]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - arch/x86/kernel/amd_iommu.c
x86: move GART TLB flushing options to generic code
[mirror_ubuntu-hirsute-kernel.git] / arch / x86 / kernel / amd_iommu.c
CommitLineData
b6c02715
JR
1/*
2 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/pci.h>
21#include <linux/gfp.h>
22#include <linux/bitops.h>
23#include <linux/scatterlist.h>
24#include <linux/iommu-helper.h>
25#include <asm/proto.h>
46a7fa27 26#include <asm/iommu.h>
b6c02715 27#include <asm/amd_iommu_types.h>
c6da992e 28#include <asm/amd_iommu.h>
b6c02715
JR
29
30#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
31
136f78a1
JR
32#define EXIT_LOOP_COUNT 10000000
33
b6c02715
JR
34static DEFINE_RWLOCK(amd_iommu_devtable_lock);
35
431b2a20
JR
36/*
37 * general struct to manage commands send to an IOMMU
38 */
d6449536 39struct iommu_cmd {
b6c02715
JR
40 u32 data[4];
41};
42
bd0e5211
JR
43static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
44 struct unity_map_entry *e);
45
431b2a20 46/* returns !0 if the IOMMU is caching non-present entries in its TLB */
4da70b9e
JR
47static int iommu_has_npcache(struct amd_iommu *iommu)
48{
49 return iommu->cap & IOMMU_CAP_NPCACHE;
50}
51
431b2a20
JR
52/****************************************************************************
53 *
54 * IOMMU command queuing functions
55 *
56 ****************************************************************************/
57
58/*
59 * Writes the command to the IOMMUs command buffer and informs the
60 * hardware about the new command. Must be called with iommu->lock held.
61 */
d6449536 62static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
63{
64 u32 tail, head;
65 u8 *target;
66
67 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
8a7c5ef3 68 target = iommu->cmd_buf + tail;
a19ae1ec
JR
69 memcpy_toio(target, cmd, sizeof(*cmd));
70 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
71 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
72 if (tail == head)
73 return -ENOMEM;
74 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
75
76 return 0;
77}
78
431b2a20
JR
79/*
80 * General queuing function for commands. Takes iommu->lock and calls
81 * __iommu_queue_command().
82 */
d6449536 83static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
84{
85 unsigned long flags;
86 int ret;
87
88 spin_lock_irqsave(&iommu->lock, flags);
89 ret = __iommu_queue_command(iommu, cmd);
90 spin_unlock_irqrestore(&iommu->lock, flags);
91
92 return ret;
93}
94
431b2a20
JR
95/*
96 * This function is called whenever we need to ensure that the IOMMU has
97 * completed execution of all commands we sent. It sends a
98 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
99 * us about that by writing a value to a physical address we pass with
100 * the command.
101 */
a19ae1ec
JR
102static int iommu_completion_wait(struct amd_iommu *iommu)
103{
519c31ba
JR
104 int ret, ready = 0;
105 unsigned status = 0;
d6449536 106 struct iommu_cmd cmd;
136f78a1 107 unsigned long i = 0;
a19ae1ec
JR
108
109 memset(&cmd, 0, sizeof(cmd));
519c31ba 110 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
a19ae1ec
JR
111 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);
112
113 iommu->need_sync = 0;
114
115 ret = iommu_queue_command(iommu, &cmd);
116
117 if (ret)
118 return ret;
119
136f78a1
JR
120 while (!ready && (i < EXIT_LOOP_COUNT)) {
121 ++i;
519c31ba
JR
122 /* wait for the bit to become one */
123 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
124 ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
136f78a1
JR
125 }
126
519c31ba
JR
127 /* set bit back to zero */
128 status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
129 writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);
130
136f78a1
JR
131 if (unlikely((i == EXIT_LOOP_COUNT) && printk_ratelimit()))
132 printk(KERN_WARNING "AMD IOMMU: Completion wait loop failed\n");
a19ae1ec
JR
133
134 return 0;
135}
136
431b2a20
JR
137/*
138 * Command send function for invalidating a device table entry
139 */
a19ae1ec
JR
140static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
141{
d6449536 142 struct iommu_cmd cmd;
a19ae1ec
JR
143
144 BUG_ON(iommu == NULL);
145
146 memset(&cmd, 0, sizeof(cmd));
147 CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
148 cmd.data[0] = devid;
149
150 iommu->need_sync = 1;
151
152 return iommu_queue_command(iommu, &cmd);
153}
154
431b2a20
JR
155/*
156 * Generic command send function for invalidaing TLB entries
157 */
a19ae1ec
JR
158static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
159 u64 address, u16 domid, int pde, int s)
160{
d6449536 161 struct iommu_cmd cmd;
a19ae1ec
JR
162
163 memset(&cmd, 0, sizeof(cmd));
164 address &= PAGE_MASK;
165 CMD_SET_TYPE(&cmd, CMD_INV_IOMMU_PAGES);
166 cmd.data[1] |= domid;
8a456695 167 cmd.data[2] = lower_32_bits(address);
8ea80d78 168 cmd.data[3] = upper_32_bits(address);
431b2a20 169 if (s) /* size bit - we flush more than one 4kb page */
a19ae1ec 170 cmd.data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
431b2a20 171 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
a19ae1ec
JR
172 cmd.data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
173
174 iommu->need_sync = 1;
175
176 return iommu_queue_command(iommu, &cmd);
177}
178
431b2a20
JR
179/*
180 * TLB invalidation function which is called from the mapping functions.
