]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/kernel/amd_iommu.c
x86/amd-iommu: Add amd_iommu=off command line option
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / amd_iommu.c
CommitLineData
b6c02715 1/*
bf3118c1 2 * Copyright (C) 2007-2009 Advanced Micro Devices, Inc.
b6c02715
JR
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/pci.h>
a66022c4 21#include <linux/bitmap.h>
5a0e3ad6 22#include <linux/slab.h>
7f26508b 23#include <linux/debugfs.h>
b6c02715 24#include <linux/scatterlist.h>
51491367 25#include <linux/dma-mapping.h>
b6c02715 26#include <linux/iommu-helper.h>
c156e347 27#include <linux/iommu.h>
b6c02715 28#include <asm/proto.h>
46a7fa27 29#include <asm/iommu.h>
1d9b16d1 30#include <asm/gart.h>
6a9401a7 31#include <asm/amd_iommu_proto.h>
b6c02715 32#include <asm/amd_iommu_types.h>
c6da992e 33#include <asm/amd_iommu.h>
b6c02715
JR
34
35#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
36
136f78a1
JR
37#define EXIT_LOOP_COUNT 10000000
38
b6c02715
JR
39static DEFINE_RWLOCK(amd_iommu_devtable_lock);
40
bd60b735
JR
41/* A list of preallocated protection domains */
42static LIST_HEAD(iommu_pd_list);
43static DEFINE_SPINLOCK(iommu_pd_list_lock);
44
0feae533
JR
45/*
46 * Domain for untranslated devices - only allocated
47 * if iommu=pt passed on kernel cmd line.
48 */
49static struct protection_domain *pt_domain;
50
26961efe 51static struct iommu_ops amd_iommu_ops;
26961efe 52
431b2a20
JR
53/*
54 * general struct to manage commands send to an IOMMU
55 */
d6449536 56struct iommu_cmd {
b6c02715
JR
57 u32 data[4];
58};
59
a345b23b 60static void reset_iommu_command_buffer(struct amd_iommu *iommu);
04bfdd84 61static void update_domain(struct protection_domain *domain);
c1eee67b 62
15898bbc
JR
63/****************************************************************************
64 *
65 * Helper functions
66 *
67 ****************************************************************************/
68
69static inline u16 get_device_id(struct device *dev)
70{
71 struct pci_dev *pdev = to_pci_dev(dev);
72
73 return calc_devid(pdev->bus->number, pdev->devfn);
74}
75
657cbb6b
JR
76static struct iommu_dev_data *get_dev_data(struct device *dev)
77{
78 return dev->archdata.iommu;
79}
80
71c70984
JR
81/*
82 * In this function the list of preallocated protection domains is traversed to
83 * find the domain for a specific device
84 */
85static struct dma_ops_domain *find_protection_domain(u16 devid)
86{
87 struct dma_ops_domain *entry, *ret = NULL;
88 unsigned long flags;
89 u16 alias = amd_iommu_alias_table[devid];
90
91 if (list_empty(&iommu_pd_list))
92 return NULL;
93
94 spin_lock_irqsave(&iommu_pd_list_lock, flags);
95
96 list_for_each_entry(entry, &iommu_pd_list, list) {
97 if (entry->target_dev == devid ||
98 entry->target_dev == alias) {
99 ret = entry;
100 break;
101 }
102 }
103
104 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
105
106 return ret;
107}
108
98fc5a69
JR
109/*
110 * This function checks if the driver got a valid device from the caller to
111 * avoid dereferencing invalid pointers.
112 */
113static bool check_device(struct device *dev)
114{
115 u16 devid;
116
117 if (!dev || !dev->dma_mask)
118 return false;
119
120 /* No device or no PCI device */
339d3261 121 if (dev->bus != &pci_bus_type)
98fc5a69
JR
122 return false;
123
124 devid = get_device_id(dev);
125
126 /* Out of our scope? */
127 if (devid > amd_iommu_last_bdf)
128 return false;
129
130 if (amd_iommu_rlookup_table[devid] == NULL)
131 return false;
132
133 return true;
134}
135
657cbb6b
JR
136static int iommu_init_device(struct device *dev)
137{
138 struct iommu_dev_data *dev_data;
139 struct pci_dev *pdev;
140 u16 devid, alias;
141
142 if (dev->archdata.iommu)
143 return 0;
144
145 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
146 if (!dev_data)
147 return -ENOMEM;
148
b00d3bcf
JR
149 dev_data->dev = dev;
150
657cbb6b
JR
151 devid = get_device_id(dev);
152 alias = amd_iommu_alias_table[devid];
153 pdev = pci_get_bus_and_slot(PCI_BUS(alias), alias & 0xff);
154 if (pdev)
155 dev_data->alias = &pdev->dev;
156
24100055
JR
157 atomic_set(&dev_data->bind, 0);
158
657cbb6b
JR
159 dev->archdata.iommu = dev_data;
160
161
162 return 0;
163}
164
165static void iommu_uninit_device(struct device *dev)
166{
167 kfree(dev->archdata.iommu);
168}
b7cc9554
JR
169
170void __init amd_iommu_uninit_devices(void)
171{
172 struct pci_dev *pdev = NULL;
173
174 for_each_pci_dev(pdev) {
175
176 if (!check_device(&pdev->dev))
177 continue;
178
179 iommu_uninit_device(&pdev->dev);
180 }
181}
182
183int __init amd_iommu_init_devices(void)
184{
185 struct pci_dev *pdev = NULL;
186 int ret = 0;
187
188 for_each_pci_dev(pdev) {
189
190 if (!check_device(&pdev->dev))
191 continue;
192
193 ret = iommu_init_device(&pdev->dev);
194 if (ret)
195 goto out_free;
196 }
197
198 return 0;
199
200out_free:
201
202 amd_iommu_uninit_devices();
203
204 return ret;
205}
7f26508b
JR
206#ifdef CONFIG_AMD_IOMMU_STATS
207
208/*
209 * Initialization code for statistics collection
210 */
211
da49f6df 212DECLARE_STATS_COUNTER(compl_wait);
0f2a86f2 213DECLARE_STATS_COUNTER(cnt_map_single);
146a6917 214DECLARE_STATS_COUNTER(cnt_unmap_single);
d03f067a 215DECLARE_STATS_COUNTER(cnt_map_sg);
55877a6b 216DECLARE_STATS_COUNTER(cnt_unmap_sg);
c8f0fb36 217DECLARE_STATS_COUNTER(cnt_alloc_coherent);
5d31ee7e 218DECLARE_STATS_COUNTER(cnt_free_coherent);
c1858976 219DECLARE_STATS_COUNTER(cross_page);
f57d98ae 220DECLARE_STATS_COUNTER(domain_flush_single);
18811f55 221DECLARE_STATS_COUNTER(domain_flush_all);
5774f7c5 222DECLARE_STATS_COUNTER(alloced_io_mem);
8ecaf8f1 223DECLARE_STATS_COUNTER(total_map_requests);
da49f6df 224
7f26508b 225static struct dentry *stats_dir;
7f26508b
JR
226static struct dentry *de_fflush;
227
228static void amd_iommu_stats_add(struct __iommu_counter *cnt)
229{
230 if (stats_dir == NULL)
231 return;
232
233 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
234 &cnt->value);
235}
236
237static void amd_iommu_stats_init(void)
238{
239 stats_dir = debugfs_create_dir("amd-iommu", NULL);
240 if (stats_dir == NULL)
241 return;
242
7f26508b
JR
243 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
244 (u32 *)&amd_iommu_unmap_flush);
da49f6df
JR
245
246 amd_iommu_stats_add(&compl_wait);
0f2a86f2 247 amd_iommu_stats_add(&cnt_map_single);
146a6917 248 amd_iommu_stats_add(&cnt_unmap_single);
d03f067a 249 amd_iommu_stats_add(&cnt_map_sg);
55877a6b 250 amd_iommu_stats_add(&cnt_unmap_sg);
c8f0fb36 251 amd_iommu_stats_add(&cnt_alloc_coherent);
5d31ee7e 252 amd_iommu_stats_add(&cnt_free_coherent);
c1858976 253 amd_iommu_stats_add(&cross_page);
f57d98ae 254 amd_iommu_stats_add(&domain_flush_single);
18811f55 255 amd_iommu_stats_add(&domain_flush_all);
5774f7c5 256 amd_iommu_stats_add(&alloced_io_mem);
8ecaf8f1 257 amd_iommu_stats_add(&total_map_requests);
7f26508b
JR
258}
259
260#endif
261
a80dc3e0
JR
262/****************************************************************************
263 *
264 * Interrupt handling functions
265 *
266 ****************************************************************************/
267
e3e59876
JR
268static void dump_dte_entry(u16 devid)
269{
270 int i;
271
272 for (i = 0; i < 8; ++i)
273 pr_err("AMD-Vi: DTE[%d]: %08x\n", i,
274 amd_iommu_dev_table[devid].data[i]);
275}
276
945b4ac4
JR
277static void dump_command(unsigned long phys_addr)
278{
279 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
280 int i;
281
282 for (i = 0; i < 4; ++i)
283 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
284}
285
a345b23b 286static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
90008ee4
JR
287{
288 u32 *event = __evt;
289 int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
290 int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
291 int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
292 int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
293 u64 address = (u64)(((u64)event[3]) << 32) | event[2];
294
4c6f40d4 295 printk(KERN_ERR "AMD-Vi: Event logged [");
90008ee4
JR
296
297 switch (type) {
298 case EVENT_TYPE_ILL_DEV:
299 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
300 "address=0x%016llx flags=0x%04x]\n",
301 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
302 address, flags);
e3e59876 303 dump_dte_entry(devid);
90008ee4
JR
304 break;
305 case EVENT_TYPE_IO_FAULT:
306 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
307 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
308 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
309 domid, address, flags);
310 break;
311 case EVENT_TYPE_DEV_TAB_ERR:
312 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
313 "address=0x%016llx flags=0x%04x]\n",
314 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
315 address, flags);
316 break;
317 case EVENT_TYPE_PAGE_TAB_ERR:
318 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
319 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
320 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
321 domid, address, flags);
322 break;
323 case EVENT_TYPE_ILL_CMD:
324 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
8eed9833 325 iommu->reset_in_progress = true;
a345b23b 326 reset_iommu_command_buffer(iommu);
945b4ac4 327 dump_command(address);
90008ee4
JR
328 break;
329 case EVENT_TYPE_CMD_HARD_ERR:
330 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
331 "flags=0x%04x]\n", address, flags);
332 break;
333 case EVENT_TYPE_IOTLB_INV_TO:
334 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
335 "address=0x%016llx]\n",
336 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
337 address);
338 break;
339 case EVENT_TYPE_INV_DEV_REQ:
340 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
341 "address=0x%016llx flags=0x%04x]\n",
342 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
343 address, flags);
344 break;
345 default:
346 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
347 }
348}
349
350static void iommu_poll_events(struct amd_iommu *iommu)
351{
352 u32 head, tail;
353 unsigned long flags;
354
355 spin_lock_irqsave(&iommu->lock, flags);
356
357 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
358 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
359
360 while (head != tail) {
a345b23b 361 iommu_print_event(iommu, iommu->evt_buf + head);
90008ee4
JR
362 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
363 }
364
365 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
366
367 spin_unlock_irqrestore(&iommu->lock, flags);
368}
369
a80dc3e0
JR
370irqreturn_t amd_iommu_int_handler(int irq, void *data)
371{
90008ee4
JR
372 struct amd_iommu *iommu;
373
3bd22172 374 for_each_iommu(iommu)
90008ee4
JR
375 iommu_poll_events(iommu);
376
377 return IRQ_HANDLED;
a80dc3e0
JR
378}
379
431b2a20
JR
380/****************************************************************************
381 *
382 * IOMMU command queuing functions
383 *
384 ****************************************************************************/
385
386/*
387 * Writes the command to the IOMMUs command buffer and informs the
388 * hardware about the new command. Must be called with iommu->lock held.
