]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - arch/x86/kernel/amd_iommu.c
amd-iommu: handle exlusion ranges and unity mappings in alloc_new_range
[mirror_ubuntu-hirsute-kernel.git] / arch / x86 / kernel / amd_iommu.c
CommitLineData
b6c02715
JR
1/*
2 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/pci.h>
21#include <linux/gfp.h>
22#include <linux/bitops.h>
7f26508b 23#include <linux/debugfs.h>
b6c02715 24#include <linux/scatterlist.h>
51491367 25#include <linux/dma-mapping.h>
b6c02715 26#include <linux/iommu-helper.h>
c156e347 27#include <linux/iommu.h>
b6c02715 28#include <asm/proto.h>
46a7fa27 29#include <asm/iommu.h>
1d9b16d1 30#include <asm/gart.h>
b6c02715 31#include <asm/amd_iommu_types.h>
c6da992e 32#include <asm/amd_iommu.h>
b6c02715
JR
33
34#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
35
136f78a1
JR
36#define EXIT_LOOP_COUNT 10000000
37
b6c02715
JR
38static DEFINE_RWLOCK(amd_iommu_devtable_lock);
39
bd60b735
JR
40/* A list of preallocated protection domains */
41static LIST_HEAD(iommu_pd_list);
42static DEFINE_SPINLOCK(iommu_pd_list_lock);
43
26961efe
JR
44#ifdef CONFIG_IOMMU_API
45static struct iommu_ops amd_iommu_ops;
46#endif
47
431b2a20
JR
48/*
49 * general struct to manage commands send to an IOMMU
50 */
d6449536 51struct iommu_cmd {
b6c02715
JR
52 u32 data[4];
53};
54
bd0e5211
JR
55static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
56 struct unity_map_entry *e);
e275a2a0 57static struct dma_ops_domain *find_protection_domain(u16 devid);
8bda3092
JR
58static u64* alloc_pte(struct protection_domain *dom,
59 unsigned long address, u64
60 **pte_page, gfp_t gfp);
00cd122a
JR
61static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
62 unsigned long start_page,
63 unsigned int pages);
bd0e5211 64
7f26508b
JR
65#ifdef CONFIG_AMD_IOMMU_STATS
66
67/*
68 * Initialization code for statistics collection
69 */
70
da49f6df 71DECLARE_STATS_COUNTER(compl_wait);
0f2a86f2 72DECLARE_STATS_COUNTER(cnt_map_single);
146a6917 73DECLARE_STATS_COUNTER(cnt_unmap_single);
d03f067a 74DECLARE_STATS_COUNTER(cnt_map_sg);
55877a6b 75DECLARE_STATS_COUNTER(cnt_unmap_sg);
c8f0fb36 76DECLARE_STATS_COUNTER(cnt_alloc_coherent);
5d31ee7e 77DECLARE_STATS_COUNTER(cnt_free_coherent);
c1858976 78DECLARE_STATS_COUNTER(cross_page);
f57d98ae 79DECLARE_STATS_COUNTER(domain_flush_single);
18811f55 80DECLARE_STATS_COUNTER(domain_flush_all);
5774f7c5 81DECLARE_STATS_COUNTER(alloced_io_mem);
8ecaf8f1 82DECLARE_STATS_COUNTER(total_map_requests);
da49f6df 83
7f26508b
JR
84static struct dentry *stats_dir;
85static struct dentry *de_isolate;
86static struct dentry *de_fflush;
87
88static void amd_iommu_stats_add(struct __iommu_counter *cnt)
89{
90 if (stats_dir == NULL)
91 return;
92
93 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
94 &cnt->value);
95}
96
97static void amd_iommu_stats_init(void)
98{
99 stats_dir = debugfs_create_dir("amd-iommu", NULL);
100 if (stats_dir == NULL)
101 return;
102
103 de_isolate = debugfs_create_bool("isolation", 0444, stats_dir,
104 (u32 *)&amd_iommu_isolate);
105
106 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
107 (u32 *)&amd_iommu_unmap_flush);
da49f6df
JR
108
109 amd_iommu_stats_add(&compl_wait);
0f2a86f2 110 amd_iommu_stats_add(&cnt_map_single);
146a6917 111 amd_iommu_stats_add(&cnt_unmap_single);
d03f067a 112 amd_iommu_stats_add(&cnt_map_sg);
55877a6b 113 amd_iommu_stats_add(&cnt_unmap_sg);
c8f0fb36 114 amd_iommu_stats_add(&cnt_alloc_coherent);
5d31ee7e 115 amd_iommu_stats_add(&cnt_free_coherent);
c1858976 116 amd_iommu_stats_add(&cross_page);
f57d98ae 117 amd_iommu_stats_add(&domain_flush_single);
18811f55 118 amd_iommu_stats_add(&domain_flush_all);
5774f7c5 119 amd_iommu_stats_add(&alloced_io_mem);
8ecaf8f1 120 amd_iommu_stats_add(&total_map_requests);
7f26508b
JR
121}
122
123#endif
124
431b2a20 125/* returns !0 if the IOMMU is caching non-present entries in its TLB */
4da70b9e
JR
126static int iommu_has_npcache(struct amd_iommu *iommu)
127{
ae9b9403 128 return iommu->cap & (1UL << IOMMU_CAP_NPCACHE);
4da70b9e
JR
129}
130
a80dc3e0
JR
131/****************************************************************************
132 *
133 * Interrupt handling functions
134 *
135 ****************************************************************************/
136
90008ee4
JR
137static void iommu_print_event(void *__evt)
138{
139 u32 *event = __evt;
140 int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
141 int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
142 int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
143 int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
144 u64 address = (u64)(((u64)event[3]) << 32) | event[2];
145
146 printk(KERN_ERR "AMD IOMMU: Event logged [");
147
148 switch (type) {
149 case EVENT_TYPE_ILL_DEV:
150 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
151 "address=0x%016llx flags=0x%04x]\n",
152 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
153 address, flags);
154 break;
155 case EVENT_TYPE_IO_FAULT:
156 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
157 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
158 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
159 domid, address, flags);
160 break;
161 case EVENT_TYPE_DEV_TAB_ERR:
162 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
163 "address=0x%016llx flags=0x%04x]\n",
164 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
165 address, flags);
166 break;
167 case EVENT_TYPE_PAGE_TAB_ERR:
168 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
169 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
170 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
171 domid, address, flags);
172 break;
173 case EVENT_TYPE_ILL_CMD:
174 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
175 break;
176 case EVENT_TYPE_CMD_HARD_ERR:
177 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
178 "flags=0x%04x]\n", address, flags);
179 break;
180 case EVENT_TYPE_IOTLB_INV_TO:
181 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
182 "address=0x%016llx]\n",
183 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
184 address);
185 break;
186 case EVENT_TYPE_INV_DEV_REQ:
187 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
188 "address=0x%016llx flags=0x%04x]\n",
189 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
190 address, flags);
191 break;
192 default:
193 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
194 }
195}
196
197static void iommu_poll_events(struct amd_iommu *iommu)
198{
199 u32 head, tail;
200 unsigned long flags;
201
202 spin_lock_irqsave(&iommu->lock, flags);
203
204 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
205 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
206
207 while (head != tail) {
208 iommu_print_event(iommu->evt_buf + head);
209 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
210 }
211
212 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
213
214 spin_unlock_irqrestore(&iommu->lock, flags);
215}
216
a80dc3e0
JR
217irqreturn_t amd_iommu_int_handler(int irq, void *data)
218{
90008ee4
JR
219 struct amd_iommu *iommu;
220
221 list_for_each_entry(iommu, &amd_iommu_list, list)
222 iommu_poll_events(iommu);
223
224 return IRQ_HANDLED;
a80dc3e0
JR
225}
226
431b2a20
JR
227/****************************************************************************
228 *
229 * IOMMU command queuing functions
230 *
231 ****************************************************************************/
232
233/*
234 * Writes the command to the IOMMUs command buffer and informs the
235 * hardware about the new command. Must be called with iommu->lock held.
236 */
d6449536 237static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
238{
239 u32 tail, head;
240 u8 *target;
241
242 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
8a7c5ef3 243 target = iommu->cmd_buf + tail;
a19ae1ec
JR
244 memcpy_toio(target, cmd, sizeof(*cmd));
245 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
246 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
247 if (tail == head)
248 return -ENOMEM;
249 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
250
251 return 0;
252}
253
431b2a20
JR
254/*
255 * General queuing function for commands. Takes iommu->lock and calls
256 * __iommu_queue_command().
