]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/kernel/amd_iommu.c
x86/amd-iommu: Add flag to indicate IOTLB support
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / amd_iommu.c
CommitLineData
b6c02715 1/*
5d0d7156 2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
b6c02715
JR
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/pci.h>
cb41ed85 21#include <linux/pci-ats.h>
a66022c4 22#include <linux/bitmap.h>
5a0e3ad6 23#include <linux/slab.h>
7f26508b 24#include <linux/debugfs.h>
b6c02715 25#include <linux/scatterlist.h>
51491367 26#include <linux/dma-mapping.h>
b6c02715 27#include <linux/iommu-helper.h>
c156e347 28#include <linux/iommu.h>
815b33fd 29#include <linux/delay.h>
b6c02715 30#include <asm/proto.h>
46a7fa27 31#include <asm/iommu.h>
1d9b16d1 32#include <asm/gart.h>
6a9401a7 33#include <asm/amd_iommu_proto.h>
b6c02715 34#include <asm/amd_iommu_types.h>
c6da992e 35#include <asm/amd_iommu.h>
b6c02715
JR
36
37#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
38
815b33fd 39#define LOOP_TIMEOUT 100000
136f78a1 40
b6c02715
JR
41static DEFINE_RWLOCK(amd_iommu_devtable_lock);
42
bd60b735
JR
43/* A list of preallocated protection domains */
44static LIST_HEAD(iommu_pd_list);
45static DEFINE_SPINLOCK(iommu_pd_list_lock);
46
0feae533
JR
47/*
48 * Domain for untranslated devices - only allocated
49 * if iommu=pt passed on kernel cmd line.
50 */
51static struct protection_domain *pt_domain;
52
26961efe 53static struct iommu_ops amd_iommu_ops;
26961efe 54
431b2a20
JR
55/*
56 * general struct to manage commands send to an IOMMU
57 */
d6449536 58struct iommu_cmd {
b6c02715
JR
59 u32 data[4];
60};
61
04bfdd84 62static void update_domain(struct protection_domain *domain);
c1eee67b 63
15898bbc
JR
64/****************************************************************************
65 *
66 * Helper functions
67 *
68 ****************************************************************************/
69
70static inline u16 get_device_id(struct device *dev)
71{
72 struct pci_dev *pdev = to_pci_dev(dev);
73
74 return calc_devid(pdev->bus->number, pdev->devfn);
75}
76
657cbb6b
JR
77static struct iommu_dev_data *get_dev_data(struct device *dev)
78{
79 return dev->archdata.iommu;
80}
81
71c70984
JR
82/*
83 * In this function the list of preallocated protection domains is traversed to
84 * find the domain for a specific device
85 */
86static struct dma_ops_domain *find_protection_domain(u16 devid)
87{
88 struct dma_ops_domain *entry, *ret = NULL;
89 unsigned long flags;
90 u16 alias = amd_iommu_alias_table[devid];
91
92 if (list_empty(&iommu_pd_list))
93 return NULL;
94
95 spin_lock_irqsave(&iommu_pd_list_lock, flags);
96
97 list_for_each_entry(entry, &iommu_pd_list, list) {
98 if (entry->target_dev == devid ||
99 entry->target_dev == alias) {
100 ret = entry;
101 break;
102 }
103 }
104
105 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
106
107 return ret;
108}
109
98fc5a69
JR
110/*
111 * This function checks if the driver got a valid device from the caller to
112 * avoid dereferencing invalid pointers.
113 */
114static bool check_device(struct device *dev)
115{
116 u16 devid;
117
118 if (!dev || !dev->dma_mask)
119 return false;
120
121 /* No device or no PCI device */
339d3261 122 if (dev->bus != &pci_bus_type)
98fc5a69
JR
123 return false;
124
125 devid = get_device_id(dev);
126
127 /* Out of our scope? */
128 if (devid > amd_iommu_last_bdf)
129 return false;
130
131 if (amd_iommu_rlookup_table[devid] == NULL)
132 return false;
133
134 return true;
135}
136
657cbb6b
JR
137static int iommu_init_device(struct device *dev)
138{
139 struct iommu_dev_data *dev_data;
140 struct pci_dev *pdev;
141 u16 devid, alias;
142
143 if (dev->archdata.iommu)
144 return 0;
145
146 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
147 if (!dev_data)
148 return -ENOMEM;
149
b00d3bcf
JR
150 dev_data->dev = dev;
151
657cbb6b
JR
152 devid = get_device_id(dev);
153 alias = amd_iommu_alias_table[devid];
154 pdev = pci_get_bus_and_slot(PCI_BUS(alias), alias & 0xff);
155 if (pdev)
156 dev_data->alias = &pdev->dev;
157
24100055
JR
158 atomic_set(&dev_data->bind, 0);
159
657cbb6b
JR
160 dev->archdata.iommu = dev_data;
161
162
163 return 0;
164}
165
166static void iommu_uninit_device(struct device *dev)
167{
168 kfree(dev->archdata.iommu);
169}
b7cc9554
JR
170
171void __init amd_iommu_uninit_devices(void)
172{
173 struct pci_dev *pdev = NULL;
174
175 for_each_pci_dev(pdev) {
176
177 if (!check_device(&pdev->dev))
178 continue;
179
180 iommu_uninit_device(&pdev->dev);
181 }
182}
183
184int __init amd_iommu_init_devices(void)
185{
186 struct pci_dev *pdev = NULL;
187 int ret = 0;
188
189 for_each_pci_dev(pdev) {
190
191 if (!check_device(&pdev->dev))
192 continue;
193
194 ret = iommu_init_device(&pdev->dev);
195 if (ret)
196 goto out_free;
197 }
198
199 return 0;
200
201out_free:
202
203 amd_iommu_uninit_devices();
204
205 return ret;
206}
7f26508b
JR
207#ifdef CONFIG_AMD_IOMMU_STATS
208
209/*
210 * Initialization code for statistics collection
211 */
212
da49f6df 213DECLARE_STATS_COUNTER(compl_wait);
0f2a86f2 214DECLARE_STATS_COUNTER(cnt_map_single);
146a6917 215DECLARE_STATS_COUNTER(cnt_unmap_single);
d03f067a 216DECLARE_STATS_COUNTER(cnt_map_sg);
55877a6b 217DECLARE_STATS_COUNTER(cnt_unmap_sg);
c8f0fb36 218DECLARE_STATS_COUNTER(cnt_alloc_coherent);
5d31ee7e 219DECLARE_STATS_COUNTER(cnt_free_coherent);
c1858976 220DECLARE_STATS_COUNTER(cross_page);
f57d98ae 221DECLARE_STATS_COUNTER(domain_flush_single);
18811f55 222DECLARE_STATS_COUNTER(domain_flush_all);
5774f7c5 223DECLARE_STATS_COUNTER(alloced_io_mem);
8ecaf8f1 224DECLARE_STATS_COUNTER(total_map_requests);
da49f6df 225
7f26508b 226static struct dentry *stats_dir;
7f26508b
JR
227static struct dentry *de_fflush;
228
229static void amd_iommu_stats_add(struct __iommu_counter *cnt)
230{
231 if (stats_dir == NULL)
232 return;
233
234 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
235 &cnt->value);
236}
237
238static void amd_iommu_stats_init(void)
239{
240 stats_dir = debugfs_create_dir("amd-iommu", NULL);
241 if (stats_dir == NULL)
242 return;
243
7f26508b
JR
244 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
245 (u32 *)&amd_iommu_unmap_flush);
da49f6df
JR
246
247 amd_iommu_stats_add(&compl_wait);
0f2a86f2 248 amd_iommu_stats_add(&cnt_map_single);
146a6917 249 amd_iommu_stats_add(&cnt_unmap_single);
d03f067a 250 amd_iommu_stats_add(&cnt_map_sg);
55877a6b 251 amd_iommu_stats_add(&cnt_unmap_sg);
c8f0fb36 252 amd_iommu_stats_add(&cnt_alloc_coherent);
5d31ee7e 253 amd_iommu_stats_add(&cnt_free_coherent);
c1858976 254 amd_iommu_stats_add(&cross_page);
f57d98ae 255 amd_iommu_stats_add(&domain_flush_single);
18811f55 256 amd_iommu_stats_add(&domain_flush_all);
5774f7c5 257 amd_iommu_stats_add(&alloced_io_mem);
8ecaf8f1 258 amd_iommu_stats_add(&total_map_requests);
7f26508b
JR
259}
260
261#endif
262
a80dc3e0
JR
263/****************************************************************************
264 *
265 * Interrupt handling functions
266 *
267 ****************************************************************************/
268
e3e59876
JR
269static void dump_dte_entry(u16 devid)
270{
271 int i;
272
273 for (i = 0; i < 8; ++i)
274 pr_err("AMD-Vi: DTE[%d]: %08x\n", i,
275 amd_iommu_dev_table[devid].data[i]);
276}
277
945b4ac4
JR
278static void dump_command(unsigned long phys_addr)
279{
280 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
281 int i;
282
283 for (i = 0; i < 4; ++i)
284 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
285}
286
a345b23b 287static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
90008ee4
JR
288{
289 u32 *event = __evt;
290 int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
291 int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
292 int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
293 int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
294 u64 address = (u64)(((u64)event[3]) << 32) | event[2];
295
4c6f40d4 296 printk(KERN_ERR "AMD-Vi: Event logged [");
90008ee4
JR
297
298 switch (type) {
299 case EVENT_TYPE_ILL_DEV:
300 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
301 "address=0x%016llx flags=0x%04x]\n",
302 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
303 address, flags);
e3e59876 304 dump_dte_entry(devid);
90008ee4
JR
305 break;
306 case EVENT_TYPE_IO_FAULT:
307 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
308 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
309 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
310 domid, address, flags);
311 break;
312 case EVENT_TYPE_DEV_TAB_ERR:
313 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
314 "address=0x%016llx flags=0x%04x]\n",
315 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
316 address, flags);
317 break;
318 case EVENT_TYPE_PAGE_TAB_ERR:
319 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
320 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
321 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
322 domid, address, flags);
323 break;
324 case EVENT_TYPE_ILL_CMD:
325 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
945b4ac4 326 dump_command(address);
90008ee4
JR
327 break;
328 case EVENT_TYPE_CMD_HARD_ERR:
329 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
330 "flags=0x%04x]\n", address, flags);
331 break;
332 case EVENT_TYPE_IOTLB_INV_TO:
333 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
334 "address=0x%016llx]\n",
335 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
336 address);
337 break;
338 case EVENT_TYPE_INV_DEV_REQ:
339 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
340 "address=0x%016llx flags=0x%04x]\n",
341 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
342 address, flags);
343 break;
344 default:
345 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
346 }
347}
348
349static void iommu_poll_events(struct amd_iommu *iommu)
350{
351 u32 head, tail;
352 unsigned long flags;
353
354 spin_lock_irqsave(&iommu->lock, flags);
355
356 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
357 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
358
359 while (head != tail) {
a345b23b 360 iommu_print_event(iommu, iommu->evt_buf + head);
90008ee4
JR
361 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
362 }
363
364 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
365
366 spin_unlock_irqrestore(&iommu->lock, flags);
367}
368
a80dc3e0
JR
369irqreturn_t amd_iommu_int_handler(int irq, void *data)
370{
90008ee4
JR
371 struct amd_iommu *iommu;
372
3bd22172 373 for_each_iommu(iommu)
90008ee4
JR
374 iommu_poll_events(iommu);
375
376 return IRQ_HANDLED;
a80dc3e0
JR
377}
378
431b2a20
JR
379/****************************************************************************
380 *
381 * IOMMU command queuing functions
382 *
383 ****************************************************************************/
384
ac0ea6e9
JR
385static int wait_on_sem(volatile u64 *sem)
386{
387 int i = 0;
388
389 while (*sem == 0 && i < LOOP_TIMEOUT) {
390 udelay(1);
391 i += 1;
392 }
393
394 if (i == LOOP_TIMEOUT) {
395 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
396 return -EIO;
397 }
398
399 return 0;
400}
401
402static void copy_cmd_to_buffer(struct amd_iommu *iommu,
403 struct iommu_cmd *cmd,
404 u32 tail)
405{
406 u8 *target;
407
408 target = iommu->cmd_buf + tail;
409 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
410
411 /* Copy command to buffer */
412 memcpy(target, cmd, sizeof(*cmd));
413
414 /* Tell the IOMMU about it */
415 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
416}
417
815b33fd 418static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
ded46737 419{
815b33fd
JR
420 WARN_ON(address & 0x7ULL);
421
ded46737 422 memset(cmd, 0, sizeof(*cmd));
815b33fd
JR
423 cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
424 cmd->data[1] = upper_32_bits(__pa(address));
425 cmd->data[2] = 1;
ded46737
JR
426 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
427}
428
94fe79e2
JR
429static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
430{
431 memset(cmd, 0, sizeof(*cmd));
432 cmd->data[0] = devid;
433 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
434}
435
11b6402c
JR
436static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
437 size_t size, u16 domid, int pde)
438{
439 u64 pages;
440 int s;
441
442 pages = iommu_num_pages(address, size, PAGE_SIZE);
443 s = 0;
444
445 if (pages > 1) {
446 /*
447 * If we have to flush more than one page, flush all
448 * TLB entries for this domain
449 */
450 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
451 s = 1;
452 }
453
454 address &= PAGE_MASK;
455
456 memset(cmd, 0, sizeof(*cmd));
457 cmd->data[1] |= domid;
458 cmd->data[2] = lower_32_bits(address);
459 cmd->data[3] = upper_32_bits(address);
460 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
461 if (s) /* size bit - we flush more than one 4kb page */
462 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
463 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
464 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
465}
466
cb41ed85
JR
467static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
468 u64 address, size_t size)
469{
470 u64 pages;
471 int s;
472
473 pages = iommu_num_pages(address, size, PAGE_SIZE);
474 s = 0;
475
476 if (pages > 1) {
477 /*
478 * If we have to flush more than one page, flush all
479 * TLB entries for this domain
480 */
481 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
482 s = 1;
483 }
484
485 address &= PAGE_MASK;
486
487 memset(cmd, 0, sizeof(*cmd));
488 cmd->data[0] = devid;
489 cmd->data[0] |= (qdep & 0xff) << 24;
490 cmd->data[1] = devid;
491 cmd->data[2] = lower_32_bits(address);
492 cmd->data[3] = upper_32_bits(address);
493 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
494 if (s)
495 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
496}
497
431b2a20
JR
498/*
499 * Writes the command to the IOMMUs command buffer and informs the
ac0ea6e9 500 * hardware about the new command.