389 */
d6449536 390static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
391{
392 u32 tail, head;
393 u8 *target;
394
549c90dc 395 WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
a19ae1ec 396 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
8a7c5ef3 397 target = iommu->cmd_buf + tail;
a19ae1ec
JR
398 memcpy_toio(target, cmd, sizeof(*cmd));
399 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
400 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
401 if (tail == head)
402 return -ENOMEM;
403 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
404
405 return 0;
406}
407
431b2a20
JR
408/*
409 * General queuing function for commands. Takes iommu->lock and calls
410 * __iommu_queue_command().
411 */
d6449536 412static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
413{
414 unsigned long flags;
415 int ret;
416
417 spin_lock_irqsave(&iommu->lock, flags);
418 ret = __iommu_queue_command(iommu, cmd);
09ee17eb 419 if (!ret)
0cfd7aa9 420 iommu->need_sync = true;
a19ae1ec
JR
421 spin_unlock_irqrestore(&iommu->lock, flags);
422
423 return ret;
424}
425
8d201968
JR
426/*
427 * This function waits until an IOMMU has completed a completion
428 * wait command
429 */
430static void __iommu_wait_for_completion(struct amd_iommu *iommu)
431{
432 int ready = 0;
433 unsigned status = 0;
434 unsigned long i = 0;
435
da49f6df
JR
436 INC_STATS_COUNTER(compl_wait);
437
8d201968
JR
438 while (!ready && (i < EXIT_LOOP_COUNT)) {
439 ++i;
440 /* wait for the bit to become one */
441 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
442 ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
443 }
444
445 /* set bit back to zero */
446 status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
447 writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);
448
8eed9833
JR
449 if (unlikely(i == EXIT_LOOP_COUNT))
450 iommu->reset_in_progress = true;
8d201968
JR
451}
452
453/*
454 * This function queues a completion wait command into the command
455 * buffer of an IOMMU
456 */
457static int __iommu_completion_wait(struct amd_iommu *iommu)
458{
459 struct iommu_cmd cmd;
460
461 memset(&cmd, 0, sizeof(cmd));
462 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
463 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);
464
465 return __iommu_queue_command(iommu, &cmd);
466}
467
431b2a20
JR
468/*
469 * This function is called whenever we need to ensure that the IOMMU has
470 * completed execution of all commands we sent. It sends a
471 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
472 * us about that by writing a value to a physical address we pass with
473 * the command.
474 */
a19ae1ec
JR
475static int iommu_completion_wait(struct amd_iommu *iommu)
476{
8d201968
JR
477 int ret = 0;
478 unsigned long flags;
a19ae1ec 479
7e4f88da
JR
480 spin_lock_irqsave(&iommu->lock, flags);
481
09ee17eb
JR
482 if (!iommu->need_sync)
483 goto out;
484
8d201968 485 ret = __iommu_completion_wait(iommu);
09ee17eb 486
0cfd7aa9 487 iommu->need_sync = false;
a19ae1ec
JR
488
489 if (ret)
7e4f88da 490 goto out;
a19ae1ec 491
8d201968 492 __iommu_wait_for_completion(iommu);
84df8175 493
7e4f88da
JR
494out:
495 spin_unlock_irqrestore(&iommu->lock, flags);
a19ae1ec 496
8eed9833
JR
497 if (iommu->reset_in_progress)
498 reset_iommu_command_buffer(iommu);
499
a19ae1ec
JR
500 return 0;
501}
502
0518a3a4
JR
503static void iommu_flush_complete(struct protection_domain *domain)
504{
505 int i;
506
507 for (i = 0; i < amd_iommus_present; ++i) {
508 if (!domain->dev_iommu[i])
509 continue;
510
511 /*
512 * Devices of this domain are behind this IOMMU
513 * We need to wait for completion of all commands.
514 */
515 iommu_completion_wait(amd_iommus[i]);
516 }
517}
518
431b2a20
JR
519/*
520 * Command send function for invalidating a device table entry
521 */
3fa43655
JR
522static int iommu_flush_device(struct device *dev)
523{
524 struct amd_iommu *iommu;
b00d3bcf 525 struct iommu_cmd cmd;
3fa43655
JR
526 u16 devid;
527
528 devid = get_device_id(dev);
529 iommu = amd_iommu_rlookup_table[devid];
530
b00d3bcf
JR
531 /* Build command */
532 memset(&cmd, 0, sizeof(cmd));
533 CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
534 cmd.data[0] = devid;
535
536 return iommu_queue_command(iommu, &cmd);
3fa43655
JR
537}
538
237b6f33
JR
539static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
540 u16 domid, int pde, int s)
541{
542 memset(cmd, 0, sizeof(*cmd));
543 address &= PAGE_MASK;
544 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
545 cmd->data[1] |= domid;
546 cmd->data[2] = lower_32_bits(address);
547 cmd->data[3] = upper_32_bits(address);
548 if (s) /* size bit - we flush more than one 4kb page */
549 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
550 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
551 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
552}
553
431b2a20
JR
554/*
555 * Generic command send function for invalidaing TLB entries
556 */
a19ae1ec
JR
557static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
558 u64 address, u16 domid, int pde, int s)
559{
d6449536 560 struct iommu_cmd cmd;
ee2fa743 561 int ret;
a19ae1ec 562
237b6f33 563 __iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
a19ae1ec 564
ee2fa743
JR
565 ret = iommu_queue_command(iommu, &cmd);
566
ee2fa743 567 return ret;
a19ae1ec
JR
568}
569
431b2a20
JR
570/*
571 * TLB invalidation function which is called from the mapping functions.
572 * It invalidates a single PTE if the range to flush is within a single
573 * page. Otherwise it flushes the whole TLB of the IOMMU.
574 */
6de8ad9b
JR
575static void __iommu_flush_pages(struct protection_domain *domain,
576 u64 address, size_t size, int pde)
a19ae1ec 577{
6de8ad9b 578 int s = 0, i;
dcd1e92e 579 unsigned long pages = iommu_num_pages(address, size, PAGE_SIZE);
a19ae1ec
JR
580
581 address &= PAGE_MASK;
582
999ba417
JR
583 if (pages > 1) {
584 /*
585 * If we have to flush more than one page, flush all
586 * TLB entries for this domain
587 */
588 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
589 s = 1;
a19ae1ec
JR
590 }
591
999ba417 592
6de8ad9b
JR
593 for (i = 0; i < amd_iommus_present; ++i) {
594 if (!domain->dev_iommu[i])
595 continue;
596
597 /*
598 * Devices of this domain are behind this IOMMU
599 * We need a TLB flush
600 */
601 iommu_queue_inv_iommu_pages(amd_iommus[i], address,
602 domain->id, pde, s);
603 }
604
605 return;
606}
607
608static void iommu_flush_pages(struct protection_domain *domain,
609 u64 address, size_t size)
610{
611 __iommu_flush_pages(domain, address, size, 0);
a19ae1ec 612}
b6c02715 613
1c655773 614/* Flush the whole IO/TLB for a given protection domain */
dcd1e92e 615static void iommu_flush_tlb(struct protection_domain *domain)
1c655773 616{
dcd1e92e 617 __iommu_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1c655773
JR
618}
619
42a49f96 620/* Flush the whole IO/TLB for a given protection domain - including PDE */
dcd1e92e 621static void iommu_flush_tlb_pde(struct protection_domain *domain)
42a49f96 622{
dcd1e92e 623 __iommu_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
42a49f96
CW
624}
625
b00d3bcf 626
43f49609 627/*
b00d3bcf 628 * This function flushes the DTEs for all devices in domain
43f49609 629 */
b00d3bcf
JR
630static void iommu_flush_domain_devices(struct protection_domain *domain)
631{
632 struct iommu_dev_data *dev_data;
633 unsigned long flags;
634
635 spin_lock_irqsave(&domain->lock, flags);
636
637 list_for_each_entry(dev_data, &domain->dev_list, list)
638 iommu_flush_device(dev_data->dev);
639
640 spin_unlock_irqrestore(&domain->lock, flags);
641}
642
643static void iommu_flush_all_domain_devices(void)
43f49609 644{
09b42804 645 struct protection_domain *domain;
e394d72a 646 unsigned long flags;
18811f55 647
09b42804 648 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
bfd1be18 649
09b42804 650 list_for_each_entry(domain, &amd_iommu_pd_list, list) {
b00d3bcf 651 iommu_flush_domain_devices(domain);
09b42804 652 iommu_flush_complete(domain);
bfd1be18 653 }
e394d72a 654
09b42804 655 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
e394d72a
JR
656}
657
b00d3bcf
JR
658void amd_iommu_flush_all_devices(void)
659{
660 iommu_flush_all_domain_devices();
661}
662
09b42804
JR
663/*
664 * This function uses heavy locking and may disable irqs for some time. But
665 * this is no issue because it is only called during resume.
666 */
bfd1be18 667void amd_iommu_flush_all_domains(void)
e394d72a 668{
e3306664 669 struct protection_domain *domain;
09b42804
JR
670 unsigned long flags;
671
672 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
e394d72a 673
e3306664 674 list_for_each_entry(domain, &amd_iommu_pd_list, list) {
09b42804 675 spin_lock(&domain->lock);
e3306664
JR
676 iommu_flush_tlb_pde(domain);
677 iommu_flush_complete(domain);
09b42804 678 spin_unlock(&domain->lock);
e3306664 679 }
09b42804
JR
680
681 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
bfd1be18
JR
682}
683
a345b23b
JR
684static void reset_iommu_command_buffer(struct amd_iommu *iommu)
685{
686 pr_err("AMD-Vi: Resetting IOMMU command buffer\n");
687
b26e81b8
JR
688 if (iommu->reset_in_progress)
689 panic("AMD-Vi: ILLEGAL_COMMAND_ERROR while resetting command buffer\n");
690
a345b23b 691 amd_iommu_reset_cmd_buffer(iommu);
b00d3bcf
JR
692 amd_iommu_flush_all_devices();
693 amd_iommu_flush_all_domains();
b26e81b8
JR
694
695 iommu->reset_in_progress = false;
a345b23b
JR
696}
697
431b2a20
JR
698/****************************************************************************
699 *
700 * The functions below are used the create the page table mappings for
701 * unity mapped regions.
