]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - arch/x86/kernel/amd_iommu.c
x86/amd-iommu: Add function to complete a tlb flush
[mirror_ubuntu-hirsute-kernel.git] / arch / x86 / kernel / amd_iommu.c
CommitLineData
b6c02715 1/*
bf3118c1 2 * Copyright (C) 2007-2009 Advanced Micro Devices, Inc.
b6c02715
JR
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/pci.h>
21#include <linux/gfp.h>
22#include <linux/bitops.h>
7f26508b 23#include <linux/debugfs.h>
b6c02715 24#include <linux/scatterlist.h>
51491367 25#include <linux/dma-mapping.h>
b6c02715 26#include <linux/iommu-helper.h>
c156e347 27#include <linux/iommu.h>
b6c02715 28#include <asm/proto.h>
46a7fa27 29#include <asm/iommu.h>
1d9b16d1 30#include <asm/gart.h>
6a9401a7 31#include <asm/amd_iommu_proto.h>
b6c02715 32#include <asm/amd_iommu_types.h>
c6da992e 33#include <asm/amd_iommu.h>
b6c02715
JR
34
35#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
36
136f78a1
JR
37#define EXIT_LOOP_COUNT 10000000
38
b6c02715
JR
39static DEFINE_RWLOCK(amd_iommu_devtable_lock);
40
bd60b735
JR
41/* A list of preallocated protection domains */
42static LIST_HEAD(iommu_pd_list);
43static DEFINE_SPINLOCK(iommu_pd_list_lock);
44
0feae533
JR
45/*
46 * Domain for untranslated devices - only allocated
47 * if iommu=pt passed on kernel cmd line.
48 */
49static struct protection_domain *pt_domain;
50
26961efe 51static struct iommu_ops amd_iommu_ops;
26961efe 52
431b2a20
JR
53/*
54 * general struct to manage commands send to an IOMMU
55 */
d6449536 56struct iommu_cmd {
b6c02715
JR
57 u32 data[4];
58};
59
bd0e5211
JR
60static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
61 struct unity_map_entry *e);
e275a2a0 62static struct dma_ops_domain *find_protection_domain(u16 devid);
8bc3e127 63static u64 *alloc_pte(struct protection_domain *domain,
abdc5eb3
JR
64 unsigned long address, int end_lvl,
65 u64 **pte_page, gfp_t gfp);
00cd122a
JR
66static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
67 unsigned long start_page,
68 unsigned int pages);
a345b23b 69static void reset_iommu_command_buffer(struct amd_iommu *iommu);
9355a081 70static u64 *fetch_pte(struct protection_domain *domain,
a6b256b4 71 unsigned long address, int map_size);
04bfdd84 72static void update_domain(struct protection_domain *domain);
c1eee67b 73
7f26508b
JR
74#ifdef CONFIG_AMD_IOMMU_STATS
75
76/*
77 * Initialization code for statistics collection
78 */
79
da49f6df 80DECLARE_STATS_COUNTER(compl_wait);
0f2a86f2 81DECLARE_STATS_COUNTER(cnt_map_single);
146a6917 82DECLARE_STATS_COUNTER(cnt_unmap_single);
d03f067a 83DECLARE_STATS_COUNTER(cnt_map_sg);
55877a6b 84DECLARE_STATS_COUNTER(cnt_unmap_sg);
c8f0fb36 85DECLARE_STATS_COUNTER(cnt_alloc_coherent);
5d31ee7e 86DECLARE_STATS_COUNTER(cnt_free_coherent);
c1858976 87DECLARE_STATS_COUNTER(cross_page);
f57d98ae 88DECLARE_STATS_COUNTER(domain_flush_single);
18811f55 89DECLARE_STATS_COUNTER(domain_flush_all);
5774f7c5 90DECLARE_STATS_COUNTER(alloced_io_mem);
8ecaf8f1 91DECLARE_STATS_COUNTER(total_map_requests);
da49f6df 92
7f26508b
JR
93static struct dentry *stats_dir;
94static struct dentry *de_isolate;
95static struct dentry *de_fflush;
96
97static void amd_iommu_stats_add(struct __iommu_counter *cnt)
98{
99 if (stats_dir == NULL)
100 return;
101
102 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
103 &cnt->value);
104}
105
106static void amd_iommu_stats_init(void)
107{
108 stats_dir = debugfs_create_dir("amd-iommu", NULL);
109 if (stats_dir == NULL)
110 return;
111
112 de_isolate = debugfs_create_bool("isolation", 0444, stats_dir,
113 (u32 *)&amd_iommu_isolate);
114
115 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
116 (u32 *)&amd_iommu_unmap_flush);
da49f6df
JR
117
118 amd_iommu_stats_add(&compl_wait);
0f2a86f2 119 amd_iommu_stats_add(&cnt_map_single);
146a6917 120 amd_iommu_stats_add(&cnt_unmap_single);
d03f067a 121 amd_iommu_stats_add(&cnt_map_sg);
55877a6b 122 amd_iommu_stats_add(&cnt_unmap_sg);
c8f0fb36 123 amd_iommu_stats_add(&cnt_alloc_coherent);
5d31ee7e 124 amd_iommu_stats_add(&cnt_free_coherent);
c1858976 125 amd_iommu_stats_add(&cross_page);
f57d98ae 126 amd_iommu_stats_add(&domain_flush_single);
18811f55 127 amd_iommu_stats_add(&domain_flush_all);
5774f7c5 128 amd_iommu_stats_add(&alloced_io_mem);
8ecaf8f1 129 amd_iommu_stats_add(&total_map_requests);
7f26508b
JR
130}
131
132#endif
133
431b2a20 134/* returns !0 if the IOMMU is caching non-present entries in its TLB */
4da70b9e
JR
135static int iommu_has_npcache(struct amd_iommu *iommu)
136{
ae9b9403 137 return iommu->cap & (1UL << IOMMU_CAP_NPCACHE);
4da70b9e
JR
138}
139
a80dc3e0
JR
140/****************************************************************************
141 *
142 * Interrupt handling functions
143 *
144 ****************************************************************************/
145
e3e59876
JR
146static void dump_dte_entry(u16 devid)
147{
148 int i;
149
150 for (i = 0; i < 8; ++i)
151 pr_err("AMD-Vi: DTE[%d]: %08x\n", i,
152 amd_iommu_dev_table[devid].data[i]);
153}
154
945b4ac4
JR
155static void dump_command(unsigned long phys_addr)
156{
157 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
158 int i;
159
160 for (i = 0; i < 4; ++i)
161 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
162}
163
a345b23b 164static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
90008ee4
JR
165{
166 u32 *event = __evt;
167 int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
168 int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
169 int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
170 int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
171 u64 address = (u64)(((u64)event[3]) << 32) | event[2];
172
4c6f40d4 173 printk(KERN_ERR "AMD-Vi: Event logged [");
90008ee4
JR
174
175 switch (type) {
176 case EVENT_TYPE_ILL_DEV:
177 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
178 "address=0x%016llx flags=0x%04x]\n",
179 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
180 address, flags);
e3e59876 181 dump_dte_entry(devid);
90008ee4
JR
182 break;
183 case EVENT_TYPE_IO_FAULT:
184 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
185 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
186 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
187 domid, address, flags);
188 break;
189 case EVENT_TYPE_DEV_TAB_ERR:
190 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
191 "address=0x%016llx flags=0x%04x]\n",
192 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
193 address, flags);
194 break;
195 case EVENT_TYPE_PAGE_TAB_ERR:
196 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
197 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
198 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
199 domid, address, flags);
200 break;
201 case EVENT_TYPE_ILL_CMD:
202 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
a345b23b 203 reset_iommu_command_buffer(iommu);
945b4ac4 204 dump_command(address);
90008ee4
JR
205 break;
206 case EVENT_TYPE_CMD_HARD_ERR:
207 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
208 "flags=0x%04x]\n", address, flags);
209 break;
210 case EVENT_TYPE_IOTLB_INV_TO:
211 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
212 "address=0x%016llx]\n",
213 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
214 address);
215 break;
216 case EVENT_TYPE_INV_DEV_REQ:
217 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
218 "address=0x%016llx flags=0x%04x]\n",
219 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
220 address, flags);
221 break;
222 default:
223 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
224 }
225}
226
227static void iommu_poll_events(struct amd_iommu *iommu)
228{
229 u32 head, tail;
230 unsigned long flags;
231
232 spin_lock_irqsave(&iommu->lock, flags);
233
234 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
235 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
236
237 while (head != tail) {
a345b23b 238 iommu_print_event(iommu, iommu->evt_buf + head);
90008ee4
JR
239 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
240 }
241
242 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
243
244 spin_unlock_irqrestore(&iommu->lock, flags);
245}
246
a80dc3e0
JR
247irqreturn_t amd_iommu_int_handler(int irq, void *data)
248{
90008ee4
JR
249 struct amd_iommu *iommu;
250
3bd22172 251 for_each_iommu(iommu)
90008ee4
JR
252 iommu_poll_events(iommu);
253
254 return IRQ_HANDLED;
a80dc3e0
JR
255}
256
431b2a20
JR
257/****************************************************************************
258 *
259 * IOMMU command queuing functions
260 *
261 ****************************************************************************/
262
263/*
264 * Writes the command to the IOMMUs command buffer and informs the
265 * hardware about the new command. Must be called with iommu->lock held.
266 */
d6449536 267static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
268{
269 u32 tail, head;
270 u8 *target;
271
272 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
8a7c5ef3 273 target = iommu->cmd_buf + tail;
a19ae1ec
JR
274 memcpy_toio(target, cmd, sizeof(*cmd));
275 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
276 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
277 if (tail == head)
278 return -ENOMEM;
279 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
280
281 return 0;
282}
283
431b2a20
JR
284/*
285 * General queuing function for commands. Takes iommu->lock and calls
286 * __iommu_queue_command().
