]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - arch/x86/kernel/amd_iommu.c
AMD IOMMU: make dma_ops_free_pagetable generic
[mirror_ubuntu-hirsute-kernel.git] / arch / x86 / kernel / amd_iommu.c
CommitLineData
b6c02715
JR
1/*
2 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/pci.h>
21#include <linux/gfp.h>
22#include <linux/bitops.h>
23#include <linux/scatterlist.h>
24#include <linux/iommu-helper.h>
25#include <asm/proto.h>
46a7fa27 26#include <asm/iommu.h>
1d9b16d1 27#include <asm/gart.h>
b6c02715 28#include <asm/amd_iommu_types.h>
c6da992e 29#include <asm/amd_iommu.h>
b6c02715
JR
30
31#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
32
136f78a1
JR
33#define EXIT_LOOP_COUNT 10000000
34
b6c02715
JR
35static DEFINE_RWLOCK(amd_iommu_devtable_lock);
36
bd60b735
JR
37/* A list of preallocated protection domains */
38static LIST_HEAD(iommu_pd_list);
39static DEFINE_SPINLOCK(iommu_pd_list_lock);
40
431b2a20
JR
41/*
42 * general struct to manage commands send to an IOMMU
43 */
d6449536 44struct iommu_cmd {
b6c02715
JR
45 u32 data[4];
46};
47
bd0e5211
JR
48static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
49 struct unity_map_entry *e);
50
431b2a20 51/* returns !0 if the IOMMU is caching non-present entries in its TLB */
4da70b9e
JR
52static int iommu_has_npcache(struct amd_iommu *iommu)
53{
ae9b9403 54 return iommu->cap & (1UL << IOMMU_CAP_NPCACHE);
4da70b9e
JR
55}
56
a80dc3e0
JR
57/****************************************************************************
58 *
59 * Interrupt handling functions
60 *
61 ****************************************************************************/
62
90008ee4
JR
63static void iommu_print_event(void *__evt)
64{
65 u32 *event = __evt;
66 int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
67 int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
68 int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
69 int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
70 u64 address = (u64)(((u64)event[3]) << 32) | event[2];
71
72 printk(KERN_ERR "AMD IOMMU: Event logged [");
73
74 switch (type) {
75 case EVENT_TYPE_ILL_DEV:
76 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
77 "address=0x%016llx flags=0x%04x]\n",
78 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
79 address, flags);
80 break;
81 case EVENT_TYPE_IO_FAULT:
82 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
83 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
84 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
85 domid, address, flags);
86 break;
87 case EVENT_TYPE_DEV_TAB_ERR:
88 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
89 "address=0x%016llx flags=0x%04x]\n",
90 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
91 address, flags);
92 break;
93 case EVENT_TYPE_PAGE_TAB_ERR:
94 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
95 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
96 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
97 domid, address, flags);
98 break;
99 case EVENT_TYPE_ILL_CMD:
100 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
101 break;
102 case EVENT_TYPE_CMD_HARD_ERR:
103 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
104 "flags=0x%04x]\n", address, flags);
105 break;
106 case EVENT_TYPE_IOTLB_INV_TO:
107 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
108 "address=0x%016llx]\n",
109 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
110 address);
111 break;
112 case EVENT_TYPE_INV_DEV_REQ:
113 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
114 "address=0x%016llx flags=0x%04x]\n",
115 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
116 address, flags);
117 break;
118 default:
119 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
120 }
121}
122
123static void iommu_poll_events(struct amd_iommu *iommu)
124{
125 u32 head, tail;
126 unsigned long flags;
127
128 spin_lock_irqsave(&iommu->lock, flags);
129
130 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
131 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
132
133 while (head != tail) {
134 iommu_print_event(iommu->evt_buf + head);
135 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
136 }
137
138 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
139
140 spin_unlock_irqrestore(&iommu->lock, flags);
141}
142
a80dc3e0
JR
143irqreturn_t amd_iommu_int_handler(int irq, void *data)
144{
90008ee4
JR
145 struct amd_iommu *iommu;
146
147 list_for_each_entry(iommu, &amd_iommu_list, list)
148 iommu_poll_events(iommu);
149
150 return IRQ_HANDLED;
a80dc3e0
JR
151}
152
431b2a20
JR
153/****************************************************************************
154 *
155 * IOMMU command queuing functions
156 *
157 ****************************************************************************/
158
159/*
160 * Writes the command to the IOMMUs command buffer and informs the
161 * hardware about the new command. Must be called with iommu->lock held.
162 */
d6449536 163static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
164{
165 u32 tail, head;
166 u8 *target;
167
168 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
8a7c5ef3 169 target = iommu->cmd_buf + tail;
a19ae1ec
JR
170 memcpy_toio(target, cmd, sizeof(*cmd));
171 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
172 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
173 if (tail == head)
174 return -ENOMEM;
175 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
176
177 return 0;
178}
179
431b2a20
JR
180/*
181 * General queuing function for commands. Takes iommu->lock and calls
182 * __iommu_queue_command().
183 */
d6449536 184static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
185{
186 unsigned long flags;
187 int ret;
188
189 spin_lock_irqsave(&iommu->lock, flags);
190 ret = __iommu_queue_command(iommu, cmd);
09ee17eb
JR
191 if (!ret)
192 iommu->need_sync = 1;
a19ae1ec
JR
193 spin_unlock_irqrestore(&iommu->lock, flags);
194
195 return ret;
196}
197
431b2a20
JR
198/*
199 * This function is called whenever we need to ensure that the IOMMU has
200 * completed execution of all commands we sent. It sends a
201 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
202 * us about that by writing a value to a physical address we pass with
203 * the command.