702 *
703 ****************************************************************************/
704
308973d3
JR
705/*
706 * This function is used to add another level to an IO page table. Adding
707 * another level increases the size of the address space by 9 bits to a size up
708 * to 64 bits.
709 */
710static bool increase_address_space(struct protection_domain *domain,
711 gfp_t gfp)
712{
713 u64 *pte;
714
715 if (domain->mode == PAGE_MODE_6_LEVEL)
716 /* address space already 64 bit large */
717 return false;
718
719 pte = (void *)get_zeroed_page(gfp);
720 if (!pte)
721 return false;
722
723 *pte = PM_LEVEL_PDE(domain->mode,
724 virt_to_phys(domain->pt_root));
725 domain->pt_root = pte;
726 domain->mode += 1;
727 domain->updated = true;
728
729 return true;
730}
731
732static u64 *alloc_pte(struct protection_domain *domain,
733 unsigned long address,
734 int end_lvl,
735 u64 **pte_page,
736 gfp_t gfp)
737{
738 u64 *pte, *page;
739 int level;
740
741 while (address > PM_LEVEL_SIZE(domain->mode))
742 increase_address_space(domain, gfp);
743
744 level = domain->mode - 1;
745 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
746
747 while (level > end_lvl) {
748 if (!IOMMU_PTE_PRESENT(*pte)) {
749 page = (u64 *)get_zeroed_page(gfp);
750 if (!page)
751 return NULL;
752 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
753 }
754
755 level -= 1;
756
757 pte = IOMMU_PTE_PAGE(*pte);
758
759 if (pte_page && level == end_lvl)
760 *pte_page = pte;
761
762 pte = &pte[PM_LEVEL_INDEX(level, address)];
763 }
764
765 return pte;
766}
767
768/*
769 * This function checks if there is a PTE for a given dma address. If
770 * there is one, it returns the pointer to it.
771 */
772static u64 *fetch_pte(struct protection_domain *domain,
773 unsigned long address, int map_size)
774{
775 int level;
776 u64 *pte;
777
778 level = domain->mode - 1;
779 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
780
781 while (level > map_size) {
782 if (!IOMMU_PTE_PRESENT(*pte))
783 return NULL;
784
785 level -= 1;
786
787 pte = IOMMU_PTE_PAGE(*pte);
788 pte = &pte[PM_LEVEL_INDEX(level, address)];
789
790 if ((PM_PTE_LEVEL(*pte) == 0) && level != map_size) {
791 pte = NULL;
792 break;
793 }
794 }
795
796 return pte;
797}
798
431b2a20
JR
799/*
800 * Generic mapping functions. It maps a physical address into a DMA
801 * address space. It allocates the page table pages if necessary.
802 * In the future it can be extended to a generic mapping function
803 * supporting all features of AMD IOMMU page tables like level skipping
804 * and full 64 bit address spaces.
805 */
38e817fe
JR
806static int iommu_map_page(struct protection_domain *dom,
807 unsigned long bus_addr,
808 unsigned long phys_addr,
abdc5eb3
JR
809 int prot,
810 int map_size)
bd0e5211 811{
8bda3092 812 u64 __pte, *pte;
bd0e5211
JR
813
814 bus_addr = PAGE_ALIGN(bus_addr);
bb9d4ff8 815 phys_addr = PAGE_ALIGN(phys_addr);
bd0e5211 816
abdc5eb3
JR
817 BUG_ON(!PM_ALIGNED(map_size, bus_addr));
818 BUG_ON(!PM_ALIGNED(map_size, phys_addr));
819
bad1cac2 820 if (!(prot & IOMMU_PROT_MASK))
bd0e5211
JR
821 return -EINVAL;
822
abdc5eb3 823 pte = alloc_pte(dom, bus_addr, map_size, NULL, GFP_KERNEL);
bd0e5211
JR
824
825 if (IOMMU_PTE_PRESENT(*pte))
826 return -EBUSY;
827
828 __pte = phys_addr | IOMMU_PTE_P;
829 if (prot & IOMMU_PROT_IR)
830 __pte |= IOMMU_PTE_IR;
831 if (prot & IOMMU_PROT_IW)
832 __pte |= IOMMU_PTE_IW;
833
834 *pte = __pte;
835
04bfdd84
JR
836 update_domain(dom);
837
bd0e5211
JR
838 return 0;
839}
840
eb74ff6c 841static void iommu_unmap_page(struct protection_domain *dom,
a6b256b4 842 unsigned long bus_addr, int map_size)
eb74ff6c 843{
a6b256b4 844 u64 *pte = fetch_pte(dom, bus_addr, map_size);
eb74ff6c 845
38a76eee
JR
846 if (pte)
847 *pte = 0;
eb74ff6c 848}
eb74ff6c 849
431b2a20
JR
850/*
851 * This function checks if a specific unity mapping entry is needed for
852 * this specific IOMMU.
853 */
bd0e5211
JR
854static int iommu_for_unity_map(struct amd_iommu *iommu,
855 struct unity_map_entry *entry)
856{
857 u16 bdf, i;
858
859 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
860 bdf = amd_iommu_alias_table[i];
861 if (amd_iommu_rlookup_table[bdf] == iommu)
862 return 1;
863 }
864
865 return 0;
866}
867
431b2a20
JR
868/*
869 * This function actually applies the mapping to the page table of the
870 * dma_ops domain.
871 */
bd0e5211
JR
872static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
873 struct unity_map_entry *e)
874{
875 u64 addr;
876 int ret;
877
878 for (addr = e->address_start; addr < e->address_end;
879 addr += PAGE_SIZE) {
abdc5eb3
JR
880 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
881 PM_MAP_4k);
bd0e5211
JR
882 if (ret)
883 return ret;
884 /*
885 * if unity mapping is in aperture range mark the page
886 * as allocated in the aperture
887 */
888 if (addr < dma_dom->aperture_size)
c3239567 889 __set_bit(addr >> PAGE_SHIFT,
384de729 890 dma_dom->aperture[0]->bitmap);
bd0e5211
JR
891 }
892
893 return 0;
894}
895
171e7b37
JR
896/*
897 * Init the unity mappings for a specific IOMMU in the system
898 *
899 * Basically iterates over all unity mapping entries and applies them to
900 * the default domain DMA of that IOMMU if necessary.
901 */
902static int iommu_init_unity_mappings(struct amd_iommu *iommu)
903{
904 struct unity_map_entry *entry;
905 int ret;
906
907 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
908 if (!iommu_for_unity_map(iommu, entry))
909 continue;
910 ret = dma_ops_unity_map(iommu->default_dom, entry);
911 if (ret)
912 return ret;
913 }
914
915 return 0;
916}
917
431b2a20
JR
918/*
919 * Inits the unity mappings required for a specific device
920 */
bd0e5211
JR
921static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
922 u16 devid)
923{
924 struct unity_map_entry *e;
925 int ret;
926
927 list_for_each_entry(e, &amd_iommu_unity_map, list) {
928 if (!(devid >= e->devid_start && devid <= e->devid_end))
929 continue;
930 ret = dma_ops_unity_map(dma_dom, e);
931 if (ret)
932 return ret;
933 }
934
935 return 0;
936}
937
431b2a20
JR
938/****************************************************************************
939 *
940 * The next functions belong to the address allocator for the dma_ops
941 * interface functions. They work like the allocators in the other IOMMU
942 * drivers. Its basically a bitmap which marks the allocated pages in
943 * the aperture. Maybe it could be enhanced in the future to a more
944 * efficient allocator.
945 *
946 ****************************************************************************/
d3086444 947
431b2a20 948/*
384de729 949 * The address allocator core functions.
431b2a20
JR
950 *
951 * called with domain->lock held
952 */
384de729 953
171e7b37
JR
954/*
955 * Used to reserve address ranges in the aperture (e.g. for exclusion
956 * ranges.
957 */
958static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
959 unsigned long start_page,
960 unsigned int pages)
961{
962 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
963
964 if (start_page + pages > last_page)
965 pages = last_page - start_page;
966
967 for (i = start_page; i < start_page + pages; ++i) {
968 int index = i / APERTURE_RANGE_PAGES;
969 int page = i % APERTURE_RANGE_PAGES;
970 __set_bit(page, dom->aperture[index]->bitmap);
971 }
972}
973
9cabe89b
JR
974/*
975 * This function is used to add a new aperture range to an existing
976 * aperture in case of dma_ops domain allocation or address allocation
977 * failure.
978 */
576175c2 979static int alloc_new_range(struct dma_ops_domain *dma_dom,
9cabe89b
JR
980 bool populate, gfp_t gfp)
981{
982 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
576175c2 983 struct amd_iommu *iommu;
d91afd15 984 unsigned long i;
9cabe89b 985
f5e9705c
JR
986#ifdef CONFIG_IOMMU_STRESS
987 populate = false;
988#endif
989
9cabe89b
JR
990 if (index >= APERTURE_MAX_RANGES)
991 return -ENOMEM;
992
993 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
994 if (!dma_dom->aperture[index])
995 return -ENOMEM;
996
997 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
998 if (!dma_dom->aperture[index]->bitmap)
999 goto out_free;
1000
1001 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1002
1003 if (populate) {
1004 unsigned long address = dma_dom->aperture_size;
1005 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1006 u64 *pte, *pte_page;
1007
1008 for (i = 0; i < num_ptes; ++i) {
abdc5eb3 1009 pte = alloc_pte(&dma_dom->domain, address, PM_MAP_4k,
9cabe89b
JR
1010 &pte_page, gfp);
1011 if (!pte)
1012 goto out_free;
1013
1014 dma_dom->aperture[index]->pte_pages[i] = pte_page;
1015
1016 address += APERTURE_RANGE_SIZE / 64;
1017 }
1018 }
1019
1020 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1021
00cd122a 1022 /* Intialize the exclusion range if necessary */
576175c2
JR
1023 for_each_iommu(iommu) {
1024 if (iommu->exclusion_start &&
1025 iommu->exclusion_start >= dma_dom->aperture[index]->offset
1026 && iommu->exclusion_start < dma_dom->aperture_size) {
1027 unsigned long startpage;
1028 int pages = iommu_num_pages(iommu->exclusion_start,
1029 iommu->exclusion_length,
1030 PAGE_SIZE);
1031 startpage = iommu->exclusion_start >> PAGE_SHIFT;
1032 dma_ops_reserve_addresses(dma_dom, startpage, pages);
1033 }
00cd122a
JR
1034 }
1035
1036 /*
1037 * Check for areas already mapped as present in the new aperture
1038 * range and mark those pages as reserved in the allocator. Such
1039 * mappings may already exist as a result of requested unity
1040 * mappings for devices.