431b2a20 501 */
815b33fd 502static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec 503{
ac0ea6e9 504 u32 left, tail, head, next_tail;
815b33fd 505 unsigned long flags;
a19ae1ec 506
549c90dc 507 WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
ac0ea6e9
JR
508
509again:
815b33fd 510 spin_lock_irqsave(&iommu->lock, flags);
ac0ea6e9
JR
511
512 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
513 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
514 next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
515 left = (head - next_tail) % iommu->cmd_buf_size;
516
517 if (left <= 2) {
518 struct iommu_cmd sync_cmd;
519 volatile u64 sem = 0;
520 int ret;
521
522 build_completion_wait(&sync_cmd, (u64)&sem);
523 copy_cmd_to_buffer(iommu, &sync_cmd, tail);
524
525 spin_unlock_irqrestore(&iommu->lock, flags);
526
527 if ((ret = wait_on_sem(&sem)) != 0)
528 return ret;
529
530 goto again;
531 }
532
533 copy_cmd_to_buffer(iommu, cmd, tail);
534
535 /* We need to sync now to make sure all commands are processed */
815b33fd 536 iommu->need_sync = true;
ac0ea6e9 537
a19ae1ec
JR
538 spin_unlock_irqrestore(&iommu->lock, flags);
539
815b33fd 540 return 0;
8d201968
JR
541}
542
543/*
544 * This function queues a completion wait command into the command
545 * buffer of an IOMMU
546 */
a19ae1ec
JR
547static int iommu_completion_wait(struct amd_iommu *iommu)
548{
815b33fd
JR
549 struct iommu_cmd cmd;
550 volatile u64 sem = 0;
ac0ea6e9 551 int ret;
7e4f88da 552
09ee17eb 553 if (!iommu->need_sync)
815b33fd 554 return 0;
09ee17eb 555
815b33fd 556 build_completion_wait(&cmd, (u64)&sem);
a19ae1ec 557
815b33fd 558 ret = iommu_queue_command(iommu, &cmd);
a19ae1ec 559 if (ret)
815b33fd 560 return ret;
84df8175 561
ac0ea6e9 562 return wait_on_sem(&sem);
a19ae1ec
JR
563}
564
d8c13085
JR
565static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
566{
567 struct iommu_cmd cmd;
568
569 build_inv_dte(&cmd, devid);
570
571 return iommu_queue_command(iommu, &cmd);
572}
573
7d0c5cc5
JR
574static void iommu_flush_dte_all(struct amd_iommu *iommu)
575{
576 u32 devid;
577
578 for (devid = 0; devid <= 0xffff; ++devid)
579 iommu_flush_dte(iommu, devid);
580
581 iommu_completion_wait(iommu);
582}
583
584/*
585 * This function uses heavy locking and may disable irqs for some time. But
586 * this is no issue because it is only called during resume.
587 */
588static void iommu_flush_tlb_all(struct amd_iommu *iommu)
589{
590 u32 dom_id;
591
592 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
593 struct iommu_cmd cmd;
594 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
595 dom_id, 1);
596 iommu_queue_command(iommu, &cmd);
597 }
598
599 iommu_completion_wait(iommu);
600}
601
602void iommu_flush_all_caches(struct amd_iommu *iommu)
603{
604 iommu_flush_dte_all(iommu);
605 iommu_flush_tlb_all(iommu);
606}
607
cb41ed85
JR
608/*
609 * Command send function for flushing on-device TLB
610 */
611static int device_flush_iotlb(struct device *dev, u64 address, size_t size)
612{
613 struct pci_dev *pdev = to_pci_dev(dev);
614 struct amd_iommu *iommu;
615 struct iommu_cmd cmd;
616 u16 devid;
617 int qdep;
618
619 qdep = pci_ats_queue_depth(pdev);
620 devid = get_device_id(dev);
621 iommu = amd_iommu_rlookup_table[devid];
622
623 build_inv_iotlb_pages(&cmd, devid, qdep, address, size);
624
625 return iommu_queue_command(iommu, &cmd);
626}
627
431b2a20
JR
628/*
629 * Command send function for invalidating a device table entry
630 */
d8c13085 631static int device_flush_dte(struct device *dev)
3fa43655
JR
632{
633 struct amd_iommu *iommu;
cb41ed85 634 struct pci_dev *pdev;
3fa43655 635 u16 devid;
cb41ed85 636 int ret;
3fa43655 637
cb41ed85 638 pdev = to_pci_dev(dev);
3fa43655
JR
639 devid = get_device_id(dev);
640 iommu = amd_iommu_rlookup_table[devid];
641
cb41ed85
JR
642 ret = iommu_flush_dte(iommu, devid);
643 if (ret)
644 return ret;
645
646 if (pci_ats_enabled(pdev))
647 ret = device_flush_iotlb(dev, 0, ~0UL);
648
649 return ret;
3fa43655
JR
650}
651
431b2a20
JR
652/*
653 * TLB invalidation function which is called from the mapping functions.
654 * It invalidates a single PTE if the range to flush is within a single
655 * page. Otherwise it flushes the whole TLB of the IOMMU.
656 */
17b124bf
JR
657static void __domain_flush_pages(struct protection_domain *domain,
658 u64 address, size_t size, int pde)
a19ae1ec 659{
cb41ed85 660 struct iommu_dev_data *dev_data;
11b6402c
JR
661 struct iommu_cmd cmd;
662 int ret = 0, i;
a19ae1ec 663
11b6402c 664 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
999ba417 665
6de8ad9b
JR
666 for (i = 0; i < amd_iommus_present; ++i) {
667 if (!domain->dev_iommu[i])
668 continue;
669
670 /*
671 * Devices of this domain are behind this IOMMU
672 * We need a TLB flush
673 */
11b6402c 674 ret |= iommu_queue_command(amd_iommus[i], &cmd);
6de8ad9b
JR
675 }
676
cb41ed85
JR
677 list_for_each_entry(dev_data, &domain->dev_list, list) {
678 struct pci_dev *pdev = to_pci_dev(dev_data->dev);
679
680 if (!pci_ats_enabled(pdev))
681 continue;
682
683 ret |= device_flush_iotlb(dev_data->dev, address, size);
684 }
685
11b6402c 686 WARN_ON(ret);
6de8ad9b
JR
687}
688
17b124bf
JR
689static void domain_flush_pages(struct protection_domain *domain,
690 u64 address, size_t size)
6de8ad9b 691{
17b124bf 692 __domain_flush_pages(domain, address, size, 0);
a19ae1ec 693}
b6c02715 694
1c655773 695/* Flush the whole IO/TLB for a given protection domain */
17b124bf 696static void domain_flush_tlb(struct protection_domain *domain)
1c655773 697{
17b124bf 698 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1c655773
JR
699}
700
42a49f96 701/* Flush the whole IO/TLB for a given protection domain - including PDE */
17b124bf 702static void domain_flush_tlb_pde(struct protection_domain *domain)
42a49f96 703{
17b124bf
JR
704 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
705}
706
707static void domain_flush_complete(struct protection_domain *domain)
708{
709 int i;
710
711 for (i = 0; i < amd_iommus_present; ++i) {
712 if (!domain->dev_iommu[i])
713 continue;
714
715 /*
716 * Devices of this domain are behind this IOMMU
717 * We need to wait for completion of all commands.
718 */
719 iommu_completion_wait(amd_iommus[i]);
720 }
42a49f96
CW
721}
722
b00d3bcf 723
43f49609 724/*
b00d3bcf 725 * This function flushes the DTEs for all devices in domain
43f49609 726 */
17b124bf 727static void domain_flush_devices(struct protection_domain *domain)
b00d3bcf
JR
728{
729 struct iommu_dev_data *dev_data;
730 unsigned long flags;
731
732 spin_lock_irqsave(&domain->lock, flags);
733
734 list_for_each_entry(dev_data, &domain->dev_list, list)
d8c13085 735 device_flush_dte(dev_data->dev);
b00d3bcf
JR
736
737 spin_unlock_irqrestore(&domain->lock, flags);
738}
739
431b2a20
JR
740/****************************************************************************
741 *
742 * The functions below are used the create the page table mappings for
743 * unity mapped regions.
744 *
745 ****************************************************************************/
746
308973d3
JR
747/*
748 * This function is used to add another level to an IO page table. Adding
749 * another level increases the size of the address space by 9 bits to a size up
750 * to 64 bits.
