]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/kernel/amd_iommu.c
x86/amd-iommu: Support higher level PTEs in iommu_page_unmap
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / amd_iommu.c
CommitLineData
b6c02715
JR
1/*
2 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/pci.h>
21#include <linux/gfp.h>
22#include <linux/bitops.h>
7f26508b 23#include <linux/debugfs.h>
b6c02715 24#include <linux/scatterlist.h>
51491367 25#include <linux/dma-mapping.h>
b6c02715 26#include <linux/iommu-helper.h>
c156e347 27#include <linux/iommu.h>
b6c02715 28#include <asm/proto.h>
46a7fa27 29#include <asm/iommu.h>
1d9b16d1 30#include <asm/gart.h>
b6c02715 31#include <asm/amd_iommu_types.h>
c6da992e 32#include <asm/amd_iommu.h>
b6c02715
JR
33
34#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
35
136f78a1
JR
36#define EXIT_LOOP_COUNT 10000000
37
b6c02715
JR
38static DEFINE_RWLOCK(amd_iommu_devtable_lock);
39
bd60b735
JR
40/* A list of preallocated protection domains */
41static LIST_HEAD(iommu_pd_list);
42static DEFINE_SPINLOCK(iommu_pd_list_lock);
43
26961efe
JR
44#ifdef CONFIG_IOMMU_API
45static struct iommu_ops amd_iommu_ops;
46#endif
47
431b2a20
JR
48/*
49 * general struct to manage commands send to an IOMMU
50 */
d6449536 51struct iommu_cmd {
b6c02715
JR
52 u32 data[4];
53};
54
bd0e5211
JR
55static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
56 struct unity_map_entry *e);
e275a2a0 57static struct dma_ops_domain *find_protection_domain(u16 devid);
8bc3e127 58static u64 *alloc_pte(struct protection_domain *domain,
8bda3092
JR
59 unsigned long address, u64
60 **pte_page, gfp_t gfp);
00cd122a
JR
61static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
62 unsigned long start_page,
63 unsigned int pages);
9355a081 64static u64 *fetch_pte(struct protection_domain *domain,
a6b256b4 65 unsigned long address, int map_size);
04bfdd84 66static void update_domain(struct protection_domain *domain);
bd0e5211 67
c1eee67b
CW
68#ifndef BUS_NOTIFY_UNBOUND_DRIVER
69#define BUS_NOTIFY_UNBOUND_DRIVER 0x0005
70#endif
71
7f26508b
JR
72#ifdef CONFIG_AMD_IOMMU_STATS
73
74/*
75 * Initialization code for statistics collection
76 */
77
da49f6df 78DECLARE_STATS_COUNTER(compl_wait);
0f2a86f2 79DECLARE_STATS_COUNTER(cnt_map_single);
146a6917 80DECLARE_STATS_COUNTER(cnt_unmap_single);
d03f067a 81DECLARE_STATS_COUNTER(cnt_map_sg);
55877a6b 82DECLARE_STATS_COUNTER(cnt_unmap_sg);
c8f0fb36 83DECLARE_STATS_COUNTER(cnt_alloc_coherent);
5d31ee7e 84DECLARE_STATS_COUNTER(cnt_free_coherent);
c1858976 85DECLARE_STATS_COUNTER(cross_page);
f57d98ae 86DECLARE_STATS_COUNTER(domain_flush_single);
18811f55 87DECLARE_STATS_COUNTER(domain_flush_all);
5774f7c5 88DECLARE_STATS_COUNTER(alloced_io_mem);
8ecaf8f1 89DECLARE_STATS_COUNTER(total_map_requests);
da49f6df 90
7f26508b
JR
91static struct dentry *stats_dir;
92static struct dentry *de_isolate;
93static struct dentry *de_fflush;
94
95static void amd_iommu_stats_add(struct __iommu_counter *cnt)
96{
97 if (stats_dir == NULL)
98 return;
99
100 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
101 &cnt->value);
102}
103
104static void amd_iommu_stats_init(void)
105{
106 stats_dir = debugfs_create_dir("amd-iommu", NULL);
107 if (stats_dir == NULL)
108 return;
109
110 de_isolate = debugfs_create_bool("isolation", 0444, stats_dir,
111 (u32 *)&amd_iommu_isolate);
112
113 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
114 (u32 *)&amd_iommu_unmap_flush);
da49f6df
JR
115
116 amd_iommu_stats_add(&compl_wait);
0f2a86f2 117 amd_iommu_stats_add(&cnt_map_single);
146a6917 118 amd_iommu_stats_add(&cnt_unmap_single);
d03f067a 119 amd_iommu_stats_add(&cnt_map_sg);
55877a6b 120 amd_iommu_stats_add(&cnt_unmap_sg);
c8f0fb36 121 amd_iommu_stats_add(&cnt_alloc_coherent);
5d31ee7e 122 amd_iommu_stats_add(&cnt_free_coherent);
c1858976 123 amd_iommu_stats_add(&cross_page);
f57d98ae 124 amd_iommu_stats_add(&domain_flush_single);
18811f55 125 amd_iommu_stats_add(&domain_flush_all);
5774f7c5 126 amd_iommu_stats_add(&alloced_io_mem);
8ecaf8f1 127 amd_iommu_stats_add(&total_map_requests);
7f26508b
JR
128}
129
130#endif
131
431b2a20 132/* returns !0 if the IOMMU is caching non-present entries in its TLB */
4da70b9e
JR
133static int iommu_has_npcache(struct amd_iommu *iommu)
134{
ae9b9403 135 return iommu->cap & (1UL << IOMMU_CAP_NPCACHE);
4da70b9e
JR
136}
137
a80dc3e0
JR
138/****************************************************************************
139 *
140 * Interrupt handling functions
141 *
142 ****************************************************************************/
143
90008ee4
JR
144static void iommu_print_event(void *__evt)
145{
146 u32 *event = __evt;
147 int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
148 int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
149 int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
150 int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
151 u64 address = (u64)(((u64)event[3]) << 32) | event[2];
152
153 printk(KERN_ERR "AMD IOMMU: Event logged [");
154
155 switch (type) {
156 case EVENT_TYPE_ILL_DEV:
157 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
158 "address=0x%016llx flags=0x%04x]\n",
159 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
160 address, flags);
161 break;
162 case EVENT_TYPE_IO_FAULT:
163 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
164 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
165 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
166 domid, address, flags);
167 break;
168 case EVENT_TYPE_DEV_TAB_ERR:
169 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
170 "address=0x%016llx flags=0x%04x]\n",
171 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
172 address, flags);
173 break;
174 case EVENT_TYPE_PAGE_TAB_ERR:
175 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
176 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
177 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
178 domid, address, flags);
179 break;
180 case EVENT_TYPE_ILL_CMD:
181 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
182 break;
183 case EVENT_TYPE_CMD_HARD_ERR:
184 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
185 "flags=0x%04x]\n", address, flags);
186 break;
187 case EVENT_TYPE_IOTLB_INV_TO:
188 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
189 "address=0x%016llx]\n",
190 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
191 address);
192 break;
193 case EVENT_TYPE_INV_DEV_REQ:
194 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
195 "address=0x%016llx flags=0x%04x]\n",
196 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
197 address, flags);
198 break;
199 default:
200 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
201 }
202}
203
204static void iommu_poll_events(struct amd_iommu *iommu)
205{
206 u32 head, tail;
207 unsigned long flags;
208
209 spin_lock_irqsave(&iommu->lock, flags);
210
211 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
212 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
213
214 while (head != tail) {
215 iommu_print_event(iommu->evt_buf + head);
216 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
217 }
218
219 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
220
221 spin_unlock_irqrestore(&iommu->lock, flags);
222}
223
a80dc3e0
JR
224irqreturn_t amd_iommu_int_handler(int irq, void *data)
225{
90008ee4
JR
226 struct amd_iommu *iommu;
227
3bd22172 228 for_each_iommu(iommu)
90008ee4
JR
229 iommu_poll_events(iommu);
230
231 return IRQ_HANDLED;
a80dc3e0
JR
232}
233
431b2a20
JR
234/****************************************************************************
235 *
236 * IOMMU command queuing functions
237 *
238 ****************************************************************************/
239
240/*
241 * Writes the command to the IOMMUs command buffer and informs the
242 * hardware about the new command. Must be called with iommu->lock held.