287 */
d6449536 288static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
289{
290 unsigned long flags;
291 int ret;
292
293 spin_lock_irqsave(&iommu->lock, flags);
294 ret = __iommu_queue_command(iommu, cmd);
09ee17eb 295 if (!ret)
0cfd7aa9 296 iommu->need_sync = true;
a19ae1ec
JR
297 spin_unlock_irqrestore(&iommu->lock, flags);
298
299 return ret;
300}
301
8d201968
JR
302/*
303 * This function waits until an IOMMU has completed a completion
304 * wait command
305 */
306static void __iommu_wait_for_completion(struct amd_iommu *iommu)
307{
308 int ready = 0;
309 unsigned status = 0;
310 unsigned long i = 0;
311
da49f6df
JR
312 INC_STATS_COUNTER(compl_wait);
313
8d201968
JR
314 while (!ready && (i < EXIT_LOOP_COUNT)) {
315 ++i;
316 /* wait for the bit to become one */
317 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
318 ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
319 }
320
321 /* set bit back to zero */
322 status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
323 writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);
324
6a1eddd2
JR
325 if (unlikely(i == EXIT_LOOP_COUNT)) {
326 spin_unlock(&iommu->lock);
327 reset_iommu_command_buffer(iommu);
328 spin_lock(&iommu->lock);
329 }
8d201968
JR
330}
331
332/*
333 * This function queues a completion wait command into the command
334 * buffer of an IOMMU
335 */
336static int __iommu_completion_wait(struct amd_iommu *iommu)
337{
338 struct iommu_cmd cmd;
339
340 memset(&cmd, 0, sizeof(cmd));
341 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
342 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);
343
344 return __iommu_queue_command(iommu, &cmd);
345}
346
431b2a20
JR
347/*
348 * This function is called whenever we need to ensure that the IOMMU has
349 * completed execution of all commands we sent. It sends a
350 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
351 * us about that by writing a value to a physical address we pass with
352 * the command.
353 */
a19ae1ec
JR
354static int iommu_completion_wait(struct amd_iommu *iommu)
355{
8d201968
JR
356 int ret = 0;
357 unsigned long flags;
a19ae1ec 358
7e4f88da
JR
359 spin_lock_irqsave(&iommu->lock, flags);
360
09ee17eb
JR
361 if (!iommu->need_sync)
362 goto out;
363
8d201968 364 ret = __iommu_completion_wait(iommu);
09ee17eb 365
0cfd7aa9 366 iommu->need_sync = false;
a19ae1ec
JR
367
368 if (ret)
7e4f88da 369 goto out;
a19ae1ec 370
8d201968 371 __iommu_wait_for_completion(iommu);
84df8175 372
7e4f88da
JR
373out:
374 spin_unlock_irqrestore(&iommu->lock, flags);
a19ae1ec
JR
375
376 return 0;
377}
378
0518a3a4
JR
379static void iommu_flush_complete(struct protection_domain *domain)
380{
381 int i;
382
383 for (i = 0; i < amd_iommus_present; ++i) {
384 if (!domain->dev_iommu[i])
385 continue;
386
387 /*
388 * Devices of this domain are behind this IOMMU
389 * We need to wait for completion of all commands.
390 */
391 iommu_completion_wait(amd_iommus[i]);
392 }
393}
394
431b2a20
JR
395/*
396 * Command send function for invalidating a device table entry
397 */
a19ae1ec
JR
398static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
399{
d6449536 400 struct iommu_cmd cmd;
ee2fa743 401 int ret;
a19ae1ec
JR
402
403 BUG_ON(iommu == NULL);
404
405 memset(&cmd, 0, sizeof(cmd));
406 CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
407 cmd.data[0] = devid;
408
ee2fa743
JR
409 ret = iommu_queue_command(iommu, &cmd);
410
ee2fa743 411 return ret;
a19ae1ec
JR
412}
413
237b6f33
JR
414static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
415 u16 domid, int pde, int s)
416{
417 memset(cmd, 0, sizeof(*cmd));
418 address &= PAGE_MASK;
419 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
420 cmd->data[1] |= domid;
421 cmd->data[2] = lower_32_bits(address);
422 cmd->data[3] = upper_32_bits(address);
423 if (s) /* size bit - we flush more than one 4kb page */
424 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
425 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
426 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
427}
428
431b2a20
JR
429/*
430 * Generic command send function for invalidaing TLB entries
431 */
a19ae1ec
JR
432static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
433 u64 address, u16 domid, int pde, int s)
434{
d6449536 435 struct iommu_cmd cmd;
ee2fa743 436 int ret;
a19ae1ec 437
237b6f33 438 __iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
a19ae1ec 439
ee2fa743
JR
440 ret = iommu_queue_command(iommu, &cmd);
441
ee2fa743 442 return ret;
a19ae1ec
JR
443}
444
431b2a20
JR
445/*
446 * TLB invalidation function which is called from the mapping functions.
447 * It invalidates a single PTE if the range to flush is within a single
448 * page. Otherwise it flushes the whole TLB of the IOMMU.
449 */
a19ae1ec
JR
450static int iommu_flush_pages(struct amd_iommu *iommu, u16 domid,
451 u64 address, size_t size)
452{
999ba417 453 int s = 0;
e3c449f5 454 unsigned pages = iommu_num_pages(address, size, PAGE_SIZE);
a19ae1ec
JR
455
456 address &= PAGE_MASK;
457
999ba417
JR
458 if (pages > 1) {
459 /*
460 * If we have to flush more than one page, flush all
461 * TLB entries for this domain
462 */
463 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
464 s = 1;
a19ae1ec
JR
465 }
466
999ba417
JR
467 iommu_queue_inv_iommu_pages(iommu, address, domid, 0, s);
468
a19ae1ec
JR
469 return 0;
470}
b6c02715 471
1c655773
JR
472/* Flush the whole IO/TLB for a given protection domain */
473static void iommu_flush_tlb(struct amd_iommu *iommu, u16 domid)
474{
475 u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
476
f57d98ae
JR
477 INC_STATS_COUNTER(domain_flush_single);
478
1c655773
JR
479 iommu_queue_inv_iommu_pages(iommu, address, domid, 0, 1);
480}
481
42a49f96
CW
482/* Flush the whole IO/TLB for a given protection domain - including PDE */
483static void iommu_flush_tlb_pde(struct amd_iommu *iommu, u16 domid)
484{
485 u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
486
487 INC_STATS_COUNTER(domain_flush_single);
488
489 iommu_queue_inv_iommu_pages(iommu, address, domid, 1, 1);
490}
491
43f49609 492/*
e394d72a 493 * This function flushes one domain on one IOMMU
43f49609 494 */
e394d72a 495static void flush_domain_on_iommu(struct amd_iommu *iommu, u16 domid)
43f49609 496{
43f49609 497 struct iommu_cmd cmd;
e394d72a 498 unsigned long flags;
18811f55 499
43f49609
JR
500 __iommu_build_inv_iommu_pages(&cmd, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
501 domid, 1, 1);
502
e394d72a
JR
503 spin_lock_irqsave(&iommu->lock, flags);
504 __iommu_queue_command(iommu, &cmd);
505 __iommu_completion_wait(iommu);
506 __iommu_wait_for_completion(iommu);
507 spin_unlock_irqrestore(&iommu->lock, flags);
43f49609 508}
43f49609 509
e394d72a 510static void flush_all_domains_on_iommu(struct amd_iommu *iommu)
bfd1be18
JR
511{
512 int i;
513
514 for (i = 1; i < MAX_DOMAIN_ID; ++i) {
515 if (!test_bit(i, amd_iommu_pd_alloc_bitmap))
516 continue;
e394d72a 517 flush_domain_on_iommu(iommu, i);
bfd1be18 518 }
e394d72a
JR
519
520}
521
43f49609
JR
522/*
523 * This function is used to flush the IO/TLB for a given protection domain
524 * on every IOMMU in the system
525 */
526static void iommu_flush_domain(u16 domid)
527{
43f49609 528 struct amd_iommu *iommu;
43f49609 529
18811f55
JR
530 INC_STATS_COUNTER(domain_flush_all);
531
e394d72a
JR
532 for_each_iommu(iommu)
533 flush_domain_on_iommu(iommu, domid);
43f49609 534}
43f49609 535
bfd1be18 536void amd_iommu_flush_all_domains(void)
e394d72a
JR
537{
538 struct amd_iommu *iommu;
539
540 for_each_iommu(iommu)
541 flush_all_domains_on_iommu(iommu);
bfd1be18
JR
542}
543
d586d785 544static void flush_all_devices_for_iommu(struct amd_iommu *iommu)
bfd1be18
JR
545{
546 int i;
547
d586d785
JR
548 for (i = 0; i <= amd_iommu_last_bdf; ++i) {
549 if (iommu != amd_iommu_rlookup_table[i])
bfd1be18 550 continue;
d586d785
JR
551
552 iommu_queue_inv_dev_entry(iommu, i);
553 iommu_completion_wait(iommu);
bfd1be18
JR
554 }
555}
556
6a0dbcbe 557static void flush_devices_by_domain(struct protection_domain *domain)
7d7a110c
JR
558{
559 struct amd_iommu *iommu;
560 int i;
561
562 for (i = 0; i <= amd_iommu_last_bdf; ++i) {
6a0dbcbe
JR
563 if ((domain == NULL && amd_iommu_pd_table[i] == NULL) ||
564 (amd_iommu_pd_table[i] != domain))
7d7a110c
JR
565 continue;
566
567 iommu = amd_iommu_rlookup_table[i];
568 if (!iommu)
569 continue;
570
571 iommu_queue_inv_dev_entry(iommu, i);
572 iommu_completion_wait(iommu);
573 }
574}
575
a345b23b
JR
576static void reset_iommu_command_buffer(struct amd_iommu *iommu)
577{
578 pr_err("AMD-Vi: Resetting IOMMU command buffer\n");
579
b26e81b8
JR
580 if (iommu->reset_in_progress)
581 panic("AMD-Vi: ILLEGAL_COMMAND_ERROR while resetting command buffer\n");
582
583 iommu->reset_in_progress = true;
584
a345b23b
JR
585 amd_iommu_reset_cmd_buffer(iommu);
586 flush_all_devices_for_iommu(iommu);
587 flush_all_domains_on_iommu(iommu);
b26e81b8
JR
588
589 iommu->reset_in_progress = false;
a345b23b
JR
590}
591
6a0dbcbe
JR
592void amd_iommu_flush_all_devices(void)
593{
594 flush_devices_by_domain(NULL);
595}
596
431b2a20
JR
597/****************************************************************************
598 *
599 * The functions below are used the create the page table mappings for
600 * unity mapped regions.
601 *
602 ****************************************************************************/
603
604/*
605 * Generic mapping functions. It maps a physical address into a DMA
606 * address space. It allocates the page table pages if necessary.
607 * In the future it can be extended to a generic mapping function
608 * supporting all features of AMD IOMMU page tables like level skipping
609 * and full 64 bit address spaces.
