]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/kernel/amd_iommu.c
x86/amd-iommu: Use fetch_pte in iommu_unmap_page
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / amd_iommu.c
CommitLineData
b6c02715
JR
1/*
2 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/pci.h>
21#include <linux/gfp.h>
22#include <linux/bitops.h>
7f26508b 23#include <linux/debugfs.h>
b6c02715 24#include <linux/scatterlist.h>
51491367 25#include <linux/dma-mapping.h>
b6c02715 26#include <linux/iommu-helper.h>
c156e347 27#include <linux/iommu.h>
b6c02715 28#include <asm/proto.h>
46a7fa27 29#include <asm/iommu.h>
1d9b16d1 30#include <asm/gart.h>
b6c02715 31#include <asm/amd_iommu_types.h>
c6da992e 32#include <asm/amd_iommu.h>
b6c02715
JR
33
34#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
35
136f78a1
JR
36#define EXIT_LOOP_COUNT 10000000
37
b6c02715
JR
38static DEFINE_RWLOCK(amd_iommu_devtable_lock);
39
bd60b735
JR
40/* A list of preallocated protection domains */
41static LIST_HEAD(iommu_pd_list);
42static DEFINE_SPINLOCK(iommu_pd_list_lock);
43
26961efe
JR
44#ifdef CONFIG_IOMMU_API
45static struct iommu_ops amd_iommu_ops;
46#endif
47
431b2a20
JR
48/*
49 * general struct to manage commands send to an IOMMU
50 */
d6449536 51struct iommu_cmd {
b6c02715
JR
52 u32 data[4];
53};
54
bd0e5211
JR
55static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
56 struct unity_map_entry *e);
e275a2a0 57static struct dma_ops_domain *find_protection_domain(u16 devid);
8bda3092
JR
58static u64* alloc_pte(struct protection_domain *dom,
59 unsigned long address, u64
60 **pte_page, gfp_t gfp);
00cd122a
JR
61static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
62 unsigned long start_page,
63 unsigned int pages);
9355a081
JR
64static u64 *fetch_pte(struct protection_domain *domain,
65 unsigned long address);
bd0e5211 66
c1eee67b
CW
67#ifndef BUS_NOTIFY_UNBOUND_DRIVER
68#define BUS_NOTIFY_UNBOUND_DRIVER 0x0005
69#endif
70
7f26508b
JR
71#ifdef CONFIG_AMD_IOMMU_STATS
72
73/*
74 * Initialization code for statistics collection
75 */
76
da49f6df 77DECLARE_STATS_COUNTER(compl_wait);
0f2a86f2 78DECLARE_STATS_COUNTER(cnt_map_single);
146a6917 79DECLARE_STATS_COUNTER(cnt_unmap_single);
d03f067a 80DECLARE_STATS_COUNTER(cnt_map_sg);
55877a6b 81DECLARE_STATS_COUNTER(cnt_unmap_sg);
c8f0fb36 82DECLARE_STATS_COUNTER(cnt_alloc_coherent);
5d31ee7e 83DECLARE_STATS_COUNTER(cnt_free_coherent);
c1858976 84DECLARE_STATS_COUNTER(cross_page);
f57d98ae 85DECLARE_STATS_COUNTER(domain_flush_single);
18811f55 86DECLARE_STATS_COUNTER(domain_flush_all);
5774f7c5 87DECLARE_STATS_COUNTER(alloced_io_mem);
8ecaf8f1 88DECLARE_STATS_COUNTER(total_map_requests);
da49f6df 89
7f26508b
JR
90static struct dentry *stats_dir;
91static struct dentry *de_isolate;
92static struct dentry *de_fflush;
93
94static void amd_iommu_stats_add(struct __iommu_counter *cnt)
95{
96 if (stats_dir == NULL)
97 return;
98
99 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
100 &cnt->value);
101}
102
103static void amd_iommu_stats_init(void)
104{
105 stats_dir = debugfs_create_dir("amd-iommu", NULL);
106 if (stats_dir == NULL)
107 return;
108
109 de_isolate = debugfs_create_bool("isolation", 0444, stats_dir,
110 (u32 *)&amd_iommu_isolate);
111
112 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
113 (u32 *)&amd_iommu_unmap_flush);
da49f6df
JR
114
115 amd_iommu_stats_add(&compl_wait);
0f2a86f2 116 amd_iommu_stats_add(&cnt_map_single);
146a6917 117 amd_iommu_stats_add(&cnt_unmap_single);
d03f067a 118 amd_iommu_stats_add(&cnt_map_sg);
55877a6b 119 amd_iommu_stats_add(&cnt_unmap_sg);
c8f0fb36 120 amd_iommu_stats_add(&cnt_alloc_coherent);
5d31ee7e 121 amd_iommu_stats_add(&cnt_free_coherent);
c1858976 122 amd_iommu_stats_add(&cross_page);
f57d98ae 123 amd_iommu_stats_add(&domain_flush_single);
18811f55 124 amd_iommu_stats_add(&domain_flush_all);
5774f7c5 125 amd_iommu_stats_add(&alloced_io_mem);
8ecaf8f1 126 amd_iommu_stats_add(&total_map_requests);
7f26508b
JR
127}
128
129#endif
130
431b2a20 131/* returns !0 if the IOMMU is caching non-present entries in its TLB */
4da70b9e
JR
132static int iommu_has_npcache(struct amd_iommu *iommu)
133{
ae9b9403 134 return iommu->cap & (1UL << IOMMU_CAP_NPCACHE);
4da70b9e
JR
135}
136
a80dc3e0
JR
137/****************************************************************************
138 *
139 * Interrupt handling functions
140 *
141 ****************************************************************************/
142
90008ee4
JR
143static void iommu_print_event(void *__evt)
144{
145 u32 *event = __evt;
146 int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
147 int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
148 int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
149 int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
150 u64 address = (u64)(((u64)event[3]) << 32) | event[2];
151
152 printk(KERN_ERR "AMD IOMMU: Event logged [");
153
154 switch (type) {
155 case EVENT_TYPE_ILL_DEV:
156 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
157 "address=0x%016llx flags=0x%04x]\n",
158 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
159 address, flags);
160 break;
161 case EVENT_TYPE_IO_FAULT:
162 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
163 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
164 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
165 domid, address, flags);
166 break;
167 case EVENT_TYPE_DEV_TAB_ERR:
168 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
169 "address=0x%016llx flags=0x%04x]\n",
170 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
171 address, flags);
172 break;
173 case EVENT_TYPE_PAGE_TAB_ERR:
174 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
175 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
176 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
177 domid, address, flags);
178 break;
179 case EVENT_TYPE_ILL_CMD:
180 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
181 break;
182 case EVENT_TYPE_CMD_HARD_ERR:
183 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
184 "flags=0x%04x]\n", address, flags);
185 break;
186 case EVENT_TYPE_IOTLB_INV_TO:
187 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
188 "address=0x%016llx]\n",
189 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
190 address);
191 break;
192 case EVENT_TYPE_INV_DEV_REQ:
193 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
194 "address=0x%016llx flags=0x%04x]\n",
195 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
196 address, flags);
197 break;
198 default:
199 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
200 }
201}
202
203static void iommu_poll_events(struct amd_iommu *iommu)
204{
205 u32 head, tail;
206 unsigned long flags;
207
208 spin_lock_irqsave(&iommu->lock, flags);
209
210 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
211 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
212
213 while (head != tail) {
214 iommu_print_event(iommu->evt_buf + head);
215 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
216 }
217
218 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
219
220 spin_unlock_irqrestore(&iommu->lock, flags);
221}
222
a80dc3e0
JR
223irqreturn_t amd_iommu_int_handler(int irq, void *data)
224{
90008ee4
JR
225 struct amd_iommu *iommu;
226
3bd22172 227 for_each_iommu(iommu)
90008ee4
JR
228 iommu_poll_events(iommu);
229
230 return IRQ_HANDLED;
a80dc3e0
JR
231}
232
431b2a20
JR
233/****************************************************************************
234 *
235 * IOMMU command queuing functions
236 *
237 ****************************************************************************/
238
239/*
240 * Writes the command to the IOMMUs command buffer and informs the
241 * hardware about the new command. Must be called with iommu->lock held.
242 */
d6449536 243static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
244{
245 u32 tail, head;
246 u8 *target;
247
248 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
8a7c5ef3 249 target = iommu->cmd_buf + tail;
a19ae1ec
JR
250 memcpy_toio(target, cmd, sizeof(*cmd));
251 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
252 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
253 if (tail == head)
254 return -ENOMEM;
255 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
256
257 return 0;
258}
259
431b2a20
JR
260/*
261 * General queuing function for commands. Takes iommu->lock and calls
262 * __iommu_queue_command().