243 */
d6449536 244static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
245{
246 u32 tail, head;
247 u8 *target;
248
249 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
8a7c5ef3 250 target = iommu->cmd_buf + tail;
a19ae1ec
JR
251 memcpy_toio(target, cmd, sizeof(*cmd));
252 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
253 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
254 if (tail == head)
255 return -ENOMEM;
256 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
257
258 return 0;
259}
260
431b2a20
JR
261/*
262 * General queuing function for commands. Takes iommu->lock and calls
263 * __iommu_queue_command().
264 */
d6449536 265static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
266{
267 unsigned long flags;
268 int ret;
269
270 spin_lock_irqsave(&iommu->lock, flags);
271 ret = __iommu_queue_command(iommu, cmd);
09ee17eb 272 if (!ret)
0cfd7aa9 273 iommu->need_sync = true;
a19ae1ec
JR
274 spin_unlock_irqrestore(&iommu->lock, flags);
275
276 return ret;
277}
278
8d201968
JR
279/*
280 * This function waits until an IOMMU has completed a completion
281 * wait command
282 */
283static void __iommu_wait_for_completion(struct amd_iommu *iommu)
284{
285 int ready = 0;
286 unsigned status = 0;
287 unsigned long i = 0;
288
da49f6df
JR
289 INC_STATS_COUNTER(compl_wait);
290
8d201968
JR
291 while (!ready && (i < EXIT_LOOP_COUNT)) {
292 ++i;
293 /* wait for the bit to become one */
294 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
295 ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
296 }
297
298 /* set bit back to zero */
299 status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
300 writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);
301
302 if (unlikely(i == EXIT_LOOP_COUNT))
303 panic("AMD IOMMU: Completion wait loop failed\n");
304}
305
306/*
307 * This function queues a completion wait command into the command
308 * buffer of an IOMMU
309 */
310static int __iommu_completion_wait(struct amd_iommu *iommu)
311{
312 struct iommu_cmd cmd;
313
314 memset(&cmd, 0, sizeof(cmd));
315 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
316 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);
317
318 return __iommu_queue_command(iommu, &cmd);
319}
320
431b2a20
JR
321/*
322 * This function is called whenever we need to ensure that the IOMMU has
323 * completed execution of all commands we sent. It sends a
324 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
325 * us about that by writing a value to a physical address we pass with
326 * the command.
327 */
a19ae1ec
JR
328static int iommu_completion_wait(struct amd_iommu *iommu)
329{
8d201968
JR
330 int ret = 0;
331 unsigned long flags;
a19ae1ec 332
7e4f88da
JR
333 spin_lock_irqsave(&iommu->lock, flags);
334
09ee17eb
JR
335 if (!iommu->need_sync)
336 goto out;
337
8d201968 338 ret = __iommu_completion_wait(iommu);
09ee17eb 339
0cfd7aa9 340 iommu->need_sync = false;
a19ae1ec
JR
341
342 if (ret)
7e4f88da 343 goto out;
a19ae1ec 344
8d201968 345 __iommu_wait_for_completion(iommu);
84df8175 346
7e4f88da
JR
347out:
348 spin_unlock_irqrestore(&iommu->lock, flags);
a19ae1ec
JR
349
350 return 0;
351}
352
431b2a20
JR
353/*
354 * Command send function for invalidating a device table entry
355 */
a19ae1ec
JR
356static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
357{
d6449536 358 struct iommu_cmd cmd;
ee2fa743 359 int ret;
a19ae1ec
JR
360
361 BUG_ON(iommu == NULL);
362
363 memset(&cmd, 0, sizeof(cmd));
364 CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
365 cmd.data[0] = devid;
366
ee2fa743
JR
367 ret = iommu_queue_command(iommu, &cmd);
368
ee2fa743 369 return ret;
a19ae1ec
JR
370}
371
237b6f33
JR
372static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
373 u16 domid, int pde, int s)
374{
375 memset(cmd, 0, sizeof(*cmd));
376 address &= PAGE_MASK;
377 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
378 cmd->data[1] |= domid;
379 cmd->data[2] = lower_32_bits(address);
380 cmd->data[3] = upper_32_bits(address);
381 if (s) /* size bit - we flush more than one 4kb page */
382 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
383 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
384 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
385}
386
431b2a20
JR
387/*
388 * Generic command send function for invalidaing TLB entries
389 */
a19ae1ec
JR
390static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
391 u64 address, u16 domid, int pde, int s)
392{
d6449536 393 struct iommu_cmd cmd;
ee2fa743 394 int ret;
a19ae1ec 395
237b6f33 396 __iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
a19ae1ec 397
ee2fa743
JR
398 ret = iommu_queue_command(iommu, &cmd);
399
ee2fa743 400 return ret;
a19ae1ec
JR
401}
402
431b2a20
JR
403/*
404 * TLB invalidation function which is called from the mapping functions.
405 * It invalidates a single PTE if the range to flush is within a single
406 * page. Otherwise it flushes the whole TLB of the IOMMU.