610 */
38e817fe
JR
611static int iommu_map_page(struct protection_domain *dom,
612 unsigned long bus_addr,
613 unsigned long phys_addr,
abdc5eb3
JR
614 int prot,
615 int map_size)
bd0e5211 616{
8bda3092 617 u64 __pte, *pte;
bd0e5211
JR
618
619 bus_addr = PAGE_ALIGN(bus_addr);
bb9d4ff8 620 phys_addr = PAGE_ALIGN(phys_addr);
bd0e5211 621
abdc5eb3
JR
622 BUG_ON(!PM_ALIGNED(map_size, bus_addr));
623 BUG_ON(!PM_ALIGNED(map_size, phys_addr));
624
bad1cac2 625 if (!(prot & IOMMU_PROT_MASK))
bd0e5211
JR
626 return -EINVAL;
627
abdc5eb3 628 pte = alloc_pte(dom, bus_addr, map_size, NULL, GFP_KERNEL);
bd0e5211
JR
629
630 if (IOMMU_PTE_PRESENT(*pte))
631 return -EBUSY;
632
633 __pte = phys_addr | IOMMU_PTE_P;
634 if (prot & IOMMU_PROT_IR)
635 __pte |= IOMMU_PTE_IR;
636 if (prot & IOMMU_PROT_IW)
637 __pte |= IOMMU_PTE_IW;
638
639 *pte = __pte;
640
04bfdd84
JR
641 update_domain(dom);
642
bd0e5211
JR
643 return 0;
644}
645
eb74ff6c 646static void iommu_unmap_page(struct protection_domain *dom,
a6b256b4 647 unsigned long bus_addr, int map_size)
eb74ff6c 648{
a6b256b4 649 u64 *pte = fetch_pte(dom, bus_addr, map_size);
eb74ff6c 650
38a76eee
JR
651 if (pte)
652 *pte = 0;
eb74ff6c 653}
eb74ff6c 654
431b2a20
JR
655/*
656 * This function checks if a specific unity mapping entry is needed for
657 * this specific IOMMU.
658 */
bd0e5211
JR
659static int iommu_for_unity_map(struct amd_iommu *iommu,
660 struct unity_map_entry *entry)
661{
662 u16 bdf, i;
663
664 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
665 bdf = amd_iommu_alias_table[i];
666 if (amd_iommu_rlookup_table[bdf] == iommu)
667 return 1;
668 }
669
670 return 0;
671}
672
431b2a20
JR
673/*
674 * Init the unity mappings for a specific IOMMU in the system
675 *
676 * Basically iterates over all unity mapping entries and applies them to
677 * the default domain DMA of that IOMMU if necessary.
678 */
bd0e5211
JR
679static int iommu_init_unity_mappings(struct amd_iommu *iommu)
680{
681 struct unity_map_entry *entry;
682 int ret;
683
684 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
685 if (!iommu_for_unity_map(iommu, entry))
686 continue;
687 ret = dma_ops_unity_map(iommu->default_dom, entry);
688 if (ret)
689 return ret;
690 }
691
692 return 0;
693}
694
431b2a20
JR
695/*
696 * This function actually applies the mapping to the page table of the
697 * dma_ops domain.
698 */
bd0e5211
JR
699static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
700 struct unity_map_entry *e)
701{
702 u64 addr;
703 int ret;
704
705 for (addr = e->address_start; addr < e->address_end;
706 addr += PAGE_SIZE) {
abdc5eb3
JR
707 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
708 PM_MAP_4k);
bd0e5211
JR
709 if (ret)
710 return ret;
711 /*
712 * if unity mapping is in aperture range mark the page
713 * as allocated in the aperture
714 */
715 if (addr < dma_dom->aperture_size)
c3239567 716 __set_bit(addr >> PAGE_SHIFT,
384de729 717 dma_dom->aperture[0]->bitmap);
bd0e5211
JR
718 }
719
720 return 0;
721}
722
431b2a20
JR
723/*
724 * Inits the unity mappings required for a specific device
725 */
bd0e5211
JR
726static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
727 u16 devid)
728{
729 struct unity_map_entry *e;
730 int ret;
731
732 list_for_each_entry(e, &amd_iommu_unity_map, list) {
733 if (!(devid >= e->devid_start && devid <= e->devid_end))
734 continue;
735 ret = dma_ops_unity_map(dma_dom, e);
736 if (ret)
737 return ret;
738 }
739
740 return 0;
741}
742
431b2a20
JR
743/****************************************************************************
744 *
745 * The next functions belong to the address allocator for the dma_ops
746 * interface functions. They work like the allocators in the other IOMMU
747 * drivers. Its basically a bitmap which marks the allocated pages in
748 * the aperture. Maybe it could be enhanced in the future to a more
749 * efficient allocator.
750 *
751 ****************************************************************************/
d3086444 752
431b2a20 753/*
384de729 754 * The address allocator core functions.
431b2a20
JR
755 *
756 * called with domain->lock held
757 */
384de729 758
00cd122a
JR
759/*
760 * This function checks if there is a PTE for a given dma address. If
761 * there is one, it returns the pointer to it.
762 */
9355a081 763static u64 *fetch_pte(struct protection_domain *domain,
a6b256b4 764 unsigned long address, int map_size)
00cd122a 765{
9355a081 766 int level;
00cd122a
JR
767 u64 *pte;
768
9355a081
JR
769 level = domain->mode - 1;
770 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
00cd122a 771
a6b256b4 772 while (level > map_size) {
9355a081
JR
773 if (!IOMMU_PTE_PRESENT(*pte))
774 return NULL;
00cd122a 775
9355a081 776 level -= 1;
00cd122a 777
9355a081
JR
778 pte = IOMMU_PTE_PAGE(*pte);
779 pte = &pte[PM_LEVEL_INDEX(level, address)];
00cd122a 780
a6b256b4
JR
781 if ((PM_PTE_LEVEL(*pte) == 0) && level != map_size) {
782 pte = NULL;
783 break;
784 }
9355a081 785 }
00cd122a
JR
786
787 return pte;
788}
789
9cabe89b
JR
790/*
791 * This function is used to add a new aperture range to an existing
792 * aperture in case of dma_ops domain allocation or address allocation
793 * failure.
794 */
00cd122a
JR
795static int alloc_new_range(struct amd_iommu *iommu,
796 struct dma_ops_domain *dma_dom,
9cabe89b
JR
797 bool populate, gfp_t gfp)
798{
799 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
00cd122a 800 int i;
9cabe89b 801
f5e9705c
JR
802#ifdef CONFIG_IOMMU_STRESS
803 populate = false;
804#endif
805
9cabe89b
JR
806 if (index >= APERTURE_MAX_RANGES)
807 return -ENOMEM;
808
809 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
810 if (!dma_dom->aperture[index])
811 return -ENOMEM;
812
813 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
814 if (!dma_dom->aperture[index]->bitmap)
815 goto out_free;
816
817 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
818
819 if (populate) {
820 unsigned long address = dma_dom->aperture_size;
821 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
822 u64 *pte, *pte_page;
823
824 for (i = 0; i < num_ptes; ++i) {
abdc5eb3 825 pte = alloc_pte(&dma_dom->domain, address, PM_MAP_4k,
9cabe89b
JR
826 &pte_page, gfp);
827 if (!pte)
828 goto out_free;
829
830 dma_dom->aperture[index]->pte_pages[i] = pte_page;
831
832 address += APERTURE_RANGE_SIZE / 64;
833 }
834 }
835
836 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
837
00cd122a
JR
838 /* Intialize the exclusion range if necessary */
839 if (iommu->exclusion_start &&
840 iommu->exclusion_start >= dma_dom->aperture[index]->offset &&
841 iommu->exclusion_start < dma_dom->aperture_size) {
842 unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
843 int pages = iommu_num_pages(iommu->exclusion_start,
844 iommu->exclusion_length,
845 PAGE_SIZE);
846 dma_ops_reserve_addresses(dma_dom, startpage, pages);
847 }
848
849 /*
850 * Check for areas already mapped as present in the new aperture
851 * range and mark those pages as reserved in the allocator. Such
852 * mappings may already exist as a result of requested unity
853 * mappings for devices.
854 */
855 for (i = dma_dom->aperture[index]->offset;
856 i < dma_dom->aperture_size;
857 i += PAGE_SIZE) {
a6b256b4 858 u64 *pte = fetch_pte(&dma_dom->domain, i, PM_MAP_4k);
00cd122a
JR
859 if (!pte || !IOMMU_PTE_PRESENT(*pte))
860 continue;
861
862 dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
863 }
864
04bfdd84
JR
865 update_domain(&dma_dom->domain);
866
9cabe89b
JR
867 return 0;
868
869out_free:
04bfdd84
JR
870 update_domain(&dma_dom->domain);
871
9cabe89b
JR
872 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
873
874 kfree(dma_dom->aperture[index]);
875 dma_dom->aperture[index] = NULL;
876
877 return -ENOMEM;
878}
879
384de729
JR
880static unsigned long dma_ops_area_alloc(struct device *dev,
881 struct dma_ops_domain *dom,
882 unsigned int pages,
883 unsigned long align_mask,
884 u64 dma_mask,
885 unsigned long start)
886{
803b8cb4 887 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
384de729
JR
888 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
889 int i = start >> APERTURE_RANGE_SHIFT;
890 unsigned long boundary_size;
891 unsigned long address = -1;
892 unsigned long limit;
893
803b8cb4
JR
894 next_bit >>= PAGE_SHIFT;
895
384de729
JR
896 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
897 PAGE_SIZE) >> PAGE_SHIFT;
898
899 for (;i < max_index; ++i) {
900 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
901
902 if (dom->aperture[i]->offset >= dma_mask)
903 break;
904
905 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
906 dma_mask >> PAGE_SHIFT);
907
908 address = iommu_area_alloc(dom->aperture[i]->bitmap,
909 limit, next_bit, pages, 0,
910 boundary_size, align_mask);
911 if (address != -1) {
912 address = dom->aperture[i]->offset +
913 (address << PAGE_SHIFT);
803b8cb4 914 dom->next_address = address + (pages << PAGE_SHIFT);
384de729
JR
915 break;
916 }
917
918 next_bit = 0;
919 }
920
921 return address;
922}
923
d3086444
JR
924static unsigned long dma_ops_alloc_addresses(struct device *dev,
925 struct dma_ops_domain *dom,
6d4f343f 926 unsigned int pages,
832a90c3
JR
927 unsigned long align_mask,
928 u64 dma_mask)
d3086444 929{
d3086444 930 unsigned long address;
d3086444 931
fe16f088
JR
932#ifdef CONFIG_IOMMU_STRESS
933 dom->next_address = 0;
934 dom->need_flush = true;
935#endif
d3086444 936
384de729 937 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
803b8cb4 938 dma_mask, dom->next_address);
d3086444 939
1c655773 940 if (address == -1) {
803b8cb4 941 dom->next_address = 0;
384de729
JR
942 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
943 dma_mask, 0);
1c655773
JR
944 dom->need_flush = true;
945 }
d3086444 946
384de729 947 if (unlikely(address == -1))
8fd524b3 948 address = DMA_ERROR_CODE;
d3086444
JR
949
950 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
951
952 return address;
953}
954
431b2a20
JR
955/*
956 * The address free function.