257 */
d6449536 258static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
259{
260 unsigned long flags;
261 int ret;
262
263 spin_lock_irqsave(&iommu->lock, flags);
264 ret = __iommu_queue_command(iommu, cmd);
09ee17eb 265 if (!ret)
0cfd7aa9 266 iommu->need_sync = true;
a19ae1ec
JR
267 spin_unlock_irqrestore(&iommu->lock, flags);
268
269 return ret;
270}
271
8d201968
JR
272/*
273 * This function waits until an IOMMU has completed a completion
274 * wait command
275 */
276static void __iommu_wait_for_completion(struct amd_iommu *iommu)
277{
278 int ready = 0;
279 unsigned status = 0;
280 unsigned long i = 0;
281
da49f6df
JR
282 INC_STATS_COUNTER(compl_wait);
283
8d201968
JR
284 while (!ready && (i < EXIT_LOOP_COUNT)) {
285 ++i;
286 /* wait for the bit to become one */
287 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
288 ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
289 }
290
291 /* set bit back to zero */
292 status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
293 writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);
294
295 if (unlikely(i == EXIT_LOOP_COUNT))
296 panic("AMD IOMMU: Completion wait loop failed\n");
297}
298
299/*
300 * This function queues a completion wait command into the command
301 * buffer of an IOMMU
302 */
303static int __iommu_completion_wait(struct amd_iommu *iommu)
304{
305 struct iommu_cmd cmd;
306
307 memset(&cmd, 0, sizeof(cmd));
308 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
309 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);
310
311 return __iommu_queue_command(iommu, &cmd);
312}
313
431b2a20
JR
314/*
315 * This function is called whenever we need to ensure that the IOMMU has
316 * completed execution of all commands we sent. It sends a
317 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
318 * us about that by writing a value to a physical address we pass with
319 * the command.
320 */
a19ae1ec
JR
321static int iommu_completion_wait(struct amd_iommu *iommu)
322{
8d201968
JR
323 int ret = 0;
324 unsigned long flags;
a19ae1ec 325
7e4f88da
JR
326 spin_lock_irqsave(&iommu->lock, flags);
327
09ee17eb
JR
328 if (!iommu->need_sync)
329 goto out;
330
8d201968 331 ret = __iommu_completion_wait(iommu);
09ee17eb 332
0cfd7aa9 333 iommu->need_sync = false;
a19ae1ec
JR
334
335 if (ret)
7e4f88da 336 goto out;
a19ae1ec 337
8d201968 338 __iommu_wait_for_completion(iommu);
84df8175 339
7e4f88da
JR
340out:
341 spin_unlock_irqrestore(&iommu->lock, flags);
a19ae1ec
JR
342
343 return 0;
344}
345
431b2a20
JR
346/*
347 * Command send function for invalidating a device table entry
348 */
a19ae1ec
JR
349static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
350{
d6449536 351 struct iommu_cmd cmd;
ee2fa743 352 int ret;
a19ae1ec
JR
353
354 BUG_ON(iommu == NULL);
355
356 memset(&cmd, 0, sizeof(cmd));
357 CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
358 cmd.data[0] = devid;
359
ee2fa743
JR
360 ret = iommu_queue_command(iommu, &cmd);
361
ee2fa743 362 return ret;
a19ae1ec
JR
363}
364
237b6f33
JR
365static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
366 u16 domid, int pde, int s)
367{
368 memset(cmd, 0, sizeof(*cmd));
369 address &= PAGE_MASK;
370 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
371 cmd->data[1] |= domid;
372 cmd->data[2] = lower_32_bits(address);
373 cmd->data[3] = upper_32_bits(address);
374 if (s) /* size bit - we flush more than one 4kb page */
375 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
376 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
377 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
378}
379
431b2a20
JR
380/*
381 * Generic command send function for invalidaing TLB entries
382 */
a19ae1ec
JR
383static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
384 u64 address, u16 domid, int pde, int s)
385{
d6449536 386 struct iommu_cmd cmd;
ee2fa743 387 int ret;
a19ae1ec 388
237b6f33 389 __iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
a19ae1ec 390
ee2fa743
JR
391 ret = iommu_queue_command(iommu, &cmd);
392
ee2fa743 393 return ret;
a19ae1ec
JR
394}
395
431b2a20
JR
396/*
397 * TLB invalidation function which is called from the mapping functions.
398 * It invalidates a single PTE if the range to flush is within a single
399 * page. Otherwise it flushes the whole TLB of the IOMMU.
400 */
a19ae1ec
JR
401static int iommu_flush_pages(struct amd_iommu *iommu, u16 domid,
402 u64 address, size_t size)
403{
999ba417 404 int s = 0;
e3c449f5 405 unsigned pages = iommu_num_pages(address, size, PAGE_SIZE);
a19ae1ec
JR
406
407 address &= PAGE_MASK;
408
999ba417
JR
409 if (pages > 1) {
410 /*
411 * If we have to flush more than one page, flush all
412 * TLB entries for this domain
413 */
414 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
415 s = 1;
a19ae1ec
JR
416 }
417
999ba417
JR
418 iommu_queue_inv_iommu_pages(iommu, address, domid, 0, s);
419
a19ae1ec
JR
420 return 0;
421}
b6c02715 422
1c655773
JR
423/* Flush the whole IO/TLB for a given protection domain */
424static void iommu_flush_tlb(struct amd_iommu *iommu, u16 domid)
425{
426 u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
427
f57d98ae
JR
428 INC_STATS_COUNTER(domain_flush_single);
429
1c655773
JR
430 iommu_queue_inv_iommu_pages(iommu, address, domid, 0, 1);
431}
432
43f49609
JR
433/*
434 * This function is used to flush the IO/TLB for a given protection domain
435 * on every IOMMU in the system
436 */
437static void iommu_flush_domain(u16 domid)
438{
439 unsigned long flags;
440 struct amd_iommu *iommu;
441 struct iommu_cmd cmd;
442
18811f55
JR
443 INC_STATS_COUNTER(domain_flush_all);
444
43f49609
JR
445 __iommu_build_inv_iommu_pages(&cmd, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
446 domid, 1, 1);
447
448 list_for_each_entry(iommu, &amd_iommu_list, list) {
449 spin_lock_irqsave(&iommu->lock, flags);
450 __iommu_queue_command(iommu, &cmd);
451 __iommu_completion_wait(iommu);
452 __iommu_wait_for_completion(iommu);
453 spin_unlock_irqrestore(&iommu->lock, flags);
454 }
455}
43f49609 456
431b2a20
JR
457/****************************************************************************
458 *
459 * The functions below are used the create the page table mappings for
460 * unity mapped regions.
461 *
462 ****************************************************************************/
463
464/*
465 * Generic mapping functions. It maps a physical address into a DMA
466 * address space. It allocates the page table pages if necessary.
467 * In the future it can be extended to a generic mapping function
468 * supporting all features of AMD IOMMU page tables like level skipping
469 * and full 64 bit address spaces.
470 */
38e817fe
JR
471static int iommu_map_page(struct protection_domain *dom,
472 unsigned long bus_addr,
473 unsigned long phys_addr,
474 int prot)
bd0e5211 475{
8bda3092 476 u64 __pte, *pte;
bd0e5211
JR
477
478 bus_addr = PAGE_ALIGN(bus_addr);
bb9d4ff8 479 phys_addr = PAGE_ALIGN(phys_addr);
bd0e5211
JR
480
481 /* only support 512GB address spaces for now */
482 if (bus_addr > IOMMU_MAP_SIZE_L3 || !(prot & IOMMU_PROT_MASK))
483 return -EINVAL;
484
8bda3092 485 pte = alloc_pte(dom, bus_addr, NULL, GFP_KERNEL);
bd0e5211
JR
486
487 if (IOMMU_PTE_PRESENT(*pte))
488 return -EBUSY;
489
490 __pte = phys_addr | IOMMU_PTE_P;
491 if (prot & IOMMU_PROT_IR)
492 __pte |= IOMMU_PTE_IR;
493 if (prot & IOMMU_PROT_IW)
494 __pte |= IOMMU_PTE_IW;
495
496 *pte = __pte;
497
498 return 0;
499}
500
eb74ff6c
JR
501static void iommu_unmap_page(struct protection_domain *dom,
502 unsigned long bus_addr)
503{
504 u64 *pte;
505
506 pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(bus_addr)];
507
508 if (!IOMMU_PTE_PRESENT(*pte))
509 return;
510
511 pte = IOMMU_PTE_PAGE(*pte);
512 pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];
513
514 if (!IOMMU_PTE_PRESENT(*pte))
515 return;
516
517 pte = IOMMU_PTE_PAGE(*pte);
518 pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];
519
520 *pte = 0;
521}
eb74ff6c 522
431b2a20
JR
523/*
524 * This function checks if a specific unity mapping entry is needed for
525 * this specific IOMMU.
526 */
bd0e5211
JR
527static int iommu_for_unity_map(struct amd_iommu *iommu,
528 struct unity_map_entry *entry)
529{
530 u16 bdf, i;
531
532 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
533 bdf = amd_iommu_alias_table[i];
534 if (amd_iommu_rlookup_table[bdf] == iommu)
535 return 1;
536 }
537
538 return 0;
539}
540
431b2a20
JR
541/*
542 * Init the unity mappings for a specific IOMMU in the system
543 *
544 * Basically iterates over all unity mapping entries and applies them to
545 * the default domain DMA of that IOMMU if necessary.
