL;
996
997 spin_lock_init(&dma_dom->domain.lock);
998
999 dma_dom->domain.id = domain_id_alloc();
1000 if (dma_dom->domain.id == 0)
1001 goto free_dma_dom;
1002 dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
1003 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
9fdb19d6 1004 dma_dom->domain.flags = PD_DMA_OPS_MASK;
ec487d1a
JR
1005 dma_dom->domain.priv = dma_dom;
1006 if (!dma_dom->domain.pt_root)
1007 goto free_dma_dom;
ec487d1a 1008
1c655773 1009 dma_dom->need_flush = false;
bd60b735 1010 dma_dom->target_dev = 0xffff;
1c655773 1011
00cd122a 1012 if (alloc_new_range(iommu, dma_dom, true, GFP_KERNEL))
ec487d1a 1013 goto free_dma_dom;
ec487d1a 1014
431b2a20 1015 /*
ec487d1a
JR
1016 * mark the first page as allocated so we never return 0 as
1017 * a valid dma-address. So we can use 0 as error value
431b2a20 1018 */
384de729 1019 dma_dom->aperture[0]->bitmap[0] = 1;
803b8cb4 1020 dma_dom->next_address = 0;
ec487d1a 1021
ec487d1a
JR
1022
1023 return dma_dom;
1024
1025free_dma_dom:
1026 dma_ops_domain_free(dma_dom);
1027
1028 return NULL;
1029}
1030
5b28df6f
JR
1031/*
1032 * little helper function to check whether a given protection domain is a
1033 * dma_ops domain
1034 */
1035static bool dma_ops_domain(struct protection_domain *domain)
1036{
1037 return domain->flags & PD_DMA_OPS_MASK;
1038}
1039
431b2a20
JR
1040/*
1041 * Find out the protection domain structure for a given PCI device. This
1042 * will give us the pointer to the page table root for example.
1043 */
b20ac0d4
JR
1044static struct protection_domain *domain_for_device(u16 devid)
1045{
1046 struct protection_domain *dom;
1047 unsigned long flags;
1048
1049 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
1050 dom = amd_iommu_pd_table[devid];
1051 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1052
1053 return dom;
1054}
1055
431b2a20
JR
1056/*
1057 * If a device is not yet associated with a domain, this function does
1058 * assigns it visible for the hardware
1059 */
f1179dc0
JR
1060static void attach_device(struct amd_iommu *iommu,
1061 struct protection_domain *domain,
1062 u16 devid)
b20ac0d4
JR
1063{
1064 unsigned long flags;
b20ac0d4
JR
1065 u64 pte_root = virt_to_phys(domain->pt_root);
1066
863c74eb
JR
1067 domain->dev_cnt += 1;
1068
38ddf41b
JR
1069 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1070 << DEV_ENTRY_MODE_SHIFT;
1071 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
b20ac0d4
JR
1072
1073 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
38ddf41b
JR
1074 amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
1075 amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
b20ac0d4
JR
1076 amd_iommu_dev_table[devid].data[2] = domain->id;
1077
1078 amd_iommu_pd_table[devid] = domain;
1079 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1080
1081 iommu_queue_inv_dev_entry(iommu, devid);
b20ac0d4
JR
1082}
1083
355bf553
JR
1084/*
1085 * Removes a device from a protection domain (unlocked)
1086 */
1087static void __detach_device(struct protection_domain *domain, u16 devid)
1088{
1089
1090 /* lock domain */
1091 spin_lock(&domain->lock);
1092
1093 /* remove domain from the lookup table */
1094 amd_iommu_pd_table[devid] = NULL;
1095
1096 /* remove entry from the device table seen by the hardware */
1097 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1098 amd_iommu_dev_table[devid].data[1] = 0;
1099 amd_iommu_dev_table[devid].data[2] = 0;
1100
1101 /* decrease reference counter */
1102 domain->dev_cnt -= 1;
1103
1104 /* ready */
1105 spin_unlock(&domain->lock);
1106}
1107
1108/*
1109 * Removes a device from a protection domain (with devtable_lock held)
1110 */
1111static void detach_device(struct protection_domain *domain, u16 devid)
1112{
1113 unsigned long flags;
1114
1115 /* lock device table */
1116 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1117 __detach_device(domain, devid);
1118 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1119}
e275a2a0
JR
1120
1121static int device_change_notifier(struct notifier_block *nb,
1122 unsigned long action, void *data)
1123{
1124 struct device *dev = data;
1125 struct pci_dev *pdev = to_pci_dev(dev);
1126 u16 devid = calc_devid(pdev->bus->number, pdev->devfn);
1127 struct protection_domain *domain;
1128 struct dma_ops_domain *dma_domain;
1129 struct amd_iommu *iommu;
1ac4cbbc 1130 unsigned long flags;
e275a2a0
JR
1131
1132 if (devid > amd_iommu_last_bdf)
1133 goto out;
1134
1135 devid = amd_iommu_alias_table[devid];
1136
1137 iommu = amd_iommu_rlookup_table[devid];
1138 if (iommu == NULL)
1139 goto out;
1140
1141 domain = domain_for_device(devid);
1142
1143 if (domain && !dma_ops_domain(domain))
1144 WARN_ONCE(1, "AMD IOMMU WARNING: device %s already bound "
1145 "to a non-dma-ops domain\n", dev_name(dev));
1146
1147 switch (action) {
c1eee67b 1148 case BUS_NOTIFY_UNBOUND_DRIVER:
e275a2a0
JR
1149 if (!domain)
1150 goto out;
1151 detach_device(domain, devid);
1ac4cbbc
JR
1152 break;
1153 case BUS_NOTIFY_ADD_DEVICE:
1154 /* allocate a protection domain if a device is added */
1155 dma_domain = find_protection_domain(devid);
1156 if (dma_domain)
1157 goto out;
d9cfed92 1158 dma_domain = dma_ops_domain_alloc(iommu);
1ac4cbbc
JR
1159 if (!dma_domain)
1160 goto out;
1161 dma_domain->target_dev = devid;
1162
1163 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1164 list_add_tail(&dma_domain->list, &iommu_pd_list);
1165 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1166
e275a2a0
JR
1167 break;
1168 default:
1169 goto out;
1170 }
1171
1172 iommu_queue_inv_dev_entry(iommu, devid);
1173 iommu_completion_wait(iommu);
1174
1175out:
1176 return 0;
1177}
1178
1179struct notifier_block device_nb = {
1180 .notifier_call = device_change_notifier,
1181};
355bf553 1182
431b2a20
JR
1183/*****************************************************************************
1184 *
1185 * The next functions belong to the dma_ops mapping/unmapping code.