407 */
a19ae1ec
JR
408static int iommu_flush_pages(struct amd_iommu *iommu, u16 domid,
409 u64 address, size_t size)
410{
999ba417 411 int s = 0;
e3c449f5 412 unsigned pages = iommu_num_pages(address, size, PAGE_SIZE);
a19ae1ec
JR
413
414 address &= PAGE_MASK;
415
999ba417
JR
416 if (pages > 1) {
417 /*
418 * If we have to flush more than one page, flush all
419 * TLB entries for this domain
420 */
421 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
422 s = 1;
a19ae1ec
JR
423 }
424
999ba417
JR
425 iommu_queue_inv_iommu_pages(iommu, address, domid, 0, s);
426
a19ae1ec
JR
427 return 0;
428}
b6c02715 429
1c655773
JR
430/* Flush the whole IO/TLB for a given protection domain */
431static void iommu_flush_tlb(struct amd_iommu *iommu, u16 domid)
432{
433 u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
434
f57d98ae
JR
435 INC_STATS_COUNTER(domain_flush_single);
436
1c655773
JR
437 iommu_queue_inv_iommu_pages(iommu, address, domid, 0, 1);
438}
439
42a49f96
CW
440/* Flush the whole IO/TLB for a given protection domain - including PDE */
441static void iommu_flush_tlb_pde(struct amd_iommu *iommu, u16 domid)
442{
443 u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
444
445 INC_STATS_COUNTER(domain_flush_single);
446
447 iommu_queue_inv_iommu_pages(iommu, address, domid, 1, 1);
448}
449
43f49609
JR
450/*
451 * This function is used to flush the IO/TLB for a given protection domain
452 * on every IOMMU in the system
453 */
454static void iommu_flush_domain(u16 domid)
455{
456 unsigned long flags;
457 struct amd_iommu *iommu;
458 struct iommu_cmd cmd;
459
18811f55
JR
460 INC_STATS_COUNTER(domain_flush_all);
461
43f49609
JR
462 __iommu_build_inv_iommu_pages(&cmd, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
463 domid, 1, 1);
464
3bd22172 465 for_each_iommu(iommu) {
43f49609
JR
466 spin_lock_irqsave(&iommu->lock, flags);
467 __iommu_queue_command(iommu, &cmd);
468 __iommu_completion_wait(iommu);
469 __iommu_wait_for_completion(iommu);
470 spin_unlock_irqrestore(&iommu->lock, flags);
471 }
472}
43f49609 473
bfd1be18
JR
474void amd_iommu_flush_all_domains(void)
475{
476 int i;
477
478 for (i = 1; i < MAX_DOMAIN_ID; ++i) {
479 if (!test_bit(i, amd_iommu_pd_alloc_bitmap))
480 continue;
481 iommu_flush_domain(i);
482 }
483}
484
6a0dbcbe 485static void flush_devices_by_domain(struct protection_domain *domain)
7d7a110c
JR
486{
487 struct amd_iommu *iommu;
488 int i;
489
490 for (i = 0; i <= amd_iommu_last_bdf; ++i) {
6a0dbcbe
JR
491 if ((domain == NULL && amd_iommu_pd_table[i] == NULL) ||
492 (amd_iommu_pd_table[i] != domain))
7d7a110c
JR
493 continue;
494
495 iommu = amd_iommu_rlookup_table[i];
496 if (!iommu)
497 continue;
498
499 iommu_queue_inv_dev_entry(iommu, i);
500 iommu_completion_wait(iommu);
501 }
502}
503
6a0dbcbe
JR
504void amd_iommu_flush_all_devices(void)
505{
506 flush_devices_by_domain(NULL);
507}
508
431b2a20
JR
509/****************************************************************************
510 *
511 * The functions below are used the create the page table mappings for
512 * unity mapped regions.
513 *
514 ****************************************************************************/
515
516/*
517 * Generic mapping functions. It maps a physical address into a DMA
518 * address space. It allocates the page table pages if necessary.
519 * In the future it can be extended to a generic mapping function
520 * supporting all features of AMD IOMMU page tables like level skipping
521 * and full 64 bit address spaces.
522 */
38e817fe
JR
523static int iommu_map_page(struct protection_domain *dom,
524 unsigned long bus_addr,
525 unsigned long phys_addr,
526 int prot)
bd0e5211 527{
8bda3092 528 u64 __pte, *pte;
bd0e5211
JR
529
530 bus_addr = PAGE_ALIGN(bus_addr);
bb9d4ff8 531 phys_addr = PAGE_ALIGN(phys_addr);
bd0e5211 532
bad1cac2 533 if (!(prot & IOMMU_PROT_MASK))
bd0e5211
JR
534 return -EINVAL;
535
8bda3092 536 pte = alloc_pte(dom, bus_addr, NULL, GFP_KERNEL);
bd0e5211
JR
537
538 if (IOMMU_PTE_PRESENT(*pte))
539 return -EBUSY;
540
541 __pte = phys_addr | IOMMU_PTE_P;
542 if (prot & IOMMU_PROT_IR)
543 __pte |= IOMMU_PTE_IR;
544 if (prot & IOMMU_PROT_IW)
545 __pte |= IOMMU_PTE_IW;
546
547 *pte = __pte;
548
04bfdd84
JR
549 update_domain(dom);
550
bd0e5211
JR
551 return 0;
552}
553
eb74ff6c 554static void iommu_unmap_page(struct protection_domain *dom,
a6b256b4 555 unsigned long bus_addr, int map_size)
eb74ff6c 556{
a6b256b4 557 u64 *pte = fetch_pte(dom, bus_addr, map_size);
eb74ff6c 558
38a76eee
JR
559 if (pte)
560 *pte = 0;
eb74ff6c 561}
eb74ff6c 562
431b2a20
JR
563/*
564 * This function checks if a specific unity mapping entry is needed for
565 * this specific IOMMU.
566 */
bd0e5211
JR
567static int iommu_for_unity_map(struct amd_iommu *iommu,
568 struct unity_map_entry *entry)
569{
570 u16 bdf, i;
571
572 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
573 bdf = amd_iommu_alias_table[i];
574 if (amd_iommu_rlookup_table[bdf] == iommu)
575 return 1;
576 }
577
578 return 0;
579}
580
431b2a20
JR
581/*
582 * Init the unity mappings for a specific IOMMU in the system
583 *
584 * Basically iterates over all unity mapping entries and applies them to
585 * the default domain DMA of that IOMMU if necessary.
586 */
bd0e5211
JR
587static int iommu_init_unity_mappings(struct amd_iommu *iommu)
588{
589 struct unity_map_entry *entry;
590 int ret;
591
592 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
593 if (!iommu_for_unity_map(iommu, entry))
594 continue;
595 ret = dma_ops_unity_map(iommu->default_dom, entry);
596 if (ret)
597 return ret;
598 }
599
600 return 0;
601}
602
431b2a20
JR
603/*
604 * This function actually applies the mapping to the page table of the
605 * dma_ops domain.
606 */
bd0e5211
JR
607static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
608 struct unity_map_entry *e)
609{
610 u64 addr;
611 int ret;
612
613 for (addr = e->address_start; addr < e->address_end;
614 addr += PAGE_SIZE) {
38e817fe 615 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot);
bd0e5211
JR
616 if (ret)
617 return ret;
618 /*
619 * if unity mapping is in aperture range mark the page
620 * as allocated in the aperture
621 */
622 if (addr < dma_dom->aperture_size)
c3239567 623 __set_bit(addr >> PAGE_SHIFT,
384de729 624 dma_dom->aperture[0]->bitmap);
bd0e5211
JR
625 }
626
627 return 0;
628}
629
431b2a20
JR
630/*
631 * Inits the unity mappings required for a specific device
632 */
bd0e5211
JR
633static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
634 u16 devid)
635{
636 struct unity_map_entry *e;
637 int ret;
638
639 list_for_each_entry(e, &amd_iommu_unity_map, list) {
640 if (!(devid >= e->devid_start && devid <= e->devid_end))
641 continue;
642 ret = dma_ops_unity_map(dma_dom, e);
643 if (ret)
644 return ret;
645 }
646
647 return 0;
648}
649
431b2a20
JR
650/****************************************************************************
651 *
652 * The next functions belong to the address allocator for the dma_ops
653 * interface functions. They work like the allocators in the other IOMMU
654 * drivers. Its basically a bitmap which marks the allocated pages in
655 * the aperture. Maybe it could be enhanced in the future to a more
656 * efficient allocator.