204 */
a19ae1ec
JR
205static int iommu_completion_wait(struct amd_iommu *iommu)
206{
7e4f88da 207 int ret = 0, ready = 0;
519c31ba 208 unsigned status = 0;
d6449536 209 struct iommu_cmd cmd;
7e4f88da 210 unsigned long flags, i = 0;
a19ae1ec
JR
211
212 memset(&cmd, 0, sizeof(cmd));
519c31ba 213 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
a19ae1ec
JR
214 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);
215
7e4f88da
JR
216 spin_lock_irqsave(&iommu->lock, flags);
217
09ee17eb
JR
218 if (!iommu->need_sync)
219 goto out;
220
221 iommu->need_sync = 0;
222
7e4f88da 223 ret = __iommu_queue_command(iommu, &cmd);
a19ae1ec
JR
224
225 if (ret)
7e4f88da 226 goto out;
a19ae1ec 227
136f78a1
JR
228 while (!ready && (i < EXIT_LOOP_COUNT)) {
229 ++i;
519c31ba
JR
230 /* wait for the bit to become one */
231 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
232 ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
136f78a1
JR
233 }
234
519c31ba
JR
235 /* set bit back to zero */
236 status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
237 writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);
238
84df8175
JR
239 if (unlikely(i == EXIT_LOOP_COUNT))
240 panic("AMD IOMMU: Completion wait loop failed\n");
241
7e4f88da
JR
242out:
243 spin_unlock_irqrestore(&iommu->lock, flags);
a19ae1ec
JR
244
245 return 0;
246}
247
431b2a20
JR
248/*
249 * Command send function for invalidating a device table entry
250 */
a19ae1ec
JR
251static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
252{
d6449536 253 struct iommu_cmd cmd;
ee2fa743 254 int ret;
a19ae1ec
JR
255
256 BUG_ON(iommu == NULL);
257
258 memset(&cmd, 0, sizeof(cmd));
259 CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
260 cmd.data[0] = devid;
261
ee2fa743
JR
262 ret = iommu_queue_command(iommu, &cmd);
263
ee2fa743 264 return ret;
a19ae1ec
JR
265}
266
431b2a20
JR
267/*
268 * Generic command send function for invalidaing TLB entries
269 */
a19ae1ec
JR
270static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
271 u64 address, u16 domid, int pde, int s)
272{
d6449536 273 struct iommu_cmd cmd;
ee2fa743 274 int ret;
a19ae1ec
JR
275
276 memset(&cmd, 0, sizeof(cmd));
277 address &= PAGE_MASK;
278 CMD_SET_TYPE(&cmd, CMD_INV_IOMMU_PAGES);
279 cmd.data[1] |= domid;
8a456695 280 cmd.data[2] = lower_32_bits(address);
8ea80d78 281 cmd.data[3] = upper_32_bits(address);
431b2a20 282 if (s) /* size bit - we flush more than one 4kb page */
a19ae1ec 283 cmd.data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
431b2a20 284 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
a19ae1ec
JR
285 cmd.data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
286
ee2fa743
JR
287 ret = iommu_queue_command(iommu, &cmd);
288
ee2fa743 289 return ret;
a19ae1ec
JR
290}
291
431b2a20
JR
292/*
293 * TLB invalidation function which is called from the mapping functions.
294 * It invalidates a single PTE if the range to flush is within a single
295 * page. Otherwise it flushes the whole TLB of the IOMMU.
296 */
a19ae1ec
JR
297static int iommu_flush_pages(struct amd_iommu *iommu, u16 domid,
298 u64 address, size_t size)
299{
999ba417 300 int s = 0;
e3c449f5 301 unsigned pages = iommu_num_pages(address, size, PAGE_SIZE);
a19ae1ec
JR
302
303 address &= PAGE_MASK;
304
999ba417
JR
305 if (pages > 1) {
306 /*
307 * If we have to flush more than one page, flush all
308 * TLB entries for this domain
309 */
310 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
311 s = 1;
a19ae1ec
JR
312 }
313
999ba417
JR
314 iommu_queue_inv_iommu_pages(iommu, address, domid, 0, s);
315
a19ae1ec
JR
316 return 0;
317}
b6c02715 318
1c655773
JR
319/* Flush the whole IO/TLB for a given protection domain */
320static void iommu_flush_tlb(struct amd_iommu *iommu, u16 domid)
321{
322 u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
323
324 iommu_queue_inv_iommu_pages(iommu, address, domid, 0, 1);
325}
326
431b2a20
JR
327/****************************************************************************
328 *
329 * The functions below are used the create the page table mappings for
330 * unity mapped regions.
331 *
332 ****************************************************************************/
333
334/*
335 * Generic mapping functions. It maps a physical address into a DMA
336 * address space. It allocates the page table pages if necessary.
337 * In the future it can be extended to a generic mapping function
338 * supporting all features of AMD IOMMU page tables like level skipping
339 * and full 64 bit address spaces.
340 */
38e817fe
JR
341static int iommu_map_page(struct protection_domain *dom,
342 unsigned long bus_addr,
343 unsigned long phys_addr,
344 int prot)
bd0e5211
JR
345{
346 u64 __pte, *pte, *page;
347
348 bus_addr = PAGE_ALIGN(bus_addr);
bb9d4ff8 349 phys_addr = PAGE_ALIGN(phys_addr);
bd0e5211
JR
350
351 /* only support 512GB address spaces for now */
352 if (bus_addr > IOMMU_MAP_SIZE_L3 || !(prot & IOMMU_PROT_MASK))
353 return -EINVAL;
354
355 pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(bus_addr)];
356
357 if (!IOMMU_PTE_PRESENT(*pte)) {
358 page = (u64 *)get_zeroed_page(GFP_KERNEL);
359 if (!page)
360 return -ENOMEM;
361 *pte = IOMMU_L2_PDE(virt_to_phys(page));
362 }
363
364 pte = IOMMU_PTE_PAGE(*pte);
365 pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];
366
367 if (!IOMMU_PTE_PRESENT(*pte)) {
368 page = (u64 *)get_zeroed_page(GFP_KERNEL);
369 if (!page)
370 return -ENOMEM;
371 *pte = IOMMU_L1_PDE(virt_to_phys(page));
372 }
373
374 pte = IOMMU_PTE_PAGE(*pte);
375 pte = &pte[IOMMU_PTE_L0_INDEX(bus_addr)];
376
377 if (IOMMU_PTE_PRESENT(*pte))
378 return -EBUSY;
379
380 __pte = phys_addr | IOMMU_PTE_P;
381 if (prot & IOMMU_PROT_IR)
382 __pte |= IOMMU_PTE_IR;
383 if (prot & IOMMU_PROT_IW)
384 __pte |= IOMMU_PTE_IW;
385
386 *pte = __pte;
387
388 return 0;
389}
390
431b2a20
JR
391/*
392 * This function checks if a specific unity mapping entry is needed for
393 * this specific IOMMU.