1041 */
1042 for (i = dma_dom->aperture[index]->offset;
1043 i < dma_dom->aperture_size;
1044 i += PAGE_SIZE) {
a6b256b4 1045 u64 *pte = fetch_pte(&dma_dom->domain, i, PM_MAP_4k);
00cd122a
JR
1046 if (!pte || !IOMMU_PTE_PRESENT(*pte))
1047 continue;
1048
1049 dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
1050 }
1051
04bfdd84
JR
1052 update_domain(&dma_dom->domain);
1053
9cabe89b
JR
1054 return 0;
1055
1056out_free:
04bfdd84
JR
1057 update_domain(&dma_dom->domain);
1058
9cabe89b
JR
1059 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1060
1061 kfree(dma_dom->aperture[index]);
1062 dma_dom->aperture[index] = NULL;
1063
1064 return -ENOMEM;
1065}
1066
384de729
JR
1067static unsigned long dma_ops_area_alloc(struct device *dev,
1068 struct dma_ops_domain *dom,
1069 unsigned int pages,
1070 unsigned long align_mask,
1071 u64 dma_mask,
1072 unsigned long start)
1073{
803b8cb4 1074 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
384de729
JR
1075 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1076 int i = start >> APERTURE_RANGE_SHIFT;
1077 unsigned long boundary_size;
1078 unsigned long address = -1;
1079 unsigned long limit;
1080
803b8cb4
JR
1081 next_bit >>= PAGE_SHIFT;
1082
384de729
JR
1083 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1084 PAGE_SIZE) >> PAGE_SHIFT;
1085
1086 for (;i < max_index; ++i) {
1087 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1088
1089 if (dom->aperture[i]->offset >= dma_mask)
1090 break;
1091
1092 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1093 dma_mask >> PAGE_SHIFT);
1094
1095 address = iommu_area_alloc(dom->aperture[i]->bitmap,
1096 limit, next_bit, pages, 0,
1097 boundary_size, align_mask);
1098 if (address != -1) {
1099 address = dom->aperture[i]->offset +
1100 (address << PAGE_SHIFT);
803b8cb4 1101 dom->next_address = address + (pages << PAGE_SHIFT);
384de729
JR
1102 break;
1103 }
1104
1105 next_bit = 0;
1106 }
1107
1108 return address;
1109}
1110
d3086444
JR
1111static unsigned long dma_ops_alloc_addresses(struct device *dev,
1112 struct dma_ops_domain *dom,
6d4f343f 1113 unsigned int pages,
832a90c3
JR
1114 unsigned long align_mask,
1115 u64 dma_mask)
d3086444 1116{
d3086444 1117 unsigned long address;
d3086444 1118
fe16f088
JR
1119#ifdef CONFIG_IOMMU_STRESS
1120 dom->next_address = 0;
1121 dom->need_flush = true;
1122#endif
d3086444 1123
384de729 1124 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
803b8cb4 1125 dma_mask, dom->next_address);
d3086444 1126
1c655773 1127 if (address == -1) {
803b8cb4 1128 dom->next_address = 0;
384de729
JR
1129 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1130 dma_mask, 0);
1c655773
JR
1131 dom->need_flush = true;
1132 }
d3086444 1133
384de729 1134 if (unlikely(address == -1))
8fd524b3 1135 address = DMA_ERROR_CODE;
d3086444
JR
1136
1137 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1138
1139 return address;
1140}
1141
431b2a20
JR
1142/*
1143 * The address free function.
1144 *
1145 * called with domain->lock held
1146 */
d3086444
JR
1147static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1148 unsigned long address,
1149 unsigned int pages)
1150{
384de729
JR
1151 unsigned i = address >> APERTURE_RANGE_SHIFT;
1152 struct aperture_range *range = dom->aperture[i];
80be308d 1153
384de729
JR
1154 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1155
47bccd6b
JR
1156#ifdef CONFIG_IOMMU_STRESS
1157 if (i < 4)
1158 return;
1159#endif
80be308d 1160
803b8cb4 1161 if (address >= dom->next_address)
80be308d 1162 dom->need_flush = true;
384de729
JR
1163
1164 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
803b8cb4 1165
a66022c4 1166 bitmap_clear(range->bitmap, address, pages);
384de729 1167
d3086444
JR
1168}
1169
431b2a20
JR
1170/****************************************************************************
1171 *
1172 * The next functions belong to the domain allocation. A domain is
1173 * allocated for every IOMMU as the default domain. If device isolation
1174 * is enabled, every device get its own domain. The most important thing
1175 * about domains is the page table mapping the DMA address space they
1176 * contain.
1177 *
1178 ****************************************************************************/
1179
aeb26f55
JR
1180/*
1181 * This function adds a protection domain to the global protection domain list
1182 */
1183static void add_domain_to_list(struct protection_domain *domain)
1184{
1185 unsigned long flags;
1186
1187 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1188 list_add(&domain->list, &amd_iommu_pd_list);
1189 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1190}
1191
1192/*
1193 * This function removes a protection domain to the global
1194 * protection domain list
1195 */
1196static void del_domain_from_list(struct protection_domain *domain)
1197{
1198 unsigned long flags;
1199
1200 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1201 list_del(&domain->list);
1202 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1203}
1204
ec487d1a
JR
1205static u16 domain_id_alloc(void)
1206{
1207 unsigned long flags;
1208 int id;
1209
1210 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1211 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1212 BUG_ON(id == 0);
1213 if (id > 0 && id < MAX_DOMAIN_ID)
1214 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1215 else
1216 id = 0;
1217 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1218
1219 return id;
1220}
1221
a2acfb75
JR
1222static void domain_id_free(int id)
1223{
1224 unsigned long flags;
1225
1226 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1227 if (id > 0 && id < MAX_DOMAIN_ID)
1228 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1229 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1230}
a2acfb75 1231
86db2e5d 1232static void free_pagetable(struct protection_domain *domain)
ec487d1a
JR
1233{
1234 int i, j;
1235 u64 *p1, *p2, *p3;
1236
86db2e5d 1237 p1 = domain->pt_root;
ec487d1a
JR
1238
1239 if (!p1)
1240 return;
1241
1242 for (i = 0; i < 512; ++i) {
1243 if (!IOMMU_PTE_PRESENT(p1[i]))
1244 continue;
1245
1246 p2 = IOMMU_PTE_PAGE(p1[i]);
3cc3d84b 1247 for (j = 0; j < 512; ++j) {
ec487d1a
JR
1248 if (!IOMMU_PTE_PRESENT(p2[j]))
1249 continue;
1250 p3 = IOMMU_PTE_PAGE(p2[j]);
1251 free_page((unsigned long)p3);
1252 }
1253
1254 free_page((unsigned long)p2);
1255 }
1256
1257 free_page((unsigned long)p1);
86db2e5d
JR
1258
1259 domain->pt_root = NULL;
ec487d1a
JR
1260}
1261
431b2a20
JR
1262/*
1263 * Free a domain, only used if something went wrong in the
1264 * allocation path and we need to free an already allocated page table
1265 */
ec487d1a
JR
1266static void dma_ops_domain_free(struct dma_ops_domain *dom)
1267{
384de729
JR
1268 int i;
1269
ec487d1a
JR
1270 if (!dom)
1271 return;
1272
aeb26f55
JR
1273 del_domain_from_list(&dom->domain);
1274
86db2e5d 1275 free_pagetable(&dom->domain);
ec487d1a 1276
384de729
JR
1277 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1278 if (!dom->aperture[i])
1279 continue;
1280 free_page((unsigned long)dom->aperture[i]->bitmap);
1281 kfree(dom->aperture[i]);
1282 }
ec487d1a
JR
1283
1284 kfree(dom);
1285}
1286
431b2a20
JR
1287/*
1288 * Allocates a new protection domain usable for the dma_ops functions.
1289 * It also intializes the page table and the address allocator data
1290 * structures required for the dma_ops interface
1291 */
87a64d52 1292static struct dma_ops_domain *dma_ops_domain_alloc(void)
ec487d1a
JR
1293{
1294 struct dma_ops_domain *dma_dom;
ec487d1a
JR
1295
1296 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1297 if (!dma_dom)
1298 return NULL;
1299
1300 spin_lock_init(&dma_dom->domain.lock);
1301
1302 dma_dom->domain.id = domain_id_alloc();
1303 if (dma_dom->domain.id == 0)
1304 goto free_dma_dom;
7c392cbe 1305 INIT_LIST_HEAD(&dma_dom->domain.dev_list);
8f7a017c 1306 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
ec487d1a 1307 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
9fdb19d6 1308 dma_dom->domain.flags = PD_DMA_OPS_MASK;
ec487d1a
JR
1309 dma_dom->domain.priv = dma_dom;
1310 if (!dma_dom->domain.pt_root)
1311 goto free_dma_dom;
ec487d1a 1312
1c655773 1313 dma_dom->need_flush = false;
bd60b735 1314 dma_dom->target_dev = 0xffff;
1c655773 1315
aeb26f55
JR
1316 add_domain_to_list(&dma_dom->domain);
1317
576175c2 1318 if (alloc_new_range(dma_dom, true, GFP_KERNEL))
ec487d1a 1319 goto free_dma_dom;
ec487d1a 1320
431b2a20 1321 /*
ec487d1a
JR
1322 * mark the first page as allocated so we never return 0 as
1323 * a valid dma-address. So we can use 0 as error value
431b2a20 1324 */
384de729 1325 dma_dom->aperture[0]->bitmap[0] = 1;
803b8cb4 1326 dma_dom->next_address = 0;
ec487d1a 1327
ec487d1a
JR
1328
1329 return dma_dom;
1330
1331free_dma_dom:
1332 dma_ops_domain_free(dma_dom);
1333
1334 return NULL;
1335}
1336
5b28df6f
JR
1337/*
1338 * little helper function to check whether a given protection domain is a
1339 * dma_ops domain
1340 */
1341static bool dma_ops_domain(struct protection_domain *domain)
1342{
1343 return domain->flags & PD_DMA_OPS_MASK;
1344}
1345
407d733e 1346static void set_dte_entry(u16 devid, struct protection_domain *domain)
b20ac0d4 1347{
b20ac0d4 1348 u64 pte_root = virt_to_phys(domain->pt_root);
863c74eb 1349
38ddf41b
JR
1350 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1351 << DEV_ENTRY_MODE_SHIFT;
1352 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