181 * It invalidates a single PTE if the range to flush is within a single
182 * page. Otherwise it flushes the whole TLB of the IOMMU.
183 */
a19ae1ec
JR
184static int iommu_flush_pages(struct amd_iommu *iommu, u16 domid,
185 u64 address, size_t size)
186{
999ba417 187 int s = 0;
a8132e5f 188 unsigned pages = iommu_num_pages(address, size);
a19ae1ec
JR
189
190 address &= PAGE_MASK;
191
999ba417
JR
192 if (pages > 1) {
193 /*
194 * If we have to flush more than one page, flush all
195 * TLB entries for this domain
196 */
197 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
198 s = 1;
a19ae1ec
JR
199 }
200
999ba417
JR
201 iommu_queue_inv_iommu_pages(iommu, address, domid, 0, s);
202
a19ae1ec
JR
203 return 0;
204}
b6c02715 205
431b2a20
JR
206/****************************************************************************
207 *
208 * The functions below are used the create the page table mappings for
209 * unity mapped regions.
210 *
211 ****************************************************************************/
212
213/*
214 * Generic mapping functions. It maps a physical address into a DMA
215 * address space. It allocates the page table pages if necessary.
216 * In the future it can be extended to a generic mapping function
217 * supporting all features of AMD IOMMU page tables like level skipping
218 * and full 64 bit address spaces.
219 */
bd0e5211
JR
220static int iommu_map(struct protection_domain *dom,
221 unsigned long bus_addr,
222 unsigned long phys_addr,
223 int prot)
224{
225 u64 __pte, *pte, *page;
226
227 bus_addr = PAGE_ALIGN(bus_addr);
228 phys_addr = PAGE_ALIGN(bus_addr);
229
230 /* only support 512GB address spaces for now */
231 if (bus_addr > IOMMU_MAP_SIZE_L3 || !(prot & IOMMU_PROT_MASK))
232 return -EINVAL;
233
234 pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(bus_addr)];
235
236 if (!IOMMU_PTE_PRESENT(*pte)) {
237 page = (u64 *)get_zeroed_page(GFP_KERNEL);
238 if (!page)
239 return -ENOMEM;
240 *pte = IOMMU_L2_PDE(virt_to_phys(page));
241 }
242
243 pte = IOMMU_PTE_PAGE(*pte);
244 pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];
245
246 if (!IOMMU_PTE_PRESENT(*pte)) {
247 page = (u64 *)get_zeroed_page(GFP_KERNEL);
248 if (!page)
249 return -ENOMEM;
250 *pte = IOMMU_L1_PDE(virt_to_phys(page));
251 }
252
253 pte = IOMMU_PTE_PAGE(*pte);
254 pte = &pte[IOMMU_PTE_L0_INDEX(bus_addr)];
255
256 if (IOMMU_PTE_PRESENT(*pte))
257 return -EBUSY;
258
259 __pte = phys_addr | IOMMU_PTE_P;
260 if (prot & IOMMU_PROT_IR)
261 __pte |= IOMMU_PTE_IR;
262 if (prot & IOMMU_PROT_IW)
263 __pte |= IOMMU_PTE_IW;
264
265 *pte = __pte;
266
267 return 0;
268}
269
431b2a20
JR
270/*
271 * This function checks if a specific unity mapping entry is needed for
272 * this specific IOMMU.
273 */
bd0e5211
JR
274static int iommu_for_unity_map(struct amd_iommu *iommu,
275 struct unity_map_entry *entry)
276{
277 u16 bdf, i;
278
279 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
280 bdf = amd_iommu_alias_table[i];
281 if (amd_iommu_rlookup_table[bdf] == iommu)
282 return 1;
283 }
284
285 return 0;
286}
287
431b2a20
JR
288/*
289 * Init the unity mappings for a specific IOMMU in the system
290 *
291 * Basically iterates over all unity mapping entries and applies them to
292 * the default domain DMA of that IOMMU if necessary.
293 */
bd0e5211
JR
294static int iommu_init_unity_mappings(struct amd_iommu *iommu)
295{
296 struct unity_map_entry *entry;
297 int ret;
298
299 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
300 if (!iommu_for_unity_map(iommu, entry))
301 continue;
302 ret = dma_ops_unity_map(iommu->default_dom, entry);
303 if (ret)
304 return ret;
305 }
306
307 return 0;
308}
309
431b2a20
JR
310/*
311 * This function actually applies the mapping to the page table of the
312 * dma_ops domain.