394 */
bd0e5211
JR
395static int iommu_for_unity_map(struct amd_iommu *iommu,
396 struct unity_map_entry *entry)
397{
398 u16 bdf, i;
399
400 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
401 bdf = amd_iommu_alias_table[i];
402 if (amd_iommu_rlookup_table[bdf] == iommu)
403 return 1;
404 }
405
406 return 0;
407}
408
431b2a20
JR
409/*
410 * Init the unity mappings for a specific IOMMU in the system
411 *
412 * Basically iterates over all unity mapping entries and applies them to
413 * the default domain DMA of that IOMMU if necessary.
414 */
bd0e5211
JR
415static int iommu_init_unity_mappings(struct amd_iommu *iommu)
416{
417 struct unity_map_entry *entry;
418 int ret;
419
420 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
421 if (!iommu_for_unity_map(iommu, entry))
422 continue;
423 ret = dma_ops_unity_map(iommu->default_dom, entry);
424 if (ret)
425 return ret;
426 }
427
428 return 0;
429}
430
431b2a20
JR
431/*
432 * This function actually applies the mapping to the page table of the
433 * dma_ops domain.
434 */
bd0e5211
JR
435static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
436 struct unity_map_entry *e)
437{
438 u64 addr;
439 int ret;
440
441 for (addr = e->address_start; addr < e->address_end;
442 addr += PAGE_SIZE) {
38e817fe 443 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot);
bd0e5211
JR
444 if (ret)
445 return ret;
446 /*
447 * if unity mapping is in aperture range mark the page
448 * as allocated in the aperture
449 */
450 if (addr < dma_dom->aperture_size)
451 __set_bit(addr >> PAGE_SHIFT, dma_dom->bitmap);
452 }
453
454 return 0;
455}
456
431b2a20
JR
457/*
458 * Inits the unity mappings required for a specific device
459 */
bd0e5211
JR
460static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
461 u16 devid)
462{
463 struct unity_map_entry *e;
464 int ret;
465
466 list_for_each_entry(e, &amd_iommu_unity_map, list) {
467 if (!(devid >= e->devid_start && devid <= e->devid_end))
468 continue;
469 ret = dma_ops_unity_map(dma_dom, e);
470 if (ret)
471 return ret;
472 }
473
474 return 0;
475}
476
431b2a20
JR
477/****************************************************************************
478 *
479 * The next functions belong to the address allocator for the dma_ops
480 * interface functions. They work like the allocators in the other IOMMU
481 * drivers. Its basically a bitmap which marks the allocated pages in
482 * the aperture. Maybe it could be enhanced in the future to a more
483 * efficient allocator.
484 *
485 ****************************************************************************/
d3086444 486
431b2a20
JR
487/*
488 * The address allocator core function.
489 *
490 * called with domain->lock held
491 */
d3086444
JR
492static unsigned long dma_ops_alloc_addresses(struct device *dev,
493 struct dma_ops_domain *dom,
6d4f343f 494 unsigned int pages,
832a90c3
JR
495 unsigned long align_mask,
496 u64 dma_mask)
d3086444 497{
40becd8d 498 unsigned long limit;
d3086444 499 unsigned long address;
d3086444
JR
500 unsigned long boundary_size;
501
502 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
503 PAGE_SIZE) >> PAGE_SHIFT;
40becd8d
FT
504 limit = iommu_device_max_index(dom->aperture_size >> PAGE_SHIFT, 0,
505 dma_mask >> PAGE_SHIFT);
d3086444 506
1c655773 507 if (dom->next_bit >= limit) {
d3086444 508 dom->next_bit = 0;
1c655773
JR
509 dom->need_flush = true;
510 }
d3086444
JR
511
512 address = iommu_area_alloc(dom->bitmap, limit, dom->next_bit, pages,
6d4f343f 513 0 , boundary_size, align_mask);
1c655773 514 if (address == -1) {
d3086444 515 address = iommu_area_alloc(dom->bitmap, limit, 0, pages,
6d4f343f 516 0, boundary_size, align_mask);
1c655773
JR
517 dom->need_flush = true;
518 }
d3086444
JR
519
520 if (likely(address != -1)) {
d3086444
JR
521 dom->next_bit = address + pages;
522 address <<= PAGE_SHIFT;
523 } else
524 address = bad_dma_address;
525
526 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
527
528 return address;
529}
530
431b2a20
JR
531/*
532 * The address free function.
533 *
534 * called with domain->lock held
535 */
d3086444
JR
536static void dma_ops_free_addresses(struct dma_ops_domain *dom,
537 unsigned long address,
538 unsigned int pages)
539{
540 address >>= PAGE_SHIFT;
541 iommu_area_free(dom->bitmap, address, pages);
80be308d 542
8501c45c 543 if (address >= dom->next_bit)
80be308d 544 dom->need_flush = true;
d3086444
JR
545}
546
431b2a20
JR
547/****************************************************************************
548 *
549 * The next functions belong to the domain allocation. A domain is
550 * allocated for every IOMMU as the default domain. If device isolation
551 * is enabled, every device get its own domain. The most important thing
552 * about domains is the page table mapping the DMA address space they
553 * contain.