546 */
bd0e5211
JR
547static int iommu_init_unity_mappings(struct amd_iommu *iommu)
548{
549 struct unity_map_entry *entry;
550 int ret;
551
552 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
553 if (!iommu_for_unity_map(iommu, entry))
554 continue;
555 ret = dma_ops_unity_map(iommu->default_dom, entry);
556 if (ret)
557 return ret;
558 }
559
560 return 0;
561}
562
431b2a20
JR
563/*
564 * This function actually applies the mapping to the page table of the
565 * dma_ops domain.
566 */
bd0e5211
JR
567static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
568 struct unity_map_entry *e)
569{
570 u64 addr;
571 int ret;
572
573 for (addr = e->address_start; addr < e->address_end;
574 addr += PAGE_SIZE) {
38e817fe 575 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot);
bd0e5211
JR
576 if (ret)
577 return ret;
578 /*
579 * if unity mapping is in aperture range mark the page
580 * as allocated in the aperture
581 */
582 if (addr < dma_dom->aperture_size)
c3239567 583 __set_bit(addr >> PAGE_SHIFT,
384de729 584 dma_dom->aperture[0]->bitmap);
bd0e5211
JR
585 }
586
587 return 0;
588}
589
431b2a20
JR
590/*
591 * Inits the unity mappings required for a specific device
592 */
bd0e5211
JR
593static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
594 u16 devid)
595{
596 struct unity_map_entry *e;
597 int ret;
598
599 list_for_each_entry(e, &amd_iommu_unity_map, list) {
600 if (!(devid >= e->devid_start && devid <= e->devid_end))
601 continue;
602 ret = dma_ops_unity_map(dma_dom, e);
603 if (ret)
604 return ret;
605 }
606
607 return 0;
608}
609
431b2a20
JR
610/****************************************************************************
611 *
612 * The next functions belong to the address allocator for the dma_ops
613 * interface functions. They work like the allocators in the other IOMMU
614 * drivers. Its basically a bitmap which marks the allocated pages in
615 * the aperture. Maybe it could be enhanced in the future to a more
616 * efficient allocator.
617 *
618 ****************************************************************************/
d3086444 619
431b2a20 620/*
384de729 621 * The address allocator core functions.
431b2a20
JR
622 *
623 * called with domain->lock held
624 */
384de729 625
00cd122a
JR
626/*
627 * This function checks if there is a PTE for a given dma address. If
628 * there is one, it returns the pointer to it.
629 */
630static u64* fetch_pte(struct protection_domain *domain,
631 unsigned long address)
632{
633 u64 *pte;
634
635 pte = &domain->pt_root[IOMMU_PTE_L2_INDEX(address)];
636
637 if (!IOMMU_PTE_PRESENT(*pte))
638 return NULL;
639
640 pte = IOMMU_PTE_PAGE(*pte);
641 pte = &pte[IOMMU_PTE_L1_INDEX(address)];
642
643 if (!IOMMU_PTE_PRESENT(*pte))
644 return NULL;
645
646 pte = IOMMU_PTE_PAGE(*pte);
647 pte = &pte[IOMMU_PTE_L0_INDEX(address)];
648
649 return pte;
650}
651
9cabe89b
JR
652/*
653 * This function is used to add a new aperture range to an existing
654 * aperture in case of dma_ops domain allocation or address allocation
655 * failure.
656 */
00cd122a
JR
657static int alloc_new_range(struct amd_iommu *iommu,
658 struct dma_ops_domain *dma_dom,
9cabe89b
JR
659 bool populate, gfp_t gfp)
660{
661 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
00cd122a 662 int i;
9cabe89b
JR
663
664 if (index >= APERTURE_MAX_RANGES)
665 return -ENOMEM;
666
667 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
668 if (!dma_dom->aperture[index])
669 return -ENOMEM;
670
671 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
672 if (!dma_dom->aperture[index]->bitmap)
673 goto out_free;
674
675 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
676
677 if (populate) {
678 unsigned long address = dma_dom->aperture_size;
679 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
680 u64 *pte, *pte_page;
681
682 for (i = 0; i < num_ptes; ++i) {
683 pte = alloc_pte(&dma_dom->domain, address,
684 &pte_page, gfp);
685 if (!pte)
686 goto out_free;
687
688 dma_dom->aperture[index]->pte_pages[i] = pte_page;
689
690 address += APERTURE_RANGE_SIZE / 64;
691 }
692 }
693
694 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
695
00cd122a
JR
696 /* Intialize the exclusion range if necessary */
697 if (iommu->exclusion_start &&
698 iommu->exclusion_start >= dma_dom->aperture[index]->offset &&
699 iommu->exclusion_start < dma_dom->aperture_size) {
700 unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
701 int pages = iommu_num_pages(iommu->exclusion_start,
702 iommu->exclusion_length,
703 PAGE_SIZE);
704 dma_ops_reserve_addresses(dma_dom, startpage, pages);
705 }
706
707 /*
708 * Check for areas already mapped as present in the new aperture
709 * range and mark those pages as reserved in the allocator. Such
710 * mappings may already exist as a result of requested unity
711 * mappings for devices.
712 */
713 for (i = dma_dom->aperture[index]->offset;
714 i < dma_dom->aperture_size;
715 i += PAGE_SIZE) {
716 u64 *pte = fetch_pte(&dma_dom->domain, i);
717 if (!pte || !IOMMU_PTE_PRESENT(*pte))
718 continue;
719
720 dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
721 }
722
9cabe89b
JR
723 return 0;
724
725out_free:
726 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
727
728 kfree(dma_dom->aperture[index]);
729 dma_dom->aperture[index] = NULL;
730
731 return -ENOMEM;
732}
733
384de729
JR
734static unsigned long dma_ops_area_alloc(struct device *dev,
735 struct dma_ops_domain *dom,
736 unsigned int pages,
737 unsigned long align_mask,
738 u64 dma_mask,
739 unsigned long start)
740{
803b8cb4 741 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
384de729
JR
742 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
743 int i = start >> APERTURE_RANGE_SHIFT;
744 unsigned long boundary_size;
745 unsigned long address = -1;
746 unsigned long limit;
747
803b8cb4
JR
748 next_bit >>= PAGE_SHIFT;
749
384de729
JR
750 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
751 PAGE_SIZE) >> PAGE_SHIFT;
752
753 for (;i < max_index; ++i) {
754 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
755
756 if (dom->aperture[i]->offset >= dma_mask)
757 break;
758
759 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
760 dma_mask >> PAGE_SHIFT);
761
762 address = iommu_area_alloc(dom->aperture[i]->bitmap,
763 limit, next_bit, pages, 0,
764 boundary_size, align_mask);
765 if (address != -1) {
766 address = dom->aperture[i]->offset +
767 (address << PAGE_SHIFT);
803b8cb4 768 dom->next_address = address + (pages << PAGE_SHIFT);
384de729
JR
769 break;
770 }
771
772 next_bit = 0;
773 }
774
775 return address;
776}
777
d3086444
JR
778static unsigned long dma_ops_alloc_addresses(struct device *dev,
779 struct dma_ops_domain *dom,
6d4f343f 780 unsigned int pages,
832a90c3
JR
781 unsigned long align_mask,
782 u64 dma_mask)
d3086444 783{
d3086444 784 unsigned long address;
d3086444 785
384de729 786 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
803b8cb4 787 dma_mask, dom->next_address);
d3086444 788
1c655773 789 if (address == -1) {
803b8cb4 790 dom->next_address = 0;
384de729
JR
791 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
792 dma_mask, 0);
1c655773
JR
793 dom->need_flush = true;
794 }
d3086444 795
384de729 796 if (unlikely(address == -1))
d3086444
JR
797 address = bad_dma_address;
798
799 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
800
801 return address;
802}
803
431b2a20
JR
804/*
805 * The address free function.
806 *
807 * called with domain->lock held
808 */
d3086444
JR
809static void dma_ops_free_addresses(struct dma_ops_domain *dom,
810 unsigned long address,
811 unsigned int pages)
812{
384de729
JR
813 unsigned i = address >> APERTURE_RANGE_SHIFT;
814 struct aperture_range *range = dom->aperture[i];
80be308d 815
384de729
JR
816 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
817
803b8cb4 818 if (address >= dom->next_address)
80be308d 819 dom->need_flush = true;
384de729
JR
820
821 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
803b8cb4 822
384de729
JR
823 iommu_area_free(range->bitmap, address, pages);
824
d3086444
JR
825}
826
431b2a20
JR
827/****************************************************************************
828 *
829 * The next functions belong to the domain allocation. A domain is
830 * allocated for every IOMMU as the default domain. If device isolation
831 * is enabled, every device get its own domain. The most important thing
832 * about domains is the page table mapping the DMA address space they
833 * contain.