313 */
bd0e5211
JR
314static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
315 struct unity_map_entry *e)
316{
317 u64 addr;
318 int ret;
319
320 for (addr = e->address_start; addr < e->address_end;
321 addr += PAGE_SIZE) {
322 ret = iommu_map(&dma_dom->domain, addr, addr, e->prot);
323 if (ret)
324 return ret;
325 /*
326 * if unity mapping is in aperture range mark the page
327 * as allocated in the aperture
328 */
329 if (addr < dma_dom->aperture_size)
330 __set_bit(addr >> PAGE_SHIFT, dma_dom->bitmap);
331 }
332
333 return 0;
334}
335
431b2a20
JR
336/*
337 * Inits the unity mappings required for a specific device
338 */
bd0e5211
JR
339static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
340 u16 devid)
341{
342 struct unity_map_entry *e;
343 int ret;
344
345 list_for_each_entry(e, &amd_iommu_unity_map, list) {
346 if (!(devid >= e->devid_start && devid <= e->devid_end))
347 continue;
348 ret = dma_ops_unity_map(dma_dom, e);
349 if (ret)
350 return ret;
351 }
352
353 return 0;
354}
355
431b2a20
JR
356/****************************************************************************
357 *
358 * The next functions belong to the address allocator for the dma_ops
359 * interface functions. They work like the allocators in the other IOMMU
360 * drivers. Its basically a bitmap which marks the allocated pages in
361 * the aperture. Maybe it could be enhanced in the future to a more
362 * efficient allocator.
363 *
364 ****************************************************************************/
d3086444
JR
365static unsigned long dma_mask_to_pages(unsigned long mask)
366{
367 return (mask >> PAGE_SHIFT) +
368 (PAGE_ALIGN(mask & ~PAGE_MASK) >> PAGE_SHIFT);
369}
370
431b2a20
JR
371/*
372 * The address allocator core function.
373 *
374 * called with domain->lock held
375 */
d3086444
JR
376static unsigned long dma_ops_alloc_addresses(struct device *dev,
377 struct dma_ops_domain *dom,
378 unsigned int pages)
379{
380 unsigned long limit = dma_mask_to_pages(*dev->dma_mask);
381 unsigned long address;
382 unsigned long size = dom->aperture_size >> PAGE_SHIFT;
383 unsigned long boundary_size;
384
385 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
386 PAGE_SIZE) >> PAGE_SHIFT;
387 limit = limit < size ? limit : size;
388
389 if (dom->next_bit >= limit)
390 dom->next_bit = 0;
391
392 address = iommu_area_alloc(dom->bitmap, limit, dom->next_bit, pages,
393 0 , boundary_size, 0);
394 if (address == -1)
395 address = iommu_area_alloc(dom->bitmap, limit, 0, pages,
396 0, boundary_size, 0);
397
398 if (likely(address != -1)) {
d3086444
JR
399 dom->next_bit = address + pages;
400 address <<= PAGE_SHIFT;
401 } else
402 address = bad_dma_address;
403
404 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
405
406 return address;
407}
408
431b2a20
JR
409/*
410 * The address free function.
411 *
412 * called with domain->lock held
413 */
d3086444
JR
414static void dma_ops_free_addresses(struct dma_ops_domain *dom,
415 unsigned long address,
416 unsigned int pages)
417{
418 address >>= PAGE_SHIFT;
419 iommu_area_free(dom->bitmap, address, pages);
420}
421
431b2a20
JR
422/****************************************************************************
423 *
424 * The next functions belong to the domain allocation. A domain is
425 * allocated for every IOMMU as the default domain. If device isolation
426 * is enabled, every device get its own domain. The most important thing
427 * about domains is the page table mapping the DMA address space they
428 * contain.
429 *
430 ****************************************************************************/
431
ec487d1a
JR
432static u16 domain_id_alloc(void)
433{
434 unsigned long flags;
435 int id;
436
437 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
438 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
439 BUG_ON(id == 0);
440 if (id > 0 && id < MAX_DOMAIN_ID)
441 __set_bit(id, amd_iommu_pd_alloc_bitmap);
442 else
443 id = 0;
444 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
445
446 return id;
447}
448
431b2a20
JR
449/*
450 * Used to reserve address ranges in the aperture (e.g. for exclusion
451 * ranges.