263 */
d6449536 264static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
265{
266 unsigned long flags;
267 int ret;
268
269 spin_lock_irqsave(&iommu->lock, flags);
270 ret = __iommu_queue_command(iommu, cmd);
09ee17eb 271 if (!ret)
0cfd7aa9 272 iommu->need_sync = true;
a19ae1ec
JR
273 spin_unlock_irqrestore(&iommu->lock, flags);
274
275 return ret;
276}
277
8d201968
JR
278/*
279 * This function waits until an IOMMU has completed a completion
280 * wait command
281 */
282static void __iommu_wait_for_completion(struct amd_iommu *iommu)
283{
284 int ready = 0;
285 unsigned status = 0;
286 unsigned long i = 0;
287
da49f6df
JR
288 INC_STATS_COUNTER(compl_wait);
289
8d201968
JR
290 while (!ready && (i < EXIT_LOOP_COUNT)) {
291 ++i;
292 /* wait for the bit to become one */
293 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
294 ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
295 }
296
297 /* set bit back to zero */
298 status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
299 writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);
300
301 if (unlikely(i == EXIT_LOOP_COUNT))
302 panic("AMD IOMMU: Completion wait loop failed\n");
303}
304
305/*
306 * This function queues a completion wait command into the command
307 * buffer of an IOMMU
308 */
309static int __iommu_completion_wait(struct amd_iommu *iommu)
310{
311 struct iommu_cmd cmd;
312
313 memset(&cmd, 0, sizeof(cmd));
314 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
315 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);
316
317 return __iommu_queue_command(iommu, &cmd);
318}
319
431b2a20
JR
320/*
321 * This function is called whenever we need to ensure that the IOMMU has
322 * completed execution of all commands we sent. It sends a
323 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
324 * us about that by writing a value to a physical address we pass with
325 * the command.
326 */
a19ae1ec
JR
327static int iommu_completion_wait(struct amd_iommu *iommu)
328{
8d201968
JR
329 int ret = 0;
330 unsigned long flags;
a19ae1ec 331
7e4f88da
JR
332 spin_lock_irqsave(&iommu->lock, flags);
333
09ee17eb
JR
334 if (!iommu->need_sync)
335 goto out;
336
8d201968 337 ret = __iommu_completion_wait(iommu);
09ee17eb 338
0cfd7aa9 339 iommu->need_sync = false;
a19ae1ec
JR
340
341 if (ret)
7e4f88da 342 goto out;
a19ae1ec 343
8d201968 344 __iommu_wait_for_completion(iommu);
84df8175 345
7e4f88da
JR
346out:
347 spin_unlock_irqrestore(&iommu->lock, flags);
a19ae1ec
JR
348
349 return 0;
350}
351
431b2a20
JR
352/*
353 * Command send function for invalidating a device table entry
354 */
a19ae1ec
JR
355static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
356{
d6449536 357 struct iommu_cmd cmd;
ee2fa743 358 int ret;
a19ae1ec
JR
359
360 BUG_ON(iommu == NULL);
361
362 memset(&cmd, 0, sizeof(cmd));
363 CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
364 cmd.data[0] = devid;
365
ee2fa743
JR
366 ret = iommu_queue_command(iommu, &cmd);
367
ee2fa743 368 return ret;
a19ae1ec
JR
369}
370
237b6f33
JR
371static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
372 u16 domid, int pde, int s)
373{
374 memset(cmd, 0, sizeof(*cmd));
375 address &= PAGE_MASK;
376 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
377 cmd->data[1] |= domid;
378 cmd->data[2] = lower_32_bits(address);
379 cmd->data[3] = upper_32_bits(address);
380 if (s) /* size bit - we flush more than one 4kb page */
381 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
382 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
383 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
384}
385
431b2a20
JR
386/*
387 * Generic command send function for invalidaing TLB entries
388 */
a19ae1ec
JR
389static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
390 u64 address, u16 domid, int pde, int s)
391{
d6449536 392 struct iommu_cmd cmd;
ee2fa743 393 int ret;
a19ae1ec 394
237b6f33 395 __iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
a19ae1ec 396
ee2fa743
JR
397 ret = iommu_queue_command(iommu, &cmd);
398
ee2fa743 399 return ret;
a19ae1ec
JR
400}
401
431b2a20
JR
402/*
403 * TLB invalidation function which is called from the mapping functions.
404 * It invalidates a single PTE if the range to flush is within a single
405 * page. Otherwise it flushes the whole TLB of the IOMMU.
406 */
a19ae1ec
JR
407static int iommu_flush_pages(struct amd_iommu *iommu, u16 domid,
408 u64 address, size_t size)
409{
999ba417 410 int s = 0;
e3c449f5 411 unsigned pages = iommu_num_pages(address, size, PAGE_SIZE);
a19ae1ec
JR
412
413 address &= PAGE_MASK;
414
999ba417
JR
415 if (pages > 1) {
416 /*
417 * If we have to flush more than one page, flush all
418 * TLB entries for this domain
419 */
420 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
421 s = 1;
a19ae1ec
JR
422 }
423
999ba417
JR
424 iommu_queue_inv_iommu_pages(iommu, address, domid, 0, s);
425
a19ae1ec
JR
426 return 0;
427}
b6c02715 428
1c655773
JR
429/* Flush the whole IO/TLB for a given protection domain */
430static void iommu_flush_tlb(struct amd_iommu *iommu, u16 domid)
431{
432 u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
433
f57d98ae
JR
434 INC_STATS_COUNTER(domain_flush_single);
435
1c655773
JR
436 iommu_queue_inv_iommu_pages(iommu, address, domid, 0, 1);
437}
438
42a49f96
CW
439/* Flush the whole IO/TLB for a given protection domain - including PDE */
440static void iommu_flush_tlb_pde(struct amd_iommu *iommu, u16 domid)
441{
442 u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
443
444 INC_STATS_COUNTER(domain_flush_single);
445
446 iommu_queue_inv_iommu_pages(iommu, address, domid, 1, 1);
447}
448
43f49609
JR
449/*
450 * This function is used to flush the IO/TLB for a given protection domain
451 * on every IOMMU in the system
452 */
453static void iommu_flush_domain(u16 domid)
454{
455 unsigned long flags;
456 struct amd_iommu *iommu;
457 struct iommu_cmd cmd;
458
18811f55
JR
459 INC_STATS_COUNTER(domain_flush_all);
460
43f49609
JR
461 __iommu_build_inv_iommu_pages(&cmd, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
462 domid, 1, 1);
463
3bd22172 464 for_each_iommu(iommu) {
43f49609
JR
465 spin_lock_irqsave(&iommu->lock, flags);
466 __iommu_queue_command(iommu, &cmd);
467 __iommu_completion_wait(iommu);
468 __iommu_wait_for_completion(iommu);
469 spin_unlock_irqrestore(&iommu->lock, flags);
470 }
471}
43f49609 472
bfd1be18
JR
473void amd_iommu_flush_all_domains(void)
474{
475 int i;
476
477 for (i = 1; i < MAX_DOMAIN_ID; ++i) {
478 if (!test_bit(i, amd_iommu_pd_alloc_bitmap))
479 continue;
480 iommu_flush_domain(i);
481 }
482}
483
7d7a110c
JR
484void amd_iommu_flush_all_devices(void)
485{
486 struct amd_iommu *iommu;
487 int i;
488
489 for (i = 0; i <= amd_iommu_last_bdf; ++i) {
490 if (amd_iommu_pd_table[i] == NULL)
491 continue;
492
493 iommu = amd_iommu_rlookup_table[i];
494 if (!iommu)
495 continue;
496
497 iommu_queue_inv_dev_entry(iommu, i);
498 iommu_completion_wait(iommu);
499 }
500}
501
431b2a20
JR
502/****************************************************************************
503 *
504 * The functions below are used the create the page table mappings for
505 * unity mapped regions.
506 *
507 ****************************************************************************/
508
509/*
510 * Generic mapping functions. It maps a physical address into a DMA
511 * address space. It allocates the page table pages if necessary.
512 * In the future it can be extended to a generic mapping function
513 * supporting all features of AMD IOMMU page tables like level skipping
514 * and full 64 bit address spaces.
515 */
38e817fe
JR
516static int iommu_map_page(struct protection_domain *dom,
517 unsigned long bus_addr,
518 unsigned long phys_addr,
519 int prot)
bd0e5211 520{
8bda3092 521 u64 __pte, *pte;
bd0e5211
JR
522
523 bus_addr = PAGE_ALIGN(bus_addr);
bb9d4ff8 524 phys_addr = PAGE_ALIGN(phys_addr);
bd0e5211
JR
525
526 /* only support 512GB address spaces for now */
527 if (bus_addr > IOMMU_MAP_SIZE_L3 || !(prot & IOMMU_PROT_MASK))
528 return -EINVAL;
529
8bda3092 530 pte = alloc_pte(dom, bus_addr, NULL, GFP_KERNEL);
bd0e5211
JR
531
532 if (IOMMU_PTE_PRESENT(*pte))
533 return -EBUSY;
534
535 __pte = phys_addr | IOMMU_PTE_P;
536 if (prot & IOMMU_PROT_IR)
537 __pte |= IOMMU_PTE_IR;
538 if (prot & IOMMU_PROT_IW)
539 __pte |= IOMMU_PTE_IW;
540
541 *pte = __pte;
542
543 return 0;
544}
545
eb74ff6c
JR
546static void iommu_unmap_page(struct protection_domain *dom,
547 unsigned long bus_addr)
548{
38a76eee 549 u64 *pte = fetch_pte(dom, bus_addr);
eb74ff6c 550
38a76eee
JR
551 if (pte)
552 *pte = 0;
eb74ff6c 553}
eb74ff6c 554
431b2a20
JR
555/*
556 * This function checks if a specific unity mapping entry is needed for
557 * this specific IOMMU.