1186 *
1187 *****************************************************************************/
1188
dbcc112e
JR
1189/*
1190 * This function checks if the driver got a valid device from the caller to
1191 * avoid dereferencing invalid pointers.
1192 */
1193static bool check_device(struct device *dev)
1194{
1195 if (!dev || !dev->dma_mask)
1196 return false;
1197
1198 return true;
1199}
1200
bd60b735
JR
1201/*
1202 * In this function the list of preallocated protection domains is traversed to
1203 * find the domain for a specific device
1204 */
1205static struct dma_ops_domain *find_protection_domain(u16 devid)
1206{
1207 struct dma_ops_domain *entry, *ret = NULL;
1208 unsigned long flags;
1209
1210 if (list_empty(&iommu_pd_list))
1211 return NULL;
1212
1213 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1214
1215 list_for_each_entry(entry, &iommu_pd_list, list) {
1216 if (entry->target_dev == devid) {
1217 ret = entry;
bd60b735
JR
1218 break;
1219 }
1220 }
1221
1222 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1223
1224 return ret;
1225}
1226
431b2a20
JR
1227/*
1228 * In the dma_ops path we only have the struct device. This function
1229 * finds the corresponding IOMMU, the protection domain and the
1230 * requestor id for a given device.
1231 * If the device is not yet associated with a domain this is also done
1232 * in this function.
1233 */
b20ac0d4
JR
1234static int get_device_resources(struct device *dev,
1235 struct amd_iommu **iommu,
1236 struct protection_domain **domain,
1237 u16 *bdf)
1238{
1239 struct dma_ops_domain *dma_dom;
1240 struct pci_dev *pcidev;
1241 u16 _bdf;
1242
dbcc112e
JR
1243 *iommu = NULL;
1244 *domain = NULL;
1245 *bdf = 0xffff;
1246
1247 if (dev->bus != &pci_bus_type)
1248 return 0;
b20ac0d4
JR
1249
1250 pcidev = to_pci_dev(dev);
d591b0a3 1251 _bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
b20ac0d4 1252
431b2a20 1253 /* device not translated by any IOMMU in the system? */
dbcc112e 1254 if (_bdf > amd_iommu_last_bdf)
b20ac0d4 1255 return 0;
b20ac0d4
JR
1256
1257 *bdf = amd_iommu_alias_table[_bdf];
1258
1259 *iommu = amd_iommu_rlookup_table[*bdf];
1260 if (*iommu == NULL)
1261 return 0;
b20ac0d4
JR
1262 *domain = domain_for_device(*bdf);
1263 if (*domain == NULL) {
bd60b735
JR
1264 dma_dom = find_protection_domain(*bdf);
1265 if (!dma_dom)
1266 dma_dom = (*iommu)->default_dom;
b20ac0d4 1267 *domain = &dma_dom->domain;
f1179dc0 1268 attach_device(*iommu, *domain, *bdf);
e9a22a13
JR
1269 DUMP_printk("Using protection domain %d for device %s\n",
1270 (*domain)->id, dev_name(dev));
b20ac0d4
JR
1271 }
1272
f91ba190 1273 if (domain_for_device(_bdf) == NULL)
f1179dc0 1274 attach_device(*iommu, *domain, _bdf);
f91ba190 1275
b20ac0d4
JR
1276 return 1;
1277}
1278
8bda3092
JR
1279/*
1280 * If the pte_page is not yet allocated this function is called
1281 */
1282static u64* alloc_pte(struct protection_domain *dom,
1283 unsigned long address, u64 **pte_page, gfp_t gfp)
1284{
1285 u64 *pte, *page;
1286
1287 pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(address)];
1288
1289 if (!IOMMU_PTE_PRESENT(*pte)) {
1290 page = (u64 *)get_zeroed_page(gfp);
1291 if (!page)
1292 return NULL;
1293 *pte = IOMMU_L2_PDE(virt_to_phys(page));
1294 }
1295
1296 pte = IOMMU_PTE_PAGE(*pte);
1297 pte = &pte[IOMMU_PTE_L1_INDEX(address)];
1298
1299 if (!IOMMU_PTE_PRESENT(*pte)) {
1300 page = (u64 *)get_zeroed_page(gfp);
1301 if (!page)
1302 return NULL;
1303 *pte = IOMMU_L1_PDE(virt_to_phys(page));
1304 }
1305
1306 pte = IOMMU_PTE_PAGE(*pte);
1307
1308 if (pte_page)
1309 *pte_page = pte;
1310
1311 pte = &pte[IOMMU_PTE_L0_INDEX(address)];
1312
1313 return pte;
1314}
1315
1316/*
1317 * This function fetches the PTE for a given address in the aperture
1318 */
1319static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
1320 unsigned long address)
1321{
384de729 1322 struct aperture_range *aperture;
8bda3092
JR
1323 u64 *pte, *pte_page;
1324
384de729
JR
1325 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1326 if (!aperture)
1327 return NULL;
1328
1329 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
8bda3092
JR
1330 if (!pte) {
1331 pte = alloc_pte(&dom->domain, address, &pte_page, GFP_ATOMIC);
384de729
JR
1332 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
1333 } else
1334 pte += IOMMU_PTE_L0_INDEX(address);
8bda3092
JR
1335
1336 return pte;
1337}
1338
431b2a20
JR
1339/*
1340 * This is the generic map function. It maps one 4kb page at paddr to
1341 * the given address in the DMA address space for the domain.