957 *
958 * called with domain->lock held
959 */
d3086444
JR
960static void dma_ops_free_addresses(struct dma_ops_domain *dom,
961 unsigned long address,
962 unsigned int pages)
963{
384de729
JR
964 unsigned i = address >> APERTURE_RANGE_SHIFT;
965 struct aperture_range *range = dom->aperture[i];
80be308d 966
384de729
JR
967 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
968
47bccd6b
JR
969#ifdef CONFIG_IOMMU_STRESS
970 if (i < 4)
971 return;
972#endif
80be308d 973
803b8cb4 974 if (address >= dom->next_address)
80be308d 975 dom->need_flush = true;
384de729
JR
976
977 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
803b8cb4 978
384de729
JR
979 iommu_area_free(range->bitmap, address, pages);
980
d3086444
JR
981}
982
431b2a20
JR
983/****************************************************************************
984 *
985 * The next functions belong to the domain allocation. A domain is
986 * allocated for every IOMMU as the default domain. If device isolation
987 * is enabled, every device get its own domain. The most important thing
988 * about domains is the page table mapping the DMA address space they
989 * contain.
990 *
991 ****************************************************************************/
992
ec487d1a
JR
993static u16 domain_id_alloc(void)
994{
995 unsigned long flags;
996 int id;
997
998 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
999 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1000 BUG_ON(id == 0);
1001 if (id > 0 && id < MAX_DOMAIN_ID)
1002 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1003 else
1004 id = 0;
1005 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1006
1007 return id;
1008}
1009
a2acfb75
JR
1010static void domain_id_free(int id)
1011{
1012 unsigned long flags;
1013
1014 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1015 if (id > 0 && id < MAX_DOMAIN_ID)
1016 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1017 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1018}
a2acfb75 1019
431b2a20
JR
1020/*
1021 * Used to reserve address ranges in the aperture (e.g. for exclusion
1022 * ranges.
1023 */
ec487d1a
JR
1024static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1025 unsigned long start_page,
1026 unsigned int pages)
1027{
384de729 1028 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
ec487d1a
JR
1029
1030 if (start_page + pages > last_page)
1031 pages = last_page - start_page;
1032
384de729
JR
1033 for (i = start_page; i < start_page + pages; ++i) {
1034 int index = i / APERTURE_RANGE_PAGES;
1035 int page = i % APERTURE_RANGE_PAGES;
1036 __set_bit(page, dom->aperture[index]->bitmap);
1037 }
ec487d1a
JR
1038}
1039
86db2e5d 1040static void free_pagetable(struct protection_domain *domain)
ec487d1a
JR
1041{
1042 int i, j;
1043 u64 *p1, *p2, *p3;
1044
86db2e5d 1045 p1 = domain->pt_root;
ec487d1a
JR
1046
1047 if (!p1)
1048 return;
1049
1050 for (i = 0; i < 512; ++i) {
1051 if (!IOMMU_PTE_PRESENT(p1[i]))
1052 continue;
1053
1054 p2 = IOMMU_PTE_PAGE(p1[i]);
3cc3d84b 1055 for (j = 0; j < 512; ++j) {
ec487d1a
JR
1056 if (!IOMMU_PTE_PRESENT(p2[j]))
1057 continue;
1058 p3 = IOMMU_PTE_PAGE(p2[j]);
1059 free_page((unsigned long)p3);
1060 }
1061
1062 free_page((unsigned long)p2);
1063 }
1064
1065 free_page((unsigned long)p1);
86db2e5d
JR
1066
1067 domain->pt_root = NULL;
ec487d1a
JR
1068}
1069
431b2a20
JR
1070/*
1071 * Free a domain, only used if something went wrong in the
1072 * allocation path and we need to free an already allocated page table
1073 */
ec487d1a
JR
1074static void dma_ops_domain_free(struct dma_ops_domain *dom)
1075{
384de729
JR
1076 int i;
1077
ec487d1a
JR
1078 if (!dom)
1079 return;
1080
86db2e5d 1081 free_pagetable(&dom->domain);
ec487d1a 1082
384de729
JR
1083 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1084 if (!dom->aperture[i])
1085 continue;
1086 free_page((unsigned long)dom->aperture[i]->bitmap);
1087 kfree(dom->aperture[i]);
1088 }
ec487d1a
JR
1089
1090 kfree(dom);
1091}
1092
431b2a20
JR
1093/*
1094 * Allocates a new protection domain usable for the dma_ops functions.
1095 * It also intializes the page table and the address allocator data
1096 * structures required for the dma_ops interface
1097 */
d9cfed92 1098static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu)
ec487d1a
JR
1099{
1100 struct dma_ops_domain *dma_dom;
ec487d1a
JR
1101
1102 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1103 if (!dma_dom)
1104 return NULL;
1105
1106 spin_lock_init(&dma_dom->domain.lock);
1107
1108 dma_dom->domain.id = domain_id_alloc();
1109 if (dma_dom->domain.id == 0)
1110 goto free_dma_dom;
8f7a017c 1111 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
ec487d1a 1112 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
9fdb19d6 1113 dma_dom->domain.flags = PD_DMA_OPS_MASK;
ec487d1a
JR
1114 dma_dom->domain.priv = dma_dom;
1115 if (!dma_dom->domain.pt_root)
1116 goto free_dma_dom;
ec487d1a 1117
1c655773 1118 dma_dom->need_flush = false;
bd60b735 1119 dma_dom->target_dev = 0xffff;
1c655773 1120
00cd122a 1121 if (alloc_new_range(iommu, dma_dom, true, GFP_KERNEL))
ec487d1a 1122 goto free_dma_dom;
ec487d1a 1123
431b2a20 1124 /*
ec487d1a
JR
1125 * mark the first page as allocated so we never return 0 as
1126 * a valid dma-address. So we can use 0 as error value
431b2a20 1127 */
384de729 1128 dma_dom->aperture[0]->bitmap[0] = 1;
803b8cb4 1129 dma_dom->next_address = 0;
ec487d1a 1130
ec487d1a
JR
1131
1132 return dma_dom;
1133
1134free_dma_dom:
1135 dma_ops_domain_free(dma_dom);
1136
1137 return NULL;
1138}
1139
5b28df6f
JR
1140/*
1141 * little helper function to check whether a given protection domain is a
1142 * dma_ops domain
1143 */
1144static bool dma_ops_domain(struct protection_domain *domain)
1145{
1146 return domain->flags & PD_DMA_OPS_MASK;
1147}
1148
431b2a20
JR
1149/*
1150 * Find out the protection domain structure for a given PCI device. This
1151 * will give us the pointer to the page table root for example.
1152 */
b20ac0d4
JR
1153static struct protection_domain *domain_for_device(u16 devid)
1154{
1155 struct protection_domain *dom;
1156 unsigned long flags;
1157
1158 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
1159 dom = amd_iommu_pd_table[devid];
1160 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1161
1162 return dom;
1163}
1164
407d733e 1165static void set_dte_entry(u16 devid, struct protection_domain *domain)
b20ac0d4 1166{
b20ac0d4 1167 u64 pte_root = virt_to_phys(domain->pt_root);
863c74eb 1168
38ddf41b
JR
1169 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1170 << DEV_ENTRY_MODE_SHIFT;
1171 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
b20ac0d4 1172
b20ac0d4 1173 amd_iommu_dev_table[devid].data[2] = domain->id;
aa879fff
JR
1174 amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
1175 amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
b20ac0d4
JR
1176
1177 amd_iommu_pd_table[devid] = domain;
2b681faf
JR
1178}
1179
1180/*
1181 * If a device is not yet associated with a domain, this function does
1182 * assigns it visible for the hardware
1183 */
1184static void __attach_device(struct amd_iommu *iommu,
1185 struct protection_domain *domain,
1186 u16 devid)
1187{
1188 /* lock domain */
1189 spin_lock(&domain->lock);
1190
1191 /* update DTE entry */
1192 set_dte_entry(devid, domain);
eba6ac60 1193
c4596114
JR
1194 /* Do reference counting */
1195 domain->dev_iommu[iommu->index] += 1;
1196 domain->dev_cnt += 1;
eba6ac60
JR
1197
1198 /* ready */
1199 spin_unlock(&domain->lock);
0feae533 1200}
b20ac0d4 1201
407d733e
JR
1202/*
1203 * If a device is not yet associated with a domain, this function does
1204 * assigns it visible for the hardware
1205 */
0feae533
JR
1206static void attach_device(struct amd_iommu *iommu,
1207 struct protection_domain *domain,
1208 u16 devid)
1209{
eba6ac60
JR
1210 unsigned long flags;
1211
1212 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
0feae533 1213 __attach_device(iommu, domain, devid);
b20ac0d4
JR
1214 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1215
0feae533
JR
1216 /*
1217 * We might boot into a crash-kernel here. The crashed kernel
1218 * left the caches in the IOMMU dirty. So we have to flush
1219 * here to evict all dirty stuff.