751 */
752static bool increase_address_space(struct protection_domain *domain,
753 gfp_t gfp)
754{
755 u64 *pte;
756
757 if (domain->mode == PAGE_MODE_6_LEVEL)
758 /* address space already 64 bit large */
759 return false;
760
761 pte = (void *)get_zeroed_page(gfp);
762 if (!pte)
763 return false;
764
765 *pte = PM_LEVEL_PDE(domain->mode,
766 virt_to_phys(domain->pt_root));
767 domain->pt_root = pte;
768 domain->mode += 1;
769 domain->updated = true;
770
771 return true;
772}
773
774static u64 *alloc_pte(struct protection_domain *domain,
775 unsigned long address,
cbb9d729 776 unsigned long page_size,
308973d3
JR
777 u64 **pte_page,
778 gfp_t gfp)
779{
cbb9d729 780 int level, end_lvl;
308973d3 781 u64 *pte, *page;
cbb9d729
JR
782
783 BUG_ON(!is_power_of_2(page_size));
308973d3
JR
784
785 while (address > PM_LEVEL_SIZE(domain->mode))
786 increase_address_space(domain, gfp);
787
cbb9d729
JR
788 level = domain->mode - 1;
789 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
790 address = PAGE_SIZE_ALIGN(address, page_size);
791 end_lvl = PAGE_SIZE_LEVEL(page_size);
308973d3
JR
792
793 while (level > end_lvl) {
794 if (!IOMMU_PTE_PRESENT(*pte)) {
795 page = (u64 *)get_zeroed_page(gfp);
796 if (!page)
797 return NULL;
798 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
799 }
800
cbb9d729
JR
801 /* No level skipping support yet */
802 if (PM_PTE_LEVEL(*pte) != level)
803 return NULL;
804
308973d3
JR
805 level -= 1;
806
807 pte = IOMMU_PTE_PAGE(*pte);
808
809 if (pte_page && level == end_lvl)
810 *pte_page = pte;
811
812 pte = &pte[PM_LEVEL_INDEX(level, address)];
813 }
814
815 return pte;
816}
817
818/*
819 * This function checks if there is a PTE for a given dma address. If
820 * there is one, it returns the pointer to it.
821 */
24cd7723 822static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
308973d3
JR
823{
824 int level;
825 u64 *pte;
826
24cd7723
JR
827 if (address > PM_LEVEL_SIZE(domain->mode))
828 return NULL;
829
830 level = domain->mode - 1;
831 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
308973d3 832
24cd7723
JR
833 while (level > 0) {
834
835 /* Not Present */
308973d3
JR
836 if (!IOMMU_PTE_PRESENT(*pte))
837 return NULL;
838
24cd7723
JR
839 /* Large PTE */
840 if (PM_PTE_LEVEL(*pte) == 0x07) {
841 unsigned long pte_mask, __pte;
842
843 /*
844 * If we have a series of large PTEs, make
845 * sure to return a pointer to the first one.
846 */
847 pte_mask = PTE_PAGE_SIZE(*pte);
848 pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
849 __pte = ((unsigned long)pte) & pte_mask;
850
851 return (u64 *)__pte;
852 }
853
854 /* No level skipping support yet */
855 if (PM_PTE_LEVEL(*pte) != level)
856 return NULL;
857
308973d3
JR
858 level -= 1;
859
24cd7723 860 /* Walk to the next level */
308973d3
JR
861 pte = IOMMU_PTE_PAGE(*pte);
862 pte = &pte[PM_LEVEL_INDEX(level, address)];
308973d3
JR
863 }
864
865 return pte;
866}
867
431b2a20
JR
868/*
869 * Generic mapping functions. It maps a physical address into a DMA
870 * address space. It allocates the page table pages if necessary.
871 * In the future it can be extended to a generic mapping function
872 * supporting all features of AMD IOMMU page tables like level skipping
873 * and full 64 bit address spaces.
874 */
38e817fe
JR
875static int iommu_map_page(struct protection_domain *dom,
876 unsigned long bus_addr,
877 unsigned long phys_addr,
abdc5eb3 878 int prot,
cbb9d729 879 unsigned long page_size)
bd0e5211 880{
8bda3092 881 u64 __pte, *pte;
cbb9d729 882 int i, count;
abdc5eb3 883
bad1cac2 884 if (!(prot & IOMMU_PROT_MASK))
bd0e5211
JR
885 return -EINVAL;
886
cbb9d729
JR
887 bus_addr = PAGE_ALIGN(bus_addr);
888 phys_addr = PAGE_ALIGN(phys_addr);
889 count = PAGE_SIZE_PTE_COUNT(page_size);
890 pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
891
892 for (i = 0; i < count; ++i)
893 if (IOMMU_PTE_PRESENT(pte[i]))
894 return -EBUSY;
bd0e5211 895
cbb9d729
JR
896 if (page_size > PAGE_SIZE) {
897 __pte = PAGE_SIZE_PTE(phys_addr, page_size);
898 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
899 } else
900 __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
bd0e5211 901
bd0e5211
JR
902 if (prot & IOMMU_PROT_IR)
903 __pte |= IOMMU_PTE_IR;
904 if (prot & IOMMU_PROT_IW)
905 __pte |= IOMMU_PTE_IW;
906
cbb9d729
JR
907 for (i = 0; i < count; ++i)
908 pte[i] = __pte;
bd0e5211 909
04bfdd84
JR
910 update_domain(dom);
911
bd0e5211
JR
912 return 0;
913}
914
24cd7723
JR
915static unsigned long iommu_unmap_page(struct protection_domain *dom,
916 unsigned long bus_addr,
917 unsigned long page_size)
eb74ff6c 918{
24cd7723
JR
919 unsigned long long unmap_size, unmapped;
920 u64 *pte;
921
922 BUG_ON(!is_power_of_2(page_size));
923
924 unmapped = 0;
eb74ff6c 925
24cd7723
JR
926 while (unmapped < page_size) {
927
928 pte = fetch_pte(dom, bus_addr);
929
930 if (!pte) {
931 /*
932 * No PTE for this address
933 * move forward in 4kb steps
934 */
935 unmap_size = PAGE_SIZE;
936 } else if (PM_PTE_LEVEL(*pte) == 0) {
937 /* 4kb PTE found for this address */
938 unmap_size = PAGE_SIZE;
939 *pte = 0ULL;
940 } else {
941 int count, i;
942
943 /* Large PTE found which maps this address */
944 unmap_size = PTE_PAGE_SIZE(*pte);
945 count = PAGE_SIZE_PTE_COUNT(unmap_size);
946 for (i = 0; i < count; i++)
947 pte[i] = 0ULL;
948 }
949
950 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
951 unmapped += unmap_size;
952 }
953
954 BUG_ON(!is_power_of_2(unmapped));
eb74ff6c 955
24cd7723 956 return unmapped;
eb74ff6c 957}
eb74ff6c 958
431b2a20
JR
959/*
960 * This function checks if a specific unity mapping entry is needed for
961 * this specific IOMMU.
962 */
bd0e5211
JR
963static int iommu_for_unity_map(struct amd_iommu *iommu,
964 struct unity_map_entry *entry)
965{
966 u16 bdf, i;
967
968 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
969 bdf = amd_iommu_alias_table[i];
970 if (amd_iommu_rlookup_table[bdf] == iommu)
971 return 1;
972 }
973
974 return 0;
975}
976
431b2a20
JR
977/*
978 * This function actually applies the mapping to the page table of the
979 * dma_ops domain.
980 */
bd0e5211
JR
981static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
982 struct unity_map_entry *e)
983{
984 u64 addr;
985 int ret;
986
987 for (addr = e->address_start; addr < e->address_end;
988 addr += PAGE_SIZE) {
abdc5eb3 989 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
cbb9d729 990 PAGE_SIZE);
bd0e5211
JR
991 if (ret)
992 return ret;
993 /*
994 * if unity mapping is in aperture range mark the page
995 * as allocated in the aperture
996 */
997 if (addr < dma_dom->aperture_size)
c3239567 998 __set_bit(addr >> PAGE_SHIFT,
384de729 999 dma_dom->aperture[0]->bitmap);
bd0e5211
JR
1000 }
1001
1002 return 0;
1003}
1004
171e7b37
JR
1005/*
1006 * Init the unity mappings for a specific IOMMU in the system
1007 *
1008 * Basically iterates over all unity mapping entries and applies them to
1009 * the default domain DMA of that IOMMU if necessary.
1010 */
1011static int iommu_init_unity_mappings(struct amd_iommu *iommu)
1012{
1013 struct unity_map_entry *entry;
1014 int ret;
1015
1016 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
1017 if (!iommu_for_unity_map(iommu, entry))
1018 continue;
1019 ret = dma_ops_unity_map(iommu->default_dom, entry);
1020 if (ret)
1021 return ret;
1022 }
1023
1024 return 0;
1025}
1026
431b2a20
JR
1027/*
1028 * Inits the unity mappings required for a specific device
1029 */
bd0e5211
JR
1030static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
1031 u16 devid)
1032{
1033 struct unity_map_entry *e;
1034 int ret;
1035
1036 list_for_each_entry(e, &amd_iommu_unity_map, list) {
1037 if (!(devid >= e->devid_start && devid <= e->devid_end))
1038 continue;
1039 ret = dma_ops_unity_map(dma_dom, e);
1040 if (ret)
1041 return ret;
1042 }
1043
1044 return 0;
1045}
1046
431b2a20
JR
1047/****************************************************************************
1048 *
1049 * The next functions belong to the address allocator for the dma_ops
1050 * interface functions. They work like the allocators in the other IOMMU
1051 * drivers. Its basically a bitmap which marks the allocated pages in
1052 * the aperture. Maybe it could be enhanced in the future to a more
1053 * efficient allocator.
1054 *
1055 ****************************************************************************/
d3086444 1056
431b2a20 1057/*
384de729 1058 * The address allocator core functions.
431b2a20
JR
1059 *
1060 * called with domain->lock held
1061 */
384de729 1062
171e7b37
JR
1063/*
1064 * Used to reserve address ranges in the aperture (e.g. for exclusion
1065 * ranges.
1066 */
1067static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1068 unsigned long start_page,
1069 unsigned int pages)
1070{
1071 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1072
1073 if (start_page + pages > last_page)
1074 pages = last_page - start_page;
1075
1076 for (i = start_page; i < start_page + pages; ++i) {
1077 int index = i / APERTURE_RANGE_PAGES;
1078 int page = i % APERTURE_RANGE_PAGES;
1079 __set_bit(page, dom->aperture[index]->bitmap);
1080 }
1081}
1082
9cabe89b
JR
1083/*
1084 * This function is used to add a new aperture range to an existing
1085 * aperture in case of dma_ops domain allocation or address allocation
1086 * failure.