1342 */
cb76c322
JR
1343static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
1344 struct dma_ops_domain *dom,
1345 unsigned long address,
1346 phys_addr_t paddr,
1347 int direction)
1348{
1349 u64 *pte, __pte;
1350
1351 WARN_ON(address > dom->aperture_size);
1352
1353 paddr &= PAGE_MASK;
1354
8bda3092 1355 pte = dma_ops_get_pte(dom, address);
53812c11
JR
1356 if (!pte)
1357 return bad_dma_address;
cb76c322
JR
1358
1359 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
1360
1361 if (direction == DMA_TO_DEVICE)
1362 __pte |= IOMMU_PTE_IR;
1363 else if (direction == DMA_FROM_DEVICE)
1364 __pte |= IOMMU_PTE_IW;
1365 else if (direction == DMA_BIDIRECTIONAL)
1366 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
1367
1368 WARN_ON(*pte);
1369
1370 *pte = __pte;
1371
1372 return (dma_addr_t)address;
1373}
1374
431b2a20
JR
1375/*
1376 * The generic unmapping function for on page in the DMA address space.
1377 */
cb76c322
JR
1378static void dma_ops_domain_unmap(struct amd_iommu *iommu,
1379 struct dma_ops_domain *dom,
1380 unsigned long address)
1381{
384de729 1382 struct aperture_range *aperture;
cb76c322
JR
1383 u64 *pte;
1384
1385 if (address >= dom->aperture_size)
1386 return;
1387
384de729
JR
1388 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1389 if (!aperture)
1390 return;
1391
1392 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1393 if (!pte)
1394 return;
cb76c322 1395
cb76c322
JR
1396 pte += IOMMU_PTE_L0_INDEX(address);
1397
1398 WARN_ON(!*pte);
1399
1400 *pte = 0ULL;
1401}
1402
431b2a20
JR
1403/*
1404 * This function contains common code for mapping of a physically
24f81160
JR
1405 * contiguous memory region into DMA address space. It is used by all
1406 * mapping functions provided with this IOMMU driver.
431b2a20
JR
1407 * Must be called with the domain lock held.
1408 */
cb76c322
JR
1409static dma_addr_t __map_single(struct device *dev,
1410 struct amd_iommu *iommu,
1411 struct dma_ops_domain *dma_dom,
1412 phys_addr_t paddr,
1413 size_t size,
6d4f343f 1414 int dir,
832a90c3
JR
1415 bool align,
1416 u64 dma_mask)
cb76c322
JR
1417{
1418 dma_addr_t offset = paddr & ~PAGE_MASK;
53812c11 1419 dma_addr_t address, start, ret;
cb76c322 1420 unsigned int pages;
6d4f343f 1421 unsigned long align_mask = 0;
cb76c322
JR
1422 int i;
1423
e3c449f5 1424 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
cb76c322
JR
1425 paddr &= PAGE_MASK;
1426
8ecaf8f1
JR
1427 INC_STATS_COUNTER(total_map_requests);
1428
c1858976
JR
1429 if (pages > 1)
1430 INC_STATS_COUNTER(cross_page);
1431
6d4f343f
JR
1432 if (align)
1433 align_mask = (1UL << get_order(size)) - 1;
1434
11b83888 1435retry:
832a90c3
JR
1436 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
1437 dma_mask);
11b83888
JR
1438 if (unlikely(address == bad_dma_address)) {
1439 /*
1440 * setting next_address here will let the address
1441 * allocator only scan the new allocated range in the
1442 * first run. This is a small optimization.