834 *
835 ****************************************************************************/
836
ec487d1a
JR
837static u16 domain_id_alloc(void)
838{
839 unsigned long flags;
840 int id;
841
842 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
843 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
844 BUG_ON(id == 0);
845 if (id > 0 && id < MAX_DOMAIN_ID)
846 __set_bit(id, amd_iommu_pd_alloc_bitmap);
847 else
848 id = 0;
849 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
850
851 return id;
852}
853
a2acfb75
JR
854static void domain_id_free(int id)
855{
856 unsigned long flags;
857
858 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
859 if (id > 0 && id < MAX_DOMAIN_ID)
860 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
861 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
862}
a2acfb75 863
431b2a20
JR
864/*
865 * Used to reserve address ranges in the aperture (e.g. for exclusion
866 * ranges.
867 */
ec487d1a
JR
868static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
869 unsigned long start_page,
870 unsigned int pages)
871{
384de729 872 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
ec487d1a
JR
873
874 if (start_page + pages > last_page)
875 pages = last_page - start_page;
876
384de729
JR
877 for (i = start_page; i < start_page + pages; ++i) {
878 int index = i / APERTURE_RANGE_PAGES;
879 int page = i % APERTURE_RANGE_PAGES;
880 __set_bit(page, dom->aperture[index]->bitmap);
881 }
ec487d1a
JR
882}
883
86db2e5d 884static void free_pagetable(struct protection_domain *domain)
ec487d1a
JR
885{
886 int i, j;
887 u64 *p1, *p2, *p3;
888
86db2e5d 889 p1 = domain->pt_root;
ec487d1a
JR
890
891 if (!p1)
892 return;
893
894 for (i = 0; i < 512; ++i) {
895 if (!IOMMU_PTE_PRESENT(p1[i]))
896 continue;
897
898 p2 = IOMMU_PTE_PAGE(p1[i]);
3cc3d84b 899 for (j = 0; j < 512; ++j) {
ec487d1a
JR
900 if (!IOMMU_PTE_PRESENT(p2[j]))
901 continue;
902 p3 = IOMMU_PTE_PAGE(p2[j]);
903 free_page((unsigned long)p3);
904 }
905
906 free_page((unsigned long)p2);
907 }
908
909 free_page((unsigned long)p1);
86db2e5d
JR
910
911 domain->pt_root = NULL;
ec487d1a
JR
912}
913
431b2a20
JR
914/*
915 * Free a domain, only used if something went wrong in the
916 * allocation path and we need to free an already allocated page table
917 */
ec487d1a
JR
918static void dma_ops_domain_free(struct dma_ops_domain *dom)
919{
384de729
JR
920 int i;
921
ec487d1a
JR
922 if (!dom)
923 return;
924
86db2e5d 925 free_pagetable(&dom->domain);
ec487d1a 926
384de729
JR
927 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
928 if (!dom->aperture[i])
929 continue;
930 free_page((unsigned long)dom->aperture[i]->bitmap);
931 kfree(dom->aperture[i]);
932 }
ec487d1a
JR
933
934 kfree(dom);
935}
936
431b2a20
JR
937/*
938 * Allocates a new protection domain usable for the dma_ops functions.
939 * It also intializes the page table and the address allocator data
940 * structures required for the dma_ops interface
941 */
ec487d1a
JR
942static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu,
943 unsigned order)
944{
945 struct dma_ops_domain *dma_dom;
ec487d1a
JR
946
947 /*
948 * Currently the DMA aperture must be between 32 MB and 1GB in size
949 */
950 if ((order < 25) || (order > 30))
951 return NULL;
952
953 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
954 if (!dma_dom)
955 return NULL;
956
957 spin_lock_init(&dma_dom->domain.lock);
958
959 dma_dom->domain.id = domain_id_alloc();
960 if (dma_dom->domain.id == 0)
961 goto free_dma_dom;
962 dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
963 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
9fdb19d6 964 dma_dom->domain.flags = PD_DMA_OPS_MASK;
ec487d1a
JR
965 dma_dom->domain.priv = dma_dom;
966 if (!dma_dom->domain.pt_root)
967 goto free_dma_dom;
9cabe89b
JR
968
969 dma_dom->need_flush = false;
970 dma_dom->target_dev = 0xffff;
971
00cd122a 972 if (alloc_new_range(iommu, dma_dom, true, GFP_KERNEL))
ec487d1a 973 goto free_dma_dom;
9cabe89b 974
ec487d1a
JR
975 /*
976 * mark the first page as allocated so we never return 0 as
977 * a valid dma-address. So we can use 0 as error value
978 */
384de729 979 dma_dom->aperture[0]->bitmap[0] = 1;
803b8cb4 980 dma_dom->next_address = 0;
ec487d1a 981
ec487d1a 982
ec487d1a
JR
983 return dma_dom;
984
985free_dma_dom:
986 dma_ops_domain_free(dma_dom);
987
988 return NULL;
989}
990
5b28df6f
JR
991/*
992 * little helper function to check whether a given protection domain is a
993 * dma_ops domain
994 */
995static bool dma_ops_domain(struct protection_domain *domain)
996{
997 return domain->flags & PD_DMA_OPS_MASK;
998}
999
431b2a20
JR
1000/*
1001 * Find out the protection domain structure for a given PCI device. This
1002 * will give us the pointer to the page table root for example.
1003 */
b20ac0d4
JR
1004static struct protection_domain *domain_for_device(u16 devid)
1005{
1006 struct protection_domain *dom;
1007 unsigned long flags;
1008
1009 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
1010 dom = amd_iommu_pd_table[devid];
1011 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1012
1013 return dom;
1014}
1015
431b2a20
JR
1016/*
1017 * If a device is not yet associated with a domain, this function does
1018 * assigns it visible for the hardware
1019 */
f1179dc0
JR
1020static void attach_device(struct amd_iommu *iommu,
1021 struct protection_domain *domain,
1022 u16 devid)
b20ac0d4
JR
1023{
1024 unsigned long flags;
b20ac0d4
JR
1025 u64 pte_root = virt_to_phys(domain->pt_root);
1026
863c74eb
JR
1027 domain->dev_cnt += 1;
1028
38ddf41b
JR
1029 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1030 << DEV_ENTRY_MODE_SHIFT;
1031 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
b20ac0d4
JR
1032
1033 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
38ddf41b
JR
1034 amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
1035 amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
b20ac0d4
JR
1036 amd_iommu_dev_table[devid].data[2] = domain->id;
1037
1038 amd_iommu_pd_table[devid] = domain;
1039 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1040
1041 iommu_queue_inv_dev_entry(iommu, devid);
b20ac0d4
JR
1042}
1043
355bf553
JR
1044/*
1045 * Removes a device from a protection domain (unlocked)
1046 */
1047static void __detach_device(struct protection_domain *domain, u16 devid)
1048{
1049
1050 /* lock domain */
1051 spin_lock(&domain->lock);
1052
1053 /* remove domain from the lookup table */
1054 amd_iommu_pd_table[devid] = NULL;
1055
1056 /* remove entry from the device table seen by the hardware */
1057 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1058 amd_iommu_dev_table[devid].data[1] = 0;
1059 amd_iommu_dev_table[devid].data[2] = 0;
1060
1061 /* decrease reference counter */
1062 domain->dev_cnt -= 1;
1063
1064 /* ready */
1065 spin_unlock(&domain->lock);
1066}
1067
1068/*
1069 * Removes a device from a protection domain (with devtable_lock held)
1070 */
1071static void detach_device(struct protection_domain *domain, u16 devid)
1072{
1073 unsigned long flags;
1074
1075 /* lock device table */
1076 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1077 __detach_device(domain, devid);
1078 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1079}
e275a2a0
JR
1080
1081static int device_change_notifier(struct notifier_block *nb,
1082 unsigned long action, void *data)
1083{
1084 struct device *dev = data;
1085 struct pci_dev *pdev = to_pci_dev(dev);
1086 u16 devid = calc_devid(pdev->bus->number, pdev->devfn);
1087 struct protection_domain *domain;
1088 struct dma_ops_domain *dma_domain;
1089 struct amd_iommu *iommu;
1ac4cbbc
JR
1090 int order = amd_iommu_aperture_order;
1091 unsigned long flags;
e275a2a0
JR
1092
1093 if (devid > amd_iommu_last_bdf)
1094 goto out;
1095
1096 devid = amd_iommu_alias_table[devid];
1097
1098 iommu = amd_iommu_rlookup_table[devid];
1099 if (iommu == NULL)
1100 goto out;
1101
1102 domain = domain_for_device(devid);
1103
1104 if (domain && !dma_ops_domain(domain))
1105 WARN_ONCE(1, "AMD IOMMU WARNING: device %s already bound "
1106 "to a non-dma-ops domain\n", dev_name(dev));
1107
1108 switch (action) {
1109 case BUS_NOTIFY_BOUND_DRIVER:
1110 if (domain)
1111 goto out;
1112 dma_domain = find_protection_domain(devid);
1113 if (!dma_domain)
1114 dma_domain = iommu->default_dom;
1115 attach_device(iommu, &dma_domain->domain, devid);
1116 printk(KERN_INFO "AMD IOMMU: Using protection domain %d for "
1117 "device %s\n", dma_domain->domain.id, dev_name(dev));
1118 break;
1119 case BUS_NOTIFY_UNBIND_DRIVER:
1120 if (!domain)
1121 goto out;
1122 detach_device(domain, devid);
1ac4cbbc
JR
1123 break;
1124 case BUS_NOTIFY_ADD_DEVICE:
1125 /* allocate a protection domain if a device is added */
1126 dma_domain = find_protection_domain(devid);
1127 if (dma_domain)
1128 goto out;
1129 dma_domain = dma_ops_domain_alloc(iommu, order);
1130 if (!dma_domain)
1131 goto out;
1132 dma_domain->target_dev = devid;
1133
1134 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1135 list_add_tail(&dma_domain->list, &iommu_pd_list);
1136 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1137
e275a2a0
JR
1138 break;
1139 default:
1140 goto out;
1141 }
1142
1143 iommu_queue_inv_dev_entry(iommu, devid);
1144 iommu_completion_wait(iommu);
1145
1146out:
1147 return 0;
1148}
1149
1150struct notifier_block device_nb = {
1151 .notifier_call = device_change_notifier,
1152};
355bf553 1153
431b2a20
JR
1154/*****************************************************************************
1155 *
1156 * The next functions belong to the dma_ops mapping/unmapping code.