1087 */
576175c2 1088static int alloc_new_range(struct dma_ops_domain *dma_dom,
9cabe89b
JR
1089 bool populate, gfp_t gfp)
1090{
1091 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
576175c2 1092 struct amd_iommu *iommu;
d91afd15 1093 unsigned long i;
9cabe89b 1094
f5e9705c
JR
1095#ifdef CONFIG_IOMMU_STRESS
1096 populate = false;
1097#endif
1098
9cabe89b
JR
1099 if (index >= APERTURE_MAX_RANGES)
1100 return -ENOMEM;
1101
1102 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1103 if (!dma_dom->aperture[index])
1104 return -ENOMEM;
1105
1106 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1107 if (!dma_dom->aperture[index]->bitmap)
1108 goto out_free;
1109
1110 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1111
1112 if (populate) {
1113 unsigned long address = dma_dom->aperture_size;
1114 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1115 u64 *pte, *pte_page;
1116
1117 for (i = 0; i < num_ptes; ++i) {
cbb9d729 1118 pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
9cabe89b
JR
1119 &pte_page, gfp);
1120 if (!pte)
1121 goto out_free;
1122
1123 dma_dom->aperture[index]->pte_pages[i] = pte_page;
1124
1125 address += APERTURE_RANGE_SIZE / 64;
1126 }
1127 }
1128
1129 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1130
b595076a 1131 /* Initialize the exclusion range if necessary */
576175c2
JR
1132 for_each_iommu(iommu) {
1133 if (iommu->exclusion_start &&
1134 iommu->exclusion_start >= dma_dom->aperture[index]->offset
1135 && iommu->exclusion_start < dma_dom->aperture_size) {
1136 unsigned long startpage;
1137 int pages = iommu_num_pages(iommu->exclusion_start,
1138 iommu->exclusion_length,
1139 PAGE_SIZE);
1140 startpage = iommu->exclusion_start >> PAGE_SHIFT;
1141 dma_ops_reserve_addresses(dma_dom, startpage, pages);
1142 }
00cd122a
JR
1143 }
1144
1145 /*
1146 * Check for areas already mapped as present in the new aperture
1147 * range and mark those pages as reserved in the allocator. Such
1148 * mappings may already exist as a result of requested unity
1149 * mappings for devices.
1150 */
1151 for (i = dma_dom->aperture[index]->offset;
1152 i < dma_dom->aperture_size;
1153 i += PAGE_SIZE) {
24cd7723 1154 u64 *pte = fetch_pte(&dma_dom->domain, i);
00cd122a
JR
1155 if (!pte || !IOMMU_PTE_PRESENT(*pte))
1156 continue;
1157
1158 dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
1159 }
1160
04bfdd84
JR
1161 update_domain(&dma_dom->domain);
1162
9cabe89b
JR
1163 return 0;
1164
1165out_free:
04bfdd84
JR
1166 update_domain(&dma_dom->domain);
1167
9cabe89b
JR
1168 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1169
1170 kfree(dma_dom->aperture[index]);
1171 dma_dom->aperture[index] = NULL;
1172
1173 return -ENOMEM;
1174}
1175
384de729
JR
1176static unsigned long dma_ops_area_alloc(struct device *dev,
1177 struct dma_ops_domain *dom,
1178 unsigned int pages,
1179 unsigned long align_mask,
1180 u64 dma_mask,
1181 unsigned long start)
1182{
803b8cb4 1183 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
384de729
JR
1184 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1185 int i = start >> APERTURE_RANGE_SHIFT;
1186 unsigned long boundary_size;
1187 unsigned long address = -1;
1188 unsigned long limit;
1189
803b8cb4
JR
1190 next_bit >>= PAGE_SHIFT;
1191
384de729
JR
1192 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1193 PAGE_SIZE) >> PAGE_SHIFT;
1194
1195 for (;i < max_index; ++i) {
1196 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1197
1198 if (dom->aperture[i]->offset >= dma_mask)
1199 break;
1200
1201 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1202 dma_mask >> PAGE_SHIFT);
1203
1204 address = iommu_area_alloc(dom->aperture[i]->bitmap,
1205 limit, next_bit, pages, 0,
1206 boundary_size, align_mask);
1207 if (address != -1) {
1208 address = dom->aperture[i]->offset +
1209 (address << PAGE_SHIFT);
803b8cb4 1210 dom->next_address = address + (pages << PAGE_SHIFT);
384de729
JR
1211 break;
1212 }
1213
1214 next_bit = 0;
1215 }
1216
1217 return address;
1218}
1219
d3086444
JR
1220static unsigned long dma_ops_alloc_addresses(struct device *dev,
1221 struct dma_ops_domain *dom,
6d4f343f 1222 unsigned int pages,
832a90c3
JR
1223 unsigned long align_mask,
1224 u64 dma_mask)
d3086444 1225{
d3086444 1226 unsigned long address;
d3086444 1227
fe16f088
JR
1228#ifdef CONFIG_IOMMU_STRESS
1229 dom->next_address = 0;
1230 dom->need_flush = true;
1231#endif
d3086444 1232
384de729 1233 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
803b8cb4 1234 dma_mask, dom->next_address);
d3086444 1235
1c655773 1236 if (address == -1) {
803b8cb4 1237 dom->next_address = 0;
384de729
JR
1238 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1239 dma_mask, 0);
1c655773
JR
1240 dom->need_flush = true;
1241 }
d3086444 1242
384de729 1243 if (unlikely(address == -1))
8fd524b3 1244 address = DMA_ERROR_CODE;
d3086444
JR
1245
1246 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1247
1248 return address;
1249}
1250
431b2a20
JR
1251/*
1252 * The address free function.
1253 *
1254 * called with domain->lock held
1255 */
d3086444
JR
1256static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1257 unsigned long address,
1258 unsigned int pages)
1259{
384de729
JR
1260 unsigned i = address >> APERTURE_RANGE_SHIFT;
1261 struct aperture_range *range = dom->aperture[i];
80be308d 1262
384de729
JR
1263 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1264
47bccd6b
JR
1265#ifdef CONFIG_IOMMU_STRESS
1266 if (i < 4)
1267 return;
1268#endif
80be308d 1269
803b8cb4 1270 if (address >= dom->next_address)
80be308d 1271 dom->need_flush = true;
384de729
JR
1272
1273 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
803b8cb4 1274
a66022c4 1275 bitmap_clear(range->bitmap, address, pages);
384de729 1276
d3086444
JR
1277}
1278
431b2a20
JR
1279/****************************************************************************
1280 *
1281 * The next functions belong to the domain allocation. A domain is
1282 * allocated for every IOMMU as the default domain. If device isolation
1283 * is enabled, every device get its own domain. The most important thing
1284 * about domains is the page table mapping the DMA address space they
1285 * contain.
1286 *
1287 ****************************************************************************/
1288
aeb26f55
JR
1289/*
1290 * This function adds a protection domain to the global protection domain list
1291 */
1292static void add_domain_to_list(struct protection_domain *domain)
1293{
1294 unsigned long flags;
1295
1296 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1297 list_add(&domain->list, &amd_iommu_pd_list);
1298 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1299}
1300
1301/*
1302 * This function removes a protection domain to the global
1303 * protection domain list
1304 */
1305static void del_domain_from_list(struct protection_domain *domain)
1306{
1307 unsigned long flags;
1308
1309 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1310 list_del(&domain->list);
1311 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1312}
1313
ec487d1a
JR
1314static u16 domain_id_alloc(void)
1315{
1316 unsigned long flags;
1317 int id;
1318
1319 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1320 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1321 BUG_ON(id == 0);
1322 if (id > 0 && id < MAX_DOMAIN_ID)
1323 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1324 else
1325 id = 0;
1326 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1327
1328 return id;
1329}
1330
a2acfb75
JR
1331static void domain_id_free(int id)
1332{
1333 unsigned long flags;
1334
1335 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1336 if (id > 0 && id < MAX_DOMAIN_ID)
1337 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1338 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1339}
a2acfb75 1340
86db2e5d 1341static void free_pagetable(struct protection_domain *domain)
ec487d1a
JR
1342{
1343 int i, j;
1344 u64 *p1, *p2, *p3;
1345
86db2e5d 1346 p1 = domain->pt_root;
ec487d1a
JR
1347
1348 if (!p1)
1349 return;
1350
1351 for (i = 0; i < 512; ++i) {
1352 if (!IOMMU_PTE_PRESENT(p1[i]))
1353 continue;
1354
1355 p2 = IOMMU_PTE_PAGE(p1[i]);
3cc3d84b 1356 for (j = 0; j < 512; ++j) {
ec487d1a
JR
1357 if (!IOMMU_PTE_PRESENT(p2[j]))
1358 continue;
1359 p3 = IOMMU_PTE_PAGE(p2[j]);
1360 free_page((unsigned long)p3);
1361 }
1362
1363 free_page((unsigned long)p2);
1364 }
1365
1366 free_page((unsigned long)p1);
86db2e5d
JR
1367
1368 domain->pt_root = NULL;
ec487d1a
JR
1369}
1370
431b2a20
JR
1371/*
1372 * Free a domain, only used if something went wrong in the
1373 * allocation path and we need to free an already allocated page table
1374 */
ec487d1a
JR
1375static void dma_ops_domain_free(struct dma_ops_domain *dom)
1376{
384de729
JR
1377 int i;
1378
ec487d1a
JR
1379 if (!dom)
1380 return;
1381
aeb26f55
JR
1382 del_domain_from_list(&dom->domain);
1383
86db2e5d 1384 free_pagetable(&dom->domain);
ec487d1a 1385
384de729
JR
1386 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1387 if (!dom->aperture[i])
1388 continue;
1389 free_page((unsigned long)dom->aperture[i]->bitmap);
1390 kfree(dom->aperture[i]);
1391 }
ec487d1a
JR
1392
1393 kfree(dom);
1394}
1395
431b2a20
JR
1396/*
1397 * Allocates a new protection domain usable for the dma_ops functions.