1443 */
1444 dma_dom->next_address = dma_dom->aperture_size;
1445
1446 if (alloc_new_range(iommu, dma_dom, false, GFP_ATOMIC))
1447 goto out;
1448
1449 /*
1450 * aperture was sucessfully enlarged by 128 MB, try
1451 * allocation again
1452 */
1453 goto retry;
1454 }
cb76c322
JR
1455
1456 start = address;
1457 for (i = 0; i < pages; ++i) {
53812c11
JR
1458 ret = dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
1459 if (ret == bad_dma_address)
1460 goto out_unmap;
1461
cb76c322
JR
1462 paddr += PAGE_SIZE;
1463 start += PAGE_SIZE;
1464 }
1465 address += offset;
1466
5774f7c5
JR
1467 ADD_STATS_COUNTER(alloced_io_mem, size);
1468
afa9fdc2 1469 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
1c655773
JR
1470 iommu_flush_tlb(iommu, dma_dom->domain.id);
1471 dma_dom->need_flush = false;
1472 } else if (unlikely(iommu_has_npcache(iommu)))
270cab24
JR
1473 iommu_flush_pages(iommu, dma_dom->domain.id, address, size);
1474
cb76c322
JR
1475out:
1476 return address;
53812c11
JR
1477
1478out_unmap:
1479
1480 for (--i; i >= 0; --i) {
1481 start -= PAGE_SIZE;
1482 dma_ops_domain_unmap(iommu, dma_dom, start);
1483 }
1484
1485 dma_ops_free_addresses(dma_dom, address, pages);
1486
1487 return bad_dma_address;
cb76c322
JR
1488}
1489
431b2a20
JR
1490/*
1491 * Does the reverse of the __map_single function. Must be called with
1492 * the domain lock held too
1493 */
cb76c322
JR
1494static void __unmap_single(struct amd_iommu *iommu,
1495 struct dma_ops_domain *dma_dom,
1496 dma_addr_t dma_addr,
1497 size_t size,
1498 int dir)
1499{
1500 dma_addr_t i, start;
1501 unsigned int pages;
1502
b8d9905d
JR
1503 if ((dma_addr == bad_dma_address) ||
1504 (dma_addr + size > dma_dom->aperture_size))
cb76c322
JR
1505 return;
1506
e3c449f5 1507 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
cb76c322
JR
1508 dma_addr &= PAGE_MASK;
1509 start = dma_addr;
1510
1511 for (i = 0; i < pages; ++i) {
1512 dma_ops_domain_unmap(iommu, dma_dom, start);
1513 start += PAGE_SIZE;
1514 }
1515
5774f7c5
JR
1516 SUB_STATS_COUNTER(alloced_io_mem, size);
1517
cb76c322 1518 dma_ops_free_addresses(dma_dom, dma_addr, pages);
270cab24 1519
80be308d 1520 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
1c655773 1521 iommu_flush_pages(iommu, dma_dom->domain.id, dma_addr, size);
80be308d
JR
1522 dma_dom->need_flush = false;
1523 }
cb76c322
JR
1524}
1525
431b2a20
JR
1526/*
1527 * The exported map_single function for dma_ops.
1528 */
51491367
FT
1529static dma_addr_t map_page(struct device *dev, struct page *page,
1530 unsigned long offset, size_t size,
1531 enum dma_data_direction dir,
1532 struct dma_attrs *attrs)
4da70b9e
JR
1533{
1534 unsigned long flags;
1535 struct amd_iommu *iommu;
1536 struct protection_domain *domain;
1537 u16 devid;
1538 dma_addr_t addr;
832a90c3 1539 u64 dma_mask;
51491367 1540 phys_addr_t paddr = page_to_phys(page) + offset;
4da70b9e 1541
0f2a86f2
JR
1542 INC_STATS_COUNTER(cnt_map_single);
1543
dbcc112e
JR
1544 if (!check_device(dev))
1545 return bad_dma_address;
1546
832a90c3 1547 dma_mask = *dev->dma_mask;
4da70b9e
JR
1548
1549 get_device_resources(dev, &iommu, &domain, &devid);
1550
1551 if (iommu == NULL || domain == NULL)
431b2a20 1552 /* device not handled by any AMD IOMMU */
4da70b9e
JR
1553 return (dma_addr_t)paddr;
1554
5b28df6f
JR
1555 if (!dma_ops_domain(domain))
1556 return bad_dma_address;
1557
4da70b9e 1558 spin_lock_irqsave(&domain->lock, flags);
832a90c3
JR
1559 addr = __map_single(dev, iommu, domain->priv, paddr, size, dir, false,
1560 dma_mask);
4da70b9e
JR
1561 if (addr == bad_dma_address)
1562 goto out;
1563
09ee17eb 1564 iommu_completion_wait(iommu);
4da70b9e
JR
1565
1566out:
1567 spin_unlock_irqrestore(&domain->lock, flags);
1568
1569 return addr;
1570}
1571
431b2a20
JR
1572/*
1573 * The exported unmap_single function for dma_ops.