b20ac0d4 1353
b20ac0d4 1354 amd_iommu_dev_table[devid].data[2] = domain->id;
aa879fff
JR
1355 amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
1356 amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
15898bbc
JR
1357}
1358
1359static void clear_dte_entry(u16 devid)
1360{
15898bbc
JR
1361 /* remove entry from the device table seen by the hardware */
1362 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1363 amd_iommu_dev_table[devid].data[1] = 0;
1364 amd_iommu_dev_table[devid].data[2] = 0;
1365
1366 amd_iommu_apply_erratum_63(devid);
7f760ddd
JR
1367}
1368
1369static void do_attach(struct device *dev, struct protection_domain *domain)
1370{
1371 struct iommu_dev_data *dev_data;
1372 struct amd_iommu *iommu;
1373 u16 devid;
1374
1375 devid = get_device_id(dev);
1376 iommu = amd_iommu_rlookup_table[devid];
1377 dev_data = get_dev_data(dev);
1378
1379 /* Update data structures */
1380 dev_data->domain = domain;
1381 list_add(&dev_data->list, &domain->dev_list);
1382 set_dte_entry(devid, domain);
1383
1384 /* Do reference counting */
1385 domain->dev_iommu[iommu->index] += 1;
1386 domain->dev_cnt += 1;
1387
1388 /* Flush the DTE entry */
3fa43655 1389 iommu_flush_device(dev);
7f760ddd
JR
1390}
1391
1392static void do_detach(struct device *dev)
1393{
1394 struct iommu_dev_data *dev_data;
1395 struct amd_iommu *iommu;
1396 u16 devid;
1397
1398 devid = get_device_id(dev);
1399 iommu = amd_iommu_rlookup_table[devid];
1400 dev_data = get_dev_data(dev);
15898bbc
JR
1401
1402 /* decrease reference counters */
7f760ddd
JR
1403 dev_data->domain->dev_iommu[iommu->index] -= 1;
1404 dev_data->domain->dev_cnt -= 1;
1405
1406 /* Update data structures */
1407 dev_data->domain = NULL;
1408 list_del(&dev_data->list);
1409 clear_dte_entry(devid);
15898bbc 1410
7f760ddd 1411 /* Flush the DTE entry */
3fa43655 1412 iommu_flush_device(dev);
2b681faf
JR
1413}
1414
1415/*
1416 * If a device is not yet associated with a domain, this function does
1417 * assigns it visible for the hardware
1418 */
15898bbc
JR
1419static int __attach_device(struct device *dev,
1420 struct protection_domain *domain)
2b681faf 1421{
657cbb6b 1422 struct iommu_dev_data *dev_data, *alias_data;
657cbb6b 1423
657cbb6b
JR
1424 dev_data = get_dev_data(dev);
1425 alias_data = get_dev_data(dev_data->alias);
7f760ddd 1426
657cbb6b
JR
1427 if (!alias_data)
1428 return -EINVAL;
15898bbc 1429
2b681faf
JR
1430 /* lock domain */
1431 spin_lock(&domain->lock);
1432
15898bbc 1433 /* Some sanity checks */
657cbb6b
JR
1434 if (alias_data->domain != NULL &&
1435 alias_data->domain != domain)
15898bbc 1436 return -EBUSY;
eba6ac60 1437
657cbb6b
JR
1438 if (dev_data->domain != NULL &&
1439 dev_data->domain != domain)
15898bbc
JR
1440 return -EBUSY;
1441
1442 /* Do real assignment */
7f760ddd
JR
1443 if (dev_data->alias != dev) {
1444 alias_data = get_dev_data(dev_data->alias);
1445 if (alias_data->domain == NULL)
1446 do_attach(dev_data->alias, domain);
24100055
JR
1447
1448 atomic_inc(&alias_data->bind);
657cbb6b 1449 }
15898bbc 1450
7f760ddd
JR
1451 if (dev_data->domain == NULL)
1452 do_attach(dev, domain);
eba6ac60 1453
24100055
JR
1454 atomic_inc(&dev_data->bind);
1455
eba6ac60
JR
1456 /* ready */
1457 spin_unlock(&domain->lock);
15898bbc
JR
1458
1459 return 0;
0feae533 1460}
b20ac0d4 1461
407d733e
JR
1462/*
1463 * If a device is not yet associated with a domain, this function does
1464 * assigns it visible for the hardware
1465 */
15898bbc
JR
1466static int attach_device(struct device *dev,
1467 struct protection_domain *domain)
0feae533 1468{
eba6ac60 1469 unsigned long flags;
15898bbc 1470 int ret;
eba6ac60
JR
1471
1472 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
15898bbc 1473 ret = __attach_device(dev, domain);
b20ac0d4
JR
1474 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1475
0feae533
JR
1476 /*
1477 * We might boot into a crash-kernel here. The crashed kernel
1478 * left the caches in the IOMMU dirty. So we have to flush
1479 * here to evict all dirty stuff.
1480 */
dcd1e92e 1481 iommu_flush_tlb_pde(domain);
15898bbc
JR
1482
1483 return ret;
b20ac0d4
JR
1484}
1485
355bf553
JR
1486/*
1487 * Removes a device from a protection domain (unlocked)
1488 */
15898bbc 1489static void __detach_device(struct device *dev)
355bf553 1490{
657cbb6b 1491 struct iommu_dev_data *dev_data = get_dev_data(dev);
24100055 1492 struct iommu_dev_data *alias_data;
2ca76279 1493 struct protection_domain *domain;
7c392cbe 1494 unsigned long flags;
c4596114 1495
7f760ddd 1496 BUG_ON(!dev_data->domain);
355bf553 1497
2ca76279
JR
1498 domain = dev_data->domain;
1499
1500 spin_lock_irqsave(&domain->lock, flags);
24100055 1501
7f760ddd 1502 if (dev_data->alias != dev) {
24100055 1503 alias_data = get_dev_data(dev_data->alias);
7f760ddd
JR
1504 if (atomic_dec_and_test(&alias_data->bind))
1505 do_detach(dev_data->alias);
24100055
JR
1506 }
1507
7f760ddd
JR
1508 if (atomic_dec_and_test(&dev_data->bind))
1509 do_detach(dev);
1510
2ca76279 1511 spin_unlock_irqrestore(&domain->lock, flags);
21129f78
JR
1512
1513 /*
1514 * If we run in passthrough mode the device must be assigned to the
d3ad9373
JR
1515 * passthrough domain if it is detached from any other domain.
1516 * Make sure we can deassign from the pt_domain itself.
21129f78 1517 */
d3ad9373
JR
1518 if (iommu_pass_through &&
1519 (dev_data->domain == NULL && domain != pt_domain))
15898bbc 1520 __attach_device(dev, pt_domain);
355bf553
JR
1521}
1522
1523/*
1524 * Removes a device from a protection domain (with devtable_lock held)
1525 */
15898bbc 1526static void detach_device(struct device *dev)
355bf553
JR
1527{
1528 unsigned long flags;
1529
1530 /* lock device table */
1531 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
15898bbc 1532 __detach_device(dev);
355bf553
JR
1533 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1534}
e275a2a0 1535
15898bbc
JR
1536/*
1537 * Find out the protection domain structure for a given PCI device. This
1538 * will give us the pointer to the page table root for example.
1539 */
1540static struct protection_domain *domain_for_device(struct device *dev)
1541{
1542 struct protection_domain *dom;
657cbb6b 1543 struct iommu_dev_data *dev_data, *alias_data;
15898bbc
JR
1544 unsigned long flags;
1545 u16 devid, alias;
1546
657cbb6b
JR
1547 devid = get_device_id(dev);
1548 alias = amd_iommu_alias_table[devid];
1549 dev_data = get_dev_data(dev);
1550 alias_data = get_dev_data(dev_data->alias);
1551 if (!alias_data)
1552 return NULL;
15898bbc
JR
1553
1554 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
657cbb6b 1555 dom = dev_data->domain;
15898bbc 1556 if (dom == NULL &&
657cbb6b
JR
1557 alias_data->domain != NULL) {
1558 __attach_device(dev, alias_data->domain);
1559 dom = alias_data->domain;
15898bbc
JR
1560 }
1561
1562 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1563
1564 return dom;
1565}
1566
e275a2a0
JR
1567static int device_change_notifier(struct notifier_block *nb,
1568 unsigned long action, void *data)
1569{
1570 struct device *dev = data;
98fc5a69 1571 u16 devid;
e275a2a0
JR
1572 struct protection_domain *domain;
1573 struct dma_ops_domain *dma_domain;
1574 struct amd_iommu *iommu;
1ac4cbbc 1575 unsigned long flags;
e275a2a0 1576
98fc5a69
JR
1577 if (!check_device(dev))
1578 return 0;
e275a2a0 1579
98fc5a69
JR
1580 devid = get_device_id(dev);
1581 iommu = amd_iommu_rlookup_table[devid];
e275a2a0
JR
1582
1583 switch (action) {
c1eee67b 1584 case BUS_NOTIFY_UNBOUND_DRIVER:
657cbb6b
JR
1585
1586 domain = domain_for_device(dev);
1587
e275a2a0
JR
1588 if (!domain)
1589 goto out;
a1ca331c
JR
1590 if (iommu_pass_through)
1591 break;
15898bbc 1592 detach_device(dev);
1ac4cbbc
JR
1593 break;
1594 case BUS_NOTIFY_ADD_DEVICE:
657cbb6b
JR
1595
1596 iommu_init_device(dev);
1597
1598 domain = domain_for_device(dev);
1599
1ac4cbbc
JR
1600 /* allocate a protection domain if a device is added */
1601 dma_domain = find_protection_domain(devid);
1602 if (dma_domain)
1603 goto out;
87a64d52 1604 dma_domain = dma_ops_domain_alloc();
1ac4cbbc
JR
1605 if (!dma_domain)
1606 goto out;
1607 dma_domain->target_dev = devid;
1608
1609 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1610 list_add_tail(&dma_domain->list, &iommu_pd_list);
1611 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1612
e275a2a0 1613 break;
657cbb6b
JR
1614 case BUS_NOTIFY_DEL_DEVICE:
1615
1616 iommu_uninit_device(dev);
1617
e275a2a0
JR
1618 default:
1619 goto out;
1620 }
1621
3fa43655 1622 iommu_flush_device(dev);
e275a2a0
JR
1623 iommu_completion_wait(iommu);
1624
1625out:
1626 return 0;
1627}
1628
b25ae679 1629static struct notifier_block device_nb = {
e275a2a0
JR
1630 .notifier_call = device_change_notifier,
1631};
355bf553 1632
8638c491
JR
1633void amd_iommu_init_notifier(void)
1634{
1635 bus_register_notifier(&pci_bus_type, &device_nb);
1636}
1637
431b2a20
JR
1638/*****************************************************************************
1639 *
1640 * The next functions belong to the dma_ops mapping/unmapping code.
1641 *
1642 *****************************************************************************/
1643
1644/*
1645 * In the dma_ops path we only have the struct device. This function
1646 * finds the corresponding IOMMU, the protection domain and the
1647 * requestor id for a given device.
1648 * If the device is not yet associated with a domain this is also done
1649 * in this function.