1157 *
1158 *****************************************************************************/
1159
dbcc112e
JR
1160/*
1161 * This function checks if the driver got a valid device from the caller to
1162 * avoid dereferencing invalid pointers.
1163 */
1164static bool check_device(struct device *dev)
1165{
1166 if (!dev || !dev->dma_mask)
1167 return false;
1168
1169 return true;
1170}
1171
bd60b735
JR
1172/*
1173 * In this function the list of preallocated protection domains is traversed to
1174 * find the domain for a specific device
1175 */
1176static struct dma_ops_domain *find_protection_domain(u16 devid)
1177{
1178 struct dma_ops_domain *entry, *ret = NULL;
1179 unsigned long flags;
1180
1181 if (list_empty(&iommu_pd_list))
1182 return NULL;
1183
1184 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1185
1186 list_for_each_entry(entry, &iommu_pd_list, list) {
1187 if (entry->target_dev == devid) {
1188 ret = entry;
bd60b735
JR
1189 break;
1190 }
1191 }
1192
1193 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1194
1195 return ret;
1196}
1197
431b2a20
JR
1198/*
1199 * In the dma_ops path we only have the struct device. This function
1200 * finds the corresponding IOMMU, the protection domain and the
1201 * requestor id for a given device.
1202 * If the device is not yet associated with a domain this is also done
1203 * in this function.
1204 */
b20ac0d4
JR
1205static int get_device_resources(struct device *dev,
1206 struct amd_iommu **iommu,
1207 struct protection_domain **domain,
1208 u16 *bdf)
1209{
1210 struct dma_ops_domain *dma_dom;
1211 struct pci_dev *pcidev;
1212 u16 _bdf;
1213
dbcc112e
JR
1214 *iommu = NULL;
1215 *domain = NULL;
1216 *bdf = 0xffff;
1217
1218 if (dev->bus != &pci_bus_type)
1219 return 0;
b20ac0d4
JR
1220
1221 pcidev = to_pci_dev(dev);
d591b0a3 1222 _bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
b20ac0d4 1223
431b2a20 1224 /* device not translated by any IOMMU in the system? */
dbcc112e 1225 if (_bdf > amd_iommu_last_bdf)
b20ac0d4 1226 return 0;
b20ac0d4
JR
1227
1228 *bdf = amd_iommu_alias_table[_bdf];
1229
1230 *iommu = amd_iommu_rlookup_table[*bdf];
1231 if (*iommu == NULL)
1232 return 0;
b20ac0d4
JR
1233 *domain = domain_for_device(*bdf);
1234 if (*domain == NULL) {
bd60b735
JR
1235 dma_dom = find_protection_domain(*bdf);
1236 if (!dma_dom)
1237 dma_dom = (*iommu)->default_dom;
b20ac0d4 1238 *domain = &dma_dom->domain;
f1179dc0 1239 attach_device(*iommu, *domain, *bdf);
b20ac0d4 1240 printk(KERN_INFO "AMD IOMMU: Using protection domain %d for "
ab896722 1241 "device %s\n", (*domain)->id, dev_name(dev));
b20ac0d4
JR
1242 }
1243
f91ba190 1244 if (domain_for_device(_bdf) == NULL)
f1179dc0 1245 attach_device(*iommu, *domain, _bdf);
f91ba190 1246
b20ac0d4
JR
1247 return 1;
1248}
1249
8bda3092
JR
1250/*
1251 * If the pte_page is not yet allocated this function is called
1252 */
1253static u64* alloc_pte(struct protection_domain *dom,
1254 unsigned long address, u64 **pte_page, gfp_t gfp)
1255{
1256 u64 *pte, *page;
1257
1258 pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(address)];
1259
1260 if (!IOMMU_PTE_PRESENT(*pte)) {
1261 page = (u64 *)get_zeroed_page(gfp);
1262 if (!page)
1263 return NULL;
1264 *pte = IOMMU_L2_PDE(virt_to_phys(page));
1265 }
1266
1267 pte = IOMMU_PTE_PAGE(*pte);
1268 pte = &pte[IOMMU_PTE_L1_INDEX(address)];
1269
1270 if (!IOMMU_PTE_PRESENT(*pte)) {
1271 page = (u64 *)get_zeroed_page(gfp);
1272 if (!page)
1273 return NULL;
1274 *pte = IOMMU_L1_PDE(virt_to_phys(page));
1275 }
1276
1277 pte = IOMMU_PTE_PAGE(*pte);
1278
1279 if (pte_page)
1280 *pte_page = pte;
1281
1282 pte = &pte[IOMMU_PTE_L0_INDEX(address)];
1283
1284 return pte;
1285}
1286
1287/*
1288 * This function fetches the PTE for a given address in the aperture
1289 */
1290static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
1291 unsigned long address)
1292{
384de729 1293 struct aperture_range *aperture;
8bda3092
JR
1294 u64 *pte, *pte_page;
1295
384de729
JR
1296 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1297 if (!aperture)
1298 return NULL;
1299
1300 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
8bda3092
JR
1301 if (!pte) {
1302 pte = alloc_pte(&dom->domain, address, &pte_page, GFP_ATOMIC);
384de729
JR
1303 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
1304 } else
1305 pte += IOMMU_PTE_L0_INDEX(address);
8bda3092
JR
1306
1307 return pte;
1308}
1309
431b2a20
JR
1310/*
1311 * This is the generic map function. It maps one 4kb page at paddr to
1312 * the given address in the DMA address space for the domain.
1313 */
cb76c322
JR
1314static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
1315 struct dma_ops_domain *dom,
1316 unsigned long address,
1317 phys_addr_t paddr,
1318 int direction)
1319{
1320 u64 *pte, __pte;
1321
1322 WARN_ON(address > dom->aperture_size);
1323
1324 paddr &= PAGE_MASK;
1325
8bda3092 1326 pte = dma_ops_get_pte(dom, address);
53812c11
JR
1327 if (!pte)
1328 return bad_dma_address;
cb76c322
JR
1329
1330 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
1331
1332 if (direction == DMA_TO_DEVICE)
1333 __pte |= IOMMU_PTE_IR;
1334 else if (direction == DMA_FROM_DEVICE)
1335 __pte |= IOMMU_PTE_IW;
1336 else if (direction == DMA_BIDIRECTIONAL)
1337 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
1338
1339 WARN_ON(*pte);
1340
1341 *pte = __pte;
1342
1343 return (dma_addr_t)address;
1344}
1345
431b2a20
JR
1346/*
1347 * The generic unmapping function for on page in the DMA address space.
1348 */
cb76c322
JR
1349static void dma_ops_domain_unmap(struct amd_iommu *iommu,
1350 struct dma_ops_domain *dom,
1351 unsigned long address)
1352{
384de729 1353 struct aperture_range *aperture;
cb76c322
JR
1354 u64 *pte;
1355
1356 if (address >= dom->aperture_size)
1357 return;
1358
384de729
JR
1359 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1360 if (!aperture)
1361 return;
1362
1363 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1364 if (!pte)
1365 return;
cb76c322 1366
cb76c322
JR
1367 pte += IOMMU_PTE_L0_INDEX(address);
1368
1369 WARN_ON(!*pte);
1370
1371 *pte = 0ULL;
1372}
1373
431b2a20
JR
1374/*
1375 * This function contains common code for mapping of a physically
24f81160
JR
1376 * contiguous memory region into DMA address space. It is used by all
1377 * mapping functions provided with this IOMMU driver.
431b2a20
JR
1378 * Must be called with the domain lock held.