1574 */
51491367
FT
1575static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
1576 enum dma_data_direction dir, struct dma_attrs *attrs)
4da70b9e
JR
1577{
1578 unsigned long flags;
1579 struct amd_iommu *iommu;
1580 struct protection_domain *domain;
1581 u16 devid;
1582
146a6917
JR
1583 INC_STATS_COUNTER(cnt_unmap_single);
1584
dbcc112e
JR
1585 if (!check_device(dev) ||
1586 !get_device_resources(dev, &iommu, &domain, &devid))
431b2a20 1587 /* device not handled by any AMD IOMMU */
4da70b9e
JR
1588 return;
1589
5b28df6f
JR
1590 if (!dma_ops_domain(domain))
1591 return;
1592
4da70b9e
JR
1593 spin_lock_irqsave(&domain->lock, flags);
1594
1595 __unmap_single(iommu, domain->priv, dma_addr, size, dir);
1596
09ee17eb 1597 iommu_completion_wait(iommu);
4da70b9e
JR
1598
1599 spin_unlock_irqrestore(&domain->lock, flags);
1600}
1601
431b2a20
JR
1602/*
1603 * This is a special map_sg function which is used if we should map a
1604 * device which is not handled by an AMD IOMMU in the system.
1605 */
65b050ad
JR
1606static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
1607 int nelems, int dir)
1608{
1609 struct scatterlist *s;
1610 int i;
1611
1612 for_each_sg(sglist, s, nelems, i) {
1613 s->dma_address = (dma_addr_t)sg_phys(s);
1614 s->dma_length = s->length;
1615 }
1616
1617 return nelems;
1618}
1619
431b2a20
JR
1620/*
1621 * The exported map_sg function for dma_ops (handles scatter-gather
1622 * lists).
1623 */
65b050ad 1624static int map_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
1625 int nelems, enum dma_data_direction dir,
1626 struct dma_attrs *attrs)
65b050ad
JR
1627{
1628 unsigned long flags;
1629 struct amd_iommu *iommu;
1630 struct protection_domain *domain;
1631 u16 devid;
1632 int i;
1633 struct scatterlist *s;
1634 phys_addr_t paddr;
1635 int mapped_elems = 0;
832a90c3 1636 u64 dma_mask;
65b050ad 1637
d03f067a
JR
1638 INC_STATS_COUNTER(cnt_map_sg);
1639
dbcc112e
JR
1640 if (!check_device(dev))
1641 return 0;
1642
832a90c3 1643 dma_mask = *dev->dma_mask;
65b050ad
JR
1644
1645 get_device_resources(dev, &iommu, &domain, &devid);
1646
1647 if (!iommu || !domain)
1648 return map_sg_no_iommu(dev, sglist, nelems, dir);
1649
5b28df6f
JR
1650 if (!dma_ops_domain(domain))
1651 return 0;
1652
65b050ad
JR
1653 spin_lock_irqsave(&domain->lock, flags);
1654
1655 for_each_sg(sglist, s, nelems, i) {
1656 paddr = sg_phys(s);
1657
1658 s->dma_address = __map_single(dev, iommu, domain->priv,
832a90c3
JR
1659 paddr, s->length, dir, false,
1660 dma_mask);
65b050ad
JR
1661
1662 if (s->dma_address) {
1663 s->dma_length = s->length;
1664 mapped_elems++;
1665 } else
1666 goto unmap;
65b050ad
JR
1667 }
1668
09ee17eb 1669 iommu_completion_wait(iommu);
65b050ad
JR
1670
1671out:
1672 spin_unlock_irqrestore(&domain->lock, flags);
1673
1674 return mapped_elems;
1675unmap:
1676 for_each_sg(sglist, s, mapped_elems, i) {
1677 if (s->dma_address)
1678 __unmap_single(iommu, domain->priv, s->dma_address,
1679 s->dma_length, dir);
1680 s->dma_address = s->dma_length = 0;
1681 }
1682
1683 mapped_elems = 0;
1684
1685 goto out;
1686}
1687
431b2a20
JR
1688/*
1689 * The exported map_sg function for dma_ops (handles scatter-gather
1690 * lists).
1691 */
65b050ad 1692static void unmap_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
1693 int nelems, enum dma_data_direction dir,
1694 struct dma_attrs *attrs)
65b050ad
JR
1695{
1696 unsigned long flags;
1697 struct amd_iommu *iommu;
1698 struct protection_domain *domain;
1699 struct scatterlist *s;
1700 u16 devid;
1701 int i;
1702
55877a6b
JR
1703 INC_STATS_COUNTER(cnt_unmap_sg);
1704
dbcc112e
JR
1705 if (!check_device(dev) ||
1706 !get_device_resources(dev, &iommu, &domain, &devid))
65b050ad
JR
1707 return;
1708
5b28df6f
JR
1709 if (!dma_ops_domain(domain))
1710 return;
1711
65b050ad
JR
1712 spin_lock_irqsave(&domain->lock, flags);
1713
1714 for_each_sg(sglist, s, nelems, i) {
1715 __unmap_single(iommu, domain->priv, s->dma_address,
1716 s->dma_length, dir);
65b050ad
JR
1717 s->dma_address = s->dma_length = 0;
1718 }
1719
09ee17eb 1720 iommu_completion_wait(iommu);
65b050ad
JR
1721
1722 spin_unlock_irqrestore(&domain->lock, flags);
1723}
1724
431b2a20
JR
1725/*
1726 * The exported alloc_coherent function for dma_ops.