1220 */
b20ac0d4 1221 iommu_queue_inv_dev_entry(iommu, devid);
42a49f96 1222 iommu_flush_tlb_pde(iommu, domain->id);
b20ac0d4
JR
1223}
1224
355bf553
JR
1225/*
1226 * Removes a device from a protection domain (unlocked)
1227 */
1228static void __detach_device(struct protection_domain *domain, u16 devid)
1229{
c4596114
JR
1230 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
1231
1232 BUG_ON(!iommu);
355bf553
JR
1233
1234 /* lock domain */
1235 spin_lock(&domain->lock);
1236
1237 /* remove domain from the lookup table */
1238 amd_iommu_pd_table[devid] = NULL;
1239
1240 /* remove entry from the device table seen by the hardware */
1241 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1242 amd_iommu_dev_table[devid].data[1] = 0;
1243 amd_iommu_dev_table[devid].data[2] = 0;
1244
c5cca146
JR
1245 amd_iommu_apply_erratum_63(devid);
1246
c4596114
JR
1247 /* decrease reference counters */
1248 domain->dev_iommu[iommu->index] -= 1;
1249 domain->dev_cnt -= 1;
355bf553
JR
1250
1251 /* ready */
1252 spin_unlock(&domain->lock);
21129f78
JR
1253
1254 /*
1255 * If we run in passthrough mode the device must be assigned to the
1256 * passthrough domain if it is detached from any other domain
1257 */
1258 if (iommu_pass_through) {
1259 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
1260 __attach_device(iommu, pt_domain, devid);
1261 }
355bf553
JR
1262}
1263
1264/*
1265 * Removes a device from a protection domain (with devtable_lock held)
1266 */
1267static void detach_device(struct protection_domain *domain, u16 devid)
1268{
1269 unsigned long flags;
1270
1271 /* lock device table */
1272 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1273 __detach_device(domain, devid);
1274 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1275}
e275a2a0
JR
1276
1277static int device_change_notifier(struct notifier_block *nb,
1278 unsigned long action, void *data)
1279{
1280 struct device *dev = data;
1281 struct pci_dev *pdev = to_pci_dev(dev);
1282 u16 devid = calc_devid(pdev->bus->number, pdev->devfn);
1283 struct protection_domain *domain;
1284 struct dma_ops_domain *dma_domain;
1285 struct amd_iommu *iommu;
1ac4cbbc 1286 unsigned long flags;
e275a2a0
JR
1287
1288 if (devid > amd_iommu_last_bdf)
1289 goto out;
1290
1291 devid = amd_iommu_alias_table[devid];
1292
1293 iommu = amd_iommu_rlookup_table[devid];
1294 if (iommu == NULL)
1295 goto out;
1296
1297 domain = domain_for_device(devid);
1298
1299 if (domain && !dma_ops_domain(domain))
1300 WARN_ONCE(1, "AMD IOMMU WARNING: device %s already bound "
1301 "to a non-dma-ops domain\n", dev_name(dev));
1302
1303 switch (action) {
c1eee67b 1304 case BUS_NOTIFY_UNBOUND_DRIVER:
e275a2a0
JR
1305 if (!domain)
1306 goto out;
a1ca331c
JR
1307 if (iommu_pass_through)
1308 break;
e275a2a0 1309 detach_device(domain, devid);
1ac4cbbc
JR
1310 break;
1311 case BUS_NOTIFY_ADD_DEVICE:
1312 /* allocate a protection domain if a device is added */
1313 dma_domain = find_protection_domain(devid);
1314 if (dma_domain)
1315 goto out;
d9cfed92 1316 dma_domain = dma_ops_domain_alloc(iommu);
1ac4cbbc
JR
1317 if (!dma_domain)
1318 goto out;
1319 dma_domain->target_dev = devid;
1320
1321 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1322 list_add_tail(&dma_domain->list, &iommu_pd_list);
1323 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1324
e275a2a0
JR
1325 break;
1326 default:
1327 goto out;
1328 }
1329
1330 iommu_queue_inv_dev_entry(iommu, devid);
1331 iommu_completion_wait(iommu);
1332
1333out:
1334 return 0;
1335}
1336
b25ae679 1337static struct notifier_block device_nb = {
e275a2a0
JR
1338 .notifier_call = device_change_notifier,
1339};
355bf553 1340
431b2a20
JR
1341/*****************************************************************************
1342 *
1343 * The next functions belong to the dma_ops mapping/unmapping code.
1344 *
1345 *****************************************************************************/
1346
dbcc112e
JR
1347/*
1348 * This function checks if the driver got a valid device from the caller to
1349 * avoid dereferencing invalid pointers.
1350 */
1351static bool check_device(struct device *dev)
1352{
1353 if (!dev || !dev->dma_mask)
1354 return false;
1355
1356 return true;
1357}
1358
bd60b735
JR
1359/*
1360 * In this function the list of preallocated protection domains is traversed to
1361 * find the domain for a specific device
1362 */
1363static struct dma_ops_domain *find_protection_domain(u16 devid)
1364{
1365 struct dma_ops_domain *entry, *ret = NULL;
1366 unsigned long flags;
1367
1368 if (list_empty(&iommu_pd_list))
1369 return NULL;
1370
1371 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1372
1373 list_for_each_entry(entry, &iommu_pd_list, list) {
1374 if (entry->target_dev == devid) {
1375 ret = entry;
bd60b735
JR
1376 break;
1377 }
1378 }
1379
1380 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1381
1382 return ret;
1383}
1384
431b2a20
JR
1385/*
1386 * In the dma_ops path we only have the struct device. This function
1387 * finds the corresponding IOMMU, the protection domain and the
1388 * requestor id for a given device.
1389 * If the device is not yet associated with a domain this is also done
1390 * in this function.
1391 */
b20ac0d4
JR
1392static int get_device_resources(struct device *dev,
1393 struct amd_iommu **iommu,
1394 struct protection_domain **domain,
1395 u16 *bdf)
1396{
1397 struct dma_ops_domain *dma_dom;
1398 struct pci_dev *pcidev;
1399 u16 _bdf;
1400
dbcc112e
JR
1401 *iommu = NULL;
1402 *domain = NULL;
1403 *bdf = 0xffff;
1404
1405 if (dev->bus != &pci_bus_type)
1406 return 0;
b20ac0d4
JR
1407
1408 pcidev = to_pci_dev(dev);
d591b0a3 1409 _bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
b20ac0d4 1410
431b2a20 1411 /* device not translated by any IOMMU in the system? */
dbcc112e 1412 if (_bdf > amd_iommu_last_bdf)
b20ac0d4 1413 return 0;
b20ac0d4
JR
1414
1415 *bdf = amd_iommu_alias_table[_bdf];
1416
1417 *iommu = amd_iommu_rlookup_table[*bdf];
1418 if (*iommu == NULL)
1419 return 0;
b20ac0d4
JR
1420 *domain = domain_for_device(*bdf);
1421 if (*domain == NULL) {
bd60b735
JR
1422 dma_dom = find_protection_domain(*bdf);
1423 if (!dma_dom)
1424 dma_dom = (*iommu)->default_dom;
b20ac0d4 1425 *domain = &dma_dom->domain;
f1179dc0 1426 attach_device(*iommu, *domain, *bdf);
e9a22a13
JR
1427 DUMP_printk("Using protection domain %d for device %s\n",
1428 (*domain)->id, dev_name(dev));
b20ac0d4
JR
1429 }
1430
f91ba190 1431 if (domain_for_device(_bdf) == NULL)
f1179dc0 1432 attach_device(*iommu, *domain, _bdf);
f91ba190 1433
b20ac0d4
JR
1434 return 1;
1435}
1436
04bfdd84
JR
1437static void update_device_table(struct protection_domain *domain)
1438{
2b681faf 1439 unsigned long flags;
04bfdd84
JR
1440 int i;
1441
1442 for (i = 0; i <= amd_iommu_last_bdf; ++i) {
1443 if (amd_iommu_pd_table[i] != domain)
1444 continue;
2b681faf 1445 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
04bfdd84 1446 set_dte_entry(i, domain);
2b681faf 1447 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
04bfdd84
JR
1448 }
1449}
1450
1451static void update_domain(struct protection_domain *domain)
1452{
1453 if (!domain->updated)
1454 return;
1455
1456 update_device_table(domain);
1457 flush_devices_by_domain(domain);
1458 iommu_flush_domain(domain->id);
1459
1460 domain->updated = false;
1461}
1462
8bda3092 1463/*
50020fb6
JR
1464 * This function is used to add another level to an IO page table. Adding
1465 * another level increases the size of the address space by 9 bits to a size up
1466 * to 64 bits.
8bda3092 1467 */
50020fb6
JR
1468static bool increase_address_space(struct protection_domain *domain,
1469 gfp_t gfp)
1470{
1471 u64 *pte;
1472
1473 if (domain->mode == PAGE_MODE_6_LEVEL)
1474 /* address space already 64 bit large */
1475 return false;
1476
1477 pte = (void *)get_zeroed_page(gfp);
1478 if (!pte)
1479 return false;
1480
1481 *pte = PM_LEVEL_PDE(domain->mode,
1482 virt_to_phys(domain->pt_root));
1483 domain->pt_root = pte;
1484 domain->mode += 1;
1485 domain->updated = true;
1486
1487 return true;
1488}
1489
8bc3e127 1490static u64 *alloc_pte(struct protection_domain *domain,
abdc5eb3
JR
1491 unsigned long address,
1492 int end_lvl,
1493 u64 **pte_page,
1494 gfp_t gfp)
8bda3092
JR
1495{
1496 u64 *pte, *page;
8bc3e127 1497 int level;
8bda3092 1498
8bc3e127
JR
1499 while (address > PM_LEVEL_SIZE(domain->mode))
1500 increase_address_space(domain, gfp);
8bda3092 1501
8bc3e127
JR
1502 level = domain->mode - 1;
1503 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
8bda3092 1504
abdc5eb3 1505 while (level > end_lvl) {
8bc3e127
JR
1506 if (!IOMMU_PTE_PRESENT(*pte)) {
1507 page = (u64 *)get_zeroed_page(gfp);
1508 if (!page)
1509 return NULL;
1510 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
1511 }
8bda3092 1512
8bc3e127 1513 level -= 1;
8bda3092 1514
8bc3e127 1515 pte = IOMMU_PTE_PAGE(*pte);
8bda3092 1516
abdc5eb3 1517 if (pte_page && level == end_lvl)
8bc3e127 1518 *pte_page = pte;
8bda3092 1519
8bc3e127
JR
1520 pte = &pte[PM_LEVEL_INDEX(level, address)];
1521 }
8bda3092
JR
1522
1523 return pte;
1524}
1525
1526/*
1527 * This function fetches the PTE for a given address in the aperture
1528 */
1529static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
1530 unsigned long address)
1531{
384de729 1532 struct aperture_range *aperture;
8bda3092
JR
1533 u64 *pte, *pte_page;
1534
384de729
JR
1535 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1536 if (!aperture)
1537 return NULL;
1538
1539 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
8bda3092 1540 if (!pte) {
abdc5eb3
JR
1541 pte = alloc_pte(&dom->domain, address, PM_MAP_4k, &pte_page,
1542 GFP_ATOMIC);
384de729
JR
1543 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
1544 } else
8c8c143c 1545 pte += PM_LEVEL_INDEX(0, address);
8bda3092 1546
04bfdd84 1547 update_domain(&dom->domain);
8bda3092
JR
1548
1549 return pte;
1550}
1551
431b2a20
JR
1552/*
1553 * This is the generic map function. It maps one 4kb page at paddr to
1554 * the given address in the DMA address space for the domain.