1650 */
94f6d190 1651static struct protection_domain *get_domain(struct device *dev)
b20ac0d4 1652{
94f6d190 1653 struct protection_domain *domain;
b20ac0d4 1654 struct dma_ops_domain *dma_dom;
94f6d190 1655 u16 devid = get_device_id(dev);
b20ac0d4 1656
f99c0f1c 1657 if (!check_device(dev))
94f6d190 1658 return ERR_PTR(-EINVAL);
b20ac0d4 1659
94f6d190
JR
1660 domain = domain_for_device(dev);
1661 if (domain != NULL && !dma_ops_domain(domain))
1662 return ERR_PTR(-EBUSY);
f99c0f1c 1663
94f6d190
JR
1664 if (domain != NULL)
1665 return domain;
b20ac0d4 1666
15898bbc 1667 /* Device not bount yet - bind it */
94f6d190 1668 dma_dom = find_protection_domain(devid);
15898bbc 1669 if (!dma_dom)
94f6d190
JR
1670 dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
1671 attach_device(dev, &dma_dom->domain);
15898bbc 1672 DUMP_printk("Using protection domain %d for device %s\n",
94f6d190 1673 dma_dom->domain.id, dev_name(dev));
f91ba190 1674
94f6d190 1675 return &dma_dom->domain;
b20ac0d4
JR
1676}
1677
04bfdd84
JR
1678static void update_device_table(struct protection_domain *domain)
1679{
492667da 1680 struct iommu_dev_data *dev_data;
04bfdd84 1681
492667da
JR
1682 list_for_each_entry(dev_data, &domain->dev_list, list) {
1683 u16 devid = get_device_id(dev_data->dev);
1684 set_dte_entry(devid, domain);
04bfdd84
JR
1685 }
1686}
1687
1688static void update_domain(struct protection_domain *domain)
1689{
1690 if (!domain->updated)
1691 return;
1692
1693 update_device_table(domain);
b00d3bcf 1694 iommu_flush_domain_devices(domain);
601367d7 1695 iommu_flush_tlb_pde(domain);
04bfdd84
JR
1696
1697 domain->updated = false;
1698}
1699
8bda3092
JR
1700/*
1701 * This function fetches the PTE for a given address in the aperture
1702 */
1703static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
1704 unsigned long address)
1705{
384de729 1706 struct aperture_range *aperture;
8bda3092
JR
1707 u64 *pte, *pte_page;
1708
384de729
JR
1709 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1710 if (!aperture)
1711 return NULL;
1712
1713 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
8bda3092 1714 if (!pte) {
abdc5eb3
JR
1715 pte = alloc_pte(&dom->domain, address, PM_MAP_4k, &pte_page,
1716 GFP_ATOMIC);
384de729
JR
1717 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
1718 } else
8c8c143c 1719 pte += PM_LEVEL_INDEX(0, address);
8bda3092 1720
04bfdd84 1721 update_domain(&dom->domain);
8bda3092
JR
1722
1723 return pte;
1724}
1725
431b2a20
JR
1726/*
1727 * This is the generic map function. It maps one 4kb page at paddr to
1728 * the given address in the DMA address space for the domain.
1729 */
680525e0 1730static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
cb76c322
JR
1731 unsigned long address,
1732 phys_addr_t paddr,
1733 int direction)
1734{
1735 u64 *pte, __pte;
1736
1737 WARN_ON(address > dom->aperture_size);
1738
1739 paddr &= PAGE_MASK;
1740
8bda3092 1741 pte = dma_ops_get_pte(dom, address);
53812c11 1742 if (!pte)
8fd524b3 1743 return DMA_ERROR_CODE;
cb76c322
JR
1744
1745 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
1746
1747 if (direction == DMA_TO_DEVICE)
1748 __pte |= IOMMU_PTE_IR;
1749 else if (direction == DMA_FROM_DEVICE)
1750 __pte |= IOMMU_PTE_IW;
1751 else if (direction == DMA_BIDIRECTIONAL)
1752 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
1753
1754 WARN_ON(*pte);
1755
1756 *pte = __pte;
1757
1758 return (dma_addr_t)address;
1759}
1760
431b2a20
JR
1761/*
1762 * The generic unmapping function for on page in the DMA address space.
1763 */
680525e0 1764static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
cb76c322
JR
1765 unsigned long address)
1766{
384de729 1767 struct aperture_range *aperture;
cb76c322
JR
1768 u64 *pte;
1769
1770 if (address >= dom->aperture_size)
1771 return;
1772
384de729
JR
1773 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1774 if (!aperture)
1775 return;
1776
1777 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1778 if (!pte)
1779 return;
cb76c322 1780
8c8c143c 1781 pte += PM_LEVEL_INDEX(0, address);
cb76c322
JR
1782
1783 WARN_ON(!*pte);
1784
1785 *pte = 0ULL;
1786}
1787
431b2a20
JR
1788/*
1789 * This function contains common code for mapping of a physically
24f81160
JR
1790 * contiguous memory region into DMA address space. It is used by all
1791 * mapping functions provided with this IOMMU driver.
431b2a20
JR
1792 * Must be called with the domain lock held.
1793 */
cb76c322 1794static dma_addr_t __map_single(struct device *dev,
cb76c322
JR
1795 struct dma_ops_domain *dma_dom,
1796 phys_addr_t paddr,
1797 size_t size,
6d4f343f 1798 int dir,
832a90c3
JR
1799 bool align,
1800 u64 dma_mask)
cb76c322
JR
1801{
1802 dma_addr_t offset = paddr & ~PAGE_MASK;
53812c11 1803 dma_addr_t address, start, ret;
cb76c322 1804 unsigned int pages;
6d4f343f 1805 unsigned long align_mask = 0;
cb76c322
JR
1806 int i;
1807
e3c449f5 1808 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
cb76c322
JR
1809 paddr &= PAGE_MASK;
1810
8ecaf8f1
JR
1811 INC_STATS_COUNTER(total_map_requests);
1812
c1858976
JR
1813 if (pages > 1)
1814 INC_STATS_COUNTER(cross_page);
1815
6d4f343f
JR
1816 if (align)
1817 align_mask = (1UL << get_order(size)) - 1;
1818
11b83888 1819retry:
832a90c3
JR
1820 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
1821 dma_mask);
8fd524b3 1822 if (unlikely(address == DMA_ERROR_CODE)) {
11b83888
JR
1823 /*
1824 * setting next_address here will let the address
1825 * allocator only scan the new allocated range in the
1826 * first run. This is a small optimization.
1827 */
1828 dma_dom->next_address = dma_dom->aperture_size;
1829
576175c2 1830 if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
11b83888
JR
1831 goto out;
1832
1833 /*
af901ca1 1834 * aperture was successfully enlarged by 128 MB, try
11b83888
JR
1835 * allocation again
1836 */
1837 goto retry;
1838 }
cb76c322
JR
1839
1840 start = address;
1841 for (i = 0; i < pages; ++i) {
680525e0 1842 ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
8fd524b3 1843 if (ret == DMA_ERROR_CODE)
53812c11
JR
1844 goto out_unmap;
1845
cb76c322
JR
1846 paddr += PAGE_SIZE;
1847 start += PAGE_SIZE;
1848 }
1849 address += offset;
1850
5774f7c5
JR
1851 ADD_STATS_COUNTER(alloced_io_mem, size);
1852
afa9fdc2 1853 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
dcd1e92e 1854 iommu_flush_tlb(&dma_dom->domain);
1c655773 1855 dma_dom->need_flush = false;
318afd41 1856 } else if (unlikely(amd_iommu_np_cache))
6de8ad9b 1857 iommu_flush_pages(&dma_dom->domain, address, size);
270cab24 1858
cb76c322
JR
1859out:
1860 return address;
53812c11
JR
1861
1862out_unmap:
1863
1864 for (--i; i >= 0; --i) {
1865 start -= PAGE_SIZE;
680525e0 1866 dma_ops_domain_unmap(dma_dom, start);
53812c11
JR
1867 }
1868
1869 dma_ops_free_addresses(dma_dom, address, pages);
1870
8fd524b3 1871 return DMA_ERROR_CODE;
cb76c322
JR
1872}
1873
431b2a20
JR
1874/*
1875 * Does the reverse of the __map_single function. Must be called with
1876 * the domain lock held too
1877 */
cd8c82e8 1878static void __unmap_single(struct dma_ops_domain *dma_dom,
cb76c322
JR
1879 dma_addr_t dma_addr,
1880 size_t size,
1881 int dir)
1882{
1883 dma_addr_t i, start;
1884 unsigned int pages;
1885
8fd524b3 1886 if ((dma_addr == DMA_ERROR_CODE) ||
b8d9905d 1887 (dma_addr + size > dma_dom->aperture_size))
cb76c322
JR
1888 return;
1889
e3c449f5 1890 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
cb76c322
JR
1891 dma_addr &= PAGE_MASK;
1892 start = dma_addr;
1893
1894 for (i = 0; i < pages; ++i) {
680525e0 1895 dma_ops_domain_unmap(dma_dom, start);
cb76c322
JR
1896 start += PAGE_SIZE;
1897 }
1898
5774f7c5
JR
1899 SUB_STATS_COUNTER(alloced_io_mem, size);
1900
cb76c322 1901 dma_ops_free_addresses(dma_dom, dma_addr, pages);
270cab24 1902
80be308d 1903 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
6de8ad9b 1904 iommu_flush_pages(&dma_dom->domain, dma_addr, size);
80be308d
JR
1905 dma_dom->need_flush = false;
1906 }
cb76c322
JR
1907}
1908
431b2a20
JR
1909/*
1910 * The exported map_single function for dma_ops.
1911 */
51491367
FT
1912static dma_addr_t map_page(struct device *dev, struct page *page,
1913 unsigned long offset, size_t size,
1914 enum dma_data_direction dir,
1915 struct dma_attrs *attrs)
4da70b9e
JR
1916{
1917 unsigned long flags;
4da70b9e 1918 struct protection_domain *domain;
4da70b9e 1919 dma_addr_t addr;
832a90c3 1920 u64 dma_mask;
51491367 1921 phys_addr_t paddr = page_to_phys(page) + offset;
4da70b9e 1922
0f2a86f2
JR
1923 INC_STATS_COUNTER(cnt_map_single);
1924
94f6d190
JR
1925 domain = get_domain(dev);
1926 if (PTR_ERR(domain) == -EINVAL)
4da70b9e 1927 return (dma_addr_t)paddr;
94f6d190
JR
1928 else if (IS_ERR(domain))
1929 return DMA_ERROR_CODE;
4da70b9e 1930
f99c0f1c
JR
1931 dma_mask = *dev->dma_mask;
1932
4da70b9e 1933 spin_lock_irqsave(&domain->lock, flags);
94f6d190 1934
cd8c82e8 1935 addr = __map_single(dev, domain->priv, paddr, size, dir, false,
832a90c3 1936 dma_mask);
8fd524b3 1937 if (addr == DMA_ERROR_CODE)
4da70b9e
JR
1938 goto out;
1939
0518a3a4 1940 iommu_flush_complete(domain);
4da70b9e
JR
1941
1942out:
1943 spin_unlock_irqrestore(&domain->lock, flags);
1944
1945 return addr;
1946}
1947
431b2a20
JR
1948/*
1949 * The exported unmap_single function for dma_ops.
1950 */
51491367
FT
1951static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
1952 enum dma_data_direction dir, struct dma_attrs *attrs)
4da70b9e
JR
1953{
1954 unsigned long flags;
4da70b9e 1955 struct protection_domain *domain;
4da70b9e 1956
146a6917
JR
1957 INC_STATS_COUNTER(cnt_unmap_single);
1958
94f6d190
JR
1959 domain = get_domain(dev);
1960 if (IS_ERR(domain))
5b28df6f
JR
1961 return;
1962
4da70b9e
JR
1963 spin_lock_irqsave(&domain->lock, flags);
1964
cd8c82e8 1965 __unmap_single(domain->priv, dma_addr, size, dir);
4da70b9e 1966
0518a3a4 1967 iommu_flush_complete(domain);
4da70b9e
JR
1968
1969 spin_unlock_irqrestore(&domain->lock, flags);
1970}
1971
431b2a20
JR
1972/*
1973 * This is a special map_sg function which is used if we should map a
1974 * device which is not handled by an AMD IOMMU in the system.