657 *
658 ****************************************************************************/
d3086444 659
431b2a20 660/*
384de729 661 * The address allocator core functions.
431b2a20
JR
662 *
663 * called with domain->lock held
664 */
384de729 665
00cd122a
JR
666/*
667 * This function checks if there is a PTE for a given dma address. If
668 * there is one, it returns the pointer to it.
669 */
9355a081 670static u64 *fetch_pte(struct protection_domain *domain,
a6b256b4 671 unsigned long address, int map_size)
00cd122a 672{
9355a081 673 int level;
00cd122a
JR
674 u64 *pte;
675
9355a081
JR
676 level = domain->mode - 1;
677 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
00cd122a 678
a6b256b4 679 while (level > map_size) {
9355a081
JR
680 if (!IOMMU_PTE_PRESENT(*pte))
681 return NULL;
00cd122a 682
9355a081 683 level -= 1;
00cd122a 684
9355a081
JR
685 pte = IOMMU_PTE_PAGE(*pte);
686 pte = &pte[PM_LEVEL_INDEX(level, address)];
a6b256b4
JR
687
688 if ((PM_PTE_LEVEL(*pte) == 0) && level != map_size) {
689 pte = NULL;
690 break;
691 }
9355a081 692 }
00cd122a
JR
693
694 return pte;
695}
696
9cabe89b
JR
697/*
698 * This function is used to add a new aperture range to an existing
699 * aperture in case of dma_ops domain allocation or address allocation
700 * failure.
701 */
00cd122a
JR
702static int alloc_new_range(struct amd_iommu *iommu,
703 struct dma_ops_domain *dma_dom,
9cabe89b
JR
704 bool populate, gfp_t gfp)
705{
706 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
00cd122a 707 int i;
9cabe89b 708
f5e9705c
JR
709#ifdef CONFIG_IOMMU_STRESS
710 populate = false;
711#endif
712
9cabe89b
JR
713 if (index >= APERTURE_MAX_RANGES)
714 return -ENOMEM;
715
716 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
717 if (!dma_dom->aperture[index])
718 return -ENOMEM;
719
720 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
721 if (!dma_dom->aperture[index]->bitmap)
722 goto out_free;
723
724 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
725
726 if (populate) {
727 unsigned long address = dma_dom->aperture_size;
728 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
729 u64 *pte, *pte_page;
730
731 for (i = 0; i < num_ptes; ++i) {
732 pte = alloc_pte(&dma_dom->domain, address,
733 &pte_page, gfp);
734 if (!pte)
735 goto out_free;
736
737 dma_dom->aperture[index]->pte_pages[i] = pte_page;
738
739 address += APERTURE_RANGE_SIZE / 64;
740 }
741 }
742
743 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
744
00cd122a
JR
745 /* Intialize the exclusion range if necessary */
746 if (iommu->exclusion_start &&
747 iommu->exclusion_start >= dma_dom->aperture[index]->offset &&
748 iommu->exclusion_start < dma_dom->aperture_size) {
749 unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
750 int pages = iommu_num_pages(iommu->exclusion_start,
751 iommu->exclusion_length,
752 PAGE_SIZE);
753 dma_ops_reserve_addresses(dma_dom, startpage, pages);
754 }
755
756 /*
757 * Check for areas already mapped as present in the new aperture
758 * range and mark those pages as reserved in the allocator. Such
759 * mappings may already exist as a result of requested unity
760 * mappings for devices.
761 */
762 for (i = dma_dom->aperture[index]->offset;
763 i < dma_dom->aperture_size;
764 i += PAGE_SIZE) {
a6b256b4 765 u64 *pte = fetch_pte(&dma_dom->domain, i, PM_MAP_4k);
00cd122a
JR
766 if (!pte || !IOMMU_PTE_PRESENT(*pte))
767 continue;
768
769 dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
770 }
771
04bfdd84
JR
772 update_domain(&dma_dom->domain);
773
9cabe89b
JR
774 return 0;
775
776out_free:
04bfdd84
JR
777 update_domain(&dma_dom->domain);
778
9cabe89b
JR
779 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
780
781 kfree(dma_dom->aperture[index]);
782 dma_dom->aperture[index] = NULL;
783
784 return -ENOMEM;
785}
786
384de729
JR
787static unsigned long dma_ops_area_alloc(struct device *dev,
788 struct dma_ops_domain *dom,
789 unsigned int pages,
790 unsigned long align_mask,
791 u64 dma_mask,
792 unsigned long start)
793{
803b8cb4 794 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
384de729
JR
795 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
796 int i = start >> APERTURE_RANGE_SHIFT;
797 unsigned long boundary_size;
798 unsigned long address = -1;
799 unsigned long limit;
800
803b8cb4
JR
801 next_bit >>= PAGE_SHIFT;
802
384de729
JR
803 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
804 PAGE_SIZE) >> PAGE_SHIFT;
805
806 for (;i < max_index; ++i) {
807 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
808
809 if (dom->aperture[i]->offset >= dma_mask)
810 break;
811
812 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
813 dma_mask >> PAGE_SHIFT);
814
815 address = iommu_area_alloc(dom->aperture[i]->bitmap,
816 limit, next_bit, pages, 0,
817 boundary_size, align_mask);
818 if (address != -1) {
819 address = dom->aperture[i]->offset +
820 (address << PAGE_SHIFT);
803b8cb4 821 dom->next_address = address + (pages << PAGE_SHIFT);
384de729
JR
822 break;
823 }
824
825 next_bit = 0;
826 }
827
828 return address;
829}
830
d3086444
JR
831static unsigned long dma_ops_alloc_addresses(struct device *dev,
832 struct dma_ops_domain *dom,
6d4f343f 833 unsigned int pages,
832a90c3
JR
834 unsigned long align_mask,
835 u64 dma_mask)
d3086444 836{
d3086444 837 unsigned long address;
d3086444 838
fe16f088
JR
839#ifdef CONFIG_IOMMU_STRESS
840 dom->next_address = 0;
841 dom->need_flush = true;
842#endif
d3086444 843
384de729 844 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
803b8cb4 845 dma_mask, dom->next_address);
d3086444 846
1c655773 847 if (address == -1) {
803b8cb4 848 dom->next_address = 0;
384de729
JR
849 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
850 dma_mask, 0);
1c655773
JR
851 dom->need_flush = true;
852 }
d3086444 853
384de729 854 if (unlikely(address == -1))
d3086444
JR
855 address = bad_dma_address;
856
857 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
858
859 return address;
860}
861
431b2a20
JR
862/*
863 * The address free function.