554 *
555 ****************************************************************************/
556
ec487d1a
JR
557static u16 domain_id_alloc(void)
558{
559 unsigned long flags;
560 int id;
561
562 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
563 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
564 BUG_ON(id == 0);
565 if (id > 0 && id < MAX_DOMAIN_ID)
566 __set_bit(id, amd_iommu_pd_alloc_bitmap);
567 else
568 id = 0;
569 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
570
571 return id;
572}
573
431b2a20
JR
574/*
575 * Used to reserve address ranges in the aperture (e.g. for exclusion
576 * ranges.
577 */
ec487d1a
JR
578static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
579 unsigned long start_page,
580 unsigned int pages)
581{
582 unsigned int last_page = dom->aperture_size >> PAGE_SHIFT;
583
584 if (start_page + pages > last_page)
585 pages = last_page - start_page;
586
d26dbc5c 587 iommu_area_reserve(dom->bitmap, start_page, pages);
ec487d1a
JR
588}
589
86db2e5d 590static void free_pagetable(struct protection_domain *domain)
ec487d1a
JR
591{
592 int i, j;
593 u64 *p1, *p2, *p3;
594
86db2e5d 595 p1 = domain->pt_root;
ec487d1a
JR
596
597 if (!p1)
598 return;
599
600 for (i = 0; i < 512; ++i) {
601 if (!IOMMU_PTE_PRESENT(p1[i]))
602 continue;
603
604 p2 = IOMMU_PTE_PAGE(p1[i]);
3cc3d84b 605 for (j = 0; j < 512; ++j) {
ec487d1a
JR
606 if (!IOMMU_PTE_PRESENT(p2[j]))
607 continue;
608 p3 = IOMMU_PTE_PAGE(p2[j]);
609 free_page((unsigned long)p3);
610 }
611
612 free_page((unsigned long)p2);
613 }
614
615 free_page((unsigned long)p1);
86db2e5d
JR
616
617 domain->pt_root = NULL;
ec487d1a
JR
618}
619
431b2a20
JR
620/*
621 * Free a domain, only used if something went wrong in the
622 * allocation path and we need to free an already allocated page table
623 */
ec487d1a
JR
624static void dma_ops_domain_free(struct dma_ops_domain *dom)
625{
626 if (!dom)
627 return;
628
86db2e5d 629 free_pagetable(&dom->domain);
ec487d1a
JR
630
631 kfree(dom->pte_pages);
632
633 kfree(dom->bitmap);
634
635 kfree(dom);
636}
637
431b2a20
JR
638/*
639 * Allocates a new protection domain usable for the dma_ops functions.
640 * It also intializes the page table and the address allocator data
641 * structures required for the dma_ops interface
642 */
ec487d1a
JR
643static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu,
644 unsigned order)
645{
646 struct dma_ops_domain *dma_dom;
647 unsigned i, num_pte_pages;
648 u64 *l2_pde;
649 u64 address;
650
651 /*
652 * Currently the DMA aperture must be between 32 MB and 1GB in size
653 */
654 if ((order < 25) || (order > 30))
655 return NULL;
656
657 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
658 if (!dma_dom)
659 return NULL;
660
661 spin_lock_init(&dma_dom->domain.lock);
662
663 dma_dom->domain.id = domain_id_alloc();
664 if (dma_dom->domain.id == 0)
665 goto free_dma_dom;
666 dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
667 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
668 dma_dom->domain.priv = dma_dom;
669 if (!dma_dom->domain.pt_root)
670 goto free_dma_dom;
671 dma_dom->aperture_size = (1ULL << order);
672 dma_dom->bitmap = kzalloc(dma_dom->aperture_size / (PAGE_SIZE * 8),
673 GFP_KERNEL);
674 if (!dma_dom->bitmap)
675 goto free_dma_dom;
676 /*
677 * mark the first page as allocated so we never return 0 as
678 * a valid dma-address. So we can use 0 as error value
679 */
680 dma_dom->bitmap[0] = 1;
681 dma_dom->next_bit = 0;
682
1c655773 683 dma_dom->need_flush = false;
bd60b735 684 dma_dom->target_dev = 0xffff;
1c655773 685
431b2a20 686 /* Intialize the exclusion range if necessary */
ec487d1a
JR
687 if (iommu->exclusion_start &&
688 iommu->exclusion_start < dma_dom->aperture_size) {
689 unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
e3c449f5
JR
690 int pages = iommu_num_pages(iommu->exclusion_start,
691 iommu->exclusion_length,
692 PAGE_SIZE);
ec487d1a
JR
693 dma_ops_reserve_addresses(dma_dom, startpage, pages);
694 }
695
431b2a20
JR
696 /*
697 * At the last step, build the page tables so we don't need to
698 * allocate page table pages in the dma_ops mapping/unmapping
699 * path.
700 */
ec487d1a
JR
701 num_pte_pages = dma_dom->aperture_size / (PAGE_SIZE * 512);
702 dma_dom->pte_pages = kzalloc(num_pte_pages * sizeof(void *),
703 GFP_KERNEL);
704 if (!dma_dom->pte_pages)
705 goto free_dma_dom;
706
707 l2_pde = (u64 *)get_zeroed_page(GFP_KERNEL);
708 if (l2_pde == NULL)
709 goto free_dma_dom;
710
711 dma_dom->domain.pt_root[0] = IOMMU_L2_PDE(virt_to_phys(l2_pde));
712
713 for (i = 0; i < num_pte_pages; ++i) {
714 dma_dom->pte_pages[i] = (u64 *)get_zeroed_page(GFP_KERNEL);
715 if (!dma_dom->pte_pages[i])
716 goto free_dma_dom;
717 address = virt_to_phys(dma_dom->pte_pages[i]);
718 l2_pde[i] = IOMMU_L1_PDE(address);
719 }
720
721 return dma_dom;
722
723free_dma_dom:
724 dma_ops_domain_free(dma_dom);
725
726 return NULL;
727}
728
431b2a20
JR
729/*
730 * Find out the protection domain structure for a given PCI device. This
731 * will give us the pointer to the page table root for example.