1555 */
cb76c322
JR
1556static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
1557 struct dma_ops_domain *dom,
1558 unsigned long address,
1559 phys_addr_t paddr,
1560 int direction)
1561{
1562 u64 *pte, __pte;
1563
1564 WARN_ON(address > dom->aperture_size);
1565
1566 paddr &= PAGE_MASK;
1567
8bda3092 1568 pte = dma_ops_get_pte(dom, address);
53812c11 1569 if (!pte)
8fd524b3 1570 return DMA_ERROR_CODE;
cb76c322
JR
1571
1572 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
1573
1574 if (direction == DMA_TO_DEVICE)
1575 __pte |= IOMMU_PTE_IR;
1576 else if (direction == DMA_FROM_DEVICE)
1577 __pte |= IOMMU_PTE_IW;
1578 else if (direction == DMA_BIDIRECTIONAL)
1579 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
1580
1581 WARN_ON(*pte);
1582
1583 *pte = __pte;
1584
1585 return (dma_addr_t)address;
1586}
1587
431b2a20
JR
1588/*
1589 * The generic unmapping function for on page in the DMA address space.
1590 */
cb76c322
JR
1591static void dma_ops_domain_unmap(struct amd_iommu *iommu,
1592 struct dma_ops_domain *dom,
1593 unsigned long address)
1594{
384de729 1595 struct aperture_range *aperture;
cb76c322
JR
1596 u64 *pte;
1597
1598 if (address >= dom->aperture_size)
1599 return;
1600
384de729
JR
1601 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1602 if (!aperture)
1603 return;
1604
1605 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1606 if (!pte)
1607 return;
cb76c322 1608
8c8c143c 1609 pte += PM_LEVEL_INDEX(0, address);
cb76c322
JR
1610
1611 WARN_ON(!*pte);
1612
1613 *pte = 0ULL;
1614}
1615
431b2a20
JR
1616/*
1617 * This function contains common code for mapping of a physically
24f81160
JR
1618 * contiguous memory region into DMA address space. It is used by all
1619 * mapping functions provided with this IOMMU driver.
431b2a20
JR
1620 * Must be called with the domain lock held.
1621 */
cb76c322
JR
1622static dma_addr_t __map_single(struct device *dev,
1623 struct amd_iommu *iommu,
1624 struct dma_ops_domain *dma_dom,
1625 phys_addr_t paddr,
1626 size_t size,
6d4f343f 1627 int dir,
832a90c3
JR
1628 bool align,
1629 u64 dma_mask)
cb76c322
JR
1630{
1631 dma_addr_t offset = paddr & ~PAGE_MASK;
53812c11 1632 dma_addr_t address, start, ret;
cb76c322 1633 unsigned int pages;
6d4f343f 1634 unsigned long align_mask = 0;
cb76c322
JR
1635 int i;
1636
e3c449f5 1637 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
cb76c322
JR
1638 paddr &= PAGE_MASK;
1639
8ecaf8f1
JR
1640 INC_STATS_COUNTER(total_map_requests);
1641
c1858976
JR
1642 if (pages > 1)
1643 INC_STATS_COUNTER(cross_page);
1644
6d4f343f
JR
1645 if (align)
1646 align_mask = (1UL << get_order(size)) - 1;
1647
11b83888 1648retry:
832a90c3
JR
1649 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
1650 dma_mask);
8fd524b3 1651 if (unlikely(address == DMA_ERROR_CODE)) {
11b83888
JR
1652 /*
1653 * setting next_address here will let the address
1654 * allocator only scan the new allocated range in the
1655 * first run. This is a small optimization.
1656 */
1657 dma_dom->next_address = dma_dom->aperture_size;
1658
1659 if (alloc_new_range(iommu, dma_dom, false, GFP_ATOMIC))
1660 goto out;
1661
1662 /*
1663 * aperture was sucessfully enlarged by 128 MB, try
1664 * allocation again
1665 */
1666 goto retry;
1667 }
cb76c322
JR
1668
1669 start = address;
1670 for (i = 0; i < pages; ++i) {
53812c11 1671 ret = dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
8fd524b3 1672 if (ret == DMA_ERROR_CODE)
53812c11
JR
1673 goto out_unmap;
1674
cb76c322
JR
1675 paddr += PAGE_SIZE;
1676 start += PAGE_SIZE;
1677 }
1678 address += offset;
1679
5774f7c5
JR
1680 ADD_STATS_COUNTER(alloced_io_mem, size);
1681
afa9fdc2 1682 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
1c655773
JR
1683 iommu_flush_tlb(iommu, dma_dom->domain.id);
1684 dma_dom->need_flush = false;
1685 } else if (unlikely(iommu_has_npcache(iommu)))
270cab24
JR
1686 iommu_flush_pages(iommu, dma_dom->domain.id, address, size);
1687
cb76c322
JR
1688out:
1689 return address;
53812c11
JR
1690
1691out_unmap:
1692
1693 for (--i; i >= 0; --i) {
1694 start -= PAGE_SIZE;
1695 dma_ops_domain_unmap(iommu, dma_dom, start);
1696 }
1697
1698 dma_ops_free_addresses(dma_dom, address, pages);
1699
8fd524b3 1700 return DMA_ERROR_CODE;
cb76c322
JR
1701}
1702
431b2a20
JR
1703/*
1704 * Does the reverse of the __map_single function. Must be called with
1705 * the domain lock held too
1706 */
cb76c322
JR
1707static void __unmap_single(struct amd_iommu *iommu,
1708 struct dma_ops_domain *dma_dom,
1709 dma_addr_t dma_addr,
1710 size_t size,
1711 int dir)
1712{
1713 dma_addr_t i, start;
1714 unsigned int pages;
1715
8fd524b3 1716 if ((dma_addr == DMA_ERROR_CODE) ||
b8d9905d 1717 (dma_addr + size > dma_dom->aperture_size))
cb76c322
JR
1718 return;
1719
e3c449f5 1720 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
cb76c322
JR
1721 dma_addr &= PAGE_MASK;
1722 start = dma_addr;
1723
1724 for (i = 0; i < pages; ++i) {
1725 dma_ops_domain_unmap(iommu, dma_dom, start);
1726 start += PAGE_SIZE;
1727 }
1728
5774f7c5
JR
1729 SUB_STATS_COUNTER(alloced_io_mem, size);
1730
cb76c322 1731 dma_ops_free_addresses(dma_dom, dma_addr, pages);
270cab24 1732
80be308d 1733 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
1c655773 1734 iommu_flush_pages(iommu, dma_dom->domain.id, dma_addr, size);
80be308d
JR
1735 dma_dom->need_flush = false;
1736 }
cb76c322
JR
1737}
1738
431b2a20
JR
1739/*
1740 * The exported map_single function for dma_ops.
1741 */
51491367
FT
1742static dma_addr_t map_page(struct device *dev, struct page *page,
1743 unsigned long offset, size_t size,
1744 enum dma_data_direction dir,
1745 struct dma_attrs *attrs)
4da70b9e
JR
1746{
1747 unsigned long flags;
1748 struct amd_iommu *iommu;
1749 struct protection_domain *domain;
1750 u16 devid;
1751 dma_addr_t addr;
832a90c3 1752 u64 dma_mask;
51491367 1753 phys_addr_t paddr = page_to_phys(page) + offset;
4da70b9e 1754
0f2a86f2
JR
1755 INC_STATS_COUNTER(cnt_map_single);
1756
dbcc112e 1757 if (!check_device(dev))
8fd524b3 1758 return DMA_ERROR_CODE;
dbcc112e 1759
832a90c3 1760 dma_mask = *dev->dma_mask;
4da70b9e
JR
1761
1762 get_device_resources(dev, &iommu, &domain, &devid);
1763
1764 if (iommu == NULL || domain == NULL)
431b2a20 1765 /* device not handled by any AMD IOMMU */
4da70b9e
JR
1766 return (dma_addr_t)paddr;
1767
5b28df6f 1768 if (!dma_ops_domain(domain))
8fd524b3 1769 return DMA_ERROR_CODE;
5b28df6f 1770
4da70b9e 1771 spin_lock_irqsave(&domain->lock, flags);
832a90c3
JR
1772 addr = __map_single(dev, iommu, domain->priv, paddr, size, dir, false,
1773 dma_mask);
8fd524b3 1774 if (addr == DMA_ERROR_CODE)
4da70b9e
JR
1775 goto out;
1776
0518a3a4 1777 iommu_flush_complete(domain);
4da70b9e
JR
1778
1779out:
1780 spin_unlock_irqrestore(&domain->lock, flags);
1781
1782 return addr;
1783}
1784
431b2a20
JR
1785/*
1786 * The exported unmap_single function for dma_ops.
1787 */
51491367
FT
1788static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
1789 enum dma_data_direction dir, struct dma_attrs *attrs)
4da70b9e
JR
1790{
1791 unsigned long flags;
1792 struct amd_iommu *iommu;
1793 struct protection_domain *domain;
1794 u16 devid;
1795
146a6917
JR
1796 INC_STATS_COUNTER(cnt_unmap_single);
1797
dbcc112e
JR
1798 if (!check_device(dev) ||
1799 !get_device_resources(dev, &iommu, &domain, &devid))
431b2a20 1800 /* device not handled by any AMD IOMMU */
4da70b9e
JR
1801 return;
1802
5b28df6f
JR
1803 if (!dma_ops_domain(domain))
1804 return;
1805
4da70b9e
JR
1806 spin_lock_irqsave(&domain->lock, flags);
1807
1808 __unmap_single(iommu, domain->priv, dma_addr, size, dir);
1809
0518a3a4 1810 iommu_flush_complete(domain);
4da70b9e
JR
1811
1812 spin_unlock_irqrestore(&domain->lock, flags);
1813}
1814
431b2a20
JR
1815/*
1816 * This is a special map_sg function which is used if we should map a
1817 * device which is not handled by an AMD IOMMU in the system.
1818 */
65b050ad
JR
1819static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
1820 int nelems, int dir)
1821{
1822 struct scatterlist *s;
1823 int i;
1824
1825 for_each_sg(sglist, s, nelems, i) {
1826 s->dma_address = (dma_addr_t)sg_phys(s);
1827 s->dma_length = s->length;
1828 }
1829
1830 return nelems;
1831}
1832
431b2a20
JR
1833/*
1834 * The exported map_sg function for dma_ops (handles scatter-gather
1835 * lists).