864 *
865 * called with domain->lock held
866 */
d3086444
JR
867static void dma_ops_free_addresses(struct dma_ops_domain *dom,
868 unsigned long address,
869 unsigned int pages)
870{
384de729
JR
871 unsigned i = address >> APERTURE_RANGE_SHIFT;
872 struct aperture_range *range = dom->aperture[i];
80be308d 873
384de729
JR
874 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
875
47bccd6b
JR
876#ifdef CONFIG_IOMMU_STRESS
877 if (i < 4)
878 return;
879#endif
80be308d 880
803b8cb4 881 if (address >= dom->next_address)
80be308d 882 dom->need_flush = true;
384de729
JR
883
884 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
803b8cb4 885
384de729
JR
886 iommu_area_free(range->bitmap, address, pages);
887
d3086444
JR
888}
889
431b2a20
JR
890/****************************************************************************
891 *
892 * The next functions belong to the domain allocation. A domain is
893 * allocated for every IOMMU as the default domain. If device isolation
894 * is enabled, every device get its own domain. The most important thing
895 * about domains is the page table mapping the DMA address space they
896 * contain.
897 *
898 ****************************************************************************/
899
ec487d1a
JR
900static u16 domain_id_alloc(void)
901{
902 unsigned long flags;
903 int id;
904
905 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
906 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
907 BUG_ON(id == 0);
908 if (id > 0 && id < MAX_DOMAIN_ID)
909 __set_bit(id, amd_iommu_pd_alloc_bitmap);
910 else
911 id = 0;
912 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
913
914 return id;
915}
916
a2acfb75
JR
917static void domain_id_free(int id)
918{
919 unsigned long flags;
920
921 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
922 if (id > 0 && id < MAX_DOMAIN_ID)
923 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
924 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
925}
a2acfb75 926
431b2a20
JR
927/*
928 * Used to reserve address ranges in the aperture (e.g. for exclusion
929 * ranges.
930 */
ec487d1a
JR
931static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
932 unsigned long start_page,
933 unsigned int pages)
934{
384de729 935 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
ec487d1a
JR
936
937 if (start_page + pages > last_page)
938 pages = last_page - start_page;
939
384de729
JR
940 for (i = start_page; i < start_page + pages; ++i) {
941 int index = i / APERTURE_RANGE_PAGES;
942 int page = i % APERTURE_RANGE_PAGES;
943 __set_bit(page, dom->aperture[index]->bitmap);
944 }
ec487d1a
JR
945}
946
86db2e5d 947static void free_pagetable(struct protection_domain *domain)
ec487d1a
JR
948{
949 int i, j;
950 u64 *p1, *p2, *p3;
951
86db2e5d 952 p1 = domain->pt_root;
ec487d1a
JR
953
954 if (!p1)
955 return;
956
957 for (i = 0; i < 512; ++i) {
958 if (!IOMMU_PTE_PRESENT(p1[i]))
959 continue;
960
961 p2 = IOMMU_PTE_PAGE(p1[i]);
3cc3d84b 962 for (j = 0; j < 512; ++j) {
ec487d1a
JR
963 if (!IOMMU_PTE_PRESENT(p2[j]))
964 continue;
965 p3 = IOMMU_PTE_PAGE(p2[j]);
966 free_page((unsigned long)p3);
967 }
968
969 free_page((unsigned long)p2);
970 }
971
972 free_page((unsigned long)p1);
86db2e5d
JR
973
974 domain->pt_root = NULL;
ec487d1a
JR
975}
976
431b2a20
JR
977/*
978 * Free a domain, only used if something went wrong in the
979 * allocation path and we need to free an already allocated page table
980 */
ec487d1a
JR
981static void dma_ops_domain_free(struct dma_ops_domain *dom)
982{
384de729
JR
983 int i;
984
ec487d1a
JR
985 if (!dom)
986 return;
987
86db2e5d 988 free_pagetable(&dom->domain);
ec487d1a 989
384de729
JR
990 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
991 if (!dom->aperture[i])
992 continue;
993 free_page((unsigned long)dom->aperture[i]->bitmap);
994 kfree(dom->aperture[i]);
995 }
ec487d1a
JR
996
997 kfree(dom);
998}
999
431b2a20
JR
1000/*
1001 * Allocates a new protection domain usable for the dma_ops functions.
1002 * It also intializes the page table and the address allocator data
1003 * structures required for the dma_ops interface
1004 */
d9cfed92 1005static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu)
ec487d1a
JR
1006{
1007 struct dma_ops_domain *dma_dom;
ec487d1a
JR
1008
1009 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1010 if (!dma_dom)
1011 return NULL;
1012
1013 spin_lock_init(&dma_dom->domain.lock);
1014
1015 dma_dom->domain.id = domain_id_alloc();
1016 if (dma_dom->domain.id == 0)
1017 goto free_dma_dom;
8f7a017c 1018 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
ec487d1a 1019 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
9fdb19d6 1020 dma_dom->domain.flags = PD_DMA_OPS_MASK;
ec487d1a
JR
1021 dma_dom->domain.priv = dma_dom;
1022 if (!dma_dom->domain.pt_root)
1023 goto free_dma_dom;
ec487d1a 1024
1c655773 1025 dma_dom->need_flush = false;
bd60b735 1026 dma_dom->target_dev = 0xffff;
1c655773 1027
00cd122a 1028 if (alloc_new_range(iommu, dma_dom, true, GFP_KERNEL))
ec487d1a 1029 goto free_dma_dom;
ec487d1a 1030
431b2a20 1031 /*
ec487d1a
JR
1032 * mark the first page as allocated so we never return 0 as
1033 * a valid dma-address. So we can use 0 as error value
431b2a20 1034 */
384de729 1035 dma_dom->aperture[0]->bitmap[0] = 1;
803b8cb4 1036 dma_dom->next_address = 0;
ec487d1a 1037
ec487d1a
JR
1038
1039 return dma_dom;
1040
1041free_dma_dom:
1042 dma_ops_domain_free(dma_dom);
1043
1044 return NULL;
1045}
1046
5b28df6f
JR
1047/*
1048 * little helper function to check whether a given protection domain is a
1049 * dma_ops domain
1050 */
1051static bool dma_ops_domain(struct protection_domain *domain)
1052{
1053 return domain->flags & PD_DMA_OPS_MASK;
1054}
1055
431b2a20
JR
1056/*
1057 * Find out the protection domain structure for a given PCI device. This
1058 * will give us the pointer to the page table root for example.
1059 */
b20ac0d4
JR
1060static struct protection_domain *domain_for_device(u16 devid)
1061{
1062 struct protection_domain *dom;
1063 unsigned long flags;
1064
1065 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
1066 dom = amd_iommu_pd_table[devid];
1067 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1068
1069 return dom;
1070}
1071
407d733e 1072static void set_dte_entry(u16 devid, struct protection_domain *domain)
b20ac0d4 1073{
b20ac0d4 1074 u64 pte_root = virt_to_phys(domain->pt_root);
407d733e 1075 unsigned long flags;
863c74eb 1076
38ddf41b
JR
1077 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1078 << DEV_ENTRY_MODE_SHIFT;
1079 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
b20ac0d4
JR
1080
1081 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
38ddf41b
JR
1082 amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
1083 amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
b20ac0d4
JR
1084 amd_iommu_dev_table[devid].data[2] = domain->id;
1085
1086 amd_iommu_pd_table[devid] = domain;
1087 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
407d733e
JR
1088}
1089
1090/*
1091 * If a device is not yet associated with a domain, this function does
1092 * assigns it visible for the hardware
1093 */
1094static void attach_device(struct amd_iommu *iommu,
1095 struct protection_domain *domain,
1096 u16 devid)
1097{
1098 /* set the DTE entry */
1099 set_dte_entry(devid, domain);
1100
1101 /* increase reference counter */
1102 domain->dev_cnt += 1;
b20ac0d4 1103
42a49f96
CW
1104 /*
1105 * We might boot into a crash-kernel here. The crashed kernel
1106 * left the caches in the IOMMU dirty. So we have to flush
1107 * here to evict all dirty stuff.