558 */
bd0e5211
JR
559static int iommu_for_unity_map(struct amd_iommu *iommu,
560 struct unity_map_entry *entry)
561{
562 u16 bdf, i;
563
564 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
565 bdf = amd_iommu_alias_table[i];
566 if (amd_iommu_rlookup_table[bdf] == iommu)
567 return 1;
568 }
569
570 return 0;
571}
572
431b2a20
JR
573/*
574 * Init the unity mappings for a specific IOMMU in the system
575 *
576 * Basically iterates over all unity mapping entries and applies them to
577 * the default domain DMA of that IOMMU if necessary.
578 */
bd0e5211
JR
579static int iommu_init_unity_mappings(struct amd_iommu *iommu)
580{
581 struct unity_map_entry *entry;
582 int ret;
583
584 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
585 if (!iommu_for_unity_map(iommu, entry))
586 continue;
587 ret = dma_ops_unity_map(iommu->default_dom, entry);
588 if (ret)
589 return ret;
590 }
591
592 return 0;
593}
594
431b2a20
JR
595/*
596 * This function actually applies the mapping to the page table of the
597 * dma_ops domain.
598 */
bd0e5211
JR
599static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
600 struct unity_map_entry *e)
601{
602 u64 addr;
603 int ret;
604
605 for (addr = e->address_start; addr < e->address_end;
606 addr += PAGE_SIZE) {
38e817fe 607 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot);
bd0e5211
JR
608 if (ret)
609 return ret;
610 /*
611 * if unity mapping is in aperture range mark the page
612 * as allocated in the aperture
613 */
614 if (addr < dma_dom->aperture_size)
c3239567 615 __set_bit(addr >> PAGE_SHIFT,
384de729 616 dma_dom->aperture[0]->bitmap);
bd0e5211
JR
617 }
618
619 return 0;
620}
621
431b2a20
JR
622/*
623 * Inits the unity mappings required for a specific device
624 */
bd0e5211
JR
625static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
626 u16 devid)
627{
628 struct unity_map_entry *e;
629 int ret;
630
631 list_for_each_entry(e, &amd_iommu_unity_map, list) {
632 if (!(devid >= e->devid_start && devid <= e->devid_end))
633 continue;
634 ret = dma_ops_unity_map(dma_dom, e);
635 if (ret)
636 return ret;
637 }
638
639 return 0;
640}
641
431b2a20
JR
642/****************************************************************************
643 *
644 * The next functions belong to the address allocator for the dma_ops
645 * interface functions. They work like the allocators in the other IOMMU
646 * drivers. Its basically a bitmap which marks the allocated pages in
647 * the aperture. Maybe it could be enhanced in the future to a more
648 * efficient allocator.
649 *
650 ****************************************************************************/
d3086444 651
431b2a20 652/*
384de729 653 * The address allocator core functions.
431b2a20
JR
654 *
655 * called with domain->lock held
656 */
384de729 657
00cd122a
JR
658/*
659 * This function checks if there is a PTE for a given dma address. If
660 * there is one, it returns the pointer to it.
661 */
9355a081 662static u64 *fetch_pte(struct protection_domain *domain,
00cd122a
JR
663 unsigned long address)
664{
9355a081 665 int level;
00cd122a
JR
666 u64 *pte;
667
9355a081
JR
668 level = domain->mode - 1;
669 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
00cd122a 670
9355a081
JR
671 while (level > 0) {
672 if (!IOMMU_PTE_PRESENT(*pte))
673 return NULL;
00cd122a 674
9355a081 675 level -= 1;
00cd122a 676
9355a081
JR
677 pte = IOMMU_PTE_PAGE(*pte);
678 pte = &pte[PM_LEVEL_INDEX(level, address)];
679 }
00cd122a
JR
680
681 return pte;
682}
683
9cabe89b
JR
684/*
685 * This function is used to add a new aperture range to an existing
686 * aperture in case of dma_ops domain allocation or address allocation
687 * failure.
688 */
00cd122a
JR
689static int alloc_new_range(struct amd_iommu *iommu,
690 struct dma_ops_domain *dma_dom,
9cabe89b
JR
691 bool populate, gfp_t gfp)
692{
693 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
00cd122a 694 int i;
9cabe89b 695
f5e9705c
JR
696#ifdef CONFIG_IOMMU_STRESS
697 populate = false;
698#endif
699
9cabe89b
JR
700 if (index >= APERTURE_MAX_RANGES)
701 return -ENOMEM;
702
703 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
704 if (!dma_dom->aperture[index])
705 return -ENOMEM;
706
707 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
708 if (!dma_dom->aperture[index]->bitmap)
709 goto out_free;
710
711 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
712
713 if (populate) {
714 unsigned long address = dma_dom->aperture_size;
715 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
716 u64 *pte, *pte_page;
717
718 for (i = 0; i < num_ptes; ++i) {
719 pte = alloc_pte(&dma_dom->domain, address,
720 &pte_page, gfp);
721 if (!pte)
722 goto out_free;
723
724 dma_dom->aperture[index]->pte_pages[i] = pte_page;
725
726 address += APERTURE_RANGE_SIZE / 64;
727 }
728 }
729
730 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
731
00cd122a
JR
732 /* Intialize the exclusion range if necessary */
733 if (iommu->exclusion_start &&
734 iommu->exclusion_start >= dma_dom->aperture[index]->offset &&
735 iommu->exclusion_start < dma_dom->aperture_size) {
736 unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
737 int pages = iommu_num_pages(iommu->exclusion_start,
738 iommu->exclusion_length,
739 PAGE_SIZE);
740 dma_ops_reserve_addresses(dma_dom, startpage, pages);
741 }
742
743 /*
744 * Check for areas already mapped as present in the new aperture
745 * range and mark those pages as reserved in the allocator. Such
746 * mappings may already exist as a result of requested unity
747 * mappings for devices.
748 */
749 for (i = dma_dom->aperture[index]->offset;
750 i < dma_dom->aperture_size;
751 i += PAGE_SIZE) {
752 u64 *pte = fetch_pte(&dma_dom->domain, i);
753 if (!pte || !IOMMU_PTE_PRESENT(*pte))
754 continue;
755
756 dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
757 }
758
9cabe89b
JR
759 return 0;
760
761out_free:
762 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
763
764 kfree(dma_dom->aperture[index]);
765 dma_dom->aperture[index] = NULL;
766
767 return -ENOMEM;
768}
769
384de729
JR
770static unsigned long dma_ops_area_alloc(struct device *dev,
771 struct dma_ops_domain *dom,
772 unsigned int pages,
773 unsigned long align_mask,
774 u64 dma_mask,
775 unsigned long start)
776{
803b8cb4 777 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
384de729
JR
778 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
779 int i = start >> APERTURE_RANGE_SHIFT;
780 unsigned long boundary_size;
781 unsigned long address = -1;
782 unsigned long limit;
783
803b8cb4
JR
784 next_bit >>= PAGE_SHIFT;
785
384de729
JR
786 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
787 PAGE_SIZE) >> PAGE_SHIFT;
788
789 for (;i < max_index; ++i) {
790 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
791
792 if (dom->aperture[i]->offset >= dma_mask)
793 break;
794
795 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
796 dma_mask >> PAGE_SHIFT);
797
798 address = iommu_area_alloc(dom->aperture[i]->bitmap,
799 limit, next_bit, pages, 0,
800 boundary_size, align_mask);
801 if (address != -1) {
802 address = dom->aperture[i]->offset +
803 (address << PAGE_SHIFT);
803b8cb4 804 dom->next_address = address + (pages << PAGE_SHIFT);
384de729
JR
805 break;
806 }
807
808 next_bit = 0;
809 }
810
811 return address;
812}
813
d3086444
JR
814static unsigned long dma_ops_alloc_addresses(struct device *dev,
815 struct dma_ops_domain *dom,
6d4f343f 816 unsigned int pages,
832a90c3
JR
817 unsigned long align_mask,
818 u64 dma_mask)
d3086444 819{
d3086444 820 unsigned long address;
d3086444 821
fe16f088
JR
822#ifdef CONFIG_IOMMU_STRESS
823 dom->next_address = 0;
824 dom->need_flush = true;
825#endif
d3086444 826
384de729 827 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
803b8cb4 828 dma_mask, dom->next_address);
d3086444 829
1c655773 830 if (address == -1) {
803b8cb4 831 dom->next_address = 0;
384de729
JR
832 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
833 dma_mask, 0);
1c655773
JR
834 dom->need_flush = true;
835 }
d3086444 836
384de729 837 if (unlikely(address == -1))
d3086444
JR
838 address = bad_dma_address;
839
840 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
841
842 return address;
843}
844
431b2a20
JR
845/*
846 * The address free function.