452 */
ec487d1a
JR
453static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
454 unsigned long start_page,
455 unsigned int pages)
456{
457 unsigned int last_page = dom->aperture_size >> PAGE_SHIFT;
458
459 if (start_page + pages > last_page)
460 pages = last_page - start_page;
461
462 set_bit_string(dom->bitmap, start_page, pages);
463}
464
465static void dma_ops_free_pagetable(struct dma_ops_domain *dma_dom)
466{
467 int i, j;
468 u64 *p1, *p2, *p3;
469
470 p1 = dma_dom->domain.pt_root;
471
472 if (!p1)
473 return;
474
475 for (i = 0; i < 512; ++i) {
476 if (!IOMMU_PTE_PRESENT(p1[i]))
477 continue;
478
479 p2 = IOMMU_PTE_PAGE(p1[i]);
480 for (j = 0; j < 512; ++i) {
481 if (!IOMMU_PTE_PRESENT(p2[j]))
482 continue;
483 p3 = IOMMU_PTE_PAGE(p2[j]);
484 free_page((unsigned long)p3);
485 }
486
487 free_page((unsigned long)p2);
488 }
489
490 free_page((unsigned long)p1);
491}
492
431b2a20
JR
493/*
494 * Free a domain, only used if something went wrong in the
495 * allocation path and we need to free an already allocated page table
496 */
ec487d1a
JR
497static void dma_ops_domain_free(struct dma_ops_domain *dom)
498{
499 if (!dom)
500 return;
501
502 dma_ops_free_pagetable(dom);
503
504 kfree(dom->pte_pages);
505
506 kfree(dom->bitmap);
507
508 kfree(dom);
509}
510
431b2a20
JR
511/*
512 * Allocates a new protection domain usable for the dma_ops functions.
513 * It also intializes the page table and the address allocator data
514 * structures required for the dma_ops interface
515 */
ec487d1a
JR
516static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu,
517 unsigned order)
518{
519 struct dma_ops_domain *dma_dom;
520 unsigned i, num_pte_pages;
521 u64 *l2_pde;
522 u64 address;
523
524 /*
525 * Currently the DMA aperture must be between 32 MB and 1GB in size
526 */
527 if ((order < 25) || (order > 30))
528 return NULL;
529
530 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
531 if (!dma_dom)
532 return NULL;
533
534 spin_lock_init(&dma_dom->domain.lock);
535
536 dma_dom->domain.id = domain_id_alloc();
537 if (dma_dom->domain.id == 0)
538 goto free_dma_dom;
539 dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
540 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
541 dma_dom->domain.priv = dma_dom;
542 if (!dma_dom->domain.pt_root)
543 goto free_dma_dom;
544 dma_dom->aperture_size = (1ULL << order);
545 dma_dom->bitmap = kzalloc(dma_dom->aperture_size / (PAGE_SIZE * 8),
546 GFP_KERNEL);
547 if (!dma_dom->bitmap)
548 goto free_dma_dom;
549 /*
550 * mark the first page as allocated so we never return 0 as
551 * a valid dma-address. So we can use 0 as error value
552 */
553 dma_dom->bitmap[0] = 1;
554 dma_dom->next_bit = 0;
555
431b2a20 556 /* Intialize the exclusion range if necessary */
ec487d1a
JR
557 if (iommu->exclusion_start &&
558 iommu->exclusion_start < dma_dom->aperture_size) {
559 unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
a8132e5f
JR
560 int pages = iommu_num_pages(iommu->exclusion_start,
561 iommu->exclusion_length);
ec487d1a
JR
562 dma_ops_reserve_addresses(dma_dom, startpage, pages);
563 }
564
431b2a20
JR
565 /*
566 * At the last step, build the page tables so we don't need to
567 * allocate page table pages in the dma_ops mapping/unmapping
568 * path.
569 */
ec487d1a
JR
570 num_pte_pages = dma_dom->aperture_size / (PAGE_SIZE * 512);
571 dma_dom->pte_pages = kzalloc(num_pte_pages * sizeof(void *),
572 GFP_KERNEL);
573 if (!dma_dom->pte_pages)
574 goto free_dma_dom;
575
576 l2_pde = (u64 *)get_zeroed_page(GFP_KERNEL);
577 if (l2_pde == NULL)
578 goto free_dma_dom;
579
580 dma_dom->domain.pt_root[0] = IOMMU_L2_PDE(virt_to_phys(l2_pde));
581
582 for (i = 0; i < num_pte_pages; ++i) {
583 dma_dom->pte_pages[i] = (u64 *)get_zeroed_page(GFP_KERNEL);
584 if (!dma_dom->pte_pages[i])
585 goto free_dma_dom;
586 address = virt_to_phys(dma_dom->pte_pages[i]);
587 l2_pde[i] = IOMMU_L1_PDE(address);
588 }
589
590 return dma_dom;
591
592free_dma_dom:
593 dma_ops_domain_free(dma_dom);
594
595 return NULL;
596}
597
431b2a20
JR
598/*
599 * Find out the protection domain structure for a given PCI device. This
600 * will give us the pointer to the page table root for example.