1108 */
b20ac0d4 1109 iommu_queue_inv_dev_entry(iommu, devid);
42a49f96 1110 iommu_flush_tlb_pde(iommu, domain->id);
b20ac0d4
JR
1111}
1112
355bf553
JR
1113/*
1114 * Removes a device from a protection domain (unlocked)
1115 */
1116static void __detach_device(struct protection_domain *domain, u16 devid)
1117{
1118
1119 /* lock domain */
1120 spin_lock(&domain->lock);
1121
1122 /* remove domain from the lookup table */
1123 amd_iommu_pd_table[devid] = NULL;
1124
1125 /* remove entry from the device table seen by the hardware */
1126 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1127 amd_iommu_dev_table[devid].data[1] = 0;
1128 amd_iommu_dev_table[devid].data[2] = 0;
1129
1130 /* decrease reference counter */
1131 domain->dev_cnt -= 1;
1132
1133 /* ready */
1134 spin_unlock(&domain->lock);
1135}
1136
1137/*
1138 * Removes a device from a protection domain (with devtable_lock held)
1139 */
1140static void detach_device(struct protection_domain *domain, u16 devid)
1141{
1142 unsigned long flags;
1143
1144 /* lock device table */
1145 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1146 __detach_device(domain, devid);
1147 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1148}
e275a2a0
JR
1149
1150static int device_change_notifier(struct notifier_block *nb,
1151 unsigned long action, void *data)
1152{
1153 struct device *dev = data;
1154 struct pci_dev *pdev = to_pci_dev(dev);
1155 u16 devid = calc_devid(pdev->bus->number, pdev->devfn);
1156 struct protection_domain *domain;
1157 struct dma_ops_domain *dma_domain;
1158 struct amd_iommu *iommu;
1ac4cbbc 1159 unsigned long flags;
e275a2a0
JR
1160
1161 if (devid > amd_iommu_last_bdf)
1162 goto out;
1163
1164 devid = amd_iommu_alias_table[devid];
1165
1166 iommu = amd_iommu_rlookup_table[devid];
1167 if (iommu == NULL)
1168 goto out;
1169
1170 domain = domain_for_device(devid);
1171
1172 if (domain && !dma_ops_domain(domain))
1173 WARN_ONCE(1, "AMD IOMMU WARNING: device %s already bound "
1174 "to a non-dma-ops domain\n", dev_name(dev));
1175
1176 switch (action) {
c1eee67b 1177 case BUS_NOTIFY_UNBOUND_DRIVER:
e275a2a0
JR
1178 if (!domain)
1179 goto out;
1180 detach_device(domain, devid);
1ac4cbbc
JR
1181 break;
1182 case BUS_NOTIFY_ADD_DEVICE:
1183 /* allocate a protection domain if a device is added */
1184 dma_domain = find_protection_domain(devid);
1185 if (dma_domain)
1186 goto out;
d9cfed92 1187 dma_domain = dma_ops_domain_alloc(iommu);
1ac4cbbc
JR
1188 if (!dma_domain)
1189 goto out;
1190 dma_domain->target_dev = devid;
1191
1192 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1193 list_add_tail(&dma_domain->list, &iommu_pd_list);
1194 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1195
e275a2a0
JR
1196 break;
1197 default:
1198 goto out;
1199 }
1200
1201 iommu_queue_inv_dev_entry(iommu, devid);
1202 iommu_completion_wait(iommu);
1203
1204out:
1205 return 0;
1206}
1207
b25ae679 1208static struct notifier_block device_nb = {
e275a2a0
JR
1209 .notifier_call = device_change_notifier,
1210};
355bf553 1211
431b2a20
JR
1212/*****************************************************************************
1213 *
1214 * The next functions belong to the dma_ops mapping/unmapping code.
1215 *
1216 *****************************************************************************/
1217
dbcc112e
JR
1218/*
1219 * This function checks if the driver got a valid device from the caller to
1220 * avoid dereferencing invalid pointers.
1221 */
1222static bool check_device(struct device *dev)
1223{
1224 if (!dev || !dev->dma_mask)
1225 return false;
1226
1227 return true;
1228}
1229
bd60b735
JR
1230/*
1231 * In this function the list of preallocated protection domains is traversed to
1232 * find the domain for a specific device
1233 */
1234static struct dma_ops_domain *find_protection_domain(u16 devid)
1235{
1236 struct dma_ops_domain *entry, *ret = NULL;
1237 unsigned long flags;
1238
1239 if (list_empty(&iommu_pd_list))
1240 return NULL;
1241
1242 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1243
1244 list_for_each_entry(entry, &iommu_pd_list, list) {
1245 if (entry->target_dev == devid) {
1246 ret = entry;
bd60b735
JR
1247 break;
1248 }
1249 }
1250
1251 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1252
1253 return ret;
1254}
1255
431b2a20
JR
1256/*
1257 * In the dma_ops path we only have the struct device. This function
1258 * finds the corresponding IOMMU, the protection domain and the
1259 * requestor id for a given device.
1260 * If the device is not yet associated with a domain this is also done
1261 * in this function.
1262 */
b20ac0d4
JR
1263static int get_device_resources(struct device *dev,
1264 struct amd_iommu **iommu,
1265 struct protection_domain **domain,
1266 u16 *bdf)
1267{
1268 struct dma_ops_domain *dma_dom;
1269 struct pci_dev *pcidev;
1270 u16 _bdf;
1271
dbcc112e
JR
1272 *iommu = NULL;
1273 *domain = NULL;
1274 *bdf = 0xffff;
1275
1276 if (dev->bus != &pci_bus_type)
1277 return 0;
b20ac0d4
JR
1278
1279 pcidev = to_pci_dev(dev);
d591b0a3 1280 _bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
b20ac0d4 1281
431b2a20 1282 /* device not translated by any IOMMU in the system? */
dbcc112e 1283 if (_bdf > amd_iommu_last_bdf)
b20ac0d4 1284 return 0;
b20ac0d4
JR
1285
1286 *bdf = amd_iommu_alias_table[_bdf];
1287
1288 *iommu = amd_iommu_rlookup_table[*bdf];
1289 if (*iommu == NULL)
1290 return 0;
b20ac0d4
JR
1291 *domain = domain_for_device(*bdf);
1292 if (*domain == NULL) {
bd60b735
JR
1293 dma_dom = find_protection_domain(*bdf);
1294 if (!dma_dom)
1295 dma_dom = (*iommu)->default_dom;
b20ac0d4 1296 *domain = &dma_dom->domain;
f1179dc0 1297 attach_device(*iommu, *domain, *bdf);
e9a22a13
JR
1298 DUMP_printk("Using protection domain %d for device %s\n",
1299 (*domain)->id, dev_name(dev));
b20ac0d4
JR
1300 }
1301
f91ba190 1302 if (domain_for_device(_bdf) == NULL)
f1179dc0 1303 attach_device(*iommu, *domain, _bdf);
f91ba190 1304
b20ac0d4
JR
1305 return 1;
1306}
1307
04bfdd84
JR
1308static void update_device_table(struct protection_domain *domain)
1309{
1310 int i;
1311
1312 for (i = 0; i <= amd_iommu_last_bdf; ++i) {
1313 if (amd_iommu_pd_table[i] != domain)
1314 continue;
1315 set_dte_entry(i, domain);
1316 }
1317}
1318
1319static void update_domain(struct protection_domain *domain)
1320{
1321 if (!domain->updated)
1322 return;
1323
1324 update_device_table(domain);
1325 flush_devices_by_domain(domain);
1326 iommu_flush_domain(domain->id);
1327
1328 domain->updated = false;
1329}
1330
50020fb6
JR
1331/*
1332 * This function is used to add another level to an IO page table. Adding
1333 * another level increases the size of the address space by 9 bits to a size up
1334 * to 64 bits.