847 *
848 * called with domain->lock held
849 */
d3086444
JR
850static void dma_ops_free_addresses(struct dma_ops_domain *dom,
851 unsigned long address,
852 unsigned int pages)
853{
384de729
JR
854 unsigned i = address >> APERTURE_RANGE_SHIFT;
855 struct aperture_range *range = dom->aperture[i];
80be308d 856
384de729
JR
857 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
858
47bccd6b
JR
859#ifdef CONFIG_IOMMU_STRESS
860 if (i < 4)
861 return;
862#endif
80be308d 863
803b8cb4 864 if (address >= dom->next_address)
80be308d 865 dom->need_flush = true;
384de729
JR
866
867 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
803b8cb4 868
384de729
JR
869 iommu_area_free(range->bitmap, address, pages);
870
d3086444
JR
871}
872
431b2a20
JR
873/****************************************************************************
874 *
875 * The next functions belong to the domain allocation. A domain is
876 * allocated for every IOMMU as the default domain. If device isolation
877 * is enabled, every device get its own domain. The most important thing
878 * about domains is the page table mapping the DMA address space they
879 * contain.
880 *
881 ****************************************************************************/
882
ec487d1a
JR
883static u16 domain_id_alloc(void)
884{
885 unsigned long flags;
886 int id;
887
888 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
889 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
890 BUG_ON(id == 0);
891 if (id > 0 && id < MAX_DOMAIN_ID)
892 __set_bit(id, amd_iommu_pd_alloc_bitmap);
893 else
894 id = 0;
895 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
896
897 return id;
898}
899
a2acfb75
JR
900static void domain_id_free(int id)
901{
902 unsigned long flags;
903
904 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
905 if (id > 0 && id < MAX_DOMAIN_ID)
906 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
907 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
908}
a2acfb75 909
431b2a20
JR
910/*
911 * Used to reserve address ranges in the aperture (e.g. for exclusion
912 * ranges.
913 */
ec487d1a
JR
914static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
915 unsigned long start_page,
916 unsigned int pages)
917{
384de729 918 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
ec487d1a
JR
919
920 if (start_page + pages > last_page)
921 pages = last_page - start_page;
922
384de729
JR
923 for (i = start_page; i < start_page + pages; ++i) {
924 int index = i / APERTURE_RANGE_PAGES;
925 int page = i % APERTURE_RANGE_PAGES;
926 __set_bit(page, dom->aperture[index]->bitmap);
927 }
ec487d1a
JR
928}
929
86db2e5d 930static void free_pagetable(struct protection_domain *domain)
ec487d1a
JR
931{
932 int i, j;
933 u64 *p1, *p2, *p3;
934
86db2e5d 935 p1 = domain->pt_root;
ec487d1a
JR
936
937 if (!p1)
938 return;
939
940 for (i = 0; i < 512; ++i) {
941 if (!IOMMU_PTE_PRESENT(p1[i]))
942 continue;
943
944 p2 = IOMMU_PTE_PAGE(p1[i]);
3cc3d84b 945 for (j = 0; j < 512; ++j) {
ec487d1a
JR
946 if (!IOMMU_PTE_PRESENT(p2[j]))
947 continue;
948 p3 = IOMMU_PTE_PAGE(p2[j]);
949 free_page((unsigned long)p3);
950 }
951
952 free_page((unsigned long)p2);
953 }
954
955 free_page((unsigned long)p1);
86db2e5d
JR
956
957 domain->pt_root = NULL;
ec487d1a
JR
958}
959
431b2a20
JR
960/*
961 * Free a domain, only used if something went wrong in the
962 * allocation path and we need to free an already allocated page table
963 */
ec487d1a
JR
964static void dma_ops_domain_free(struct dma_ops_domain *dom)
965{
384de729
JR
966 int i;
967
ec487d1a
JR
968 if (!dom)
969 return;
970
86db2e5d 971 free_pagetable(&dom->domain);
ec487d1a 972
384de729
JR
973 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
974 if (!dom->aperture[i])
975 continue;
976 free_page((unsigned long)dom->aperture[i]->bitmap);
977 kfree(dom->aperture[i]);
978 }
ec487d1a
JR
979
980 kfree(dom);
981}
982
431b2a20
JR
983/*
984 * Allocates a new protection domain usable for the dma_ops functions.
985 * It also intializes the page table and the address allocator data
986 * structures required for the dma_ops interface
987 */
d9cfed92 988static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu)
ec487d1a
JR
989{
990 struct dma_ops_domain *dma_dom;
ec487d1a
JR
991
992 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
993 if (!dma_dom)
994 return NULL;
995
996 spin_lock_init(&dma_dom->domain.lock);
997
998 dma_dom->domain.id = domain_id_alloc();
999 if (dma_dom->domain.id == 0)
1000 goto free_dma_dom;
1001 dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
1002 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
9fdb19d6 1003 dma_dom->domain.flags = PD_DMA_OPS_MASK;
ec487d1a
JR
1004 dma_dom->domain.priv = dma_dom;
1005 if (!dma_dom->domain.pt_root)
1006 goto free_dma_dom;
ec487d1a 1007
1c655773 1008 dma_dom->need_flush = false;
bd60b735 1009 dma_dom->target_dev = 0xffff;
1c655773 1010
00cd122a 1011 if (alloc_new_range(iommu, dma_dom, true, GFP_KERNEL))
ec487d1a 1012 goto free_dma_dom;
ec487d1a 1013
431b2a20 1014 /*
ec487d1a
JR
1015 * mark the first page as allocated so we never return 0 as
1016 * a valid dma-address. So we can use 0 as error value
431b2a20 1017 */
384de729 1018 dma_dom->aperture[0]->bitmap[0] = 1;
803b8cb4 1019 dma_dom->next_address = 0;
ec487d1a 1020
ec487d1a
JR
1021
1022 return dma_dom;
1023
1024free_dma_dom:
1025 dma_ops_domain_free(dma_dom);
1026
1027 return NULL;
1028}
1029
5b28df6f
JR
1030/*
1031 * little helper function to check whether a given protection domain is a
1032 * dma_ops domain
1033 */
1034static bool dma_ops_domain(struct protection_domain *domain)
1035{
1036 return domain->flags & PD_DMA_OPS_MASK;
1037}
1038
431b2a20
JR
1039/*
1040 * Find out the protection domain structure for a given PCI device. This
1041 * will give us the pointer to the page table root for example.
1042 */
b20ac0d4
JR
1043static struct protection_domain *domain_for_device(u16 devid)
1044{
1045 struct protection_domain *dom;
1046 unsigned long flags;
1047
1048 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
1049 dom = amd_iommu_pd_table[devid];
1050 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1051
1052 return dom;
1053}
1054
431b2a20
JR
1055/*
1056 * If a device is not yet associated with a domain, this function does
1057 * assigns it visible for the hardware
1058 */
f1179dc0
JR
1059static void attach_device(struct amd_iommu *iommu,
1060 struct protection_domain *domain,
1061 u16 devid)
b20ac0d4
JR
1062{
1063 unsigned long flags;
b20ac0d4
JR
1064 u64 pte_root = virt_to_phys(domain->pt_root);
1065
863c74eb
JR
1066 domain->dev_cnt += 1;
1067
38ddf41b
JR
1068 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1069 << DEV_ENTRY_MODE_SHIFT;
1070 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
b20ac0d4
JR
1071
1072 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
38ddf41b
JR
1073 amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
1074 amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
b20ac0d4
JR
1075 amd_iommu_dev_table[devid].data[2] = domain->id;
1076
1077 amd_iommu_pd_table[devid] = domain;
1078 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1079
42a49f96
CW
1080 /*
1081 * We might boot into a crash-kernel here. The crashed kernel
1082 * left the caches in the IOMMU dirty. So we have to flush
1083 * here to evict all dirty stuff.
1084 */
b20ac0d4 1085 iommu_queue_inv_dev_entry(iommu, devid);
42a49f96 1086 iommu_flush_tlb_pde(iommu, domain->id);
b20ac0d4
JR
1087}
1088
355bf553
JR
1089/*
1090 * Removes a device from a protection domain (unlocked)
1091 */
1092static void __detach_device(struct protection_domain *domain, u16 devid)
1093{
1094
1095 /* lock domain */
1096 spin_lock(&domain->lock);
1097
1098 /* remove domain from the lookup table */
1099 amd_iommu_pd_table[devid] = NULL;
1100
1101 /* remove entry from the device table seen by the hardware */
1102 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1103 amd_iommu_dev_table[devid].data[1] = 0;
1104 amd_iommu_dev_table[devid].data[2] = 0;
1105
1106 /* decrease reference counter */
1107 domain->dev_cnt -= 1;
1108
1109 /* ready */
1110 spin_unlock(&domain->lock);
1111}
1112
1113/*
1114 * Removes a device from a protection domain (with devtable_lock held)
1115 */
1116static void detach_device(struct protection_domain *domain, u16 devid)
1117{
1118 unsigned long flags;
1119
1120 /* lock device table */
1121 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1122 __detach_device(domain, devid);
1123 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1124}
e275a2a0
JR
1125
1126static int device_change_notifier(struct notifier_block *nb,
1127 unsigned long action, void *data)
1128{
1129 struct device *dev = data;
1130 struct pci_dev *pdev = to_pci_dev(dev);
1131 u16 devid = calc_devid(pdev->bus->number, pdev->devfn);
1132 struct protection_domain *domain;
1133 struct dma_ops_domain *dma_domain;
1134 struct amd_iommu *iommu;
1ac4cbbc 1135 unsigned long flags;
e275a2a0
JR
1136
1137 if (devid > amd_iommu_last_bdf)
1138 goto out;
1139
1140 devid = amd_iommu_alias_table[devid];
1141
1142 iommu = amd_iommu_rlookup_table[devid];
1143 if (iommu == NULL)
1144 goto out;
1145
1146 domain = domain_for_device(devid);
1147
1148 if (domain && !dma_ops_domain(domain))
1149 WARN_ONCE(1, "AMD IOMMU WARNING: device %s already bound "
1150 "to a non-dma-ops domain\n", dev_name(dev));
1151
1152 switch (action) {
c1eee67b 1153 case BUS_NOTIFY_UNBOUND_DRIVER:
e275a2a0
JR
1154 if (!domain)
1155 goto out;
1156 detach_device(domain, devid);
1ac4cbbc
JR
1157 break;
1158 case BUS_NOTIFY_ADD_DEVICE:
1159 /* allocate a protection domain if a device is added */
1160 dma_domain = find_protection_domain(devid);
1161 if (dma_domain)
1162 goto out;
d9cfed92 1163 dma_domain = dma_ops_domain_alloc(iommu);
1ac4cbbc
JR
1164 if (!dma_domain)
1165 goto out;
1166 dma_domain->target_dev = devid;
1167
1168 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1169 list_add_tail(&dma_domain->list, &iommu_pd_list);
1170 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1171
e275a2a0
JR
1172 break;
1173 default:
1174 goto out;
1175 }
1176
1177 iommu_queue_inv_dev_entry(iommu, devid);
1178 iommu_completion_wait(iommu);
1179
1180out:
1181 return 0;
1182}
1183
b25ae679 1184static struct notifier_block device_nb = {
e275a2a0
JR
1185 .notifier_call = device_change_notifier,
1186};
355bf553 1187
431b2a20
JR
1188/*****************************************************************************
1189 *
1190 * The next functions belong to the dma_ops mapping/unmapping code.