601 */
b20ac0d4
JR
602static struct protection_domain *domain_for_device(u16 devid)
603{
604 struct protection_domain *dom;
605 unsigned long flags;
606
607 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
608 dom = amd_iommu_pd_table[devid];
609 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
610
611 return dom;
612}
613
431b2a20
JR
614/*
615 * If a device is not yet associated with a domain, this function does
616 * assigns it visible for the hardware
617 */
b20ac0d4
JR
618static void set_device_domain(struct amd_iommu *iommu,
619 struct protection_domain *domain,
620 u16 devid)
621{
622 unsigned long flags;
623
624 u64 pte_root = virt_to_phys(domain->pt_root);
625
626 pte_root |= (domain->mode & 0x07) << 9;
627 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | 2;
628
629 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
630 amd_iommu_dev_table[devid].data[0] = pte_root;
631 amd_iommu_dev_table[devid].data[1] = pte_root >> 32;
632 amd_iommu_dev_table[devid].data[2] = domain->id;
633
634 amd_iommu_pd_table[devid] = domain;
635 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
636
637 iommu_queue_inv_dev_entry(iommu, devid);
638
639 iommu->need_sync = 1;
640}
641
431b2a20
JR
642/*****************************************************************************
643 *
644 * The next functions belong to the dma_ops mapping/unmapping code.
645 *
646 *****************************************************************************/
647
dbcc112e
JR
648/*
649 * This function checks if the driver got a valid device from the caller to
650 * avoid dereferencing invalid pointers.
651 */
652static bool check_device(struct device *dev)
653{
654 if (!dev || !dev->dma_mask)
655 return false;
656
657 return true;
658}
659
431b2a20
JR
660/*
661 * In the dma_ops path we only have the struct device. This function
662 * finds the corresponding IOMMU, the protection domain and the
663 * requestor id for a given device.
664 * If the device is not yet associated with a domain this is also done
665 * in this function.
666 */
b20ac0d4
JR
667static int get_device_resources(struct device *dev,
668 struct amd_iommu **iommu,
669 struct protection_domain **domain,
670 u16 *bdf)
671{
672 struct dma_ops_domain *dma_dom;
673 struct pci_dev *pcidev;
674 u16 _bdf;
675
dbcc112e
JR
676 *iommu = NULL;
677 *domain = NULL;
678 *bdf = 0xffff;
679
680 if (dev->bus != &pci_bus_type)
681 return 0;
b20ac0d4
JR
682
683 pcidev = to_pci_dev(dev);
d591b0a3 684 _bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
b20ac0d4 685
431b2a20 686 /* device not translated by any IOMMU in the system? */
dbcc112e 687 if (_bdf > amd_iommu_last_bdf)
b20ac0d4 688 return 0;
b20ac0d4
JR
689
690 *bdf = amd_iommu_alias_table[_bdf];
691
692 *iommu = amd_iommu_rlookup_table[*bdf];
693 if (*iommu == NULL)
694 return 0;
695 dma_dom = (*iommu)->default_dom;
696 *domain = domain_for_device(*bdf);
697 if (*domain == NULL) {
698 *domain = &dma_dom->domain;
699 set_device_domain(*iommu, *domain, *bdf);
700 printk(KERN_INFO "AMD IOMMU: Using protection domain %d for "
701 "device ", (*domain)->id);
702 print_devid(_bdf, 1);
703 }
704
705 return 1;
706}
707
431b2a20
JR
708/*
709 * This is the generic map function. It maps one 4kb page at paddr to
710 * the given address in the DMA address space for the domain.
711 */
cb76c322
JR
712static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
713 struct dma_ops_domain *dom,
714 unsigned long address,
715 phys_addr_t paddr,
716 int direction)
717{
718 u64 *pte, __pte;
719
720 WARN_ON(address > dom->aperture_size);
721
722 paddr &= PAGE_MASK;
723
724 pte = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)];
725 pte += IOMMU_PTE_L0_INDEX(address);
726
727 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
728
729 if (direction == DMA_TO_DEVICE)
730 __pte |= IOMMU_PTE_IR;
731 else if (direction == DMA_FROM_DEVICE)
732 __pte |= IOMMU_PTE_IW;
733 else if (direction == DMA_BIDIRECTIONAL)
734 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
735
736 WARN_ON(*pte);
737
738 *pte = __pte;
739
740 return (dma_addr_t)address;
741}
742
431b2a20
JR
743/*
744 * The generic unmapping function for on page in the DMA address space.
745 */
cb76c322
JR
746static void dma_ops_domain_unmap(struct amd_iommu *iommu,
747 struct dma_ops_domain *dom,
748 unsigned long address)
749{
750 u64 *pte;
751
752 if (address >= dom->aperture_size)
753 return;
754
755 WARN_ON(address & 0xfffULL || address > dom->aperture_size);
756
757 pte = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)];
758 pte += IOMMU_PTE_L0_INDEX(address);
759
760 WARN_ON(!*pte);
761
762 *pte = 0ULL;
763}
764
431b2a20
JR
765/*
766 * This function contains common code for mapping of a physically
767 * contiguous memory region into DMA address space. It is uses by all
768 * mapping functions provided by this IOMMU driver.