1836 */
65b050ad 1837static int map_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
1838 int nelems, enum dma_data_direction dir,
1839 struct dma_attrs *attrs)
65b050ad
JR
1840{
1841 unsigned long flags;
1842 struct amd_iommu *iommu;
1843 struct protection_domain *domain;
1844 u16 devid;
1845 int i;
1846 struct scatterlist *s;
1847 phys_addr_t paddr;
1848 int mapped_elems = 0;
832a90c3 1849 u64 dma_mask;
65b050ad 1850
d03f067a
JR
1851 INC_STATS_COUNTER(cnt_map_sg);
1852
dbcc112e
JR
1853 if (!check_device(dev))
1854 return 0;
1855
832a90c3 1856 dma_mask = *dev->dma_mask;
65b050ad
JR
1857
1858 get_device_resources(dev, &iommu, &domain, &devid);
1859
1860 if (!iommu || !domain)
1861 return map_sg_no_iommu(dev, sglist, nelems, dir);
1862
5b28df6f
JR
1863 if (!dma_ops_domain(domain))
1864 return 0;
1865
65b050ad
JR
1866 spin_lock_irqsave(&domain->lock, flags);
1867
1868 for_each_sg(sglist, s, nelems, i) {
1869 paddr = sg_phys(s);
1870
1871 s->dma_address = __map_single(dev, iommu, domain->priv,
832a90c3
JR
1872 paddr, s->length, dir, false,
1873 dma_mask);
65b050ad
JR
1874
1875 if (s->dma_address) {
1876 s->dma_length = s->length;
1877 mapped_elems++;
1878 } else
1879 goto unmap;
65b050ad
JR
1880 }
1881
0518a3a4 1882 iommu_flush_complete(domain);
65b050ad
JR
1883
1884out:
1885 spin_unlock_irqrestore(&domain->lock, flags);
1886
1887 return mapped_elems;
1888unmap:
1889 for_each_sg(sglist, s, mapped_elems, i) {
1890 if (s->dma_address)
1891 __unmap_single(iommu, domain->priv, s->dma_address,
1892 s->dma_length, dir);
1893 s->dma_address = s->dma_length = 0;
1894 }
1895
1896 mapped_elems = 0;
1897
1898 goto out;
1899}
1900
431b2a20
JR
1901/*
1902 * The exported map_sg function for dma_ops (handles scatter-gather
1903 * lists).
1904 */
65b050ad 1905static void unmap_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
1906 int nelems, enum dma_data_direction dir,
1907 struct dma_attrs *attrs)
65b050ad
JR
1908{
1909 unsigned long flags;
1910 struct amd_iommu *iommu;
1911 struct protection_domain *domain;
1912 struct scatterlist *s;
1913 u16 devid;
1914 int i;
1915
55877a6b
JR
1916 INC_STATS_COUNTER(cnt_unmap_sg);
1917
dbcc112e
JR
1918 if (!check_device(dev) ||
1919 !get_device_resources(dev, &iommu, &domain, &devid))
65b050ad
JR
1920 return;
1921
5b28df6f
JR
1922 if (!dma_ops_domain(domain))
1923 return;
1924
65b050ad
JR
1925 spin_lock_irqsave(&domain->lock, flags);
1926
1927 for_each_sg(sglist, s, nelems, i) {
1928 __unmap_single(iommu, domain->priv, s->dma_address,
1929 s->dma_length, dir);
65b050ad
JR
1930 s->dma_address = s->dma_length = 0;
1931 }
1932
0518a3a4 1933 iommu_flush_complete(domain);
65b050ad
JR
1934
1935 spin_unlock_irqrestore(&domain->lock, flags);
1936}
1937
431b2a20
JR
1938/*
1939 * The exported alloc_coherent function for dma_ops.
1940 */
5d8b53cf
JR
1941static void *alloc_coherent(struct device *dev, size_t size,
1942 dma_addr_t *dma_addr, gfp_t flag)
1943{
1944 unsigned long flags;
1945 void *virt_addr;
1946 struct amd_iommu *iommu;
1947 struct protection_domain *domain;
1948 u16 devid;
1949 phys_addr_t paddr;
832a90c3 1950 u64 dma_mask = dev->coherent_dma_mask;
5d8b53cf 1951
c8f0fb36
JR
1952 INC_STATS_COUNTER(cnt_alloc_coherent);
1953
dbcc112e
JR
1954 if (!check_device(dev))
1955 return NULL;
5d8b53cf 1956
13d9fead
FT
1957 if (!get_device_resources(dev, &iommu, &domain, &devid))
1958 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
5d8b53cf 1959
c97ac535 1960 flag |= __GFP_ZERO;
5d8b53cf
JR
1961 virt_addr = (void *)__get_free_pages(flag, get_order(size));
1962 if (!virt_addr)
b25ae679 1963 return NULL;
5d8b53cf 1964
5d8b53cf
JR
1965 paddr = virt_to_phys(virt_addr);
1966
5d8b53cf
JR
1967 if (!iommu || !domain) {
1968 *dma_addr = (dma_addr_t)paddr;
1969 return virt_addr;
1970 }
1971
5b28df6f
JR
1972 if (!dma_ops_domain(domain))
1973 goto out_free;
1974
832a90c3
JR
1975 if (!dma_mask)
1976 dma_mask = *dev->dma_mask;
1977
5d8b53cf
JR
1978 spin_lock_irqsave(&domain->lock, flags);
1979
1980 *dma_addr = __map_single(dev, iommu, domain->priv, paddr,
832a90c3 1981 size, DMA_BIDIRECTIONAL, true, dma_mask);
5d8b53cf 1982
8fd524b3 1983 if (*dma_addr == DMA_ERROR_CODE) {
367d04c4 1984 spin_unlock_irqrestore(&domain->lock, flags);
5b28df6f 1985 goto out_free;
367d04c4 1986 }
5d8b53cf 1987
0518a3a4 1988 iommu_flush_complete(domain);
5d8b53cf 1989
5d8b53cf
JR
1990 spin_unlock_irqrestore(&domain->lock, flags);
1991
1992 return virt_addr;
5b28df6f
JR
1993
1994out_free:
1995
1996 free_pages((unsigned long)virt_addr, get_order(size));
1997
1998 return NULL;
5d8b53cf
JR
1999}
2000
431b2a20
JR
2001/*
2002 * The exported free_coherent function for dma_ops.
431b2a20 2003 */
5d8b53cf
JR
2004static void free_coherent(struct device *dev, size_t size,
2005 void *virt_addr, dma_addr_t dma_addr)
2006{
2007 unsigned long flags;
2008 struct amd_iommu *iommu;
2009 struct protection_domain *domain;
2010 u16 devid;
2011
5d31ee7e
JR
2012 INC_STATS_COUNTER(cnt_free_coherent);
2013
dbcc112e
JR
2014 if (!check_device(dev))
2015 return;
2016
5d8b53cf
JR
2017 get_device_resources(dev, &iommu, &domain, &devid);
2018
2019 if (!iommu || !domain)
2020 goto free_mem;
2021
5b28df6f
JR
2022 if (!dma_ops_domain(domain))
2023 goto free_mem;
2024
5d8b53cf
JR
2025 spin_lock_irqsave(&domain->lock, flags);
2026
2027 __unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
5d8b53cf 2028
0518a3a4 2029 iommu_flush_complete(domain);
5d8b53cf
JR
2030
2031 spin_unlock_irqrestore(&domain->lock, flags);
2032
2033free_mem:
2034 free_pages((unsigned long)virt_addr, get_order(size));
2035}
2036
b39ba6ad
JR
2037/*
2038 * This function is called by the DMA layer to find out if we can handle a
2039 * particular device. It is part of the dma_ops.
2040 */
2041static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2042{
2043 u16 bdf;
2044 struct pci_dev *pcidev;
2045
2046 /* No device or no PCI device */
2047 if (!dev || dev->bus != &pci_bus_type)
2048 return 0;
2049
2050 pcidev = to_pci_dev(dev);
2051
2052 bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
2053
2054 /* Out of our scope? */
2055 if (bdf > amd_iommu_last_bdf)
2056 return 0;
2057
2058 return 1;
2059}
2060
c432f3df 2061/*
431b2a20
JR
2062 * The function for pre-allocating protection domains.
2063 *
c432f3df
JR
2064 * If the driver core informs the DMA layer if a driver grabs a device
2065 * we don't need to preallocate the protection domains anymore.
2066 * For now we have to.
2067 */
0e93dd88 2068static void prealloc_protection_domains(void)
c432f3df
JR
2069{
2070 struct pci_dev *dev = NULL;
2071 struct dma_ops_domain *dma_dom;
2072 struct amd_iommu *iommu;
be831297 2073 u16 devid, __devid;
c432f3df
JR
2074
2075 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
be831297 2076 __devid = devid = calc_devid(dev->bus->number, dev->devfn);
3a61ec38 2077 if (devid > amd_iommu_last_bdf)
c432f3df
JR
2078 continue;
2079 devid = amd_iommu_alias_table[devid];
2080 if (domain_for_device(devid))
2081 continue;
2082 iommu = amd_iommu_rlookup_table[devid];
2083 if (!iommu)
2084 continue;
d9cfed92 2085 dma_dom = dma_ops_domain_alloc(iommu);
c432f3df
JR
2086 if (!dma_dom)
2087 continue;
2088 init_unity_mappings_for_device(dma_dom, devid);
bd60b735
JR
2089 dma_dom->target_dev = devid;
2090
be831297
JR
2091 attach_device(iommu, &dma_dom->domain, devid);
2092 if (__devid != devid)
2093 attach_device(iommu, &dma_dom->domain, __devid);
2094
bd60b735 2095 list_add_tail(&dma_dom->list, &iommu_pd_list);
c432f3df
JR
2096 }
2097}
2098
160c1d8e 2099static struct dma_map_ops amd_iommu_dma_ops = {
6631ee9d
JR
2100 .alloc_coherent = alloc_coherent,
2101 .free_coherent = free_coherent,
51491367
FT
2102 .map_page = map_page,
2103 .unmap_page = unmap_page,
6631ee9d
JR
2104 .map_sg = map_sg,
2105 .unmap_sg = unmap_sg,
b39ba6ad 2106 .dma_supported = amd_iommu_dma_supported,
6631ee9d
JR
2107};
2108
431b2a20
JR
2109/*
2110 * The function which clues the AMD IOMMU driver into dma_ops.
2111 */
6631ee9d
JR
2112int __init amd_iommu_init_dma_ops(void)
2113{
2114 struct amd_iommu *iommu;
6631ee9d
JR
2115 int ret;
2116
431b2a20
JR
2117 /*
2118 * first allocate a default protection domain for every IOMMU we
2119 * found in the system. Devices not assigned to any other
2120 * protection domain will be assigned to the default one.