1191 *
1192 *****************************************************************************/
1193
dbcc112e
JR
1194/*
1195 * This function checks if the driver got a valid device from the caller to
1196 * avoid dereferencing invalid pointers.
1197 */
1198static bool check_device(struct device *dev)
1199{
1200 if (!dev || !dev->dma_mask)
1201 return false;
1202
1203 return true;
1204}
1205
bd60b735
JR
1206/*
1207 * In this function the list of preallocated protection domains is traversed to
1208 * find the domain for a specific device
1209 */
1210static struct dma_ops_domain *find_protection_domain(u16 devid)
1211{
1212 struct dma_ops_domain *entry, *ret = NULL;
1213 unsigned long flags;
1214
1215 if (list_empty(&iommu_pd_list))
1216 return NULL;
1217
1218 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1219
1220 list_for_each_entry(entry, &iommu_pd_list, list) {
1221 if (entry->target_dev == devid) {
1222 ret = entry;
bd60b735
JR
1223 break;
1224 }
1225 }
1226
1227 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1228
1229 return ret;
1230}
1231
431b2a20
JR
1232/*
1233 * In the dma_ops path we only have the struct device. This function
1234 * finds the corresponding IOMMU, the protection domain and the
1235 * requestor id for a given device.
1236 * If the device is not yet associated with a domain this is also done
1237 * in this function.
1238 */
b20ac0d4
JR
1239static int get_device_resources(struct device *dev,
1240 struct amd_iommu **iommu,
1241 struct protection_domain **domain,
1242 u16 *bdf)
1243{
1244 struct dma_ops_domain *dma_dom;
1245 struct pci_dev *pcidev;
1246 u16 _bdf;
1247
dbcc112e
JR
1248 *iommu = NULL;
1249 *domain = NULL;
1250 *bdf = 0xffff;
1251
1252 if (dev->bus != &pci_bus_type)
1253 return 0;
b20ac0d4
JR
1254
1255 pcidev = to_pci_dev(dev);
d591b0a3 1256 _bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
b20ac0d4 1257
431b2a20 1258 /* device not translated by any IOMMU in the system? */
dbcc112e 1259 if (_bdf > amd_iommu_last_bdf)
b20ac0d4 1260 return 0;
b20ac0d4
JR
1261
1262 *bdf = amd_iommu_alias_table[_bdf];
1263
1264 *iommu = amd_iommu_rlookup_table[*bdf];
1265 if (*iommu == NULL)
1266 return 0;
b20ac0d4
JR
1267 *domain = domain_for_device(*bdf);
1268 if (*domain == NULL) {
bd60b735
JR
1269 dma_dom = find_protection_domain(*bdf);
1270 if (!dma_dom)
1271 dma_dom = (*iommu)->default_dom;
b20ac0d4 1272 *domain = &dma_dom->domain;
f1179dc0 1273 attach_device(*iommu, *domain, *bdf);
e9a22a13
JR
1274 DUMP_printk("Using protection domain %d for device %s\n",
1275 (*domain)->id, dev_name(dev));
b20ac0d4
JR
1276 }
1277
f91ba190 1278 if (domain_for_device(_bdf) == NULL)
f1179dc0 1279 attach_device(*iommu, *domain, _bdf);
f91ba190 1280
b20ac0d4
JR
1281 return 1;
1282}
1283
8bda3092
JR
1284/*
1285 * If the pte_page is not yet allocated this function is called
1286 */
1287static u64* alloc_pte(struct protection_domain *dom,
1288 unsigned long address, u64 **pte_page, gfp_t gfp)
1289{
1290 u64 *pte, *page;
1291
1292 pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(address)];
1293
1294 if (!IOMMU_PTE_PRESENT(*pte)) {
1295 page = (u64 *)get_zeroed_page(gfp);
1296 if (!page)
1297 return NULL;
1298 *pte = IOMMU_L2_PDE(virt_to_phys(page));
1299 }
1300
1301 pte = IOMMU_PTE_PAGE(*pte);
1302 pte = &pte[IOMMU_PTE_L1_INDEX(address)];
1303
1304 if (!IOMMU_PTE_PRESENT(*pte)) {
1305 page = (u64 *)get_zeroed_page(gfp);
1306 if (!page)
1307 return NULL;
1308 *pte = IOMMU_L1_PDE(virt_to_phys(page));
1309 }
1310
1311 pte = IOMMU_PTE_PAGE(*pte);
1312
1313 if (pte_page)
1314 *pte_page = pte;
1315
1316 pte = &pte[IOMMU_PTE_L0_INDEX(address)];
1317
1318 return pte;
1319}
1320
1321/*
1322 * This function fetches the PTE for a given address in the aperture
1323 */
1324static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
1325 unsigned long address)
1326{
384de729 1327 struct aperture_range *aperture;
8bda3092
JR
1328 u64 *pte, *pte_page;
1329
384de729
JR
1330 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1331 if (!aperture)
1332 return NULL;
1333
1334 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
8bda3092
JR
1335 if (!pte) {
1336 pte = alloc_pte(&dom->domain, address, &pte_page, GFP_ATOMIC);
384de729
JR
1337 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
1338 } else
1339 pte += IOMMU_PTE_L0_INDEX(address);
8bda3092
JR
1340
1341 return pte;
1342}
1343
431b2a20
JR
1344/*
1345 * This is the generic map function. It maps one 4kb page at paddr to
1346 * the given address in the DMA address space for the domain.
1347 */
cb76c322
JR
1348static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
1349 struct dma_ops_domain *dom,
1350 unsigned long address,
1351 phys_addr_t paddr,
1352 int direction)
1353{
1354 u64 *pte, __pte;
1355
1356 WARN_ON(address > dom->aperture_size);
1357
1358 paddr &= PAGE_MASK;
1359
8bda3092 1360 pte = dma_ops_get_pte(dom, address);
53812c11
JR
1361 if (!pte)
1362 return bad_dma_address;
cb76c322
JR
1363
1364 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
1365
1366 if (direction == DMA_TO_DEVICE)
1367 __pte |= IOMMU_PTE_IR;
1368 else if (direction == DMA_FROM_DEVICE)
1369 __pte |= IOMMU_PTE_IW;
1370 else if (direction == DMA_BIDIRECTIONAL)
1371 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
1372
1373 WARN_ON(*pte);
1374
1375 *pte = __pte;
1376
1377 return (dma_addr_t)address;
1378}
1379
431b2a20
JR
1380/*
1381 * The generic unmapping function for on page in the DMA address space.
1382 */
cb76c322
JR
1383static void dma_ops_domain_unmap(struct amd_iommu *iommu,
1384 struct dma_ops_domain *dom,
1385 unsigned long address)
1386{
384de729 1387 struct aperture_range *aperture;
cb76c322
JR
1388 u64 *pte;
1389
1390 if (address >= dom->aperture_size)
1391 return;
1392
384de729
JR
1393 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1394 if (!aperture)
1395 return;
1396
1397 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1398 if (!pte)
1399 return;
cb76c322 1400
cb76c322
JR
1401 pte += IOMMU_PTE_L0_INDEX(address);
1402
1403 WARN_ON(!*pte);
1404
1405 *pte = 0ULL;
1406}
1407
431b2a20
JR
1408/*
1409 * This function contains common code for mapping of a physically
24f81160
JR
1410 * contiguous memory region into DMA address space. It is used by all
1411 * mapping functions provided with this IOMMU driver.
431b2a20
JR
1412 * Must be called with the domain lock held.