1379 */
cb76c322
JR
1380static dma_addr_t __map_single(struct device *dev,
1381 struct amd_iommu *iommu,
1382 struct dma_ops_domain *dma_dom,
1383 phys_addr_t paddr,
1384 size_t size,
6d4f343f 1385 int dir,
832a90c3
JR
1386 bool align,
1387 u64 dma_mask)
cb76c322
JR
1388{
1389 dma_addr_t offset = paddr & ~PAGE_MASK;
53812c11 1390 dma_addr_t address, start, ret;
cb76c322 1391 unsigned int pages;
6d4f343f 1392 unsigned long align_mask = 0;
cb76c322
JR
1393 int i;
1394
e3c449f5 1395 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
cb76c322
JR
1396 paddr &= PAGE_MASK;
1397
8ecaf8f1
JR
1398 INC_STATS_COUNTER(total_map_requests);
1399
c1858976
JR
1400 if (pages > 1)
1401 INC_STATS_COUNTER(cross_page);
1402
6d4f343f
JR
1403 if (align)
1404 align_mask = (1UL << get_order(size)) - 1;
1405
832a90c3
JR
1406 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
1407 dma_mask);
cb76c322
JR
1408 if (unlikely(address == bad_dma_address))
1409 goto out;
1410
1411 start = address;
1412 for (i = 0; i < pages; ++i) {
53812c11
JR
1413 ret = dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
1414 if (ret == bad_dma_address)
1415 goto out_unmap;
1416
cb76c322
JR
1417 paddr += PAGE_SIZE;
1418 start += PAGE_SIZE;
1419 }
1420 address += offset;
1421
5774f7c5
JR
1422 ADD_STATS_COUNTER(alloced_io_mem, size);
1423
afa9fdc2 1424 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
1c655773
JR
1425 iommu_flush_tlb(iommu, dma_dom->domain.id);
1426 dma_dom->need_flush = false;
1427 } else if (unlikely(iommu_has_npcache(iommu)))
270cab24
JR
1428 iommu_flush_pages(iommu, dma_dom->domain.id, address, size);
1429
cb76c322
JR
1430out:
1431 return address;
53812c11
JR
1432
1433out_unmap:
1434
1435 for (--i; i >= 0; --i) {
1436 start -= PAGE_SIZE;
1437 dma_ops_domain_unmap(iommu, dma_dom, start);
1438 }
1439
1440 dma_ops_free_addresses(dma_dom, address, pages);
1441
1442 return bad_dma_address;
cb76c322
JR
1443}
1444
431b2a20
JR
1445/*
1446 * Does the reverse of the __map_single function. Must be called with
1447 * the domain lock held too
1448 */
cb76c322
JR
1449static void __unmap_single(struct amd_iommu *iommu,
1450 struct dma_ops_domain *dma_dom,
1451 dma_addr_t dma_addr,
1452 size_t size,
1453 int dir)
1454{
1455 dma_addr_t i, start;
1456 unsigned int pages;
1457
b8d9905d
JR
1458 if ((dma_addr == bad_dma_address) ||
1459 (dma_addr + size > dma_dom->aperture_size))
cb76c322
JR
1460 return;
1461
e3c449f5 1462 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
cb76c322
JR
1463 dma_addr &= PAGE_MASK;
1464 start = dma_addr;
1465
1466 for (i = 0; i < pages; ++i) {
1467 dma_ops_domain_unmap(iommu, dma_dom, start);
1468 start += PAGE_SIZE;
1469 }
1470
5774f7c5
JR
1471 SUB_STATS_COUNTER(alloced_io_mem, size);
1472
cb76c322 1473 dma_ops_free_addresses(dma_dom, dma_addr, pages);
270cab24 1474
80be308d 1475 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
1c655773 1476 iommu_flush_pages(iommu, dma_dom->domain.id, dma_addr, size);
80be308d
JR
1477 dma_dom->need_flush = false;
1478 }
cb76c322
JR
1479}
1480
431b2a20
JR
1481/*
1482 * The exported map_single function for dma_ops.
1483 */
51491367
FT
1484static dma_addr_t map_page(struct device *dev, struct page *page,
1485 unsigned long offset, size_t size,
1486 enum dma_data_direction dir,
1487 struct dma_attrs *attrs)
4da70b9e
JR
1488{
1489 unsigned long flags;
1490 struct amd_iommu *iommu;
1491 struct protection_domain *domain;
1492 u16 devid;
1493 dma_addr_t addr;
832a90c3 1494 u64 dma_mask;
51491367 1495 phys_addr_t paddr = page_to_phys(page) + offset;
4da70b9e 1496
0f2a86f2
JR
1497 INC_STATS_COUNTER(cnt_map_single);
1498
dbcc112e
JR
1499 if (!check_device(dev))
1500 return bad_dma_address;
1501
832a90c3 1502 dma_mask = *dev->dma_mask;
4da70b9e
JR
1503
1504 get_device_resources(dev, &iommu, &domain, &devid);
1505
1506 if (iommu == NULL || domain == NULL)
431b2a20 1507 /* device not handled by any AMD IOMMU */
4da70b9e
JR
1508 return (dma_addr_t)paddr;
1509
5b28df6f
JR
1510 if (!dma_ops_domain(domain))
1511 return bad_dma_address;
1512
4da70b9e 1513 spin_lock_irqsave(&domain->lock, flags);
832a90c3
JR
1514 addr = __map_single(dev, iommu, domain->priv, paddr, size, dir, false,
1515 dma_mask);
4da70b9e
JR
1516 if (addr == bad_dma_address)
1517 goto out;
1518
09ee17eb 1519 iommu_completion_wait(iommu);
4da70b9e
JR
1520
1521out:
1522 spin_unlock_irqrestore(&domain->lock, flags);
1523
1524 return addr;
1525}
1526
431b2a20
JR
1527/*
1528 * The exported unmap_single function for dma_ops.
1529 */
51491367
FT
1530static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
1531 enum dma_data_direction dir, struct dma_attrs *attrs)
4da70b9e
JR
1532{
1533 unsigned long flags;
1534 struct amd_iommu *iommu;
1535 struct protection_domain *domain;
1536 u16 devid;
1537
146a6917
JR
1538 INC_STATS_COUNTER(cnt_unmap_single);
1539
dbcc112e
JR
1540 if (!check_device(dev) ||
1541 !get_device_resources(dev, &iommu, &domain, &devid))
431b2a20 1542 /* device not handled by any AMD IOMMU */
4da70b9e
JR
1543 return;
1544
5b28df6f
JR
1545 if (!dma_ops_domain(domain))
1546 return;
1547
4da70b9e
JR
1548 spin_lock_irqsave(&domain->lock, flags);
1549
1550 __unmap_single(iommu, domain->priv, dma_addr, size, dir);
1551
09ee17eb 1552 iommu_completion_wait(iommu);
4da70b9e
JR
1553
1554 spin_unlock_irqrestore(&domain->lock, flags);
1555}
1556
431b2a20
JR
1557/*
1558 * This is a special map_sg function which is used if we should map a
1559 * device which is not handled by an AMD IOMMU in the system.
1560 */
65b050ad
JR
1561static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
1562 int nelems, int dir)
1563{
1564 struct scatterlist *s;
1565 int i;
1566
1567 for_each_sg(sglist, s, nelems, i) {
1568 s->dma_address = (dma_addr_t)sg_phys(s);
1569 s->dma_length = s->length;
1570 }
1571
1572 return nelems;
1573}
1574
431b2a20
JR
1575/*
1576 * The exported map_sg function for dma_ops (handles scatter-gather
1577 * lists).
1578 */
65b050ad 1579static int map_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
1580 int nelems, enum dma_data_direction dir,
1581 struct dma_attrs *attrs)
65b050ad
JR
1582{
1583 unsigned long flags;
1584 struct amd_iommu *iommu;
1585 struct protection_domain *domain;
1586 u16 devid;
1587 int i;
1588 struct scatterlist *s;
1589 phys_addr_t paddr;
1590 int mapped_elems = 0;
832a90c3 1591 u64 dma_mask;
65b050ad 1592
d03f067a
JR
1593 INC_STATS_COUNTER(cnt_map_sg);
1594
dbcc112e
JR
1595 if (!check_device(dev))
1596 return 0;
1597
832a90c3 1598 dma_mask = *dev->dma_mask;
65b050ad
JR
1599
1600 get_device_resources(dev, &iommu, &domain, &devid);
1601
1602 if (!iommu || !domain)
1603 return map_sg_no_iommu(dev, sglist, nelems, dir);
1604
5b28df6f
JR
1605 if (!dma_ops_domain(domain))
1606 return 0;
1607
65b050ad
JR
1608 spin_lock_irqsave(&domain->lock, flags);
1609
1610 for_each_sg(sglist, s, nelems, i) {
1611 paddr = sg_phys(s);
1612
1613 s->dma_address = __map_single(dev, iommu, domain->priv,
832a90c3
JR
1614 paddr, s->length, dir, false,
1615 dma_mask);
65b050ad
JR
1616
1617 if (s->dma_address) {
1618 s->dma_length = s->length;
1619 mapped_elems++;
1620 } else
1621 goto unmap;
65b050ad
JR
1622 }
1623
09ee17eb 1624 iommu_completion_wait(iommu);
65b050ad
JR
1625
1626out:
1627 spin_unlock_irqrestore(&domain->lock, flags);
1628
1629 return mapped_elems;
1630unmap:
1631 for_each_sg(sglist, s, mapped_elems, i) {
1632 if (s->dma_address)
1633 __unmap_single(iommu, domain->priv, s->dma_address,
1634 s->dma_length, dir);
1635 s->dma_address = s->dma_length = 0;
1636 }
1637
1638 mapped_elems = 0;
1639
1640 goto out;
1641}
1642
431b2a20
JR
1643/*
1644 * The exported map_sg function for dma_ops (handles scatter-gather
1645 * lists).