2121 */
3bd22172 2122 for_each_iommu(iommu) {
d9cfed92 2123 iommu->default_dom = dma_ops_domain_alloc(iommu);
6631ee9d
JR
2124 if (iommu->default_dom == NULL)
2125 return -ENOMEM;
e2dc14a2 2126 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
6631ee9d
JR
2127 ret = iommu_init_unity_mappings(iommu);
2128 if (ret)
2129 goto free_domains;
2130 }
2131
431b2a20
JR
2132 /*
2133 * If device isolation is enabled, pre-allocate the protection
2134 * domains for each device.
2135 */
6631ee9d
JR
2136 if (amd_iommu_isolate)
2137 prealloc_protection_domains();
2138
2139 iommu_detected = 1;
75f1cdf1 2140 swiotlb = 0;
92af4e29 2141#ifdef CONFIG_GART_IOMMU
6631ee9d
JR
2142 gart_iommu_aperture_disabled = 1;
2143 gart_iommu_aperture = 0;
92af4e29 2144#endif
6631ee9d 2145
431b2a20 2146 /* Make the driver finally visible to the drivers */
6631ee9d
JR
2147 dma_ops = &amd_iommu_dma_ops;
2148
26961efe 2149 register_iommu(&amd_iommu_ops);
26961efe 2150
e275a2a0
JR
2151 bus_register_notifier(&pci_bus_type, &device_nb);
2152
7f26508b
JR
2153 amd_iommu_stats_init();
2154
6631ee9d
JR
2155 return 0;
2156
2157free_domains:
2158
3bd22172 2159 for_each_iommu(iommu) {
6631ee9d
JR
2160 if (iommu->default_dom)
2161 dma_ops_domain_free(iommu->default_dom);
2162 }
2163
2164 return ret;
2165}
6d98cd80
JR
2166
2167/*****************************************************************************
2168 *
2169 * The following functions belong to the exported interface of AMD IOMMU
2170 *
2171 * This interface allows access to lower level functions of the IOMMU
2172 * like protection domain handling and assignement of devices to domains
2173 * which is not possible with the dma_ops interface.
2174 *
2175 *****************************************************************************/
2176
6d98cd80
JR
2177static void cleanup_domain(struct protection_domain *domain)
2178{
2179 unsigned long flags;
2180 u16 devid;
2181
2182 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2183
2184 for (devid = 0; devid <= amd_iommu_last_bdf; ++devid)
2185 if (amd_iommu_pd_table[devid] == domain)
2186 __detach_device(domain, devid);
2187
2188 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2189}
2190
2650815f
JR
2191static void protection_domain_free(struct protection_domain *domain)
2192{
2193 if (!domain)
2194 return;
2195
2196 if (domain->id)
2197 domain_id_free(domain->id);
2198
2199 kfree(domain);
2200}
2201
2202static struct protection_domain *protection_domain_alloc(void)
c156e347
JR
2203{
2204 struct protection_domain *domain;
2205
2206 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2207 if (!domain)
2650815f 2208 return NULL;
c156e347
JR
2209
2210 spin_lock_init(&domain->lock);
c156e347
JR
2211 domain->id = domain_id_alloc();
2212 if (!domain->id)
2650815f
JR
2213 goto out_err;
2214
2215 return domain;
2216
2217out_err:
2218 kfree(domain);
2219
2220 return NULL;
2221}
2222
2223static int amd_iommu_domain_init(struct iommu_domain *dom)
2224{
2225 struct protection_domain *domain;
2226
2227 domain = protection_domain_alloc();
2228 if (!domain)
c156e347 2229 goto out_free;
2650815f
JR
2230
2231 domain->mode = PAGE_MODE_3_LEVEL;
c156e347
JR
2232 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2233 if (!domain->pt_root)
2234 goto out_free;
2235
2236 dom->priv = domain;
2237
2238 return 0;
2239
2240out_free:
2650815f 2241 protection_domain_free(domain);
c156e347
JR
2242
2243 return -ENOMEM;
2244}
2245
98383fc3
JR
2246static void amd_iommu_domain_destroy(struct iommu_domain *dom)
2247{
2248 struct protection_domain *domain = dom->priv;
2249
2250 if (!domain)
2251 return;
2252
2253 if (domain->dev_cnt > 0)
2254 cleanup_domain(domain);
2255
2256 BUG_ON(domain->dev_cnt != 0);
2257
2258 free_pagetable(domain);
2259
2260 domain_id_free(domain->id);
2261
2262 kfree(domain);
2263
2264 dom->priv = NULL;
2265}
2266
684f2888
JR
2267static void amd_iommu_detach_device(struct iommu_domain *dom,
2268 struct device *dev)
2269{
2270 struct protection_domain *domain = dom->priv;
2271 struct amd_iommu *iommu;
2272 struct pci_dev *pdev;
2273 u16 devid;
2274
2275 if (dev->bus != &pci_bus_type)
2276 return;
2277
2278 pdev = to_pci_dev(dev);
2279
2280 devid = calc_devid(pdev->bus->number, pdev->devfn);
2281
2282 if (devid > 0)
2283 detach_device(domain, devid);
2284
2285 iommu = amd_iommu_rlookup_table[devid];
2286 if (!iommu)
2287 return;
2288
2289 iommu_queue_inv_dev_entry(iommu, devid);
2290 iommu_completion_wait(iommu);
2291}
2292
01106066
JR
2293static int amd_iommu_attach_device(struct iommu_domain *dom,
2294 struct device *dev)
2295{
2296 struct protection_domain *domain = dom->priv;
2297 struct protection_domain *old_domain;
2298 struct amd_iommu *iommu;
2299 struct pci_dev *pdev;
2300 u16 devid;
2301
2302 if (dev->bus != &pci_bus_type)
2303 return -EINVAL;
2304
2305 pdev = to_pci_dev(dev);
2306
2307 devid = calc_devid(pdev->bus->number, pdev->devfn);
2308
2309 if (devid >= amd_iommu_last_bdf ||
2310 devid != amd_iommu_alias_table[devid])
2311 return -EINVAL;
2312
2313 iommu = amd_iommu_rlookup_table[devid];
2314 if (!iommu)
2315 return -EINVAL;
2316
2317 old_domain = domain_for_device(devid);
2318 if (old_domain)
71ff3bca 2319 detach_device(old_domain, devid);
01106066
JR
2320
2321 attach_device(iommu, domain, devid);
2322
2323 iommu_completion_wait(iommu);
2324
2325 return 0;
2326}
2327
c6229ca6
JR
2328static int amd_iommu_map_range(struct iommu_domain *dom,
2329 unsigned long iova, phys_addr_t paddr,
2330 size_t size, int iommu_prot)
2331{
2332 struct protection_domain *domain = dom->priv;
2333 unsigned long i, npages = iommu_num_pages(paddr, size, PAGE_SIZE);
2334 int prot = 0;
2335 int ret;
2336
2337 if (iommu_prot & IOMMU_READ)
2338 prot |= IOMMU_PROT_IR;
2339 if (iommu_prot & IOMMU_WRITE)
2340 prot |= IOMMU_PROT_IW;
2341
2342 iova &= PAGE_MASK;
2343 paddr &= PAGE_MASK;
2344
2345 for (i = 0; i < npages; ++i) {
abdc5eb3 2346 ret = iommu_map_page(domain, iova, paddr, prot, PM_MAP_4k);
c6229ca6
JR
2347 if (ret)
2348 return ret;
2349
2350 iova += PAGE_SIZE;
2351 paddr += PAGE_SIZE;
2352 }
2353
2354 return 0;
2355}
2356
eb74ff6c
JR
2357static void amd_iommu_unmap_range(struct iommu_domain *dom,
2358 unsigned long iova, size_t size)
2359{
2360
2361 struct protection_domain *domain = dom->priv;
2362 unsigned long i, npages = iommu_num_pages(iova, size, PAGE_SIZE);
2363
2364 iova &= PAGE_MASK;
2365
2366 for (i = 0; i < npages; ++i) {
a6b256b4 2367 iommu_unmap_page(domain, iova, PM_MAP_4k);
eb74ff6c
JR
2368 iova += PAGE_SIZE;
2369 }
2370
2371 iommu_flush_domain(domain->id);
2372}
2373
645c4c8d
JR
2374static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2375 unsigned long iova)
2376{
2377 struct protection_domain *domain = dom->priv;
2378 unsigned long offset = iova & ~PAGE_MASK;
2379 phys_addr_t paddr;
2380 u64 *pte;
2381
a6b256b4 2382 pte = fetch_pte(domain, iova, PM_MAP_4k);
645c4c8d 2383
a6d41a40 2384 if (!pte || !IOMMU_PTE_PRESENT(*pte))
645c4c8d
JR
2385 return 0;
2386
2387 paddr = *pte & IOMMU_PAGE_MASK;
2388 paddr |= offset;
2389
2390 return paddr;
2391}
2392
dbb9fd86
SY
2393static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
2394 unsigned long cap)
2395{
2396 return 0;
2397}
2398
26961efe
JR
2399static struct iommu_ops amd_iommu_ops = {
2400 .domain_init = amd_iommu_domain_init,
2401 .domain_destroy = amd_iommu_domain_destroy,
2402 .attach_dev = amd_iommu_attach_device,
2403 .detach_dev = amd_iommu_detach_device,
2404 .map = amd_iommu_map_range,
2405 .unmap = amd_iommu_unmap_range,
2406 .iova_to_phys = amd_iommu_iova_to_phys,
dbb9fd86 2407 .domain_has_cap = amd_iommu_domain_has_cap,
26961efe
JR
2408};
2409
0feae533
JR
2410/*****************************************************************************
2411 *
2412 * The next functions do a basic initialization of IOMMU for pass through
2413 * mode
2414 *
2415 * In passthrough mode the IOMMU is initialized and enabled but not used for
2416 * DMA-API translation.
2417 *
2418 *****************************************************************************/
2419
2420int __init amd_iommu_init_passthrough(void)
2421{
2422 struct pci_dev *dev = NULL;
2423 u16 devid, devid2;
2424
2425 /* allocate passthroug domain */
2426 pt_domain = protection_domain_alloc();
2427 if (!pt_domain)
2428 return -ENOMEM;
2429
2430 pt_domain->mode |= PAGE_MODE_NONE;
2431
2432 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
2433 struct amd_iommu *iommu;
2434
2435 devid = calc_devid(dev->bus->number, dev->devfn);
2436 if (devid > amd_iommu_last_bdf)
2437 continue;
2438
2439 devid2 = amd_iommu_alias_table[devid];
2440
2441 iommu = amd_iommu_rlookup_table[devid2];
2442 if (!iommu)
2443 continue;
2444
2445 __attach_device(iommu, pt_domain, devid);
2446 __attach_device(iommu, pt_domain, devid2);
2447 }
2448
2449 pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
2450
2451 return 0;
2452}