b595076a 1398 * It also initializes the page table and the address allocator data
431b2a20
JR
1399 * structures required for the dma_ops interface
1400 */
87a64d52 1401static struct dma_ops_domain *dma_ops_domain_alloc(void)
ec487d1a
JR
1402{
1403 struct dma_ops_domain *dma_dom;
ec487d1a
JR
1404
1405 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1406 if (!dma_dom)
1407 return NULL;
1408
1409 spin_lock_init(&dma_dom->domain.lock);
1410
1411 dma_dom->domain.id = domain_id_alloc();
1412 if (dma_dom->domain.id == 0)
1413 goto free_dma_dom;
7c392cbe 1414 INIT_LIST_HEAD(&dma_dom->domain.dev_list);
8f7a017c 1415 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
ec487d1a 1416 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
9fdb19d6 1417 dma_dom->domain.flags = PD_DMA_OPS_MASK;
ec487d1a
JR
1418 dma_dom->domain.priv = dma_dom;
1419 if (!dma_dom->domain.pt_root)
1420 goto free_dma_dom;
ec487d1a 1421
1c655773 1422 dma_dom->need_flush = false;
bd60b735 1423 dma_dom->target_dev = 0xffff;
1c655773 1424
aeb26f55
JR
1425 add_domain_to_list(&dma_dom->domain);
1426
576175c2 1427 if (alloc_new_range(dma_dom, true, GFP_KERNEL))
ec487d1a 1428 goto free_dma_dom;
ec487d1a 1429
431b2a20 1430 /*
ec487d1a
JR
1431 * mark the first page as allocated so we never return 0 as
1432 * a valid dma-address. So we can use 0 as error value
431b2a20 1433 */
384de729 1434 dma_dom->aperture[0]->bitmap[0] = 1;
803b8cb4 1435 dma_dom->next_address = 0;
ec487d1a 1436
ec487d1a
JR
1437
1438 return dma_dom;
1439
1440free_dma_dom:
1441 dma_ops_domain_free(dma_dom);
1442
1443 return NULL;
1444}
1445
5b28df6f
JR
1446/*
1447 * little helper function to check whether a given protection domain is a
1448 * dma_ops domain
1449 */
1450static bool dma_ops_domain(struct protection_domain *domain)
1451{
1452 return domain->flags & PD_DMA_OPS_MASK;
1453}
1454
407d733e 1455static void set_dte_entry(u16 devid, struct protection_domain *domain)
b20ac0d4 1456{
b20ac0d4 1457 u64 pte_root = virt_to_phys(domain->pt_root);
863c74eb 1458
38ddf41b
JR
1459 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1460 << DEV_ENTRY_MODE_SHIFT;
1461 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
b20ac0d4 1462
b20ac0d4 1463 amd_iommu_dev_table[devid].data[2] = domain->id;
aa879fff
JR
1464 amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
1465 amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
15898bbc
JR
1466}
1467
1468static void clear_dte_entry(u16 devid)
1469{
15898bbc
JR
1470 /* remove entry from the device table seen by the hardware */
1471 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1472 amd_iommu_dev_table[devid].data[1] = 0;
1473 amd_iommu_dev_table[devid].data[2] = 0;
1474
1475 amd_iommu_apply_erratum_63(devid);
7f760ddd
JR
1476}
1477
1478static void do_attach(struct device *dev, struct protection_domain *domain)
1479{
1480 struct iommu_dev_data *dev_data;
1481 struct amd_iommu *iommu;
1482 u16 devid;
1483
1484 devid = get_device_id(dev);
1485 iommu = amd_iommu_rlookup_table[devid];
1486 dev_data = get_dev_data(dev);
1487
1488 /* Update data structures */
1489 dev_data->domain = domain;
1490 list_add(&dev_data->list, &domain->dev_list);
1491 set_dte_entry(devid, domain);
1492
1493 /* Do reference counting */
1494 domain->dev_iommu[iommu->index] += 1;
1495 domain->dev_cnt += 1;
1496
1497 /* Flush the DTE entry */
d8c13085 1498 device_flush_dte(dev);
7f760ddd
JR
1499}
1500
1501static void do_detach(struct device *dev)
1502{
1503 struct iommu_dev_data *dev_data;
1504 struct amd_iommu *iommu;
1505 u16 devid;
1506
1507 devid = get_device_id(dev);
1508 iommu = amd_iommu_rlookup_table[devid];
1509 dev_data = get_dev_data(dev);
15898bbc
JR
1510
1511 /* decrease reference counters */
7f760ddd
JR
1512 dev_data->domain->dev_iommu[iommu->index] -= 1;
1513 dev_data->domain->dev_cnt -= 1;
1514
1515 /* Update data structures */
1516 dev_data->domain = NULL;
1517 list_del(&dev_data->list);
1518 clear_dte_entry(devid);
15898bbc 1519
7f760ddd 1520 /* Flush the DTE entry */
d8c13085 1521 device_flush_dte(dev);
2b681faf
JR
1522}
1523
1524/*
1525 * If a device is not yet associated with a domain, this function does
1526 * assigns it visible for the hardware
1527 */
15898bbc
JR
1528static int __attach_device(struct device *dev,
1529 struct protection_domain *domain)
2b681faf 1530{
657cbb6b 1531 struct iommu_dev_data *dev_data, *alias_data;
84fe6c19 1532 int ret;
657cbb6b 1533
657cbb6b
JR
1534 dev_data = get_dev_data(dev);
1535 alias_data = get_dev_data(dev_data->alias);
7f760ddd 1536
657cbb6b
JR
1537 if (!alias_data)
1538 return -EINVAL;
15898bbc 1539
2b681faf
JR
1540 /* lock domain */
1541 spin_lock(&domain->lock);
1542
15898bbc 1543 /* Some sanity checks */
84fe6c19 1544 ret = -EBUSY;
657cbb6b
JR
1545 if (alias_data->domain != NULL &&
1546 alias_data->domain != domain)
84fe6c19 1547 goto out_unlock;
eba6ac60 1548
657cbb6b
JR
1549 if (dev_data->domain != NULL &&
1550 dev_data->domain != domain)
84fe6c19 1551 goto out_unlock;
15898bbc
JR
1552
1553 /* Do real assignment */
7f760ddd
JR
1554 if (dev_data->alias != dev) {
1555 alias_data = get_dev_data(dev_data->alias);
1556 if (alias_data->domain == NULL)
1557 do_attach(dev_data->alias, domain);
24100055
JR
1558
1559 atomic_inc(&alias_data->bind);
657cbb6b 1560 }
15898bbc 1561
7f760ddd
JR
1562 if (dev_data->domain == NULL)
1563 do_attach(dev, domain);
eba6ac60 1564
24100055
JR
1565 atomic_inc(&dev_data->bind);
1566
84fe6c19
JL
1567 ret = 0;
1568
1569out_unlock:
1570
eba6ac60
JR
1571 /* ready */
1572 spin_unlock(&domain->lock);
15898bbc 1573
84fe6c19 1574 return ret;
0feae533 1575}
b20ac0d4 1576
407d733e
JR
1577/*
1578 * If a device is not yet associated with a domain, this function does
1579 * assigns it visible for the hardware
1580 */
15898bbc
JR
1581static int attach_device(struct device *dev,
1582 struct protection_domain *domain)
0feae533 1583{
eba6ac60 1584 unsigned long flags;
15898bbc 1585 int ret;
eba6ac60
JR
1586
1587 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
15898bbc 1588 ret = __attach_device(dev, domain);
b20ac0d4
JR
1589 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1590
0feae533
JR
1591 /*
1592 * We might boot into a crash-kernel here. The crashed kernel
1593 * left the caches in the IOMMU dirty. So we have to flush
1594 * here to evict all dirty stuff.
1595 */
17b124bf 1596 domain_flush_tlb_pde(domain);
15898bbc
JR
1597
1598 return ret;
b20ac0d4
JR
1599}
1600
355bf553
JR
1601/*
1602 * Removes a device from a protection domain (unlocked)
1603 */
15898bbc 1604static void __detach_device(struct device *dev)
355bf553 1605{
657cbb6b 1606 struct iommu_dev_data *dev_data = get_dev_data(dev);
24100055 1607 struct iommu_dev_data *alias_data;
2ca76279 1608 struct protection_domain *domain;
7c392cbe 1609 unsigned long flags;
c4596114 1610
7f760ddd 1611 BUG_ON(!dev_data->domain);
355bf553 1612
2ca76279
JR
1613 domain = dev_data->domain;
1614
1615 spin_lock_irqsave(&domain->lock, flags);
24100055 1616
7f760ddd 1617 if (dev_data->alias != dev) {
24100055 1618 alias_data = get_dev_data(dev_data->alias);
7f760ddd
JR
1619 if (atomic_dec_and_test(&alias_data->bind))
1620 do_detach(dev_data->alias);
24100055
JR
1621 }
1622
7f760ddd
JR
1623 if (atomic_dec_and_test(&dev_data->bind))
1624 do_detach(dev);
1625
2ca76279 1626 spin_unlock_irqrestore(&domain->lock, flags);
21129f78
JR
1627
1628 /*
1629 * If we run in passthrough mode the device must be assigned to the
d3ad9373
JR
1630 * passthrough domain if it is detached from any other domain.
1631 * Make sure we can deassign from the pt_domain itself.
21129f78 1632 */
d3ad9373
JR
1633 if (iommu_pass_through &&
1634 (dev_data->domain == NULL && domain != pt_domain))
15898bbc 1635 __attach_device(dev, pt_domain);
355bf553
JR
1636}
1637
1638/*
1639 * Removes a device from a protection domain (with devtable_lock held)
1640 */
15898bbc 1641static void detach_device(struct device *dev)
355bf553
JR
1642{
1643 unsigned long flags;
1644
1645 /* lock device table */
1646 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
15898bbc 1647 __detach_device(dev);
355bf553
JR
1648 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1649}
e275a2a0 1650
15898bbc
JR
1651/*
1652 * Find out the protection domain structure for a given PCI device. This
1653 * will give us the pointer to the page table root for example.
1654 */
1655static struct protection_domain *domain_for_device(struct device *dev)
1656{
1657 struct protection_domain *dom;
657cbb6b 1658 struct iommu_dev_data *dev_data, *alias_data;
15898bbc
JR
1659 unsigned long flags;
1660 u16 devid, alias;
1661
657cbb6b
JR
1662 devid = get_device_id(dev);
1663 alias = amd_iommu_alias_table[devid];
1664 dev_data = get_dev_data(dev);
1665 alias_data = get_dev_data(dev_data->alias);
1666 if (!alias_data)
1667 return NULL;
15898bbc
JR
1668
1669 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
657cbb6b 1670 dom = dev_data->domain;
15898bbc 1671 if (dom == NULL &&
657cbb6b
JR
1672 alias_data->domain != NULL) {
1673 __attach_device(dev, alias_data->domain);
1674 dom = alias_data->domain;
15898bbc
JR
1675 }
1676
1677 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1678
1679 return dom;
1680}
1681
e275a2a0
JR
1682static int device_change_notifier(struct notifier_block *nb,
1683 unsigned long action, void *data)
1684{
1685 struct device *dev = data;
98fc5a69 1686 u16 devid;
e275a2a0
JR
1687 struct protection_domain *domain;
1688 struct dma_ops_domain *dma_domain;
1689 struct amd_iommu *iommu;
1ac4cbbc 1690 unsigned long flags;
e275a2a0 1691
98fc5a69
JR
1692 if (!check_device(dev))
1693 return 0;
e275a2a0 1694
98fc5a69
JR
1695 devid = get_device_id(dev);
1696 iommu = amd_iommu_rlookup_table[devid];
e275a2a0
JR
1697
1698 switch (action) {
c1eee67b 1699 case BUS_NOTIFY_UNBOUND_DRIVER:
657cbb6b
JR
1700
1701 domain = domain_for_device(dev);
1702
e275a2a0
JR
1703 if (!domain)
1704 goto out;
a1ca331c
JR
1705 if (iommu_pass_through)
1706 break;
15898bbc 1707 detach_device(dev);
1ac4cbbc
JR
1708 break;
1709 case BUS_NOTIFY_ADD_DEVICE:
657cbb6b
JR
1710
1711 iommu_init_device(dev);
1712
1713 domain = domain_for_device(dev);
1714
1ac4cbbc
JR
1715 /* allocate a protection domain if a device is added */
1716 dma_domain = find_protection_domain(devid);
1717 if (dma_domain)
1718 goto out;
87a64d52 1719 dma_domain = dma_ops_domain_alloc();
1ac4cbbc
JR
1720 if (!dma_domain)
1721 goto out;
1722 dma_domain->target_dev = devid;
1723
1724 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1725 list_add_tail(&dma_domain->list, &iommu_pd_list);
1726 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1727
e275a2a0 1728 break;
657cbb6b
JR
1729 case BUS_NOTIFY_DEL_DEVICE:
1730
1731 iommu_uninit_device(dev);
1732
e275a2a0
JR
1733 default:
1734 goto out;
1735 }
1736
d8c13085 1737 device_flush_dte(dev);
e275a2a0
JR
1738 iommu_completion_wait(iommu);
1739
1740out:
1741 return 0;
1742}
1743
b25ae679 1744static struct notifier_block device_nb = {
e275a2a0
JR
1745 .notifier_call = device_change_notifier,
1746};
355bf553 1747
8638c491
JR
1748void amd_iommu_init_notifier(void)
1749{
1750 bus_register_notifier(&pci_bus_type, &device_nb);
1751}
1752
431b2a20
JR
1753/*****************************************************************************
1754 *
1755 * The next functions belong to the dma_ops mapping/unmapping code.