1727 */
5d8b53cf
JR
1728static void *alloc_coherent(struct device *dev, size_t size,
1729 dma_addr_t *dma_addr, gfp_t flag)
1730{
1731 unsigned long flags;
1732 void *virt_addr;
1733 struct amd_iommu *iommu;
1734 struct protection_domain *domain;
1735 u16 devid;
1736 phys_addr_t paddr;
832a90c3 1737 u64 dma_mask = dev->coherent_dma_mask;
5d8b53cf 1738
c8f0fb36
JR
1739 INC_STATS_COUNTER(cnt_alloc_coherent);
1740
dbcc112e
JR
1741 if (!check_device(dev))
1742 return NULL;
5d8b53cf 1743
13d9fead
FT
1744 if (!get_device_resources(dev, &iommu, &domain, &devid))
1745 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
5d8b53cf 1746
c97ac535 1747 flag |= __GFP_ZERO;
5d8b53cf
JR
1748 virt_addr = (void *)__get_free_pages(flag, get_order(size));
1749 if (!virt_addr)
1750 return 0;
1751
5d8b53cf
JR
1752 paddr = virt_to_phys(virt_addr);
1753
5d8b53cf
JR
1754 if (!iommu || !domain) {
1755 *dma_addr = (dma_addr_t)paddr;
1756 return virt_addr;
1757 }
1758
5b28df6f
JR
1759 if (!dma_ops_domain(domain))
1760 goto out_free;
1761
832a90c3
JR
1762 if (!dma_mask)
1763 dma_mask = *dev->dma_mask;
1764
5d8b53cf
JR
1765 spin_lock_irqsave(&domain->lock, flags);
1766
1767 *dma_addr = __map_single(dev, iommu, domain->priv, paddr,
832a90c3 1768 size, DMA_BIDIRECTIONAL, true, dma_mask);
5d8b53cf 1769
367d04c4
JS
1770 if (*dma_addr == bad_dma_address) {
1771 spin_unlock_irqrestore(&domain->lock, flags);
5b28df6f 1772 goto out_free;
367d04c4 1773 }
5d8b53cf 1774
09ee17eb 1775 iommu_completion_wait(iommu);
5d8b53cf 1776
5d8b53cf
JR
1777 spin_unlock_irqrestore(&domain->lock, flags);
1778
1779 return virt_addr;
5b28df6f
JR
1780
1781out_free:
1782
1783 free_pages((unsigned long)virt_addr, get_order(size));
1784
1785 return NULL;
5d8b53cf
JR
1786}
1787
431b2a20
JR
1788/*
1789 * The exported free_coherent function for dma_ops.
431b2a20 1790 */
5d8b53cf
JR
1791static void free_coherent(struct device *dev, size_t size,
1792 void *virt_addr, dma_addr_t dma_addr)
1793{
1794 unsigned long flags;
1795 struct amd_iommu *iommu;
1796 struct protection_domain *domain;
1797 u16 devid;
1798
5d31ee7e
JR
1799 INC_STATS_COUNTER(cnt_free_coherent);
1800
dbcc112e
JR
1801 if (!check_device(dev))
1802 return;
1803
5d8b53cf
JR
1804 get_device_resources(dev, &iommu, &domain, &devid);
1805
1806 if (!iommu || !domain)
1807 goto free_mem;
1808
5b28df6f
JR
1809 if (!dma_ops_domain(domain))
1810 goto free_mem;
1811
5d8b53cf
JR
1812 spin_lock_irqsave(&domain->lock, flags);
1813
1814 __unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
5d8b53cf 1815
09ee17eb 1816 iommu_completion_wait(iommu);
5d8b53cf
JR
1817
1818 spin_unlock_irqrestore(&domain->lock, flags);
1819
1820free_mem:
1821 free_pages((unsigned long)virt_addr, get_order(size));
1822}
1823
b39ba6ad
JR
1824/*
1825 * This function is called by the DMA layer to find out if we can handle a
1826 * particular device. It is part of the dma_ops.
1827 */
1828static int amd_iommu_dma_supported(struct device *dev, u64 mask)
1829{
1830 u16 bdf;
1831 struct pci_dev *pcidev;
1832
1833 /* No device or no PCI device */
1834 if (!dev || dev->bus != &pci_bus_type)
1835 return 0;
1836
1837 pcidev = to_pci_dev(dev);
1838
1839 bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
1840
1841 /* Out of our scope? */
1842 if (bdf > amd_iommu_last_bdf)
1843 return 0;
1844
1845 return 1;
1846}
1847
c432f3df 1848/*
431b2a20
JR
1849 * The function for pre-allocating protection domains.
1850 *
c432f3df
JR
1851 * If the driver core informs the DMA layer if a driver grabs a device
1852 * we don't need to preallocate the protection domains anymore.
1853 * For now we have to.