1646 */
65b050ad 1647static void unmap_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
1648 int nelems, enum dma_data_direction dir,
1649 struct dma_attrs *attrs)
65b050ad
JR
1650{
1651 unsigned long flags;
1652 struct amd_iommu *iommu;
1653 struct protection_domain *domain;
1654 struct scatterlist *s;
1655 u16 devid;
1656 int i;
1657
55877a6b
JR
1658 INC_STATS_COUNTER(cnt_unmap_sg);
1659
dbcc112e
JR
1660 if (!check_device(dev) ||
1661 !get_device_resources(dev, &iommu, &domain, &devid))
65b050ad
JR
1662 return;
1663
5b28df6f
JR
1664 if (!dma_ops_domain(domain))
1665 return;
1666
65b050ad
JR
1667 spin_lock_irqsave(&domain->lock, flags);
1668
1669 for_each_sg(sglist, s, nelems, i) {
1670 __unmap_single(iommu, domain->priv, s->dma_address,
1671 s->dma_length, dir);
65b050ad
JR
1672 s->dma_address = s->dma_length = 0;
1673 }
1674
09ee17eb 1675 iommu_completion_wait(iommu);
65b050ad
JR
1676
1677 spin_unlock_irqrestore(&domain->lock, flags);
1678}
1679
431b2a20
JR
1680/*
1681 * The exported alloc_coherent function for dma_ops.
1682 */
5d8b53cf
JR
1683static void *alloc_coherent(struct device *dev, size_t size,
1684 dma_addr_t *dma_addr, gfp_t flag)
1685{
1686 unsigned long flags;
1687 void *virt_addr;
1688 struct amd_iommu *iommu;
1689 struct protection_domain *domain;
1690 u16 devid;
1691 phys_addr_t paddr;
832a90c3 1692 u64 dma_mask = dev->coherent_dma_mask;
5d8b53cf 1693
c8f0fb36
JR
1694 INC_STATS_COUNTER(cnt_alloc_coherent);
1695
dbcc112e
JR
1696 if (!check_device(dev))
1697 return NULL;
5d8b53cf 1698
13d9fead
FT
1699 if (!get_device_resources(dev, &iommu, &domain, &devid))
1700 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
5d8b53cf 1701
c97ac535 1702 flag |= __GFP_ZERO;
5d8b53cf
JR
1703 virt_addr = (void *)__get_free_pages(flag, get_order(size));
1704 if (!virt_addr)
1705 return 0;
1706
5d8b53cf
JR
1707 paddr = virt_to_phys(virt_addr);
1708
5d8b53cf
JR
1709 if (!iommu || !domain) {
1710 *dma_addr = (dma_addr_t)paddr;
1711 return virt_addr;
1712 }
1713
5b28df6f
JR
1714 if (!dma_ops_domain(domain))
1715 goto out_free;
1716
832a90c3
JR
1717 if (!dma_mask)
1718 dma_mask = *dev->dma_mask;
1719
5d8b53cf
JR
1720 spin_lock_irqsave(&domain->lock, flags);
1721
1722 *dma_addr = __map_single(dev, iommu, domain->priv, paddr,
832a90c3 1723 size, DMA_BIDIRECTIONAL, true, dma_mask);
5d8b53cf 1724
5b28df6f
JR
1725 if (*dma_addr == bad_dma_address)
1726 goto out_free;
5d8b53cf 1727
09ee17eb 1728 iommu_completion_wait(iommu);
5d8b53cf 1729
5d8b53cf
JR
1730 spin_unlock_irqrestore(&domain->lock, flags);
1731
1732 return virt_addr;
5b28df6f
JR
1733
1734out_free:
1735
1736 free_pages((unsigned long)virt_addr, get_order(size));
1737
1738 return NULL;
5d8b53cf
JR
1739}
1740
431b2a20
JR
1741/*
1742 * The exported free_coherent function for dma_ops.
431b2a20 1743 */
5d8b53cf
JR
1744static void free_coherent(struct device *dev, size_t size,
1745 void *virt_addr, dma_addr_t dma_addr)
1746{
1747 unsigned long flags;
1748 struct amd_iommu *iommu;
1749 struct protection_domain *domain;
1750 u16 devid;
1751
5d31ee7e
JR
1752 INC_STATS_COUNTER(cnt_free_coherent);
1753
dbcc112e
JR
1754 if (!check_device(dev))
1755 return;
1756
5d8b53cf
JR
1757 get_device_resources(dev, &iommu, &domain, &devid);
1758
1759 if (!iommu || !domain)
1760 goto free_mem;
1761
5b28df6f
JR
1762 if (!dma_ops_domain(domain))
1763 goto free_mem;
1764
5d8b53cf
JR
1765 spin_lock_irqsave(&domain->lock, flags);
1766
1767 __unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
5d8b53cf 1768
09ee17eb 1769 iommu_completion_wait(iommu);
5d8b53cf
JR
1770
1771 spin_unlock_irqrestore(&domain->lock, flags);
1772
1773free_mem:
1774 free_pages((unsigned long)virt_addr, get_order(size));
1775}
1776
b39ba6ad
JR
1777/*
1778 * This function is called by the DMA layer to find out if we can handle a
1779 * particular device. It is part of the dma_ops.
1780 */
1781static int amd_iommu_dma_supported(struct device *dev, u64 mask)
1782{
1783 u16 bdf;
1784 struct pci_dev *pcidev;
1785
1786 /* No device or no PCI device */
1787 if (!dev || dev->bus != &pci_bus_type)
1788 return 0;
1789
1790 pcidev = to_pci_dev(dev);
1791
1792 bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
1793
1794 /* Out of our scope? */
1795 if (bdf > amd_iommu_last_bdf)
1796 return 0;
1797
1798 return 1;
1799}
1800
c432f3df 1801/*
431b2a20
JR
1802 * The function for pre-allocating protection domains.
1803 *
c432f3df
JR
1804 * If the driver core informs the DMA layer if a driver grabs a device
1805 * we don't need to preallocate the protection domains anymore.
1806 * For now we have to.
1807 */
0e93dd88 1808static void prealloc_protection_domains(void)
c432f3df
JR
1809{
1810 struct pci_dev *dev = NULL;
1811 struct dma_ops_domain *dma_dom;
1812 struct amd_iommu *iommu;
1813 int order = amd_iommu_aperture_order;
1814 u16 devid;
1815
1816 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
edcb34da 1817 devid = calc_devid(dev->bus->number, dev->devfn);
3a61ec38 1818 if (devid > amd_iommu_last_bdf)
c432f3df
JR
1819 continue;
1820 devid = amd_iommu_alias_table[devid];
1821 if (domain_for_device(devid))
1822 continue;
1823 iommu = amd_iommu_rlookup_table[devid];
1824 if (!iommu)
1825 continue;
1826 dma_dom = dma_ops_domain_alloc(iommu, order);
1827 if (!dma_dom)
1828 continue;
1829 init_unity_mappings_for_device(dma_dom, devid);
bd60b735
JR
1830 dma_dom->target_dev = devid;
1831
1832 list_add_tail(&dma_dom->list, &iommu_pd_list);
c432f3df
JR
1833 }
1834}
1835
160c1d8e 1836static struct dma_map_ops amd_iommu_dma_ops = {
6631ee9d
JR
1837 .alloc_coherent = alloc_coherent,
1838 .free_coherent = free_coherent,
51491367
FT
1839 .map_page = map_page,
1840 .unmap_page = unmap_page,
6631ee9d
JR
1841 .map_sg = map_sg,
1842 .unmap_sg = unmap_sg,
b39ba6ad 1843 .dma_supported = amd_iommu_dma_supported,
6631ee9d
JR
1844};
1845
431b2a20
JR
1846/*
1847 * The function which clues the AMD IOMMU driver into dma_ops.
1848 */
6631ee9d
JR
1849int __init amd_iommu_init_dma_ops(void)
1850{
1851 struct amd_iommu *iommu;
1852 int order = amd_iommu_aperture_order;
1853 int ret;
1854
431b2a20
JR
1855 /*
1856 * first allocate a default protection domain for every IOMMU we
1857 * found in the system. Devices not assigned to any other
1858 * protection domain will be assigned to the default one.