1975 */
65b050ad
JR
1976static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
1977 int nelems, int dir)
1978{
1979 struct scatterlist *s;
1980 int i;
1981
1982 for_each_sg(sglist, s, nelems, i) {
1983 s->dma_address = (dma_addr_t)sg_phys(s);
1984 s->dma_length = s->length;
1985 }
1986
1987 return nelems;
1988}
1989
431b2a20
JR
1990/*
1991 * The exported map_sg function for dma_ops (handles scatter-gather
1992 * lists).
1993 */
65b050ad 1994static int map_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
1995 int nelems, enum dma_data_direction dir,
1996 struct dma_attrs *attrs)
65b050ad
JR
1997{
1998 unsigned long flags;
65b050ad 1999 struct protection_domain *domain;
65b050ad
JR
2000 int i;
2001 struct scatterlist *s;
2002 phys_addr_t paddr;
2003 int mapped_elems = 0;
832a90c3 2004 u64 dma_mask;
65b050ad 2005
d03f067a
JR
2006 INC_STATS_COUNTER(cnt_map_sg);
2007
94f6d190
JR
2008 domain = get_domain(dev);
2009 if (PTR_ERR(domain) == -EINVAL)
f99c0f1c 2010 return map_sg_no_iommu(dev, sglist, nelems, dir);
94f6d190
JR
2011 else if (IS_ERR(domain))
2012 return 0;
dbcc112e 2013
832a90c3 2014 dma_mask = *dev->dma_mask;
65b050ad 2015
65b050ad
JR
2016 spin_lock_irqsave(&domain->lock, flags);
2017
2018 for_each_sg(sglist, s, nelems, i) {
2019 paddr = sg_phys(s);
2020
cd8c82e8 2021 s->dma_address = __map_single(dev, domain->priv,
832a90c3
JR
2022 paddr, s->length, dir, false,
2023 dma_mask);
65b050ad
JR
2024
2025 if (s->dma_address) {
2026 s->dma_length = s->length;
2027 mapped_elems++;
2028 } else
2029 goto unmap;
65b050ad
JR
2030 }
2031
0518a3a4 2032 iommu_flush_complete(domain);
65b050ad
JR
2033
2034out:
2035 spin_unlock_irqrestore(&domain->lock, flags);
2036
2037 return mapped_elems;
2038unmap:
2039 for_each_sg(sglist, s, mapped_elems, i) {
2040 if (s->dma_address)
cd8c82e8 2041 __unmap_single(domain->priv, s->dma_address,
65b050ad
JR
2042 s->dma_length, dir);
2043 s->dma_address = s->dma_length = 0;
2044 }
2045
2046 mapped_elems = 0;
2047
2048 goto out;
2049}
2050
431b2a20
JR
2051/*
2052 * The exported map_sg function for dma_ops (handles scatter-gather
2053 * lists).
2054 */
65b050ad 2055static void unmap_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
2056 int nelems, enum dma_data_direction dir,
2057 struct dma_attrs *attrs)
65b050ad
JR
2058{
2059 unsigned long flags;
65b050ad
JR
2060 struct protection_domain *domain;
2061 struct scatterlist *s;
65b050ad
JR
2062 int i;
2063
55877a6b
JR
2064 INC_STATS_COUNTER(cnt_unmap_sg);
2065
94f6d190
JR
2066 domain = get_domain(dev);
2067 if (IS_ERR(domain))
5b28df6f
JR
2068 return;
2069
65b050ad
JR
2070 spin_lock_irqsave(&domain->lock, flags);
2071
2072 for_each_sg(sglist, s, nelems, i) {
cd8c82e8 2073 __unmap_single(domain->priv, s->dma_address,
65b050ad 2074 s->dma_length, dir);
65b050ad
JR
2075 s->dma_address = s->dma_length = 0;
2076 }
2077
0518a3a4 2078 iommu_flush_complete(domain);
65b050ad
JR
2079
2080 spin_unlock_irqrestore(&domain->lock, flags);
2081}
2082
431b2a20
JR
2083/*
2084 * The exported alloc_coherent function for dma_ops.
2085 */
5d8b53cf
JR
2086static void *alloc_coherent(struct device *dev, size_t size,
2087 dma_addr_t *dma_addr, gfp_t flag)
2088{
2089 unsigned long flags;
2090 void *virt_addr;
5d8b53cf 2091 struct protection_domain *domain;
5d8b53cf 2092 phys_addr_t paddr;
832a90c3 2093 u64 dma_mask = dev->coherent_dma_mask;
5d8b53cf 2094
c8f0fb36
JR
2095 INC_STATS_COUNTER(cnt_alloc_coherent);
2096
94f6d190
JR
2097 domain = get_domain(dev);
2098 if (PTR_ERR(domain) == -EINVAL) {
f99c0f1c
JR
2099 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2100 *dma_addr = __pa(virt_addr);
2101 return virt_addr;
94f6d190
JR
2102 } else if (IS_ERR(domain))
2103 return NULL;
5d8b53cf 2104
f99c0f1c
JR
2105 dma_mask = dev->coherent_dma_mask;
2106 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2107 flag |= __GFP_ZERO;
5d8b53cf
JR
2108
2109 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2110 if (!virt_addr)
b25ae679 2111 return NULL;
5d8b53cf 2112
5d8b53cf
JR
2113 paddr = virt_to_phys(virt_addr);
2114
832a90c3
JR
2115 if (!dma_mask)
2116 dma_mask = *dev->dma_mask;
2117
5d8b53cf
JR
2118 spin_lock_irqsave(&domain->lock, flags);
2119
cd8c82e8 2120 *dma_addr = __map_single(dev, domain->priv, paddr,
832a90c3 2121 size, DMA_BIDIRECTIONAL, true, dma_mask);
5d8b53cf 2122
8fd524b3 2123 if (*dma_addr == DMA_ERROR_CODE) {
367d04c4 2124 spin_unlock_irqrestore(&domain->lock, flags);
5b28df6f 2125 goto out_free;
367d04c4 2126 }
5d8b53cf 2127
0518a3a4 2128 iommu_flush_complete(domain);
5d8b53cf 2129
5d8b53cf
JR
2130 spin_unlock_irqrestore(&domain->lock, flags);
2131
2132 return virt_addr;
5b28df6f
JR
2133
2134out_free:
2135
2136 free_pages((unsigned long)virt_addr, get_order(size));
2137
2138 return NULL;
5d8b53cf
JR
2139}
2140
431b2a20
JR
2141/*
2142 * The exported free_coherent function for dma_ops.
431b2a20 2143 */
5d8b53cf
JR
2144static void free_coherent(struct device *dev, size_t size,
2145 void *virt_addr, dma_addr_t dma_addr)
2146{
2147 unsigned long flags;
5d8b53cf 2148 struct protection_domain *domain;
5d8b53cf 2149
5d31ee7e
JR
2150 INC_STATS_COUNTER(cnt_free_coherent);
2151
94f6d190
JR
2152 domain = get_domain(dev);
2153 if (IS_ERR(domain))
5b28df6f
JR
2154 goto free_mem;
2155
5d8b53cf
JR
2156 spin_lock_irqsave(&domain->lock, flags);
2157
cd8c82e8 2158 __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
5d8b53cf 2159
0518a3a4 2160 iommu_flush_complete(domain);
5d8b53cf
JR
2161
2162 spin_unlock_irqrestore(&domain->lock, flags);
2163
2164free_mem:
2165 free_pages((unsigned long)virt_addr, get_order(size));
2166}
2167
b39ba6ad
JR
2168/*
2169 * This function is called by the DMA layer to find out if we can handle a
2170 * particular device. It is part of the dma_ops.
2171 */
2172static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2173{
420aef8a 2174 return check_device(dev);
b39ba6ad
JR
2175}
2176
c432f3df 2177/*
431b2a20
JR
2178 * The function for pre-allocating protection domains.
2179 *
c432f3df
JR
2180 * If the driver core informs the DMA layer if a driver grabs a device
2181 * we don't need to preallocate the protection domains anymore.
2182 * For now we have to.
2183 */
0e93dd88 2184static void prealloc_protection_domains(void)
c432f3df
JR
2185{
2186 struct pci_dev *dev = NULL;
2187 struct dma_ops_domain *dma_dom;
98fc5a69 2188 u16 devid;
c432f3df 2189
d18c69d3 2190 for_each_pci_dev(dev) {
98fc5a69
JR
2191
2192 /* Do we handle this device? */
2193 if (!check_device(&dev->dev))
c432f3df 2194 continue;
98fc5a69
JR
2195
2196 /* Is there already any domain for it? */
15898bbc 2197 if (domain_for_device(&dev->dev))
c432f3df 2198 continue;
98fc5a69
JR
2199
2200 devid = get_device_id(&dev->dev);
2201
87a64d52 2202 dma_dom = dma_ops_domain_alloc();
c432f3df
JR
2203 if (!dma_dom)
2204 continue;
2205 init_unity_mappings_for_device(dma_dom, devid);
bd60b735
JR
2206 dma_dom->target_dev = devid;
2207
15898bbc 2208 attach_device(&dev->dev, &dma_dom->domain);
be831297 2209
bd60b735 2210 list_add_tail(&dma_dom->list, &iommu_pd_list);
c432f3df
JR
2211 }
2212}
2213
160c1d8e 2214static struct dma_map_ops amd_iommu_dma_ops = {
6631ee9d
JR
2215 .alloc_coherent = alloc_coherent,
2216 .free_coherent = free_coherent,
51491367
FT
2217 .map_page = map_page,
2218 .unmap_page = unmap_page,
6631ee9d
JR
2219 .map_sg = map_sg,
2220 .unmap_sg = unmap_sg,
b39ba6ad 2221 .dma_supported = amd_iommu_dma_supported,
6631ee9d
JR
2222};
2223
431b2a20
JR
2224/*
2225 * The function which clues the AMD IOMMU driver into dma_ops.
2226 */
f5325094
JR
2227
2228void __init amd_iommu_init_api(void)
2229{
2230 register_iommu(&amd_iommu_ops);
2231}
2232
6631ee9d
JR
2233int __init amd_iommu_init_dma_ops(void)
2234{
2235 struct amd_iommu *iommu;
6631ee9d
JR
2236 int ret;
2237
431b2a20
JR
2238 /*
2239 * first allocate a default protection domain for every IOMMU we
2240 * found in the system. Devices not assigned to any other
2241 * protection domain will be assigned to the default one.
2242 */
3bd22172 2243 for_each_iommu(iommu) {
87a64d52 2244 iommu->default_dom = dma_ops_domain_alloc();
6631ee9d
JR
2245 if (iommu->default_dom == NULL)
2246 return -ENOMEM;
e2dc14a2 2247 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
6631ee9d
JR
2248 ret = iommu_init_unity_mappings(iommu);
2249 if (ret)
2250 goto free_domains;
2251 }
2252
431b2a20 2253 /*
8793abeb 2254 * Pre-allocate the protection domains for each device.