769 * Must be called with the domain lock held.
770 */
cb76c322
JR
771static dma_addr_t __map_single(struct device *dev,
772 struct amd_iommu *iommu,
773 struct dma_ops_domain *dma_dom,
774 phys_addr_t paddr,
775 size_t size,
776 int dir)
777{
778 dma_addr_t offset = paddr & ~PAGE_MASK;
779 dma_addr_t address, start;
780 unsigned int pages;
781 int i;
782
a8132e5f 783 pages = iommu_num_pages(paddr, size);
cb76c322
JR
784 paddr &= PAGE_MASK;
785
786 address = dma_ops_alloc_addresses(dev, dma_dom, pages);
787 if (unlikely(address == bad_dma_address))
788 goto out;
789
790 start = address;
791 for (i = 0; i < pages; ++i) {
792 dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
793 paddr += PAGE_SIZE;
794 start += PAGE_SIZE;
795 }
796 address += offset;
797
270cab24
JR
798 if (unlikely(iommu_has_npcache(iommu)))
799 iommu_flush_pages(iommu, dma_dom->domain.id, address, size);
800
cb76c322
JR
801out:
802 return address;
803}
804
431b2a20
JR
805/*
806 * Does the reverse of the __map_single function. Must be called with
807 * the domain lock held too
808 */
cb76c322
JR
809static void __unmap_single(struct amd_iommu *iommu,
810 struct dma_ops_domain *dma_dom,
811 dma_addr_t dma_addr,
812 size_t size,
813 int dir)
814{
815 dma_addr_t i, start;
816 unsigned int pages;
817
818 if ((dma_addr == 0) || (dma_addr + size > dma_dom->aperture_size))
819 return;
820
a8132e5f 821 pages = iommu_num_pages(dma_addr, size);
cb76c322
JR
822 dma_addr &= PAGE_MASK;
823 start = dma_addr;
824
825 for (i = 0; i < pages; ++i) {
826 dma_ops_domain_unmap(iommu, dma_dom, start);
827 start += PAGE_SIZE;
828 }
829
830 dma_ops_free_addresses(dma_dom, dma_addr, pages);
270cab24
JR
831
832 iommu_flush_pages(iommu, dma_dom->domain.id, dma_addr, size);
cb76c322
JR
833}
834
431b2a20
JR
835/*
836 * The exported map_single function for dma_ops.
837 */
4da70b9e
JR
838static dma_addr_t map_single(struct device *dev, phys_addr_t paddr,
839 size_t size, int dir)
840{
841 unsigned long flags;
842 struct amd_iommu *iommu;
843 struct protection_domain *domain;
844 u16 devid;
845 dma_addr_t addr;
846
dbcc112e
JR
847 if (!check_device(dev))
848 return bad_dma_address;
849
4da70b9e
JR
850 get_device_resources(dev, &iommu, &domain, &devid);
851
852 if (iommu == NULL || domain == NULL)
431b2a20 853 /* device not handled by any AMD IOMMU */
4da70b9e
JR
854 return (dma_addr_t)paddr;
855
856 spin_lock_irqsave(&domain->lock, flags);
857 addr = __map_single(dev, iommu, domain->priv, paddr, size, dir);
858 if (addr == bad_dma_address)
859 goto out;
860
4da70b9e
JR
861 if (iommu->need_sync)
862 iommu_completion_wait(iommu);
863
864out:
865 spin_unlock_irqrestore(&domain->lock, flags);
866
867 return addr;
868}
869
431b2a20
JR
870/*
871 * The exported unmap_single function for dma_ops.
872 */
4da70b9e
JR
873static void unmap_single(struct device *dev, dma_addr_t dma_addr,
874 size_t size, int dir)
875{
876 unsigned long flags;
877 struct amd_iommu *iommu;
878 struct protection_domain *domain;
879 u16 devid;
880
dbcc112e
JR
881 if (!check_device(dev) ||
882 !get_device_resources(dev, &iommu, &domain, &devid))
431b2a20 883 /* device not handled by any AMD IOMMU */
4da70b9e
JR
884 return;
885
886 spin_lock_irqsave(&domain->lock, flags);
887
888 __unmap_single(iommu, domain->priv, dma_addr, size, dir);
889
4da70b9e
JR
890 if (iommu->need_sync)
891 iommu_completion_wait(iommu);
892
893 spin_unlock_irqrestore(&domain->lock, flags);
894}
895
431b2a20
JR
896/*
897 * This is a special map_sg function which is used if we should map a
898 * device which is not handled by an AMD IOMMU in the system.