1756 *
1757 *****************************************************************************/
1758
1759/*
1760 * In the dma_ops path we only have the struct device. This function
1761 * finds the corresponding IOMMU, the protection domain and the
1762 * requestor id for a given device.
1763 * If the device is not yet associated with a domain this is also done
1764 * in this function.
1765 */
94f6d190 1766static struct protection_domain *get_domain(struct device *dev)
b20ac0d4 1767{
94f6d190 1768 struct protection_domain *domain;
b20ac0d4 1769 struct dma_ops_domain *dma_dom;
94f6d190 1770 u16 devid = get_device_id(dev);
b20ac0d4 1771
f99c0f1c 1772 if (!check_device(dev))
94f6d190 1773 return ERR_PTR(-EINVAL);
b20ac0d4 1774
94f6d190
JR
1775 domain = domain_for_device(dev);
1776 if (domain != NULL && !dma_ops_domain(domain))
1777 return ERR_PTR(-EBUSY);
f99c0f1c 1778
94f6d190
JR
1779 if (domain != NULL)
1780 return domain;
b20ac0d4 1781
15898bbc 1782 /* Device not bount yet - bind it */
94f6d190 1783 dma_dom = find_protection_domain(devid);
15898bbc 1784 if (!dma_dom)
94f6d190
JR
1785 dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
1786 attach_device(dev, &dma_dom->domain);
15898bbc 1787 DUMP_printk("Using protection domain %d for device %s\n",
94f6d190 1788 dma_dom->domain.id, dev_name(dev));
f91ba190 1789
94f6d190 1790 return &dma_dom->domain;
b20ac0d4
JR
1791}
1792
04bfdd84
JR
1793static void update_device_table(struct protection_domain *domain)
1794{
492667da 1795 struct iommu_dev_data *dev_data;
04bfdd84 1796
492667da
JR
1797 list_for_each_entry(dev_data, &domain->dev_list, list) {
1798 u16 devid = get_device_id(dev_data->dev);
1799 set_dte_entry(devid, domain);
04bfdd84
JR
1800 }
1801}
1802
1803static void update_domain(struct protection_domain *domain)
1804{
1805 if (!domain->updated)
1806 return;
1807
1808 update_device_table(domain);
17b124bf
JR
1809
1810 domain_flush_devices(domain);
1811 domain_flush_tlb_pde(domain);
04bfdd84
JR
1812
1813 domain->updated = false;
1814}
1815
8bda3092
JR
1816/*
1817 * This function fetches the PTE for a given address in the aperture
1818 */
1819static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
1820 unsigned long address)
1821{
384de729 1822 struct aperture_range *aperture;
8bda3092
JR
1823 u64 *pte, *pte_page;
1824
384de729
JR
1825 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1826 if (!aperture)
1827 return NULL;
1828
1829 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
8bda3092 1830 if (!pte) {
cbb9d729 1831 pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
abdc5eb3 1832 GFP_ATOMIC);
384de729
JR
1833 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
1834 } else
8c8c143c 1835 pte += PM_LEVEL_INDEX(0, address);
8bda3092 1836
04bfdd84 1837 update_domain(&dom->domain);
8bda3092
JR
1838
1839 return pte;
1840}
1841
431b2a20
JR
1842/*
1843 * This is the generic map function. It maps one 4kb page at paddr to
1844 * the given address in the DMA address space for the domain.
1845 */
680525e0 1846static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
cb76c322
JR
1847 unsigned long address,
1848 phys_addr_t paddr,
1849 int direction)
1850{
1851 u64 *pte, __pte;
1852
1853 WARN_ON(address > dom->aperture_size);
1854
1855 paddr &= PAGE_MASK;
1856
8bda3092 1857 pte = dma_ops_get_pte(dom, address);
53812c11 1858 if (!pte)
8fd524b3 1859 return DMA_ERROR_CODE;
cb76c322
JR
1860
1861 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
1862
1863 if (direction == DMA_TO_DEVICE)
1864 __pte |= IOMMU_PTE_IR;
1865 else if (direction == DMA_FROM_DEVICE)
1866 __pte |= IOMMU_PTE_IW;
1867 else if (direction == DMA_BIDIRECTIONAL)
1868 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
1869
1870 WARN_ON(*pte);
1871
1872 *pte = __pte;
1873
1874 return (dma_addr_t)address;
1875}
1876
431b2a20
JR
1877/*
1878 * The generic unmapping function for on page in the DMA address space.
1879 */
680525e0 1880static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
cb76c322
JR
1881 unsigned long address)
1882{
384de729 1883 struct aperture_range *aperture;
cb76c322
JR
1884 u64 *pte;
1885
1886 if (address >= dom->aperture_size)
1887 return;
1888
384de729
JR
1889 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1890 if (!aperture)
1891 return;
1892
1893 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1894 if (!pte)
1895 return;
cb76c322 1896
8c8c143c 1897 pte += PM_LEVEL_INDEX(0, address);
cb76c322
JR
1898
1899 WARN_ON(!*pte);
1900
1901 *pte = 0ULL;
1902}
1903
431b2a20
JR
1904/*
1905 * This function contains common code for mapping of a physically
24f81160
JR
1906 * contiguous memory region into DMA address space. It is used by all
1907 * mapping functions provided with this IOMMU driver.
431b2a20
JR
1908 * Must be called with the domain lock held.
1909 */
cb76c322 1910static dma_addr_t __map_single(struct device *dev,
cb76c322
JR
1911 struct dma_ops_domain *dma_dom,
1912 phys_addr_t paddr,
1913 size_t size,
6d4f343f 1914 int dir,
832a90c3
JR
1915 bool align,
1916 u64 dma_mask)
cb76c322
JR
1917{
1918 dma_addr_t offset = paddr & ~PAGE_MASK;
53812c11 1919 dma_addr_t address, start, ret;
cb76c322 1920 unsigned int pages;
6d4f343f 1921 unsigned long align_mask = 0;
cb76c322
JR
1922 int i;
1923
e3c449f5 1924 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
cb76c322
JR
1925 paddr &= PAGE_MASK;
1926
8ecaf8f1
JR
1927 INC_STATS_COUNTER(total_map_requests);
1928
c1858976
JR
1929 if (pages > 1)
1930 INC_STATS_COUNTER(cross_page);
1931
6d4f343f
JR
1932 if (align)
1933 align_mask = (1UL << get_order(size)) - 1;
1934
11b83888 1935retry:
832a90c3
JR
1936 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
1937 dma_mask);
8fd524b3 1938 if (unlikely(address == DMA_ERROR_CODE)) {
11b83888
JR
1939 /*
1940 * setting next_address here will let the address
1941 * allocator only scan the new allocated range in the
1942 * first run. This is a small optimization.
1943 */
1944 dma_dom->next_address = dma_dom->aperture_size;
1945
576175c2 1946 if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
11b83888
JR
1947 goto out;
1948
1949 /*
af901ca1 1950 * aperture was successfully enlarged by 128 MB, try
11b83888
JR
1951 * allocation again
1952 */
1953 goto retry;
1954 }
cb76c322
JR
1955
1956 start = address;
1957 for (i = 0; i < pages; ++i) {
680525e0 1958 ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
8fd524b3 1959 if (ret == DMA_ERROR_CODE)
53812c11
JR
1960 goto out_unmap;
1961
cb76c322
JR
1962 paddr += PAGE_SIZE;
1963 start += PAGE_SIZE;
1964 }
1965 address += offset;
1966
5774f7c5
JR
1967 ADD_STATS_COUNTER(alloced_io_mem, size);
1968
afa9fdc2 1969 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
17b124bf 1970 domain_flush_tlb(&dma_dom->domain);
1c655773 1971 dma_dom->need_flush = false;
318afd41 1972 } else if (unlikely(amd_iommu_np_cache))
17b124bf 1973 domain_flush_pages(&dma_dom->domain, address, size);
270cab24 1974
cb76c322
JR
1975out:
1976 return address;
53812c11
JR
1977
1978out_unmap:
1979
1980 for (--i; i >= 0; --i) {
1981 start -= PAGE_SIZE;
680525e0 1982 dma_ops_domain_unmap(dma_dom, start);
53812c11
JR
1983 }
1984
1985 dma_ops_free_addresses(dma_dom, address, pages);
1986
8fd524b3 1987 return DMA_ERROR_CODE;
cb76c322
JR
1988}
1989
431b2a20
JR
1990/*
1991 * Does the reverse of the __map_single function. Must be called with
1992 * the domain lock held too
1993 */
cd8c82e8 1994static void __unmap_single(struct dma_ops_domain *dma_dom,
cb76c322
JR
1995 dma_addr_t dma_addr,
1996 size_t size,
1997 int dir)
1998{
04e0463e 1999 dma_addr_t flush_addr;
cb76c322
JR
2000 dma_addr_t i, start;
2001 unsigned int pages;
2002
8fd524b3 2003 if ((dma_addr == DMA_ERROR_CODE) ||
b8d9905d 2004 (dma_addr + size > dma_dom->aperture_size))
cb76c322
JR
2005 return;
2006
04e0463e 2007 flush_addr = dma_addr;
e3c449f5 2008 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
cb76c322
JR
2009 dma_addr &= PAGE_MASK;
2010 start = dma_addr;
2011
2012 for (i = 0; i < pages; ++i) {
680525e0 2013 dma_ops_domain_unmap(dma_dom, start);
cb76c322
JR
2014 start += PAGE_SIZE;
2015 }
2016
5774f7c5
JR
2017 SUB_STATS_COUNTER(alloced_io_mem, size);
2018
cb76c322 2019 dma_ops_free_addresses(dma_dom, dma_addr, pages);
270cab24 2020
80be308d 2021 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
17b124bf 2022 domain_flush_pages(&dma_dom->domain, flush_addr, size);
80be308d
JR
2023 dma_dom->need_flush = false;
2024 }
cb76c322
JR
2025}
2026
431b2a20
JR
2027/*
2028 * The exported map_single function for dma_ops.
2029 */
51491367
FT
2030static dma_addr_t map_page(struct device *dev, struct page *page,
2031 unsigned long offset, size_t size,
2032 enum dma_data_direction dir,
2033 struct dma_attrs *attrs)
4da70b9e
JR
2034{
2035 unsigned long flags;
4da70b9e 2036 struct protection_domain *domain;
4da70b9e 2037 dma_addr_t addr;
832a90c3 2038 u64 dma_mask;
51491367 2039 phys_addr_t paddr = page_to_phys(page) + offset;
4da70b9e 2040
0f2a86f2
JR
2041 INC_STATS_COUNTER(cnt_map_single);
2042
94f6d190
JR
2043 domain = get_domain(dev);
2044 if (PTR_ERR(domain) == -EINVAL)
4da70b9e 2045 return (dma_addr_t)paddr;
94f6d190
JR
2046 else if (IS_ERR(domain))
2047 return DMA_ERROR_CODE;
4da70b9e 2048
f99c0f1c
JR
2049 dma_mask = *dev->dma_mask;
2050
4da70b9e 2051 spin_lock_irqsave(&domain->lock, flags);
94f6d190 2052
cd8c82e8 2053 addr = __map_single(dev, domain->priv, paddr, size, dir, false,
832a90c3 2054 dma_mask);
8fd524b3 2055 if (addr == DMA_ERROR_CODE)
4da70b9e
JR
2056 goto out;
2057
17b124bf 2058 domain_flush_complete(domain);
4da70b9e
JR
2059
2060out:
2061 spin_unlock_irqrestore(&domain->lock, flags);
2062
2063 return addr;
2064}
2065
431b2a20
JR
2066/*
2067 * The exported unmap_single function for dma_ops.