1413 */
cb76c322
JR
1414static dma_addr_t __map_single(struct device *dev,
1415 struct amd_iommu *iommu,
1416 struct dma_ops_domain *dma_dom,
1417 phys_addr_t paddr,
1418 size_t size,
6d4f343f 1419 int dir,
832a90c3
JR
1420 bool align,
1421 u64 dma_mask)
cb76c322
JR
1422{
1423 dma_addr_t offset = paddr & ~PAGE_MASK;
53812c11 1424 dma_addr_t address, start, ret;
cb76c322 1425 unsigned int pages;
6d4f343f 1426 unsigned long align_mask = 0;
cb76c322
JR
1427 int i;
1428
e3c449f5 1429 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
cb76c322
JR
1430 paddr &= PAGE_MASK;
1431
8ecaf8f1
JR
1432 INC_STATS_COUNTER(total_map_requests);
1433
c1858976
JR
1434 if (pages > 1)
1435 INC_STATS_COUNTER(cross_page);
1436
6d4f343f
JR
1437 if (align)
1438 align_mask = (1UL << get_order(size)) - 1;
1439
11b83888 1440retry:
832a90c3
JR
1441 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
1442 dma_mask);
11b83888
JR
1443 if (unlikely(address == bad_dma_address)) {
1444 /*
1445 * setting next_address here will let the address
1446 * allocator only scan the new allocated range in the
1447 * first run. This is a small optimization.
1448 */
1449 dma_dom->next_address = dma_dom->aperture_size;
1450
1451 if (alloc_new_range(iommu, dma_dom, false, GFP_ATOMIC))
1452 goto out;
1453
1454 /*
1455 * aperture was sucessfully enlarged by 128 MB, try
1456 * allocation again
1457 */
1458 goto retry;
1459 }
cb76c322
JR
1460
1461 start = address;
1462 for (i = 0; i < pages; ++i) {
53812c11
JR
1463 ret = dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
1464 if (ret == bad_dma_address)
1465 goto out_unmap;
1466
cb76c322
JR
1467 paddr += PAGE_SIZE;
1468 start += PAGE_SIZE;
1469 }
1470 address += offset;
1471
5774f7c5
JR
1472 ADD_STATS_COUNTER(alloced_io_mem, size);
1473
afa9fdc2 1474 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
1c655773
JR
1475 iommu_flush_tlb(iommu, dma_dom->domain.id);
1476 dma_dom->need_flush = false;
1477 } else if (unlikely(iommu_has_npcache(iommu)))
270cab24
JR
1478 iommu_flush_pages(iommu, dma_dom->domain.id, address, size);
1479
cb76c322
JR
1480out:
1481 return address;
53812c11
JR
1482
1483out_unmap:
1484
1485 for (--i; i >= 0; --i) {
1486 start -= PAGE_SIZE;
1487 dma_ops_domain_unmap(iommu, dma_dom, start);
1488 }
1489
1490 dma_ops_free_addresses(dma_dom, address, pages);
1491
1492 return bad_dma_address;
cb76c322
JR
1493}
1494
431b2a20
JR
1495/*
1496 * Does the reverse of the __map_single function. Must be called with
1497 * the domain lock held too
1498 */
cb76c322
JR
1499static void __unmap_single(struct amd_iommu *iommu,
1500 struct dma_ops_domain *dma_dom,
1501 dma_addr_t dma_addr,
1502 size_t size,
1503 int dir)
1504{
1505 dma_addr_t i, start;
1506 unsigned int pages;
1507
b8d9905d
JR
1508 if ((dma_addr == bad_dma_address) ||
1509 (dma_addr + size > dma_dom->aperture_size))
cb76c322
JR
1510 return;
1511
e3c449f5 1512 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
cb76c322
JR
1513 dma_addr &= PAGE_MASK;
1514 start = dma_addr;
1515
1516 for (i = 0; i < pages; ++i) {
1517 dma_ops_domain_unmap(iommu, dma_dom, start);
1518 start += PAGE_SIZE;
1519 }
1520
5774f7c5
JR
1521 SUB_STATS_COUNTER(alloced_io_mem, size);
1522
cb76c322 1523 dma_ops_free_addresses(dma_dom, dma_addr, pages);
270cab24 1524
80be308d 1525 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
1c655773 1526 iommu_flush_pages(iommu, dma_dom->domain.id, dma_addr, size);
80be308d
JR
1527 dma_dom->need_flush = false;
1528 }
cb76c322
JR
1529}
1530
431b2a20
JR
1531/*
1532 * The exported map_single function for dma_ops.
1533 */
51491367
FT
1534static dma_addr_t map_page(struct device *dev, struct page *page,
1535 unsigned long offset, size_t size,
1536 enum dma_data_direction dir,
1537 struct dma_attrs *attrs)
4da70b9e
JR
1538{
1539 unsigned long flags;
1540 struct amd_iommu *iommu;
1541 struct protection_domain *domain;
1542 u16 devid;
1543 dma_addr_t addr;
832a90c3 1544 u64 dma_mask;
51491367 1545 phys_addr_t paddr = page_to_phys(page) + offset;
4da70b9e 1546
0f2a86f2
JR
1547 INC_STATS_COUNTER(cnt_map_single);
1548
dbcc112e
JR
1549 if (!check_device(dev))
1550 return bad_dma_address;
1551
832a90c3 1552 dma_mask = *dev->dma_mask;
4da70b9e
JR
1553
1554 get_device_resources(dev, &iommu, &domain, &devid);
1555
1556 if (iommu == NULL || domain == NULL)
431b2a20 1557 /* device not handled by any AMD IOMMU */
4da70b9e
JR
1558 return (dma_addr_t)paddr;
1559
5b28df6f
JR
1560 if (!dma_ops_domain(domain))
1561 return bad_dma_address;
1562
4da70b9e 1563 spin_lock_irqsave(&domain->lock, flags);
832a90c3
JR
1564 addr = __map_single(dev, iommu, domain->priv, paddr, size, dir, false,
1565 dma_mask);
4da70b9e
JR
1566 if (addr == bad_dma_address)
1567 goto out;
1568
09ee17eb 1569 iommu_completion_wait(iommu);
4da70b9e
JR
1570
1571out:
1572 spin_unlock_irqrestore(&domain->lock, flags);
1573
1574 return addr;
1575}
1576
431b2a20
JR
1577/*
1578 * The exported unmap_single function for dma_ops.
1579 */
51491367
FT
1580static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
1581 enum dma_data_direction dir, struct dma_attrs *attrs)
4da70b9e
JR
1582{
1583 unsigned long flags;
1584 struct amd_iommu *iommu;
1585 struct protection_domain *domain;
1586 u16 devid;
1587
146a6917
JR
1588 INC_STATS_COUNTER(cnt_unmap_single);
1589
dbcc112e
JR
1590 if (!check_device(dev) ||
1591 !get_device_resources(dev, &iommu, &domain, &devid))
431b2a20 1592 /* device not handled by any AMD IOMMU */
4da70b9e
JR
1593 return;
1594
5b28df6f
JR
1595 if (!dma_ops_domain(domain))
1596 return;
1597
4da70b9e
JR
1598 spin_lock_irqsave(&domain->lock, flags);
1599
1600 __unmap_single(iommu, domain->priv, dma_addr, size, dir);
1601
09ee17eb 1602 iommu_completion_wait(iommu);
4da70b9e
JR
1603
1604 spin_unlock_irqrestore(&domain->lock, flags);
1605}
1606
431b2a20
JR
1607/*
1608 * This is a special map_sg function which is used if we should map a
1609 * device which is not handled by an AMD IOMMU in the system.
1610 */
65b050ad
JR
1611static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
1612 int nelems, int dir)
1613{
1614 struct scatterlist *s;
1615 int i;
1616
1617 for_each_sg(sglist, s, nelems, i) {
1618 s->dma_address = (dma_addr_t)sg_phys(s);
1619 s->dma_length = s->length;
1620 }
1621
1622 return nelems;
1623}
1624
431b2a20
JR
1625/*
1626 * The exported map_sg function for dma_ops (handles scatter-gather
1627 * lists).
1628 */
65b050ad 1629static int map_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
1630 int nelems, enum dma_data_direction dir,
1631 struct dma_attrs *attrs)
65b050ad
JR
1632{
1633 unsigned long flags;
1634 struct amd_iommu *iommu;
1635 struct protection_domain *domain;
1636 u16 devid;
1637 int i;
1638 struct scatterlist *s;
1639 phys_addr_t paddr;
1640 int mapped_elems = 0;
832a90c3 1641 u64 dma_mask;
65b050ad 1642
d03f067a
JR
1643 INC_STATS_COUNTER(cnt_map_sg);
1644
dbcc112e
JR
1645 if (!check_device(dev))
1646 return 0;
1647
832a90c3 1648 dma_mask = *dev->dma_mask;
65b050ad
JR
1649
1650 get_device_resources(dev, &iommu, &domain, &devid);
1651
1652 if (!iommu || !domain)
1653 return map_sg_no_iommu(dev, sglist, nelems, dir);
1654
5b28df6f
JR
1655 if (!dma_ops_domain(domain))
1656 return 0;
1657
65b050ad
JR
1658 spin_lock_irqsave(&domain->lock, flags);
1659
1660 for_each_sg(sglist, s, nelems, i) {
1661 paddr = sg_phys(s);
1662
1663 s->dma_address = __map_single(dev, iommu, domain->priv,
832a90c3
JR
1664 paddr, s->length, dir, false,
1665 dma_mask);
65b050ad
JR
1666
1667 if (s->dma_address) {
1668 s->dma_length = s->length;
1669 mapped_elems++;
1670 } else
1671 goto unmap;
65b050ad
JR
1672 }
1673
09ee17eb 1674 iommu_completion_wait(iommu);
65b050ad
JR
1675
1676out:
1677 spin_unlock_irqrestore(&domain->lock, flags);
1678
1679 return mapped_elems;
1680unmap:
1681 for_each_sg(sglist, s, mapped_elems, i) {
1682 if (s->dma_address)
1683 __unmap_single(iommu, domain->priv, s->dma_address,
1684 s->dma_length, dir);
1685 s->dma_address = s->dma_length = 0;
1686 }
1687
1688 mapped_elems = 0;
1689
1690 goto out;
1691}
1692
431b2a20
JR
1693/*
1694 * The exported map_sg function for dma_ops (handles scatter-gather
1695 * lists).