899 */
65b050ad
JR
900static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
901 int nelems, int dir)
902{
903 struct scatterlist *s;
904 int i;
905
906 for_each_sg(sglist, s, nelems, i) {
907 s->dma_address = (dma_addr_t)sg_phys(s);
908 s->dma_length = s->length;
909 }
910
911 return nelems;
912}
913
431b2a20
JR
914/*
915 * The exported map_sg function for dma_ops (handles scatter-gather
916 * lists).
917 */
65b050ad
JR
918static int map_sg(struct device *dev, struct scatterlist *sglist,
919 int nelems, int dir)
920{
921 unsigned long flags;
922 struct amd_iommu *iommu;
923 struct protection_domain *domain;
924 u16 devid;
925 int i;
926 struct scatterlist *s;
927 phys_addr_t paddr;
928 int mapped_elems = 0;
929
dbcc112e
JR
930 if (!check_device(dev))
931 return 0;
932
65b050ad
JR
933 get_device_resources(dev, &iommu, &domain, &devid);
934
935 if (!iommu || !domain)
936 return map_sg_no_iommu(dev, sglist, nelems, dir);
937
938 spin_lock_irqsave(&domain->lock, flags);
939
940 for_each_sg(sglist, s, nelems, i) {
941 paddr = sg_phys(s);
942
943 s->dma_address = __map_single(dev, iommu, domain->priv,
944 paddr, s->length, dir);
945
946 if (s->dma_address) {
947 s->dma_length = s->length;
948 mapped_elems++;
949 } else
950 goto unmap;
65b050ad
JR
951 }
952
953 if (iommu->need_sync)
954 iommu_completion_wait(iommu);
955
956out:
957 spin_unlock_irqrestore(&domain->lock, flags);
958
959 return mapped_elems;
960unmap:
961 for_each_sg(sglist, s, mapped_elems, i) {
962 if (s->dma_address)
963 __unmap_single(iommu, domain->priv, s->dma_address,
964 s->dma_length, dir);
965 s->dma_address = s->dma_length = 0;
966 }
967
968 mapped_elems = 0;
969
970 goto out;
971}
972
431b2a20
JR
973/*
974 * The exported map_sg function for dma_ops (handles scatter-gather
975 * lists).
976 */
65b050ad
JR
977static void unmap_sg(struct device *dev, struct scatterlist *sglist,
978 int nelems, int dir)
979{
980 unsigned long flags;
981 struct amd_iommu *iommu;
982 struct protection_domain *domain;
983 struct scatterlist *s;
984 u16 devid;
985 int i;
986
dbcc112e
JR
987 if (!check_device(dev) ||
988 !get_device_resources(dev, &iommu, &domain, &devid))
65b050ad
JR
989 return;
990
991 spin_lock_irqsave(&domain->lock, flags);
992
993 for_each_sg(sglist, s, nelems, i) {
994 __unmap_single(iommu, domain->priv, s->dma_address,
995 s->dma_length, dir);
65b050ad
JR
996 s->dma_address = s->dma_length = 0;
997 }
998
999 if (iommu->need_sync)
1000 iommu_completion_wait(iommu);
1001
1002 spin_unlock_irqrestore(&domain->lock, flags);
1003}
1004
431b2a20
JR
1005/*
1006 * The exported alloc_coherent function for dma_ops.
1007 */
5d8b53cf
JR
1008static void *alloc_coherent(struct device *dev, size_t size,
1009 dma_addr_t *dma_addr, gfp_t flag)
1010{
1011 unsigned long flags;
1012 void *virt_addr;
1013 struct amd_iommu *iommu;
1014 struct protection_domain *domain;
1015 u16 devid;
1016 phys_addr_t paddr;
1017
dbcc112e
JR
1018 if (!check_device(dev))
1019 return NULL;
1020
5d8b53cf
JR
1021 virt_addr = (void *)__get_free_pages(flag, get_order(size));
1022 if (!virt_addr)
1023 return 0;
1024
1025 memset(virt_addr, 0, size);
1026 paddr = virt_to_phys(virt_addr);
1027
1028 get_device_resources(dev, &iommu, &domain, &devid);
1029
1030 if (!iommu || !domain) {
1031 *dma_addr = (dma_addr_t)paddr;
1032 return virt_addr;
1033 }
1034
1035 spin_lock_irqsave(&domain->lock, flags);
1036
1037 *dma_addr = __map_single(dev, iommu, domain->priv, paddr,
1038 size, DMA_BIDIRECTIONAL);
1039
1040 if (*dma_addr == bad_dma_address) {
1041 free_pages((unsigned long)virt_addr, get_order(size));
1042 virt_addr = NULL;
1043 goto out;
1044 }
1045
5d8b53cf
JR
1046 if (iommu->need_sync)
1047 iommu_completion_wait(iommu);
1048
1049out:
1050 spin_unlock_irqrestore(&domain->lock, flags);
1051
1052 return virt_addr;
1053}
1054
431b2a20
JR
1055/*
1056 * The exported free_coherent function for dma_ops.