1335 */
1336static bool increase_address_space(struct protection_domain *domain,
1337 gfp_t gfp)
1338{
1339 u64 *pte;
1340
1341 if (domain->mode == PAGE_MODE_6_LEVEL)
1342 /* address space already 64 bit large */
1343 return false;
1344
1345 pte = (void *)get_zeroed_page(gfp);
1346 if (!pte)
1347 return false;
1348
1349 *pte = PM_LEVEL_PDE(domain->mode,
1350 virt_to_phys(domain->pt_root));
1351 domain->pt_root = pte;
1352 domain->mode += 1;
1353 domain->updated = true;
1354
1355 return true;
1356}
1357
8bc3e127 1358static u64 *alloc_pte(struct protection_domain *domain,
8bda3092
JR
1359 unsigned long address, u64 **pte_page, gfp_t gfp)
1360{
1361 u64 *pte, *page;
8bc3e127 1362 int level;
8bda3092 1363
8bc3e127
JR
1364 while (address > PM_LEVEL_SIZE(domain->mode))
1365 increase_address_space(domain, gfp);
8bda3092 1366
8bc3e127
JR
1367 level = domain->mode - 1;
1368 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
8bda3092 1369
8bc3e127
JR
1370 while (level > 0) {
1371 if (!IOMMU_PTE_PRESENT(*pte)) {
1372 page = (u64 *)get_zeroed_page(gfp);
1373 if (!page)
1374 return NULL;
1375 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
1376 }
8bda3092 1377
8bc3e127 1378 level -= 1;
8bda3092 1379
8bc3e127 1380 pte = IOMMU_PTE_PAGE(*pte);
8bda3092 1381
8bc3e127
JR
1382 if (pte_page && level == 0)
1383 *pte_page = pte;
8bda3092 1384
8bc3e127
JR
1385 pte = &pte[PM_LEVEL_INDEX(level, address)];
1386 }
8bda3092
JR
1387
1388 return pte;
1389}
1390
1391/*
1392 * This function fetches the PTE for a given address in the aperture
1393 */
1394static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
1395 unsigned long address)
1396{
384de729 1397 struct aperture_range *aperture;
8bda3092
JR
1398 u64 *pte, *pte_page;
1399
384de729
JR
1400 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1401 if (!aperture)
1402 return NULL;
1403
1404 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
8bda3092
JR
1405 if (!pte) {
1406 pte = alloc_pte(&dom->domain, address, &pte_page, GFP_ATOMIC);
384de729
JR
1407 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
1408 } else
8c8c143c 1409 pte += PM_LEVEL_INDEX(0, address);
8bda3092 1410
04bfdd84
JR
1411 update_domain(&dom->domain);
1412
8bda3092
JR
1413 return pte;
1414}
1415
431b2a20
JR
1416/*
1417 * This is the generic map function. It maps one 4kb page at paddr to
1418 * the given address in the DMA address space for the domain.
1419 */
cb76c322
JR
1420static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
1421 struct dma_ops_domain *dom,
1422 unsigned long address,
1423 phys_addr_t paddr,
1424 int direction)
1425{
1426 u64 *pte, __pte;
1427
1428 WARN_ON(address > dom->aperture_size);
1429
1430 paddr &= PAGE_MASK;
1431
8bda3092 1432 pte = dma_ops_get_pte(dom, address);
53812c11
JR
1433 if (!pte)
1434 return bad_dma_address;
cb76c322
JR
1435
1436 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
1437
1438 if (direction == DMA_TO_DEVICE)
1439 __pte |= IOMMU_PTE_IR;
1440 else if (direction == DMA_FROM_DEVICE)
1441 __pte |= IOMMU_PTE_IW;
1442 else if (direction == DMA_BIDIRECTIONAL)
1443 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
1444
1445 WARN_ON(*pte);
1446
1447 *pte = __pte;
1448
1449 return (dma_addr_t)address;
1450}
1451
431b2a20
JR
1452/*
1453 * The generic unmapping function for on page in the DMA address space.
1454 */
cb76c322
JR
1455static void dma_ops_domain_unmap(struct amd_iommu *iommu,
1456 struct dma_ops_domain *dom,
1457 unsigned long address)
1458{
384de729 1459 struct aperture_range *aperture;
cb76c322
JR
1460 u64 *pte;
1461
1462 if (address >= dom->aperture_size)
1463 return;
1464
384de729
JR
1465 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1466 if (!aperture)
1467 return;
1468
1469 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1470 if (!pte)
1471 return;
cb76c322 1472
8c8c143c 1473 pte += PM_LEVEL_INDEX(0, address);
cb76c322
JR
1474
1475 WARN_ON(!*pte);
1476
1477 *pte = 0ULL;
1478}
1479
431b2a20
JR
1480/*
1481 * This function contains common code for mapping of a physically
24f81160
JR
1482 * contiguous memory region into DMA address space. It is used by all
1483 * mapping functions provided with this IOMMU driver.
431b2a20
JR
1484 * Must be called with the domain lock held.
1485 */
cb76c322
JR
1486static dma_addr_t __map_single(struct device *dev,
1487 struct amd_iommu *iommu,
1488 struct dma_ops_domain *dma_dom,
1489 phys_addr_t paddr,
1490 size_t size,
6d4f343f 1491 int dir,
832a90c3
JR
1492 bool align,
1493 u64 dma_mask)
cb76c322
JR
1494{
1495 dma_addr_t offset = paddr & ~PAGE_MASK;
53812c11 1496 dma_addr_t address, start, ret;
cb76c322 1497 unsigned int pages;
6d4f343f 1498 unsigned long align_mask = 0;
cb76c322
JR
1499 int i;
1500
e3c449f5 1501 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
cb76c322
JR
1502 paddr &= PAGE_MASK;
1503
8ecaf8f1
JR
1504 INC_STATS_COUNTER(total_map_requests);
1505
c1858976
JR
1506 if (pages > 1)
1507 INC_STATS_COUNTER(cross_page);
1508
6d4f343f
JR
1509 if (align)
1510 align_mask = (1UL << get_order(size)) - 1;
1511
11b83888 1512retry:
832a90c3
JR
1513 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
1514 dma_mask);
11b83888
JR
1515 if (unlikely(address == bad_dma_address)) {
1516 /*
1517 * setting next_address here will let the address
1518 * allocator only scan the new allocated range in the
1519 * first run. This is a small optimization.