732 */
b20ac0d4
JR
733static struct protection_domain *domain_for_device(u16 devid)
734{
735 struct protection_domain *dom;
736 unsigned long flags;
737
738 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
739 dom = amd_iommu_pd_table[devid];
740 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
741
742 return dom;
743}
744
431b2a20
JR
745/*
746 * If a device is not yet associated with a domain, this function does
747 * assigns it visible for the hardware
748 */
b20ac0d4
JR
749static void set_device_domain(struct amd_iommu *iommu,
750 struct protection_domain *domain,
751 u16 devid)
752{
753 unsigned long flags;
754
755 u64 pte_root = virt_to_phys(domain->pt_root);
756
38ddf41b
JR
757 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
758 << DEV_ENTRY_MODE_SHIFT;
759 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
b20ac0d4
JR
760
761 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
38ddf41b
JR
762 amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
763 amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
b20ac0d4
JR
764 amd_iommu_dev_table[devid].data[2] = domain->id;
765
766 amd_iommu_pd_table[devid] = domain;
767 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
768
769 iommu_queue_inv_dev_entry(iommu, devid);
b20ac0d4
JR
770}
771
431b2a20
JR
772/*****************************************************************************
773 *
774 * The next functions belong to the dma_ops mapping/unmapping code.
775 *
776 *****************************************************************************/
777
dbcc112e
JR
778/*
779 * This function checks if the driver got a valid device from the caller to
780 * avoid dereferencing invalid pointers.
781 */
782static bool check_device(struct device *dev)
783{
784 if (!dev || !dev->dma_mask)
785 return false;
786
787 return true;
788}
789
bd60b735
JR
790/*
791 * In this function the list of preallocated protection domains is traversed to
792 * find the domain for a specific device
793 */
794static struct dma_ops_domain *find_protection_domain(u16 devid)
795{
796 struct dma_ops_domain *entry, *ret = NULL;
797 unsigned long flags;
798
799 if (list_empty(&iommu_pd_list))
800 return NULL;
801
802 spin_lock_irqsave(&iommu_pd_list_lock, flags);
803
804 list_for_each_entry(entry, &iommu_pd_list, list) {
805 if (entry->target_dev == devid) {
806 ret = entry;
807 list_del(&ret->list);
808 break;
809 }
810 }
811
812 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
813
814 return ret;
815}
816
431b2a20
JR
817/*
818 * In the dma_ops path we only have the struct device. This function
819 * finds the corresponding IOMMU, the protection domain and the
820 * requestor id for a given device.
821 * If the device is not yet associated with a domain this is also done
822 * in this function.
823 */
b20ac0d4
JR
824static int get_device_resources(struct device *dev,
825 struct amd_iommu **iommu,
826 struct protection_domain **domain,
827 u16 *bdf)
828{
829 struct dma_ops_domain *dma_dom;
830 struct pci_dev *pcidev;
831 u16 _bdf;
832
dbcc112e
JR
833 *iommu = NULL;
834 *domain = NULL;
835 *bdf = 0xffff;
836
837 if (dev->bus != &pci_bus_type)
838 return 0;
b20ac0d4
JR
839
840 pcidev = to_pci_dev(dev);
d591b0a3 841 _bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
b20ac0d4 842
431b2a20 843 /* device not translated by any IOMMU in the system? */
dbcc112e 844 if (_bdf > amd_iommu_last_bdf)
b20ac0d4 845 return 0;
b20ac0d4
JR
846
847 *bdf = amd_iommu_alias_table[_bdf];
848
849 *iommu = amd_iommu_rlookup_table[*bdf];
850 if (*iommu == NULL)
851 return 0;
b20ac0d4
JR
852 *domain = domain_for_device(*bdf);
853 if (*domain == NULL) {
bd60b735
JR
854 dma_dom = find_protection_domain(*bdf);
855 if (!dma_dom)
856 dma_dom = (*iommu)->default_dom;
b20ac0d4
JR
857 *domain = &dma_dom->domain;
858 set_device_domain(*iommu, *domain, *bdf);
859 printk(KERN_INFO "AMD IOMMU: Using protection domain %d for "
860 "device ", (*domain)->id);
861 print_devid(_bdf, 1);
862 }
863
f91ba190
JR
864 if (domain_for_device(_bdf) == NULL)
865 set_device_domain(*iommu, *domain, _bdf);
866
b20ac0d4
JR
867 return 1;
868}
869
431b2a20
JR
870/*
871 * This is the generic map function. It maps one 4kb page at paddr to
872 * the given address in the DMA address space for the domain.
873 */
cb76c322
JR
874static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
875 struct dma_ops_domain *dom,
876 unsigned long address,
877 phys_addr_t paddr,
878 int direction)
879{
880 u64 *pte, __pte;
881
882 WARN_ON(address > dom->aperture_size);
883
884 paddr &= PAGE_MASK;
885
886 pte = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)];
887 pte += IOMMU_PTE_L0_INDEX(address);
888
889 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
890
891 if (direction == DMA_TO_DEVICE)
892 __pte |= IOMMU_PTE_IR;
893 else if (direction == DMA_FROM_DEVICE)
894 __pte |= IOMMU_PTE_IW;
895 else if (direction == DMA_BIDIRECTIONAL)
896 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
897
898 WARN_ON(*pte);
899
900 *pte = __pte;
901
902 return (dma_addr_t)address;
903}
904
431b2a20
JR
905/*
906 * The generic unmapping function for on page in the DMA address space.