2068 */
51491367
FT
2069static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2070 enum dma_data_direction dir, struct dma_attrs *attrs)
4da70b9e
JR
2071{
2072 unsigned long flags;
4da70b9e 2073 struct protection_domain *domain;
4da70b9e 2074
146a6917
JR
2075 INC_STATS_COUNTER(cnt_unmap_single);
2076
94f6d190
JR
2077 domain = get_domain(dev);
2078 if (IS_ERR(domain))
5b28df6f
JR
2079 return;
2080
4da70b9e
JR
2081 spin_lock_irqsave(&domain->lock, flags);
2082
cd8c82e8 2083 __unmap_single(domain->priv, dma_addr, size, dir);
4da70b9e 2084
17b124bf 2085 domain_flush_complete(domain);
4da70b9e
JR
2086
2087 spin_unlock_irqrestore(&domain->lock, flags);
2088}
2089
431b2a20
JR
2090/*
2091 * This is a special map_sg function which is used if we should map a
2092 * device which is not handled by an AMD IOMMU in the system.
2093 */
65b050ad
JR
2094static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
2095 int nelems, int dir)
2096{
2097 struct scatterlist *s;
2098 int i;
2099
2100 for_each_sg(sglist, s, nelems, i) {
2101 s->dma_address = (dma_addr_t)sg_phys(s);
2102 s->dma_length = s->length;
2103 }
2104
2105 return nelems;
2106}
2107
431b2a20
JR
2108/*
2109 * The exported map_sg function for dma_ops (handles scatter-gather
2110 * lists).
2111 */
65b050ad 2112static int map_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
2113 int nelems, enum dma_data_direction dir,
2114 struct dma_attrs *attrs)
65b050ad
JR
2115{
2116 unsigned long flags;
65b050ad 2117 struct protection_domain *domain;
65b050ad
JR
2118 int i;
2119 struct scatterlist *s;
2120 phys_addr_t paddr;
2121 int mapped_elems = 0;
832a90c3 2122 u64 dma_mask;
65b050ad 2123
d03f067a
JR
2124 INC_STATS_COUNTER(cnt_map_sg);
2125
94f6d190
JR
2126 domain = get_domain(dev);
2127 if (PTR_ERR(domain) == -EINVAL)
f99c0f1c 2128 return map_sg_no_iommu(dev, sglist, nelems, dir);
94f6d190
JR
2129 else if (IS_ERR(domain))
2130 return 0;
dbcc112e 2131
832a90c3 2132 dma_mask = *dev->dma_mask;
65b050ad 2133
65b050ad
JR
2134 spin_lock_irqsave(&domain->lock, flags);
2135
2136 for_each_sg(sglist, s, nelems, i) {
2137 paddr = sg_phys(s);
2138
cd8c82e8 2139 s->dma_address = __map_single(dev, domain->priv,
832a90c3
JR
2140 paddr, s->length, dir, false,
2141 dma_mask);
65b050ad
JR
2142
2143 if (s->dma_address) {
2144 s->dma_length = s->length;
2145 mapped_elems++;
2146 } else
2147 goto unmap;
65b050ad
JR
2148 }
2149
17b124bf 2150 domain_flush_complete(domain);
65b050ad
JR
2151
2152out:
2153 spin_unlock_irqrestore(&domain->lock, flags);
2154
2155 return mapped_elems;
2156unmap:
2157 for_each_sg(sglist, s, mapped_elems, i) {
2158 if (s->dma_address)
cd8c82e8 2159 __unmap_single(domain->priv, s->dma_address,
65b050ad
JR
2160 s->dma_length, dir);
2161 s->dma_address = s->dma_length = 0;
2162 }
2163
2164 mapped_elems = 0;
2165
2166 goto out;
2167}
2168
431b2a20
JR
2169/*
2170 * The exported map_sg function for dma_ops (handles scatter-gather
2171 * lists).
2172 */
65b050ad 2173static void unmap_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
2174 int nelems, enum dma_data_direction dir,
2175 struct dma_attrs *attrs)
65b050ad
JR
2176{
2177 unsigned long flags;
65b050ad
JR
2178 struct protection_domain *domain;
2179 struct scatterlist *s;
65b050ad
JR
2180 int i;
2181
55877a6b
JR
2182 INC_STATS_COUNTER(cnt_unmap_sg);
2183
94f6d190
JR
2184 domain = get_domain(dev);
2185 if (IS_ERR(domain))
5b28df6f
JR
2186 return;
2187
65b050ad
JR
2188 spin_lock_irqsave(&domain->lock, flags);
2189
2190 for_each_sg(sglist, s, nelems, i) {
cd8c82e8 2191 __unmap_single(domain->priv, s->dma_address,
65b050ad 2192 s->dma_length, dir);
65b050ad
JR
2193 s->dma_address = s->dma_length = 0;
2194 }
2195
17b124bf 2196 domain_flush_complete(domain);
65b050ad
JR
2197
2198 spin_unlock_irqrestore(&domain->lock, flags);
2199}
2200
431b2a20
JR
2201/*
2202 * The exported alloc_coherent function for dma_ops.
2203 */
5d8b53cf
JR
2204static void *alloc_coherent(struct device *dev, size_t size,
2205 dma_addr_t *dma_addr, gfp_t flag)
2206{
2207 unsigned long flags;
2208 void *virt_addr;
5d8b53cf 2209 struct protection_domain *domain;
5d8b53cf 2210 phys_addr_t paddr;
832a90c3 2211 u64 dma_mask = dev->coherent_dma_mask;
5d8b53cf 2212
c8f0fb36
JR
2213 INC_STATS_COUNTER(cnt_alloc_coherent);
2214
94f6d190
JR
2215 domain = get_domain(dev);
2216 if (PTR_ERR(domain) == -EINVAL) {
f99c0f1c
JR
2217 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2218 *dma_addr = __pa(virt_addr);
2219 return virt_addr;
94f6d190
JR
2220 } else if (IS_ERR(domain))
2221 return NULL;
5d8b53cf 2222
f99c0f1c
JR
2223 dma_mask = dev->coherent_dma_mask;
2224 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2225 flag |= __GFP_ZERO;
5d8b53cf
JR
2226
2227 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2228 if (!virt_addr)
b25ae679 2229 return NULL;
5d8b53cf 2230
5d8b53cf
JR
2231 paddr = virt_to_phys(virt_addr);
2232
832a90c3
JR
2233 if (!dma_mask)
2234 dma_mask = *dev->dma_mask;
2235
5d8b53cf
JR
2236 spin_lock_irqsave(&domain->lock, flags);
2237
cd8c82e8 2238 *dma_addr = __map_single(dev, domain->priv, paddr,
832a90c3 2239 size, DMA_BIDIRECTIONAL, true, dma_mask);
5d8b53cf 2240
8fd524b3 2241 if (*dma_addr == DMA_ERROR_CODE) {
367d04c4 2242 spin_unlock_irqrestore(&domain->lock, flags);
5b28df6f 2243 goto out_free;
367d04c4 2244 }
5d8b53cf 2245
17b124bf 2246 domain_flush_complete(domain);
5d8b53cf 2247
5d8b53cf
JR
2248 spin_unlock_irqrestore(&domain->lock, flags);
2249
2250 return virt_addr;
5b28df6f
JR
2251
2252out_free:
2253
2254 free_pages((unsigned long)virt_addr, get_order(size));
2255
2256 return NULL;
5d8b53cf
JR
2257}
2258
431b2a20
JR
2259/*
2260 * The exported free_coherent function for dma_ops.
431b2a20 2261 */
5d8b53cf
JR
2262static void free_coherent(struct device *dev, size_t size,
2263 void *virt_addr, dma_addr_t dma_addr)
2264{
2265 unsigned long flags;
5d8b53cf 2266 struct protection_domain *domain;
5d8b53cf 2267
5d31ee7e
JR
2268 INC_STATS_COUNTER(cnt_free_coherent);
2269
94f6d190
JR
2270 domain = get_domain(dev);
2271 if (IS_ERR(domain))
5b28df6f
JR
2272 goto free_mem;
2273
5d8b53cf
JR
2274 spin_lock_irqsave(&domain->lock, flags);
2275
cd8c82e8 2276 __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
5d8b53cf 2277
17b124bf 2278 domain_flush_complete(domain);
5d8b53cf
JR
2279
2280 spin_unlock_irqrestore(&domain->lock, flags);
2281
2282free_mem:
2283 free_pages((unsigned long)virt_addr, get_order(size));
2284}
2285
b39ba6ad
JR
2286/*
2287 * This function is called by the DMA layer to find out if we can handle a
2288 * particular device. It is part of the dma_ops.
2289 */
2290static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2291{
420aef8a 2292 return check_device(dev);
b39ba6ad
JR
2293}
2294
c432f3df 2295/*
431b2a20
JR
2296 * The function for pre-allocating protection domains.
2297 *
c432f3df
JR
2298 * If the driver core informs the DMA layer if a driver grabs a device
2299 * we don't need to preallocate the protection domains anymore.
2300 * For now we have to.
2301 */
0e93dd88 2302static void prealloc_protection_domains(void)
c432f3df
JR
2303{
2304 struct pci_dev *dev = NULL;
2305 struct dma_ops_domain *dma_dom;
98fc5a69 2306 u16 devid;
c432f3df 2307
d18c69d3 2308 for_each_pci_dev(dev) {
98fc5a69
JR
2309
2310 /* Do we handle this device? */
2311 if (!check_device(&dev->dev))
c432f3df 2312 continue;
98fc5a69
JR
2313
2314 /* Is there already any domain for it? */
15898bbc 2315 if (domain_for_device(&dev->dev))
c432f3df 2316 continue;
98fc5a69
JR
2317
2318 devid = get_device_id(&dev->dev);
2319
87a64d52 2320 dma_dom = dma_ops_domain_alloc();
c432f3df
JR
2321 if (!dma_dom)
2322 continue;
2323 init_unity_mappings_for_device(dma_dom, devid);
bd60b735
JR
2324 dma_dom->target_dev = devid;
2325
15898bbc 2326 attach_device(&dev->dev, &dma_dom->domain);
be831297 2327
bd60b735 2328 list_add_tail(&dma_dom->list, &iommu_pd_list);
c432f3df
JR
2329 }
2330}
2331
160c1d8e 2332static struct dma_map_ops amd_iommu_dma_ops = {
6631ee9d
JR
2333 .alloc_coherent = alloc_coherent,
2334 .free_coherent = free_coherent,
51491367
FT
2335 .map_page = map_page,
2336 .unmap_page = unmap_page,
6631ee9d
JR
2337 .map_sg = map_sg,
2338 .unmap_sg = unmap_sg,
b39ba6ad 2339 .dma_supported = amd_iommu_dma_supported,
6631ee9d
JR
2340};
2341
431b2a20
JR
2342/*
2343 * The function which clues the AMD IOMMU driver into dma_ops.
2344 */
f5325094
JR
2345
2346void __init amd_iommu_init_api(void)
2347{
2348 register_iommu(&amd_iommu_ops);
2349}
2350
6631ee9d
JR
2351int __init amd_iommu_init_dma_ops(void)
2352{
2353 struct amd_iommu *iommu;
6631ee9d
JR
2354 int ret;
2355
431b2a20
JR
2356 /*
2357 * first allocate a default protection domain for every IOMMU we
2358 * found in the system. Devices not assigned to any other
2359 * protection domain will be assigned to the default one.