1854 */
0e93dd88 1855static void prealloc_protection_domains(void)
c432f3df
JR
1856{
1857 struct pci_dev *dev = NULL;
1858 struct dma_ops_domain *dma_dom;
1859 struct amd_iommu *iommu;
c432f3df
JR
1860 u16 devid;
1861
1862 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
edcb34da 1863 devid = calc_devid(dev->bus->number, dev->devfn);
3a61ec38 1864 if (devid > amd_iommu_last_bdf)
c432f3df
JR
1865 continue;
1866 devid = amd_iommu_alias_table[devid];
1867 if (domain_for_device(devid))
1868 continue;
1869 iommu = amd_iommu_rlookup_table[devid];
1870 if (!iommu)
1871 continue;
d9cfed92 1872 dma_dom = dma_ops_domain_alloc(iommu);
c432f3df
JR
1873 if (!dma_dom)
1874 continue;
1875 init_unity_mappings_for_device(dma_dom, devid);
bd60b735
JR
1876 dma_dom->target_dev = devid;
1877
1878 list_add_tail(&dma_dom->list, &iommu_pd_list);
c432f3df
JR
1879 }
1880}
1881
160c1d8e 1882static struct dma_map_ops amd_iommu_dma_ops = {
6631ee9d
JR
1883 .alloc_coherent = alloc_coherent,
1884 .free_coherent = free_coherent,
51491367
FT
1885 .map_page = map_page,
1886 .unmap_page = unmap_page,
6631ee9d
JR
1887 .map_sg = map_sg,
1888 .unmap_sg = unmap_sg,
b39ba6ad 1889 .dma_supported = amd_iommu_dma_supported,
6631ee9d
JR
1890};
1891
431b2a20
JR
1892/*
1893 * The function which clues the AMD IOMMU driver into dma_ops.
1894 */
6631ee9d
JR
1895int __init amd_iommu_init_dma_ops(void)
1896{
1897 struct amd_iommu *iommu;
6631ee9d
JR
1898 int ret;
1899
431b2a20
JR
1900 /*
1901 * first allocate a default protection domain for every IOMMU we
1902 * found in the system. Devices not assigned to any other
1903 * protection domain will be assigned to the default one.
1904 */
3bd22172 1905 for_each_iommu(iommu) {
d9cfed92 1906 iommu->default_dom = dma_ops_domain_alloc(iommu);
6631ee9d
JR
1907 if (iommu->default_dom == NULL)
1908 return -ENOMEM;
e2dc14a2 1909 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
6631ee9d
JR
1910 ret = iommu_init_unity_mappings(iommu);
1911 if (ret)
1912 goto free_domains;
1913 }
1914
431b2a20
JR
1915 /*
1916 * If device isolation is enabled, pre-allocate the protection
1917 * domains for each device.
1918 */
6631ee9d
JR
1919 if (amd_iommu_isolate)
1920 prealloc_protection_domains();
1921
1922 iommu_detected = 1;
1923 force_iommu = 1;
1924 bad_dma_address = 0;
92af4e29 1925#ifdef CONFIG_GART_IOMMU
6631ee9d
JR
1926 gart_iommu_aperture_disabled = 1;
1927 gart_iommu_aperture = 0;
92af4e29 1928#endif
6631ee9d 1929
431b2a20 1930 /* Make the driver finally visible to the drivers */
6631ee9d
JR
1931 dma_ops = &amd_iommu_dma_ops;
1932
26961efe 1933 register_iommu(&amd_iommu_ops);
26961efe 1934
e275a2a0
JR
1935 bus_register_notifier(&pci_bus_type, &device_nb);
1936
7f26508b
JR
1937 amd_iommu_stats_init();
1938
6631ee9d
JR
1939 return 0;
1940
1941free_domains:
1942
3bd22172 1943 for_each_iommu(iommu) {
6631ee9d
JR
1944 if (iommu->default_dom)
1945 dma_ops_domain_free(iommu->default_dom);
1946 }
1947
1948 return ret;
1949}
6d98cd80
JR
1950
1951/*****************************************************************************
1952 *
1953 * The following functions belong to the exported interface of AMD IOMMU
1954 *
1955 * This interface allows access to lower level functions of the IOMMU
1956 * like protection domain handling and assignement of devices to domains
1957 * which is not possible with the dma_ops interface.
1958 *
1959 *****************************************************************************/
1960
6d98cd80
JR
1961static void cleanup_domain(struct protection_domain *domain)
1962{
1963 unsigned long flags;
1964 u16 devid;
1965
1966 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1967
1968 for (devid = 0; devid <= amd_iommu_last_bdf; ++devid)
1969 if (amd_iommu_pd_table[devid] == domain)
1970 __detach_device(domain, devid);
1971
1972 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1973}
1974
c156e347
JR
1975static int amd_iommu_domain_init(struct iommu_domain *dom)
1976{
1977 struct protection_domain *domain;
1978
1979 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
1980 if (!domain)
1981 return -ENOMEM;
1982
1983 spin_lock_init(&domain->lock);
1984 domain->mode = PAGE_MODE_3_LEVEL;
1985 domain->id = domain_id_alloc();
1986 if (!domain->id)
1987 goto out_free;
1988 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1989 if (!domain->pt_root)
1990 goto out_free;
1991
1992 dom->priv = domain;
1993
1994 return 0;
1995
1996out_free:
1997 kfree(domain);
1998
1999 return -ENOMEM;
2000}
2001
98383fc3
JR
2002static void amd_iommu_domain_destroy(struct iommu_domain *dom)
2003{
2004 struct protection_domain *domain = dom->priv;
2005
2006 if (!domain)
2007 return;
2008
2009 if (domain->dev_cnt > 0)
2010 cleanup_domain(domain);
2011
2012 BUG_ON(domain->dev_cnt != 0);
2013
2014 free_pagetable(domain);
2015
2016 domain_id_free(domain->id);
2017
2018 kfree(domain);
2019
2020 dom->priv = NULL;
2021}
2022
684f2888
JR
2023static void amd_iommu_detach_device(struct iommu_domain *dom,
2024 struct device *dev)
2025{
2026 struct protection_domain *domain = dom->priv;
2027 struct amd_iommu *iommu;
2028 struct pci_dev *pdev;
2029 u16 devid;
2030
2031 if (dev->bus != &pci_bus_type)
2032 return;
2033
2034 pdev = to_pci_dev(dev);
2035
2036 devid = calc_devid(pdev->bus->number, pdev->devfn);
2037
2038 if (devid > 0)
2039 detach_device(domain, devid);
2040
2041 iommu = amd_iommu_rlookup_table[devid];
2042 if (!iommu)
2043 return;
2044
2045 iommu_queue_inv_dev_entry(iommu, devid);
2046 iommu_completion_wait(iommu);
2047}
2048
01106066
JR
2049static int amd_iommu_attach_device(struct iommu_domain *dom,
2050 struct device *dev)
2051{
2052 struct protection_domain *domain = dom->priv;
2053 struct protection_domain *old_domain;
2054 struct amd_iommu *iommu;
2055 struct pci_dev *pdev;
2056 u16 devid;
2057
2058 if (dev->bus != &pci_bus_type)
2059 return -EINVAL;
2060
2061 pdev = to_pci_dev(dev);
2062
2063 devid = calc_devid(pdev->bus->number, pdev->devfn);
2064
2065 if (devid >= amd_iommu_last_bdf ||
2066 devid != amd_iommu_alias_table[devid])
2067 return -EINVAL;
2068
2069 iommu = amd_iommu_rlookup_table[devid];
2070 if (!iommu)
2071 return -EINVAL;
2072
2073 old_domain = domain_for_device(devid);
2074 if (old_domain)
71ff3bca 2075 detach_device(old_domain, devid);
01106066
JR
2076
2077 attach_device(iommu, domain, devid);
2078
2079 iommu_completion_wait(iommu);
2080
2081 return 0;
2082}
2083
c6229ca6
JR
2084static int amd_iommu_map_range(struct iommu_domain *dom,
2085 unsigned long iova, phys_addr_t paddr,
2086 size_t size, int iommu_prot)
2087{
2088 struct protection_domain *domain = dom->priv;
2089 unsigned long i, npages = iommu_num_pages(paddr, size, PAGE_SIZE);
2090 int prot = 0;
2091 int ret;
2092
2093 if (iommu_prot & IOMMU_READ)
2094 prot |= IOMMU_PROT_IR;
2095 if (iommu_prot & IOMMU_WRITE)
2096 prot |= IOMMU_PROT_IW;
2097
2098 iova &= PAGE_MASK;
2099 paddr &= PAGE_MASK;
2100
2101 for (i = 0; i < npages; ++i) {
2102 ret = iommu_map_page(domain, iova, paddr, prot);
2103 if (ret)
2104 return ret;
2105
2106 iova += PAGE_SIZE;
2107 paddr += PAGE_SIZE;
2108 }
2109
2110 return 0;
2111}
2112
eb74ff6c
JR
2113static void amd_iommu_unmap_range(struct iommu_domain *dom,
2114 unsigned long iova, size_t size)
2115{
2116
2117 struct protection_domain *domain = dom->priv;
2118 unsigned long i, npages = iommu_num_pages(iova, size, PAGE_SIZE);
2119
2120 iova &= PAGE_MASK;
2121
2122 for (i = 0; i < npages; ++i) {
2123 iommu_unmap_page(domain, iova);
2124 iova += PAGE_SIZE;
2125 }
2126
2127 iommu_flush_domain(domain->id);
2128}
2129
645c4c8d
JR
2130static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2131 unsigned long iova)
2132{
2133 struct protection_domain *domain = dom->priv;
2134 unsigned long offset = iova & ~PAGE_MASK;
2135 phys_addr_t paddr;
2136 u64 *pte;
2137
2138 pte = &domain->pt_root[IOMMU_PTE_L2_INDEX(iova)];
2139
2140 if (!IOMMU_PTE_PRESENT(*pte))
2141 return 0;
2142
2143 pte = IOMMU_PTE_PAGE(*pte);
2144 pte = &pte[IOMMU_PTE_L1_INDEX(iova)];
2145
2146 if (!IOMMU_PTE_PRESENT(*pte))
2147 return 0;
2148
2149 pte = IOMMU_PTE_PAGE(*pte);
2150 pte = &pte[IOMMU_PTE_L0_INDEX(iova)];
2151
2152 if (!IOMMU_PTE_PRESENT(*pte))
2153 return 0;
2154
2155 paddr = *pte & IOMMU_PAGE_MASK;
2156 paddr |= offset;
2157
2158 return paddr;
2159}
2160
dbb9fd86
SY
2161static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
2162 unsigned long cap)
2163{
2164 return 0;
2165}
2166
26961efe
JR
2167static struct iommu_ops amd_iommu_ops = {
2168 .domain_init = amd_iommu_domain_init,
2169 .domain_destroy = amd_iommu_domain_destroy,
2170 .attach_dev = amd_iommu_attach_device,
2171 .detach_dev = amd_iommu_detach_device,
2172 .map = amd_iommu_map_range,
2173 .unmap = amd_iommu_unmap_range,
2174 .iova_to_phys = amd_iommu_iova_to_phys,
dbb9fd86 2175 .domain_has_cap = amd_iommu_domain_has_cap,
26961efe
JR
2176};
2177