907 */
cb76c322
JR
908static void dma_ops_domain_unmap(struct amd_iommu *iommu,
909 struct dma_ops_domain *dom,
910 unsigned long address)
911{
912 u64 *pte;
913
914 if (address >= dom->aperture_size)
915 return;
916
8ad909c4 917 WARN_ON(address & ~PAGE_MASK || address >= dom->aperture_size);
cb76c322
JR
918
919 pte = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)];
920 pte += IOMMU_PTE_L0_INDEX(address);
921
922 WARN_ON(!*pte);
923
924 *pte = 0ULL;
925}
926
431b2a20
JR
927/*
928 * This function contains common code for mapping of a physically
24f81160
JR
929 * contiguous memory region into DMA address space. It is used by all
930 * mapping functions provided with this IOMMU driver.
431b2a20
JR
931 * Must be called with the domain lock held.
932 */
cb76c322
JR
933static dma_addr_t __map_single(struct device *dev,
934 struct amd_iommu *iommu,
935 struct dma_ops_domain *dma_dom,
936 phys_addr_t paddr,
937 size_t size,
6d4f343f 938 int dir,
832a90c3
JR
939 bool align,
940 u64 dma_mask)
cb76c322
JR
941{
942 dma_addr_t offset = paddr & ~PAGE_MASK;
943 dma_addr_t address, start;
944 unsigned int pages;
6d4f343f 945 unsigned long align_mask = 0;
cb76c322
JR
946 int i;
947
e3c449f5 948 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
cb76c322
JR
949 paddr &= PAGE_MASK;
950
6d4f343f
JR
951 if (align)
952 align_mask = (1UL << get_order(size)) - 1;
953
832a90c3
JR
954 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
955 dma_mask);
cb76c322
JR
956 if (unlikely(address == bad_dma_address))
957 goto out;
958
959 start = address;
960 for (i = 0; i < pages; ++i) {
961 dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
962 paddr += PAGE_SIZE;
963 start += PAGE_SIZE;
964 }
965 address += offset;
966
afa9fdc2 967 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
1c655773
JR
968 iommu_flush_tlb(iommu, dma_dom->domain.id);
969 dma_dom->need_flush = false;
970 } else if (unlikely(iommu_has_npcache(iommu)))
270cab24
JR
971 iommu_flush_pages(iommu, dma_dom->domain.id, address, size);
972
cb76c322
JR
973out:
974 return address;
975}
976
431b2a20
JR
977/*
978 * Does the reverse of the __map_single function. Must be called with
979 * the domain lock held too
980 */
cb76c322
JR
981static void __unmap_single(struct amd_iommu *iommu,
982 struct dma_ops_domain *dma_dom,
983 dma_addr_t dma_addr,
984 size_t size,
985 int dir)
986{
987 dma_addr_t i, start;
988 unsigned int pages;
989
b8d9905d
JR
990 if ((dma_addr == bad_dma_address) ||
991 (dma_addr + size > dma_dom->aperture_size))
cb76c322
JR
992 return;
993
e3c449f5 994 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
cb76c322
JR
995 dma_addr &= PAGE_MASK;
996 start = dma_addr;
997
998 for (i = 0; i < pages; ++i) {
999 dma_ops_domain_unmap(iommu, dma_dom, start);
1000 start += PAGE_SIZE;
1001 }
1002
1003 dma_ops_free_addresses(dma_dom, dma_addr, pages);
270cab24 1004
80be308d 1005 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
1c655773 1006 iommu_flush_pages(iommu, dma_dom->domain.id, dma_addr, size);
80be308d
JR
1007 dma_dom->need_flush = false;
1008 }
cb76c322
JR
1009}
1010
431b2a20
JR
1011/*
1012 * The exported map_single function for dma_ops.
1013 */
4da70b9e
JR
1014static dma_addr_t map_single(struct device *dev, phys_addr_t paddr,
1015 size_t size, int dir)
1016{
1017 unsigned long flags;
1018 struct amd_iommu *iommu;
1019 struct protection_domain *domain;
1020 u16 devid;
1021 dma_addr_t addr;
832a90c3 1022 u64 dma_mask;
4da70b9e 1023
dbcc112e
JR
1024 if (!check_device(dev))
1025 return bad_dma_address;
1026
832a90c3 1027 dma_mask = *dev->dma_mask;
4da70b9e
JR
1028
1029 get_device_resources(dev, &iommu, &domain, &devid);
1030
1031 if (iommu == NULL || domain == NULL)
431b2a20 1032 /* device not handled by any AMD IOMMU */
4da70b9e
JR
1033 return (dma_addr_t)paddr;
1034
1035 spin_lock_irqsave(&domain->lock, flags);
832a90c3
JR
1036 addr = __map_single(dev, iommu, domain->priv, paddr, size, dir, false,
1037 dma_mask);
4da70b9e
JR
1038 if (addr == bad_dma_address)
1039 goto out;
1040
09ee17eb 1041 iommu_completion_wait(iommu);
4da70b9e
JR
1042
1043out:
1044 spin_unlock_irqrestore(&domain->lock, flags);
1045
1046 return addr;
1047}
1048
431b2a20
JR
1049/*
1050 * The exported unmap_single function for dma_ops.
1051 */
4da70b9e
JR
1052static void unmap_single(struct device *dev, dma_addr_t dma_addr,
1053 size_t size, int dir)
1054{
1055 unsigned long flags;
1056 struct amd_iommu *iommu;
1057 struct protection_domain *domain;
1058 u16 devid;
1059
dbcc112e
JR
1060 if (!check_device(dev) ||
1061 !get_device_resources(dev, &iommu, &domain, &devid))
431b2a20 1062 /* device not handled by any AMD IOMMU */
4da70b9e
JR
1063 return;
1064
1065 spin_lock_irqsave(&domain->lock, flags);
1066
1067 __unmap_single(iommu, domain->priv, dma_addr, size, dir);
1068
09ee17eb 1069 iommu_completion_wait(iommu);
4da70b9e
JR
1070
1071 spin_unlock_irqrestore(&domain->lock, flags);
1072}
1073
431b2a20
JR
1074/*
1075 * This is a special map_sg function which is used if we should map a
1076 * device which is not handled by an AMD IOMMU in the system.