1696 */
65b050ad 1697static void unmap_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
1698 int nelems, enum dma_data_direction dir,
1699 struct dma_attrs *attrs)
65b050ad
JR
1700{
1701 unsigned long flags;
1702 struct amd_iommu *iommu;
1703 struct protection_domain *domain;
1704 struct scatterlist *s;
1705 u16 devid;
1706 int i;
1707
55877a6b
JR
1708 INC_STATS_COUNTER(cnt_unmap_sg);
1709
dbcc112e
JR
1710 if (!check_device(dev) ||
1711 !get_device_resources(dev, &iommu, &domain, &devid))
65b050ad
JR
1712 return;
1713
5b28df6f
JR
1714 if (!dma_ops_domain(domain))
1715 return;
1716
65b050ad
JR
1717 spin_lock_irqsave(&domain->lock, flags);
1718
1719 for_each_sg(sglist, s, nelems, i) {
1720 __unmap_single(iommu, domain->priv, s->dma_address,
1721 s->dma_length, dir);
65b050ad
JR
1722 s->dma_address = s->dma_length = 0;
1723 }
1724
09ee17eb 1725 iommu_completion_wait(iommu);
65b050ad
JR
1726
1727 spin_unlock_irqrestore(&domain->lock, flags);
1728}
1729
431b2a20
JR
1730/*
1731 * The exported alloc_coherent function for dma_ops.
1732 */
5d8b53cf
JR
1733static void *alloc_coherent(struct device *dev, size_t size,
1734 dma_addr_t *dma_addr, gfp_t flag)
1735{
1736 unsigned long flags;
1737 void *virt_addr;
1738 struct amd_iommu *iommu;
1739 struct protection_domain *domain;
1740 u16 devid;
1741 phys_addr_t paddr;
832a90c3 1742 u64 dma_mask = dev->coherent_dma_mask;
5d8b53cf 1743
c8f0fb36
JR
1744 INC_STATS_COUNTER(cnt_alloc_coherent);
1745
dbcc112e
JR
1746 if (!check_device(dev))
1747 return NULL;
5d8b53cf 1748
13d9fead
FT
1749 if (!get_device_resources(dev, &iommu, &domain, &devid))
1750 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
5d8b53cf 1751
c97ac535 1752 flag |= __GFP_ZERO;
5d8b53cf
JR
1753 virt_addr = (void *)__get_free_pages(flag, get_order(size));
1754 if (!virt_addr)
b25ae679 1755 return NULL;
5d8b53cf 1756
5d8b53cf
JR
1757 paddr = virt_to_phys(virt_addr);
1758
5d8b53cf
JR
1759 if (!iommu || !domain) {
1760 *dma_addr = (dma_addr_t)paddr;
1761 return virt_addr;
1762 }
1763
5b28df6f
JR
1764 if (!dma_ops_domain(domain))
1765 goto out_free;
1766
832a90c3
JR
1767 if (!dma_mask)
1768 dma_mask = *dev->dma_mask;
1769
5d8b53cf
JR
1770 spin_lock_irqsave(&domain->lock, flags);
1771
1772 *dma_addr = __map_single(dev, iommu, domain->priv, paddr,
832a90c3 1773 size, DMA_BIDIRECTIONAL, true, dma_mask);
5d8b53cf 1774
367d04c4
JS
1775 if (*dma_addr == bad_dma_address) {
1776 spin_unlock_irqrestore(&domain->lock, flags);
5b28df6f 1777 goto out_free;
367d04c4 1778 }
5d8b53cf 1779
09ee17eb 1780 iommu_completion_wait(iommu);
5d8b53cf 1781
5d8b53cf
JR
1782 spin_unlock_irqrestore(&domain->lock, flags);
1783
1784 return virt_addr;
5b28df6f
JR
1785
1786out_free:
1787
1788 free_pages((unsigned long)virt_addr, get_order(size));
1789
1790 return NULL;
5d8b53cf
JR
1791}
1792
431b2a20
JR
1793/*
1794 * The exported free_coherent function for dma_ops.
431b2a20 1795 */
5d8b53cf
JR
1796static void free_coherent(struct device *dev, size_t size,
1797 void *virt_addr, dma_addr_t dma_addr)
1798{
1799 unsigned long flags;
1800 struct amd_iommu *iommu;
1801 struct protection_domain *domain;
1802 u16 devid;
1803
5d31ee7e
JR
1804 INC_STATS_COUNTER(cnt_free_coherent);
1805
dbcc112e
JR
1806 if (!check_device(dev))
1807 return;
1808
5d8b53cf
JR
1809 get_device_resources(dev, &iommu, &domain, &devid);
1810
1811 if (!iommu || !domain)
1812 goto free_mem;
1813
5b28df6f
JR
1814 if (!dma_ops_domain(domain))
1815 goto free_mem;
1816
5d8b53cf
JR
1817 spin_lock_irqsave(&domain->lock, flags);
1818
1819 __unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
5d8b53cf 1820
09ee17eb 1821 iommu_completion_wait(iommu);
5d8b53cf
JR
1822
1823 spin_unlock_irqrestore(&domain->lock, flags);
1824
1825free_mem:
1826 free_pages((unsigned long)virt_addr, get_order(size));
1827}
1828
b39ba6ad
JR
1829/*
1830 * This function is called by the DMA layer to find out if we can handle a
1831 * particular device. It is part of the dma_ops.
1832 */
1833static int amd_iommu_dma_supported(struct device *dev, u64 mask)
1834{
1835 u16 bdf;
1836 struct pci_dev *pcidev;
1837
1838 /* No device or no PCI device */
1839 if (!dev || dev->bus != &pci_bus_type)
1840 return 0;
1841
1842 pcidev = to_pci_dev(dev);
1843
1844 bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
1845
1846 /* Out of our scope? */
1847 if (bdf > amd_iommu_last_bdf)
1848 return 0;
1849
1850 return 1;
1851}
1852
c432f3df 1853/*
431b2a20
JR
1854 * The function for pre-allocating protection domains.
1855 *
c432f3df
JR
1856 * If the driver core informs the DMA layer if a driver grabs a device
1857 * we don't need to preallocate the protection domains anymore.
1858 * For now we have to.
1859 */
0e93dd88 1860static void prealloc_protection_domains(void)
c432f3df
JR
1861{
1862 struct pci_dev *dev = NULL;
1863 struct dma_ops_domain *dma_dom;
1864 struct amd_iommu *iommu;
c432f3df
JR
1865 u16 devid;
1866
1867 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
edcb34da 1868 devid = calc_devid(dev->bus->number, dev->devfn);
3a61ec38 1869 if (devid > amd_iommu_last_bdf)
c432f3df
JR
1870 continue;
1871 devid = amd_iommu_alias_table[devid];
1872 if (domain_for_device(devid))
1873 continue;
1874 iommu = amd_iommu_rlookup_table[devid];
1875 if (!iommu)
1876 continue;
d9cfed92 1877 dma_dom = dma_ops_domain_alloc(iommu);
c432f3df
JR
1878 if (!dma_dom)
1879 continue;
1880 init_unity_mappings_for_device(dma_dom, devid);
bd60b735
JR
1881 dma_dom->target_dev = devid;
1882
1883 list_add_tail(&dma_dom->list, &iommu_pd_list);
c432f3df
JR
1884 }
1885}
1886
160c1d8e 1887static struct dma_map_ops amd_iommu_dma_ops = {
6631ee9d
JR
1888 .alloc_coherent = alloc_coherent,
1889 .free_coherent = free_coherent,
51491367
FT
1890 .map_page = map_page,
1891 .unmap_page = unmap_page,
6631ee9d
JR
1892 .map_sg = map_sg,
1893 .unmap_sg = unmap_sg,
b39ba6ad 1894 .dma_supported = amd_iommu_dma_supported,
6631ee9d
JR
1895};
1896
431b2a20
JR
1897/*
1898 * The function which clues the AMD IOMMU driver into dma_ops.
1899 */
6631ee9d
JR
1900int __init amd_iommu_init_dma_ops(void)
1901{
1902 struct amd_iommu *iommu;
6631ee9d
JR
1903 int ret;
1904
431b2a20
JR
1905 /*
1906 * first allocate a default protection domain for every IOMMU we
1907 * found in the system. Devices not assigned to any other
1908 * protection domain will be assigned to the default one.