1859 */
6631ee9d
JR
1860 list_for_each_entry(iommu, &amd_iommu_list, list) {
1861 iommu->default_dom = dma_ops_domain_alloc(iommu, order);
1862 if (iommu->default_dom == NULL)
1863 return -ENOMEM;
e2dc14a2 1864 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
6631ee9d
JR
1865 ret = iommu_init_unity_mappings(iommu);
1866 if (ret)
1867 goto free_domains;
1868 }
1869
431b2a20
JR
1870 /*
1871 * If device isolation is enabled, pre-allocate the protection
1872 * domains for each device.
1873 */
6631ee9d
JR
1874 if (amd_iommu_isolate)
1875 prealloc_protection_domains();
1876
1877 iommu_detected = 1;
1878 force_iommu = 1;
1879 bad_dma_address = 0;
92af4e29 1880#ifdef CONFIG_GART_IOMMU
6631ee9d
JR
1881 gart_iommu_aperture_disabled = 1;
1882 gart_iommu_aperture = 0;
92af4e29 1883#endif
6631ee9d 1884
431b2a20 1885 /* Make the driver finally visible to the drivers */
6631ee9d
JR
1886 dma_ops = &amd_iommu_dma_ops;
1887
26961efe 1888 register_iommu(&amd_iommu_ops);
26961efe 1889
e275a2a0
JR
1890 bus_register_notifier(&pci_bus_type, &device_nb);
1891
7f26508b
JR
1892 amd_iommu_stats_init();
1893
6631ee9d
JR
1894 return 0;
1895
1896free_domains:
1897
1898 list_for_each_entry(iommu, &amd_iommu_list, list) {
1899 if (iommu->default_dom)
1900 dma_ops_domain_free(iommu->default_dom);
1901 }
1902
1903 return ret;
1904}
6d98cd80
JR
1905
1906/*****************************************************************************
1907 *
1908 * The following functions belong to the exported interface of AMD IOMMU
1909 *
1910 * This interface allows access to lower level functions of the IOMMU
1911 * like protection domain handling and assignement of devices to domains
1912 * which is not possible with the dma_ops interface.
1913 *
1914 *****************************************************************************/
1915
6d98cd80
JR
1916static void cleanup_domain(struct protection_domain *domain)
1917{
1918 unsigned long flags;
1919 u16 devid;
1920
1921 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1922
1923 for (devid = 0; devid <= amd_iommu_last_bdf; ++devid)
1924 if (amd_iommu_pd_table[devid] == domain)
1925 __detach_device(domain, devid);
1926
1927 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1928}
1929
c156e347
JR
1930static int amd_iommu_domain_init(struct iommu_domain *dom)
1931{
1932 struct protection_domain *domain;
1933
1934 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
1935 if (!domain)
1936 return -ENOMEM;
1937
1938 spin_lock_init(&domain->lock);
1939 domain->mode = PAGE_MODE_3_LEVEL;
1940 domain->id = domain_id_alloc();
1941 if (!domain->id)
1942 goto out_free;
1943 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1944 if (!domain->pt_root)
1945 goto out_free;
1946
1947 dom->priv = domain;
1948
1949 return 0;
1950
1951out_free:
1952 kfree(domain);
1953
1954 return -ENOMEM;
1955}
1956
98383fc3
JR
1957static void amd_iommu_domain_destroy(struct iommu_domain *dom)
1958{
1959 struct protection_domain *domain = dom->priv;
1960
1961 if (!domain)
1962 return;
1963
1964 if (domain->dev_cnt > 0)
1965 cleanup_domain(domain);
1966
1967 BUG_ON(domain->dev_cnt != 0);
1968
1969 free_pagetable(domain);
1970
1971 domain_id_free(domain->id);
1972
1973 kfree(domain);
1974
1975 dom->priv = NULL;
1976}
1977
684f2888
JR
1978static void amd_iommu_detach_device(struct iommu_domain *dom,
1979 struct device *dev)
1980{
1981 struct protection_domain *domain = dom->priv;
1982 struct amd_iommu *iommu;
1983 struct pci_dev *pdev;
1984 u16 devid;
1985
1986 if (dev->bus != &pci_bus_type)
1987 return;
1988
1989 pdev = to_pci_dev(dev);
1990
1991 devid = calc_devid(pdev->bus->number, pdev->devfn);
1992
1993 if (devid > 0)
1994 detach_device(domain, devid);
1995
1996 iommu = amd_iommu_rlookup_table[devid];
1997 if (!iommu)
1998 return;
1999
2000 iommu_queue_inv_dev_entry(iommu, devid);
2001 iommu_completion_wait(iommu);
2002}
2003
01106066
JR
2004static int amd_iommu_attach_device(struct iommu_domain *dom,
2005 struct device *dev)
2006{
2007 struct protection_domain *domain = dom->priv;
2008 struct protection_domain *old_domain;
2009 struct amd_iommu *iommu;
2010 struct pci_dev *pdev;
2011 u16 devid;
2012
2013 if (dev->bus != &pci_bus_type)
2014 return -EINVAL;
2015
2016 pdev = to_pci_dev(dev);
2017
2018 devid = calc_devid(pdev->bus->number, pdev->devfn);
2019
2020 if (devid >= amd_iommu_last_bdf ||
2021 devid != amd_iommu_alias_table[devid])
2022 return -EINVAL;
2023
2024 iommu = amd_iommu_rlookup_table[devid];
2025 if (!iommu)
2026 return -EINVAL;
2027
2028 old_domain = domain_for_device(devid);
2029 if (old_domain)
2030 return -EBUSY;
2031
2032 attach_device(iommu, domain, devid);
2033
2034 iommu_completion_wait(iommu);
2035
2036 return 0;
2037}
2038
c6229ca6
JR
2039static int amd_iommu_map_range(struct iommu_domain *dom,
2040 unsigned long iova, phys_addr_t paddr,
2041 size_t size, int iommu_prot)
2042{
2043 struct protection_domain *domain = dom->priv;
2044 unsigned long i, npages = iommu_num_pages(paddr, size, PAGE_SIZE);
2045 int prot = 0;
2046 int ret;
2047
2048 if (iommu_prot & IOMMU_READ)
2049 prot |= IOMMU_PROT_IR;
2050 if (iommu_prot & IOMMU_WRITE)
2051 prot |= IOMMU_PROT_IW;
2052
2053 iova &= PAGE_MASK;
2054 paddr &= PAGE_MASK;
2055
2056 for (i = 0; i < npages; ++i) {
2057 ret = iommu_map_page(domain, iova, paddr, prot);
2058 if (ret)
2059 return ret;
2060
2061 iova += PAGE_SIZE;
2062 paddr += PAGE_SIZE;
2063 }
2064
2065 return 0;
2066}
2067
eb74ff6c
JR
2068static void amd_iommu_unmap_range(struct iommu_domain *dom,
2069 unsigned long iova, size_t size)
2070{
2071
2072 struct protection_domain *domain = dom->priv;
2073 unsigned long i, npages = iommu_num_pages(iova, size, PAGE_SIZE);
2074
2075 iova &= PAGE_MASK;
2076
2077 for (i = 0; i < npages; ++i) {
2078 iommu_unmap_page(domain, iova);
2079 iova += PAGE_SIZE;
2080 }
2081
2082 iommu_flush_domain(domain->id);
2083}
2084
645c4c8d
JR
2085static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2086 unsigned long iova)
2087{
2088 struct protection_domain *domain = dom->priv;
2089 unsigned long offset = iova & ~PAGE_MASK;
2090 phys_addr_t paddr;
2091 u64 *pte;
2092
2093 pte = &domain->pt_root[IOMMU_PTE_L2_INDEX(iova)];
2094
2095 if (!IOMMU_PTE_PRESENT(*pte))
2096 return 0;
2097
2098 pte = IOMMU_PTE_PAGE(*pte);
2099 pte = &pte[IOMMU_PTE_L1_INDEX(iova)];
2100
2101 if (!IOMMU_PTE_PRESENT(*pte))
2102 return 0;
2103
2104 pte = IOMMU_PTE_PAGE(*pte);
2105 pte = &pte[IOMMU_PTE_L0_INDEX(iova)];
2106
2107 if (!IOMMU_PTE_PRESENT(*pte))
2108 return 0;
2109
2110 paddr = *pte & IOMMU_PAGE_MASK;
2111 paddr |= offset;
2112
2113 return paddr;
2114}
2115
dbb9fd86
SY
2116static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
2117 unsigned long cap)
2118{
2119 return 0;
2120}
2121
26961efe
JR
2122static struct iommu_ops amd_iommu_ops = {
2123 .domain_init = amd_iommu_domain_init,
2124 .domain_destroy = amd_iommu_domain_destroy,
2125 .attach_dev = amd_iommu_attach_device,
2126 .detach_dev = amd_iommu_detach_device,
2127 .map = amd_iommu_map_range,
2128 .unmap = amd_iommu_unmap_range,
2129 .iova_to_phys = amd_iommu_iova_to_phys,
dbb9fd86 2130 .domain_has_cap = amd_iommu_domain_has_cap,
26961efe
JR
2131};
2132