1077 */
65b050ad
JR
1078static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
1079 int nelems, int dir)
1080{
1081 struct scatterlist *s;
1082 int i;
1083
1084 for_each_sg(sglist, s, nelems, i) {
1085 s->dma_address = (dma_addr_t)sg_phys(s);
1086 s->dma_length = s->length;
1087 }
1088
1089 return nelems;
1090}
1091
431b2a20
JR
1092/*
1093 * The exported map_sg function for dma_ops (handles scatter-gather
1094 * lists).
1095 */
65b050ad
JR
1096static int map_sg(struct device *dev, struct scatterlist *sglist,
1097 int nelems, int dir)
1098{
1099 unsigned long flags;
1100 struct amd_iommu *iommu;
1101 struct protection_domain *domain;
1102 u16 devid;
1103 int i;
1104 struct scatterlist *s;
1105 phys_addr_t paddr;
1106 int mapped_elems = 0;
832a90c3 1107 u64 dma_mask;
65b050ad 1108
dbcc112e
JR
1109 if (!check_device(dev))
1110 return 0;
1111
832a90c3 1112 dma_mask = *dev->dma_mask;
65b050ad
JR
1113
1114 get_device_resources(dev, &iommu, &domain, &devid);
1115
1116 if (!iommu || !domain)
1117 return map_sg_no_iommu(dev, sglist, nelems, dir);
1118
1119 spin_lock_irqsave(&domain->lock, flags);
1120
1121 for_each_sg(sglist, s, nelems, i) {
1122 paddr = sg_phys(s);
1123
1124 s->dma_address = __map_single(dev, iommu, domain->priv,
832a90c3
JR
1125 paddr, s->length, dir, false,
1126 dma_mask);
65b050ad
JR
1127
1128 if (s->dma_address) {
1129 s->dma_length = s->length;
1130 mapped_elems++;
1131 } else
1132 goto unmap;
65b050ad
JR
1133 }
1134
09ee17eb 1135 iommu_completion_wait(iommu);
65b050ad
JR
1136
1137out:
1138 spin_unlock_irqrestore(&domain->lock, flags);
1139
1140 return mapped_elems;
1141unmap:
1142 for_each_sg(sglist, s, mapped_elems, i) {
1143 if (s->dma_address)
1144 __unmap_single(iommu, domain->priv, s->dma_address,
1145 s->dma_length, dir);
1146 s->dma_address = s->dma_length = 0;
1147 }
1148
1149 mapped_elems = 0;
1150
1151 goto out;
1152}
1153
431b2a20
JR
1154/*
1155 * The exported map_sg function for dma_ops (handles scatter-gather
1156 * lists).
1157 */
65b050ad
JR
1158static void unmap_sg(struct device *dev, struct scatterlist *sglist,
1159 int nelems, int dir)
1160{
1161 unsigned long flags;
1162 struct amd_iommu *iommu;
1163 struct protection_domain *domain;
1164 struct scatterlist *s;
1165 u16 devid;
1166 int i;
1167
dbcc112e
JR
1168 if (!check_device(dev) ||
1169 !get_device_resources(dev, &iommu, &domain, &devid))
65b050ad
JR
1170 return;
1171
1172 spin_lock_irqsave(&domain->lock, flags);
1173
1174 for_each_sg(sglist, s, nelems, i) {
1175 __unmap_single(iommu, domain->priv, s->dma_address,
1176 s->dma_length, dir);
65b050ad
JR
1177 s->dma_address = s->dma_length = 0;
1178 }
1179
09ee17eb 1180 iommu_completion_wait(iommu);
65b050ad
JR
1181
1182 spin_unlock_irqrestore(&domain->lock, flags);
1183}
1184
431b2a20
JR
1185/*
1186 * The exported alloc_coherent function for dma_ops.
1187 */
5d8b53cf
JR
1188static void *alloc_coherent(struct device *dev, size_t size,
1189 dma_addr_t *dma_addr, gfp_t flag)
1190{
1191 unsigned long flags;
1192 void *virt_addr;
1193 struct amd_iommu *iommu;
1194 struct protection_domain *domain;
1195 u16 devid;
1196 phys_addr_t paddr;
832a90c3 1197 u64 dma_mask = dev->coherent_dma_mask;
5d8b53cf 1198
dbcc112e
JR
1199 if (!check_device(dev))
1200 return NULL;
5d8b53cf 1201
13d9fead
FT
1202 if (!get_device_resources(dev, &iommu, &domain, &devid))
1203 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
5d8b53cf 1204
c97ac535 1205 flag |= __GFP_ZERO;
5d8b53cf
JR
1206 virt_addr = (void *)__get_free_pages(flag, get_order(size));
1207 if (!virt_addr)
1208 return 0;
1209
5d8b53cf
JR
1210 paddr = virt_to_phys(virt_addr);
1211
5d8b53cf
JR
1212 if (!iommu || !domain) {
1213 *dma_addr = (dma_addr_t)paddr;
1214 return virt_addr;
1215 }
1216
832a90c3
JR
1217 if (!dma_mask)
1218 dma_mask = *dev->dma_mask;
1219
5d8b53cf
JR
1220 spin_lock_irqsave(&domain->lock, flags);
1221
1222 *dma_addr = __map_single(dev, iommu, domain->priv, paddr,
832a90c3 1223 size, DMA_BIDIRECTIONAL, true, dma_mask);
5d8b53cf
JR
1224
1225 if (*dma_addr == bad_dma_address) {
1226 free_pages((unsigned long)virt_addr, get_order(size));
1227 virt_addr = NULL;
1228 goto out;
1229 }
1230
09ee17eb 1231 iommu_completion_wait(iommu);
5d8b53cf
JR
1232
1233out:
1234 spin_unlock_irqrestore(&domain->lock, flags);
1235
1236 return virt_addr;
1237}
1238
431b2a20
JR
1239/*
1240 * The exported free_coherent function for dma_ops.