431b2a20 2255 */
8793abeb 2256 prealloc_protection_domains();
6631ee9d
JR
2257
2258 iommu_detected = 1;
75f1cdf1 2259 swiotlb = 0;
92af4e29 2260#ifdef CONFIG_GART_IOMMU
6631ee9d
JR
2261 gart_iommu_aperture_disabled = 1;
2262 gart_iommu_aperture = 0;
92af4e29 2263#endif
6631ee9d 2264
431b2a20 2265 /* Make the driver finally visible to the drivers */
6631ee9d
JR
2266 dma_ops = &amd_iommu_dma_ops;
2267
7f26508b
JR
2268 amd_iommu_stats_init();
2269
6631ee9d
JR
2270 return 0;
2271
2272free_domains:
2273
3bd22172 2274 for_each_iommu(iommu) {
6631ee9d
JR
2275 if (iommu->default_dom)
2276 dma_ops_domain_free(iommu->default_dom);
2277 }
2278
2279 return ret;
2280}
6d98cd80
JR
2281
2282/*****************************************************************************
2283 *
2284 * The following functions belong to the exported interface of AMD IOMMU
2285 *
2286 * This interface allows access to lower level functions of the IOMMU
2287 * like protection domain handling and assignement of devices to domains
2288 * which is not possible with the dma_ops interface.
2289 *
2290 *****************************************************************************/
2291
6d98cd80
JR
2292static void cleanup_domain(struct protection_domain *domain)
2293{
492667da 2294 struct iommu_dev_data *dev_data, *next;
6d98cd80 2295 unsigned long flags;
6d98cd80
JR
2296
2297 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2298
492667da
JR
2299 list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
2300 struct device *dev = dev_data->dev;
2301
04e856c0 2302 __detach_device(dev);
492667da
JR
2303 atomic_set(&dev_data->bind, 0);
2304 }
6d98cd80
JR
2305
2306 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2307}
2308
2650815f
JR
2309static void protection_domain_free(struct protection_domain *domain)
2310{
2311 if (!domain)
2312 return;
2313
aeb26f55
JR
2314 del_domain_from_list(domain);
2315
2650815f
JR
2316 if (domain->id)
2317 domain_id_free(domain->id);
2318
2319 kfree(domain);
2320}
2321
2322static struct protection_domain *protection_domain_alloc(void)
c156e347
JR
2323{
2324 struct protection_domain *domain;
2325
2326 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2327 if (!domain)
2650815f 2328 return NULL;
c156e347
JR
2329
2330 spin_lock_init(&domain->lock);
5d214fe6 2331 mutex_init(&domain->api_lock);
c156e347
JR
2332 domain->id = domain_id_alloc();
2333 if (!domain->id)
2650815f 2334 goto out_err;
7c392cbe 2335 INIT_LIST_HEAD(&domain->dev_list);
2650815f 2336
aeb26f55
JR
2337 add_domain_to_list(domain);
2338
2650815f
JR
2339 return domain;
2340
2341out_err:
2342 kfree(domain);
2343
2344 return NULL;
2345}
2346
2347static int amd_iommu_domain_init(struct iommu_domain *dom)
2348{
2349 struct protection_domain *domain;
2350
2351 domain = protection_domain_alloc();
2352 if (!domain)
c156e347 2353 goto out_free;
2650815f
JR
2354
2355 domain->mode = PAGE_MODE_3_LEVEL;
c156e347
JR
2356 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2357 if (!domain->pt_root)
2358 goto out_free;
2359
2360 dom->priv = domain;
2361
2362 return 0;
2363
2364out_free:
2650815f 2365 protection_domain_free(domain);
c156e347
JR
2366
2367 return -ENOMEM;
2368}
2369
98383fc3
JR
2370static void amd_iommu_domain_destroy(struct iommu_domain *dom)
2371{
2372 struct protection_domain *domain = dom->priv;
2373
2374 if (!domain)
2375 return;
2376
2377 if (domain->dev_cnt > 0)
2378 cleanup_domain(domain);
2379
2380 BUG_ON(domain->dev_cnt != 0);
2381
2382 free_pagetable(domain);
2383
8b408fe4 2384 protection_domain_free(domain);
98383fc3
JR
2385
2386 dom->priv = NULL;
2387}
2388
684f2888
JR
2389static void amd_iommu_detach_device(struct iommu_domain *dom,
2390 struct device *dev)
2391{
657cbb6b 2392 struct iommu_dev_data *dev_data = dev->archdata.iommu;
684f2888 2393 struct amd_iommu *iommu;
684f2888
JR
2394 u16 devid;
2395
98fc5a69 2396 if (!check_device(dev))
684f2888
JR
2397 return;
2398
98fc5a69 2399 devid = get_device_id(dev);
684f2888 2400
657cbb6b 2401 if (dev_data->domain != NULL)
15898bbc 2402 detach_device(dev);
684f2888
JR
2403
2404 iommu = amd_iommu_rlookup_table[devid];
2405 if (!iommu)
2406 return;
2407
3fa43655 2408 iommu_flush_device(dev);
684f2888
JR
2409 iommu_completion_wait(iommu);
2410}
2411
01106066
JR
2412static int amd_iommu_attach_device(struct iommu_domain *dom,
2413 struct device *dev)
2414{
2415 struct protection_domain *domain = dom->priv;
657cbb6b 2416 struct iommu_dev_data *dev_data;
01106066 2417 struct amd_iommu *iommu;
15898bbc 2418 int ret;
01106066
JR
2419 u16 devid;
2420
98fc5a69 2421 if (!check_device(dev))
01106066
JR
2422 return -EINVAL;
2423
657cbb6b
JR
2424 dev_data = dev->archdata.iommu;
2425
98fc5a69 2426 devid = get_device_id(dev);
01106066
JR
2427
2428 iommu = amd_iommu_rlookup_table[devid];
2429 if (!iommu)
2430 return -EINVAL;
2431
657cbb6b 2432 if (dev_data->domain)
15898bbc 2433 detach_device(dev);
01106066 2434
15898bbc 2435 ret = attach_device(dev, domain);
01106066
JR
2436
2437 iommu_completion_wait(iommu);
2438
15898bbc 2439 return ret;
01106066
JR
2440}
2441
c6229ca6
JR
2442static int amd_iommu_map_range(struct iommu_domain *dom,
2443 unsigned long iova, phys_addr_t paddr,
2444 size_t size, int iommu_prot)
2445{
2446 struct protection_domain *domain = dom->priv;
2447 unsigned long i, npages = iommu_num_pages(paddr, size, PAGE_SIZE);
2448 int prot = 0;
2449 int ret;
2450
2451 if (iommu_prot & IOMMU_READ)
2452 prot |= IOMMU_PROT_IR;
2453 if (iommu_prot & IOMMU_WRITE)
2454 prot |= IOMMU_PROT_IW;
2455
2456 iova &= PAGE_MASK;
2457 paddr &= PAGE_MASK;
2458
5d214fe6
JR
2459 mutex_lock(&domain->api_lock);
2460
c6229ca6 2461 for (i = 0; i < npages; ++i) {
abdc5eb3 2462 ret = iommu_map_page(domain, iova, paddr, prot, PM_MAP_4k);
c6229ca6
JR
2463 if (ret)
2464 return ret;
2465
2466 iova += PAGE_SIZE;
2467 paddr += PAGE_SIZE;
2468 }
2469
5d214fe6
JR
2470 mutex_unlock(&domain->api_lock);
2471
c6229ca6
JR
2472 return 0;
2473}
2474
eb74ff6c
JR
2475static void amd_iommu_unmap_range(struct iommu_domain *dom,
2476 unsigned long iova, size_t size)
2477{
2478
2479 struct protection_domain *domain = dom->priv;
2480 unsigned long i, npages = iommu_num_pages(iova, size, PAGE_SIZE);
2481
2482 iova &= PAGE_MASK;
2483
5d214fe6
JR
2484 mutex_lock(&domain->api_lock);
2485
eb74ff6c 2486 for (i = 0; i < npages; ++i) {
a6b256b4 2487 iommu_unmap_page(domain, iova, PM_MAP_4k);
eb74ff6c
JR
2488 iova += PAGE_SIZE;
2489 }
2490
601367d7 2491 iommu_flush_tlb_pde(domain);
5d214fe6
JR
2492
2493 mutex_unlock(&domain->api_lock);
eb74ff6c
JR
2494}
2495
645c4c8d
JR
2496static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2497 unsigned long iova)
2498{
2499 struct protection_domain *domain = dom->priv;
2500 unsigned long offset = iova & ~PAGE_MASK;
2501 phys_addr_t paddr;
2502 u64 *pte;
2503
a6b256b4 2504 pte = fetch_pte(domain, iova, PM_MAP_4k);
645c4c8d 2505
a6d41a40 2506 if (!pte || !IOMMU_PTE_PRESENT(*pte))
645c4c8d
JR
2507 return 0;
2508
2509 paddr = *pte & IOMMU_PAGE_MASK;
2510 paddr |= offset;
2511
2512 return paddr;
2513}
2514
dbb9fd86
SY
2515static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
2516 unsigned long cap)
2517{
2518 return 0;
2519}
2520
26961efe
JR
2521static struct iommu_ops amd_iommu_ops = {
2522 .domain_init = amd_iommu_domain_init,
2523 .domain_destroy = amd_iommu_domain_destroy,
2524 .attach_dev = amd_iommu_attach_device,
2525 .detach_dev = amd_iommu_detach_device,
2526 .map = amd_iommu_map_range,
2527 .unmap = amd_iommu_unmap_range,
2528 .iova_to_phys = amd_iommu_iova_to_phys,
dbb9fd86 2529 .domain_has_cap = amd_iommu_domain_has_cap,
26961efe
JR
2530};
2531
0feae533
JR
2532/*****************************************************************************
2533 *
2534 * The next functions do a basic initialization of IOMMU for pass through
2535 * mode
2536 *
2537 * In passthrough mode the IOMMU is initialized and enabled but not used for
2538 * DMA-API translation.
2539 *
2540 *****************************************************************************/
2541
2542int __init amd_iommu_init_passthrough(void)
2543{
15898bbc 2544 struct amd_iommu *iommu;
0feae533 2545 struct pci_dev *dev = NULL;
15898bbc 2546 u16 devid;
0feae533 2547
af901ca1 2548 /* allocate passthrough domain */
0feae533
JR
2549 pt_domain = protection_domain_alloc();
2550 if (!pt_domain)
2551 return -ENOMEM;
2552
2553 pt_domain->mode |= PAGE_MODE_NONE;
2554
2555 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
0feae533 2556
98fc5a69 2557 if (!check_device(&dev->dev))
0feae533
JR
2558 continue;
2559
98fc5a69
JR
2560 devid = get_device_id(&dev->dev);
2561
15898bbc 2562 iommu = amd_iommu_rlookup_table[devid];
0feae533
JR
2563 if (!iommu)
2564 continue;
2565
15898bbc 2566 attach_device(&dev->dev, pt_domain);
0feae533
JR
2567 }
2568
2569 pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
2570
2571 return 0;
2572}