431b2a20 1057 */
5d8b53cf
JR
1058static void free_coherent(struct device *dev, size_t size,
1059 void *virt_addr, dma_addr_t dma_addr)
1060{
1061 unsigned long flags;
1062 struct amd_iommu *iommu;
1063 struct protection_domain *domain;
1064 u16 devid;
1065
dbcc112e
JR
1066 if (!check_device(dev))
1067 return;
1068
5d8b53cf
JR
1069 get_device_resources(dev, &iommu, &domain, &devid);
1070
1071 if (!iommu || !domain)
1072 goto free_mem;
1073
1074 spin_lock_irqsave(&domain->lock, flags);
1075
1076 __unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
5d8b53cf
JR
1077
1078 if (iommu->need_sync)
1079 iommu_completion_wait(iommu);
1080
1081 spin_unlock_irqrestore(&domain->lock, flags);
1082
1083free_mem:
1084 free_pages((unsigned long)virt_addr, get_order(size));
1085}
1086
c432f3df 1087/*
431b2a20
JR
1088 * The function for pre-allocating protection domains.
1089 *
c432f3df
JR
1090 * If the driver core informs the DMA layer if a driver grabs a device
1091 * we don't need to preallocate the protection domains anymore.
1092 * For now we have to.
1093 */
1094void prealloc_protection_domains(void)
1095{
1096 struct pci_dev *dev = NULL;
1097 struct dma_ops_domain *dma_dom;
1098 struct amd_iommu *iommu;
1099 int order = amd_iommu_aperture_order;
1100 u16 devid;
1101
1102 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
1103 devid = (dev->bus->number << 8) | dev->devfn;
3a61ec38 1104 if (devid > amd_iommu_last_bdf)
c432f3df
JR
1105 continue;
1106 devid = amd_iommu_alias_table[devid];
1107 if (domain_for_device(devid))
1108 continue;
1109 iommu = amd_iommu_rlookup_table[devid];
1110 if (!iommu)
1111 continue;
1112 dma_dom = dma_ops_domain_alloc(iommu, order);
1113 if (!dma_dom)
1114 continue;
1115 init_unity_mappings_for_device(dma_dom, devid);
1116 set_device_domain(iommu, &dma_dom->domain, devid);
1117 printk(KERN_INFO "AMD IOMMU: Allocated domain %d for device ",
1118 dma_dom->domain.id);
1119 print_devid(devid, 1);
1120 }
1121}
1122
6631ee9d
JR
1123static struct dma_mapping_ops amd_iommu_dma_ops = {
1124 .alloc_coherent = alloc_coherent,
1125 .free_coherent = free_coherent,
1126 .map_single = map_single,
1127 .unmap_single = unmap_single,
1128 .map_sg = map_sg,
1129 .unmap_sg = unmap_sg,
1130};
1131
431b2a20
JR
1132/*
1133 * The function which clues the AMD IOMMU driver into dma_ops.
1134 */
6631ee9d
JR
1135int __init amd_iommu_init_dma_ops(void)
1136{
1137 struct amd_iommu *iommu;
1138 int order = amd_iommu_aperture_order;
1139 int ret;
1140
431b2a20
JR
1141 /*
1142 * first allocate a default protection domain for every IOMMU we
1143 * found in the system. Devices not assigned to any other
1144 * protection domain will be assigned to the default one.
1145 */
6631ee9d
JR
1146 list_for_each_entry(iommu, &amd_iommu_list, list) {
1147 iommu->default_dom = dma_ops_domain_alloc(iommu, order);
1148 if (iommu->default_dom == NULL)
1149 return -ENOMEM;
1150 ret = iommu_init_unity_mappings(iommu);
1151 if (ret)
1152 goto free_domains;
1153 }
1154
431b2a20
JR
1155 /*
1156 * If device isolation is enabled, pre-allocate the protection
1157 * domains for each device.
1158 */
6631ee9d
JR
1159 if (amd_iommu_isolate)
1160 prealloc_protection_domains();
1161
1162 iommu_detected = 1;
1163 force_iommu = 1;
1164 bad_dma_address = 0;
92af4e29 1165#ifdef CONFIG_GART_IOMMU
6631ee9d
JR
1166 gart_iommu_aperture_disabled = 1;
1167 gart_iommu_aperture = 0;
92af4e29 1168#endif
6631ee9d 1169
431b2a20 1170 /* Make the driver finally visible to the drivers */
6631ee9d
JR
1171 dma_ops = &amd_iommu_dma_ops;
1172
1173 return 0;
1174
1175free_domains:
1176
1177 list_for_each_entry(iommu, &amd_iommu_list, list) {
1178 if (iommu->default_dom)
1179 dma_ops_domain_free(iommu->default_dom);
1180 }
1181
1182 return ret;
1183}