1909 */
3bd22172 1910 for_each_iommu(iommu) {
d9cfed92 1911 iommu->default_dom = dma_ops_domain_alloc(iommu);
6631ee9d
JR
1912 if (iommu->default_dom == NULL)
1913 return -ENOMEM;
e2dc14a2 1914 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
6631ee9d
JR
1915 ret = iommu_init_unity_mappings(iommu);
1916 if (ret)
1917 goto free_domains;
1918 }
1919
431b2a20
JR
1920 /*
1921 * If device isolation is enabled, pre-allocate the protection
1922 * domains for each device.
1923 */
6631ee9d
JR
1924 if (amd_iommu_isolate)
1925 prealloc_protection_domains();
1926
1927 iommu_detected = 1;
1928 force_iommu = 1;
1929 bad_dma_address = 0;
92af4e29 1930#ifdef CONFIG_GART_IOMMU
6631ee9d
JR
1931 gart_iommu_aperture_disabled = 1;
1932 gart_iommu_aperture = 0;
92af4e29 1933#endif
6631ee9d 1934
431b2a20 1935 /* Make the driver finally visible to the drivers */
6631ee9d
JR
1936 dma_ops = &amd_iommu_dma_ops;
1937
26961efe 1938 register_iommu(&amd_iommu_ops);
26961efe 1939
e275a2a0
JR
1940 bus_register_notifier(&pci_bus_type, &device_nb);
1941
7f26508b
JR
1942 amd_iommu_stats_init();
1943
6631ee9d
JR
1944 return 0;
1945
1946free_domains:
1947
3bd22172 1948 for_each_iommu(iommu) {
6631ee9d
JR
1949 if (iommu->default_dom)
1950 dma_ops_domain_free(iommu->default_dom);
1951 }
1952
1953 return ret;
1954}
6d98cd80
JR
1955
1956/*****************************************************************************
1957 *
1958 * The following functions belong to the exported interface of AMD IOMMU
1959 *
1960 * This interface allows access to lower level functions of the IOMMU
1961 * like protection domain handling and assignement of devices to domains
1962 * which is not possible with the dma_ops interface.
1963 *
1964 *****************************************************************************/
1965
6d98cd80
JR
1966static void cleanup_domain(struct protection_domain *domain)
1967{
1968 unsigned long flags;
1969 u16 devid;
1970
1971 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1972
1973 for (devid = 0; devid <= amd_iommu_last_bdf; ++devid)
1974 if (amd_iommu_pd_table[devid] == domain)
1975 __detach_device(domain, devid);
1976
1977 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1978}
1979
c156e347
JR
1980static int amd_iommu_domain_init(struct iommu_domain *dom)
1981{
1982 struct protection_domain *domain;
1983
1984 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
1985 if (!domain)
1986 return -ENOMEM;
1987
1988 spin_lock_init(&domain->lock);
1989 domain->mode = PAGE_MODE_3_LEVEL;
1990 domain->id = domain_id_alloc();
1991 if (!domain->id)
1992 goto out_free;
1993 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1994 if (!domain->pt_root)
1995 goto out_free;
1996
1997 dom->priv = domain;
1998
1999 return 0;
2000
2001out_free:
2002 kfree(domain);
2003
2004 return -ENOMEM;
2005}
2006
98383fc3
JR
2007static void amd_iommu_domain_destroy(struct iommu_domain *dom)
2008{
2009 struct protection_domain *domain = dom->priv;
2010
2011 if (!domain)
2012 return;
2013
2014 if (domain->dev_cnt > 0)
2015 cleanup_domain(domain);
2016
2017 BUG_ON(domain->dev_cnt != 0);
2018
2019 free_pagetable(domain);
2020
2021 domain_id_free(domain->id);
2022
2023 kfree(domain);
2024
2025 dom->priv = NULL;
2026}
2027
684f2888
JR
2028static void amd_iommu_detach_device(struct iommu_domain *dom,
2029 struct device *dev)
2030{
2031 struct protection_domain *domain = dom->priv;
2032 struct amd_iommu *iommu;
2033 struct pci_dev *pdev;
2034 u16 devid;
2035
2036 if (dev->bus != &pci_bus_type)
2037 return;
2038
2039 pdev = to_pci_dev(dev);
2040
2041 devid = calc_devid(pdev->bus->number, pdev->devfn);
2042
2043 if (devid > 0)
2044 detach_device(domain, devid);
2045
2046 iommu = amd_iommu_rlookup_table[devid];
2047 if (!iommu)
2048 return;
2049
2050 iommu_queue_inv_dev_entry(iommu, devid);
2051 iommu_completion_wait(iommu);
2052}
2053
01106066
JR
2054static int amd_iommu_attach_device(struct iommu_domain *dom,
2055 struct device *dev)
2056{
2057 struct protection_domain *domain = dom->priv;
2058 struct protection_domain *old_domain;
2059 struct amd_iommu *iommu;
2060 struct pci_dev *pdev;
2061 u16 devid;
2062
2063 if (dev->bus != &pci_bus_type)
2064 return -EINVAL;
2065
2066 pdev = to_pci_dev(dev);
2067
2068 devid = calc_devid(pdev->bus->number, pdev->devfn);
2069
2070 if (devid >= amd_iommu_last_bdf ||
2071 devid != amd_iommu_alias_table[devid])
2072 return -EINVAL;
2073
2074 iommu = amd_iommu_rlookup_table[devid];
2075 if (!iommu)
2076 return -EINVAL;
2077
2078 old_domain = domain_for_device(devid);
2079 if (old_domain)
71ff3bca 2080 detach_device(old_domain, devid);
01106066
JR
2081
2082 attach_device(iommu, domain, devid);
2083
2084 iommu_completion_wait(iommu);
2085
2086 return 0;
2087}
2088
c6229ca6
JR
2089static int amd_iommu_map_range(struct iommu_domain *dom,
2090 unsigned long iova, phys_addr_t paddr,
2091 size_t size, int iommu_prot)
2092{
2093 struct protection_domain *domain = dom->priv;
2094 unsigned long i, npages = iommu_num_pages(paddr, size, PAGE_SIZE);
2095 int prot = 0;
2096 int ret;
2097
2098 if (iommu_prot & IOMMU_READ)
2099 prot |= IOMMU_PROT_IR;
2100 if (iommu_prot & IOMMU_WRITE)
2101 prot |= IOMMU_PROT_IW;
2102
2103 iova &= PAGE_MASK;
2104 paddr &= PAGE_MASK;
2105
2106 for (i = 0; i < npages; ++i) {
2107 ret = iommu_map_page(domain, iova, paddr, prot);
2108 if (ret)
2109 return ret;
2110
2111 iova += PAGE_SIZE;
2112 paddr += PAGE_SIZE;
2113 }
2114
2115 return 0;
2116}
2117
eb74ff6c
JR
2118static void amd_iommu_unmap_range(struct iommu_domain *dom,
2119 unsigned long iova, size_t size)
2120{
2121
2122 struct protection_domain *domain = dom->priv;
2123 unsigned long i, npages = iommu_num_pages(iova, size, PAGE_SIZE);
2124
2125 iova &= PAGE_MASK;
2126
2127 for (i = 0; i < npages; ++i) {
2128 iommu_unmap_page(domain, iova);
2129 iova += PAGE_SIZE;
2130 }
2131
2132 iommu_flush_domain(domain->id);
2133}
2134
645c4c8d
JR
2135static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2136 unsigned long iova)
2137{
2138 struct protection_domain *domain = dom->priv;
2139 unsigned long offset = iova & ~PAGE_MASK;
2140 phys_addr_t paddr;
2141 u64 *pte;
2142
2143 pte = &domain->pt_root[IOMMU_PTE_L2_INDEX(iova)];
2144
2145 if (!IOMMU_PTE_PRESENT(*pte))
2146 return 0;
2147
2148 pte = IOMMU_PTE_PAGE(*pte);
2149 pte = &pte[IOMMU_PTE_L1_INDEX(iova)];
2150
2151 if (!IOMMU_PTE_PRESENT(*pte))
2152 return 0;
2153
2154 pte = IOMMU_PTE_PAGE(*pte);
2155 pte = &pte[IOMMU_PTE_L0_INDEX(iova)];
2156
2157 if (!IOMMU_PTE_PRESENT(*pte))
2158 return 0;
2159
2160 paddr = *pte & IOMMU_PAGE_MASK;
2161 paddr |= offset;
2162
2163 return paddr;
2164}
2165
dbb9fd86
SY
2166static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
2167 unsigned long cap)
2168{
2169 return 0;
2170}
2171
26961efe
JR
2172static struct iommu_ops amd_iommu_ops = {
2173 .domain_init = amd_iommu_domain_init,
2174 .domain_destroy = amd_iommu_domain_destroy,
2175 .attach_dev = amd_iommu_attach_device,
2176 .detach_dev = amd_iommu_detach_device,
2177 .map = amd_iommu_map_range,
2178 .unmap = amd_iommu_unmap_range,
2179 .iova_to_phys = amd_iommu_iova_to_phys,
dbb9fd86 2180 .domain_has_cap = amd_iommu_domain_has_cap,
26961efe
JR
2181};
2182