2360 */
3bd22172 2361 for_each_iommu(iommu) {
87a64d52 2362 iommu->default_dom = dma_ops_domain_alloc();
6631ee9d
JR
2363 if (iommu->default_dom == NULL)
2364 return -ENOMEM;
e2dc14a2 2365 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
6631ee9d
JR
2366 ret = iommu_init_unity_mappings(iommu);
2367 if (ret)
2368 goto free_domains;
2369 }
2370
431b2a20 2371 /*
8793abeb 2372 * Pre-allocate the protection domains for each device.
431b2a20 2373 */
8793abeb 2374 prealloc_protection_domains();
6631ee9d
JR
2375
2376 iommu_detected = 1;
75f1cdf1 2377 swiotlb = 0;
6631ee9d 2378
431b2a20 2379 /* Make the driver finally visible to the drivers */
6631ee9d
JR
2380 dma_ops = &amd_iommu_dma_ops;
2381
7f26508b
JR
2382 amd_iommu_stats_init();
2383
6631ee9d
JR
2384 return 0;
2385
2386free_domains:
2387
3bd22172 2388 for_each_iommu(iommu) {
6631ee9d
JR
2389 if (iommu->default_dom)
2390 dma_ops_domain_free(iommu->default_dom);
2391 }
2392
2393 return ret;
2394}
6d98cd80
JR
2395
2396/*****************************************************************************
2397 *
2398 * The following functions belong to the exported interface of AMD IOMMU
2399 *
2400 * This interface allows access to lower level functions of the IOMMU
2401 * like protection domain handling and assignement of devices to domains
2402 * which is not possible with the dma_ops interface.
2403 *
2404 *****************************************************************************/
2405
6d98cd80
JR
2406static void cleanup_domain(struct protection_domain *domain)
2407{
492667da 2408 struct iommu_dev_data *dev_data, *next;
6d98cd80 2409 unsigned long flags;
6d98cd80
JR
2410
2411 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2412
492667da
JR
2413 list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
2414 struct device *dev = dev_data->dev;
2415
04e856c0 2416 __detach_device(dev);
492667da
JR
2417 atomic_set(&dev_data->bind, 0);
2418 }
6d98cd80
JR
2419
2420 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2421}
2422
2650815f
JR
2423static void protection_domain_free(struct protection_domain *domain)
2424{
2425 if (!domain)
2426 return;
2427
aeb26f55
JR
2428 del_domain_from_list(domain);
2429
2650815f
JR
2430 if (domain->id)
2431 domain_id_free(domain->id);
2432
2433 kfree(domain);
2434}
2435
2436static struct protection_domain *protection_domain_alloc(void)
c156e347
JR
2437{
2438 struct protection_domain *domain;
2439
2440 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2441 if (!domain)
2650815f 2442 return NULL;
c156e347
JR
2443
2444 spin_lock_init(&domain->lock);
5d214fe6 2445 mutex_init(&domain->api_lock);
c156e347
JR
2446 domain->id = domain_id_alloc();
2447 if (!domain->id)
2650815f 2448 goto out_err;
7c392cbe 2449 INIT_LIST_HEAD(&domain->dev_list);
2650815f 2450
aeb26f55
JR
2451 add_domain_to_list(domain);
2452
2650815f
JR
2453 return domain;
2454
2455out_err:
2456 kfree(domain);
2457
2458 return NULL;
2459}
2460
2461static int amd_iommu_domain_init(struct iommu_domain *dom)
2462{
2463 struct protection_domain *domain;
2464
2465 domain = protection_domain_alloc();
2466 if (!domain)
c156e347 2467 goto out_free;
2650815f
JR
2468
2469 domain->mode = PAGE_MODE_3_LEVEL;
c156e347
JR
2470 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2471 if (!domain->pt_root)
2472 goto out_free;
2473
2474 dom->priv = domain;
2475
2476 return 0;
2477
2478out_free:
2650815f 2479 protection_domain_free(domain);
c156e347
JR
2480
2481 return -ENOMEM;
2482}
2483
98383fc3
JR
2484static void amd_iommu_domain_destroy(struct iommu_domain *dom)
2485{
2486 struct protection_domain *domain = dom->priv;
2487
2488 if (!domain)
2489 return;
2490
2491 if (domain->dev_cnt > 0)
2492 cleanup_domain(domain);
2493
2494 BUG_ON(domain->dev_cnt != 0);
2495
2496 free_pagetable(domain);
2497
8b408fe4 2498 protection_domain_free(domain);
98383fc3
JR
2499
2500 dom->priv = NULL;
2501}
2502
684f2888
JR
2503static void amd_iommu_detach_device(struct iommu_domain *dom,
2504 struct device *dev)
2505{
657cbb6b 2506 struct iommu_dev_data *dev_data = dev->archdata.iommu;
684f2888 2507 struct amd_iommu *iommu;
684f2888
JR
2508 u16 devid;
2509
98fc5a69 2510 if (!check_device(dev))
684f2888
JR
2511 return;
2512
98fc5a69 2513 devid = get_device_id(dev);
684f2888 2514
657cbb6b 2515 if (dev_data->domain != NULL)
15898bbc 2516 detach_device(dev);
684f2888
JR
2517
2518 iommu = amd_iommu_rlookup_table[devid];
2519 if (!iommu)
2520 return;
2521
d8c13085 2522 device_flush_dte(dev);
684f2888
JR
2523 iommu_completion_wait(iommu);
2524}
2525
01106066
JR
2526static int amd_iommu_attach_device(struct iommu_domain *dom,
2527 struct device *dev)
2528{
2529 struct protection_domain *domain = dom->priv;
657cbb6b 2530 struct iommu_dev_data *dev_data;
01106066 2531 struct amd_iommu *iommu;
15898bbc 2532 int ret;
01106066
JR
2533 u16 devid;
2534
98fc5a69 2535 if (!check_device(dev))
01106066
JR
2536 return -EINVAL;
2537
657cbb6b
JR
2538 dev_data = dev->archdata.iommu;
2539
98fc5a69 2540 devid = get_device_id(dev);
01106066
JR
2541
2542 iommu = amd_iommu_rlookup_table[devid];
2543 if (!iommu)
2544 return -EINVAL;
2545
657cbb6b 2546 if (dev_data->domain)
15898bbc 2547 detach_device(dev);
01106066 2548
15898bbc 2549 ret = attach_device(dev, domain);
01106066
JR
2550
2551 iommu_completion_wait(iommu);
2552
15898bbc 2553 return ret;
01106066
JR
2554}
2555
468e2366
JR
2556static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
2557 phys_addr_t paddr, int gfp_order, int iommu_prot)
c6229ca6 2558{
468e2366 2559 unsigned long page_size = 0x1000UL << gfp_order;
c6229ca6 2560 struct protection_domain *domain = dom->priv;
c6229ca6
JR
2561 int prot = 0;
2562 int ret;
2563
2564 if (iommu_prot & IOMMU_READ)
2565 prot |= IOMMU_PROT_IR;
2566 if (iommu_prot & IOMMU_WRITE)
2567 prot |= IOMMU_PROT_IW;
2568
5d214fe6 2569 mutex_lock(&domain->api_lock);
795e74f7 2570 ret = iommu_map_page(domain, iova, paddr, prot, page_size);
5d214fe6
JR
2571 mutex_unlock(&domain->api_lock);
2572
795e74f7 2573 return ret;
c6229ca6
JR
2574}
2575
468e2366
JR
2576static int amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
2577 int gfp_order)
eb74ff6c 2578{
eb74ff6c 2579 struct protection_domain *domain = dom->priv;
468e2366 2580 unsigned long page_size, unmap_size;
eb74ff6c 2581
468e2366 2582 page_size = 0x1000UL << gfp_order;
eb74ff6c 2583
5d214fe6 2584 mutex_lock(&domain->api_lock);
468e2366 2585 unmap_size = iommu_unmap_page(domain, iova, page_size);
795e74f7 2586 mutex_unlock(&domain->api_lock);
eb74ff6c 2587
17b124bf 2588 domain_flush_tlb_pde(domain);
5d214fe6 2589
468e2366 2590 return get_order(unmap_size);
eb74ff6c
JR
2591}
2592
645c4c8d
JR
2593static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2594 unsigned long iova)
2595{
2596 struct protection_domain *domain = dom->priv;
f03152bb 2597 unsigned long offset_mask;
645c4c8d 2598 phys_addr_t paddr;
f03152bb 2599 u64 *pte, __pte;
645c4c8d 2600
24cd7723 2601 pte = fetch_pte(domain, iova);
645c4c8d 2602
a6d41a40 2603 if (!pte || !IOMMU_PTE_PRESENT(*pte))
645c4c8d
JR
2604 return 0;
2605
f03152bb
JR
2606 if (PM_PTE_LEVEL(*pte) == 0)
2607 offset_mask = PAGE_SIZE - 1;
2608 else
2609 offset_mask = PTE_PAGE_SIZE(*pte) - 1;
2610
2611 __pte = *pte & PM_ADDR_MASK;
2612 paddr = (__pte & ~offset_mask) | (iova & offset_mask);
645c4c8d
JR
2613
2614 return paddr;
2615}
2616
dbb9fd86
SY
2617static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
2618 unsigned long cap)
2619{
80a506b8
JR
2620 switch (cap) {
2621 case IOMMU_CAP_CACHE_COHERENCY:
2622 return 1;
2623 }
2624
dbb9fd86
SY
2625 return 0;
2626}
2627
26961efe
JR
2628static struct iommu_ops amd_iommu_ops = {
2629 .domain_init = amd_iommu_domain_init,
2630 .domain_destroy = amd_iommu_domain_destroy,
2631 .attach_dev = amd_iommu_attach_device,
2632 .detach_dev = amd_iommu_detach_device,
468e2366
JR
2633 .map = amd_iommu_map,
2634 .unmap = amd_iommu_unmap,
26961efe 2635 .iova_to_phys = amd_iommu_iova_to_phys,
dbb9fd86 2636 .domain_has_cap = amd_iommu_domain_has_cap,
26961efe
JR
2637};
2638
0feae533
JR
2639/*****************************************************************************
2640 *
2641 * The next functions do a basic initialization of IOMMU for pass through
2642 * mode
2643 *
2644 * In passthrough mode the IOMMU is initialized and enabled but not used for
2645 * DMA-API translation.
2646 *
2647 *****************************************************************************/
2648
2649int __init amd_iommu_init_passthrough(void)
2650{
15898bbc 2651 struct amd_iommu *iommu;
0feae533 2652 struct pci_dev *dev = NULL;
15898bbc 2653 u16 devid;
0feae533 2654
af901ca1 2655 /* allocate passthrough domain */
0feae533
JR
2656 pt_domain = protection_domain_alloc();
2657 if (!pt_domain)
2658 return -ENOMEM;
2659
2660 pt_domain->mode |= PAGE_MODE_NONE;
2661
6c54aabd 2662 for_each_pci_dev(dev) {
98fc5a69 2663 if (!check_device(&dev->dev))
0feae533
JR
2664 continue;
2665
98fc5a69
JR
2666 devid = get_device_id(&dev->dev);
2667
15898bbc 2668 iommu = amd_iommu_rlookup_table[devid];
0feae533
JR
2669 if (!iommu)
2670 continue;
2671
15898bbc 2672 attach_device(&dev->dev, pt_domain);
0feae533
JR
2673 }
2674
2675 pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
2676
2677 return 0;
2678}