431b2a20 1241 */
5d8b53cf
JR
1242static void free_coherent(struct device *dev, size_t size,
1243 void *virt_addr, dma_addr_t dma_addr)
1244{
1245 unsigned long flags;
1246 struct amd_iommu *iommu;
1247 struct protection_domain *domain;
1248 u16 devid;
1249
dbcc112e
JR
1250 if (!check_device(dev))
1251 return;
1252
5d8b53cf
JR
1253 get_device_resources(dev, &iommu, &domain, &devid);
1254
1255 if (!iommu || !domain)
1256 goto free_mem;
1257
1258 spin_lock_irqsave(&domain->lock, flags);
1259
1260 __unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
5d8b53cf 1261
09ee17eb 1262 iommu_completion_wait(iommu);
5d8b53cf
JR
1263
1264 spin_unlock_irqrestore(&domain->lock, flags);
1265
1266free_mem:
1267 free_pages((unsigned long)virt_addr, get_order(size));
1268}
1269
b39ba6ad
JR
1270/*
1271 * This function is called by the DMA layer to find out if we can handle a
1272 * particular device. It is part of the dma_ops.
1273 */
1274static int amd_iommu_dma_supported(struct device *dev, u64 mask)
1275{
1276 u16 bdf;
1277 struct pci_dev *pcidev;
1278
1279 /* No device or no PCI device */
1280 if (!dev || dev->bus != &pci_bus_type)
1281 return 0;
1282
1283 pcidev = to_pci_dev(dev);
1284
1285 bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
1286
1287 /* Out of our scope? */
1288 if (bdf > amd_iommu_last_bdf)
1289 return 0;
1290
1291 return 1;
1292}
1293
c432f3df 1294/*
431b2a20
JR
1295 * The function for pre-allocating protection domains.
1296 *
c432f3df
JR
1297 * If the driver core informs the DMA layer if a driver grabs a device
1298 * we don't need to preallocate the protection domains anymore.
1299 * For now we have to.
1300 */
1301void prealloc_protection_domains(void)
1302{
1303 struct pci_dev *dev = NULL;
1304 struct dma_ops_domain *dma_dom;
1305 struct amd_iommu *iommu;
1306 int order = amd_iommu_aperture_order;
1307 u16 devid;
1308
1309 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
1310 devid = (dev->bus->number << 8) | dev->devfn;
3a61ec38 1311 if (devid > amd_iommu_last_bdf)
c432f3df
JR
1312 continue;
1313 devid = amd_iommu_alias_table[devid];
1314 if (domain_for_device(devid))
1315 continue;
1316 iommu = amd_iommu_rlookup_table[devid];
1317 if (!iommu)
1318 continue;
1319 dma_dom = dma_ops_domain_alloc(iommu, order);
1320 if (!dma_dom)
1321 continue;
1322 init_unity_mappings_for_device(dma_dom, devid);
bd60b735
JR
1323 dma_dom->target_dev = devid;
1324
1325 list_add_tail(&dma_dom->list, &iommu_pd_list);
c432f3df
JR
1326 }
1327}
1328
6631ee9d
JR
1329static struct dma_mapping_ops amd_iommu_dma_ops = {
1330 .alloc_coherent = alloc_coherent,
1331 .free_coherent = free_coherent,
1332 .map_single = map_single,
1333 .unmap_single = unmap_single,
1334 .map_sg = map_sg,
1335 .unmap_sg = unmap_sg,
b39ba6ad 1336 .dma_supported = amd_iommu_dma_supported,
6631ee9d
JR
1337};
1338
431b2a20
JR
1339/*
1340 * The function which clues the AMD IOMMU driver into dma_ops.
1341 */
6631ee9d
JR
1342int __init amd_iommu_init_dma_ops(void)
1343{
1344 struct amd_iommu *iommu;
1345 int order = amd_iommu_aperture_order;
1346 int ret;
1347
431b2a20
JR
1348 /*
1349 * first allocate a default protection domain for every IOMMU we
1350 * found in the system. Devices not assigned to any other
1351 * protection domain will be assigned to the default one.
1352 */
6631ee9d
JR
1353 list_for_each_entry(iommu, &amd_iommu_list, list) {
1354 iommu->default_dom = dma_ops_domain_alloc(iommu, order);
1355 if (iommu->default_dom == NULL)
1356 return -ENOMEM;
1357 ret = iommu_init_unity_mappings(iommu);
1358 if (ret)
1359 goto free_domains;
1360 }
1361
431b2a20
JR
1362 /*
1363 * If device isolation is enabled, pre-allocate the protection
1364 * domains for each device.
1365 */
6631ee9d
JR
1366 if (amd_iommu_isolate)
1367 prealloc_protection_domains();
1368
1369 iommu_detected = 1;
1370 force_iommu = 1;
1371 bad_dma_address = 0;
92af4e29 1372#ifdef CONFIG_GART_IOMMU
6631ee9d
JR
1373 gart_iommu_aperture_disabled = 1;
1374 gart_iommu_aperture = 0;
92af4e29 1375#endif
6631ee9d 1376
431b2a20 1377 /* Make the driver finally visible to the drivers */
6631ee9d
JR
1378 dma_ops = &amd_iommu_dma_ops;
1379
1380 return 0;
1381
1382free_domains:
1383
1384 list_for_each_entry(iommu, &amd_iommu_list, list) {
1385 if (iommu->default_dom)
1386 dma_ops_domain_free(iommu->default_dom);
1387 }
1388
1389 return ret;
1390}