1520 */
1521 dma_dom->next_address = dma_dom->aperture_size;
1522
1523 if (alloc_new_range(iommu, dma_dom, false, GFP_ATOMIC))
1524 goto out;
1525
1526 /*
1527 * aperture was sucessfully enlarged by 128 MB, try
1528 * allocation again
1529 */
1530 goto retry;
1531 }
cb76c322
JR
1532
1533 start = address;
1534 for (i = 0; i < pages; ++i) {
53812c11
JR
1535 ret = dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
1536 if (ret == bad_dma_address)
1537 goto out_unmap;
1538
cb76c322
JR
1539 paddr += PAGE_SIZE;
1540 start += PAGE_SIZE;
1541 }
1542 address += offset;
1543
5774f7c5
JR
1544 ADD_STATS_COUNTER(alloced_io_mem, size);
1545
afa9fdc2 1546 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
1c655773
JR
1547 iommu_flush_tlb(iommu, dma_dom->domain.id);
1548 dma_dom->need_flush = false;
1549 } else if (unlikely(iommu_has_npcache(iommu)))
270cab24
JR
1550 iommu_flush_pages(iommu, dma_dom->domain.id, address, size);
1551
cb76c322
JR
1552out:
1553 return address;
53812c11
JR
1554
1555out_unmap:
1556
1557 for (--i; i >= 0; --i) {
1558 start -= PAGE_SIZE;
1559 dma_ops_domain_unmap(iommu, dma_dom, start);
1560 }
1561
1562 dma_ops_free_addresses(dma_dom, address, pages);
1563
1564 return bad_dma_address;
cb76c322
JR
1565}
1566
431b2a20
JR
1567/*
1568 * Does the reverse of the __map_single function. Must be called with
1569 * the domain lock held too
1570 */
cb76c322
JR
1571static void __unmap_single(struct amd_iommu *iommu,
1572 struct dma_ops_domain *dma_dom,
1573 dma_addr_t dma_addr,
1574 size_t size,
1575 int dir)
1576{
1577 dma_addr_t i, start;
1578 unsigned int pages;
1579
b8d9905d
JR
1580 if ((dma_addr == bad_dma_address) ||
1581 (dma_addr + size > dma_dom->aperture_size))
cb76c322
JR
1582 return;
1583
e3c449f5 1584 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
cb76c322
JR
1585 dma_addr &= PAGE_MASK;
1586 start = dma_addr;
1587
1588 for (i = 0; i < pages; ++i) {
1589 dma_ops_domain_unmap(iommu, dma_dom, start);
1590 start += PAGE_SIZE;
1591 }
1592
5774f7c5
JR
1593 SUB_STATS_COUNTER(alloced_io_mem, size);
1594
cb76c322 1595 dma_ops_free_addresses(dma_dom, dma_addr, pages);
270cab24 1596
80be308d 1597 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
1c655773 1598 iommu_flush_pages(iommu, dma_dom->domain.id, dma_addr, size);
80be308d
JR
1599 dma_dom->need_flush = false;
1600 }
cb76c322
JR
1601}
1602
431b2a20
JR
1603/*
1604 * The exported map_single function for dma_ops.
1605 */
51491367
FT
1606static dma_addr_t map_page(struct device *dev, struct page *page,
1607 unsigned long offset, size_t size,
1608 enum dma_data_direction dir,
1609 struct dma_attrs *attrs)
4da70b9e
JR
1610{
1611 unsigned long flags;
1612 struct amd_iommu *iommu;
1613 struct protection_domain *domain;
1614 u16 devid;
1615 dma_addr_t addr;
832a90c3 1616 u64 dma_mask;
51491367 1617 phys_addr_t paddr = page_to_phys(page) + offset;
4da70b9e 1618
0f2a86f2
JR
1619 INC_STATS_COUNTER(cnt_map_single);
1620
dbcc112e
JR
1621 if (!check_device(dev))
1622 return bad_dma_address;
1623
832a90c3 1624 dma_mask = *dev->dma_mask;
4da70b9e
JR
1625
1626 get_device_resources(dev, &iommu, &domain, &devid);
1627
1628 if (iommu == NULL || domain == NULL)
431b2a20 1629 /* device not handled by any AMD IOMMU */
4da70b9e
JR
1630 return (dma_addr_t)paddr;
1631
5b28df6f
JR
1632 if (!dma_ops_domain(domain))
1633 return bad_dma_address;
1634
4da70b9e 1635 spin_lock_irqsave(&domain->lock, flags);
832a90c3
JR
1636 addr = __map_single(dev, iommu, domain->priv, paddr, size, dir, false,
1637 dma_mask);
4da70b9e
JR
1638 if (addr == bad_dma_address)
1639 goto out;
1640
09ee17eb 1641 iommu_completion_wait(iommu);
4da70b9e
JR
1642
1643out:
1644 spin_unlock_irqrestore(&domain->lock, flags);
1645
1646 return addr;
1647}
1648
431b2a20
JR
1649/*
1650 * The exported unmap_single function for dma_ops.
1651 */
51491367
FT
1652static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
1653 enum dma_data_direction dir, struct dma_attrs *attrs)
4da70b9e
JR
1654{
1655 unsigned long flags;
1656 struct amd_iommu *iommu;
1657 struct protection_domain *domain;
1658 u16 devid;
1659
146a6917
JR
1660 INC_STATS_COUNTER(cnt_unmap_single);
1661
dbcc112e
JR
1662 if (!check_device(dev) ||
1663 !get_device_resources(dev, &iommu, &domain, &devid))
431b2a20 1664 /* device not handled by any AMD IOMMU */
4da70b9e
JR
1665 return;
1666
5b28df6f
JR
1667 if (!dma_ops_domain(domain))
1668 return;
1669
4da70b9e
JR
1670 spin_lock_irqsave(&domain->lock, flags);
1671
1672 __unmap_single(iommu, domain->priv, dma_addr, size, dir);
1673
09ee17eb 1674 iommu_completion_wait(iommu);
4da70b9e
JR
1675
1676 spin_unlock_irqrestore(&domain->lock, flags);
1677}
1678
431b2a20
JR
1679/*
1680 * This is a special map_sg function which is used if we should map a
1681 * device which is not handled by an AMD IOMMU in the system.
1682 */
65b050ad
JR
1683static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
1684 int nelems, int dir)
1685{
1686 struct scatterlist *s;
1687 int i;
1688
1689 for_each_sg(sglist, s, nelems, i) {
1690 s->dma_address = (dma_addr_t)sg_phys(s);
1691 s->dma_length = s->length;
1692 }
1693
1694 return nelems;
1695}
1696
431b2a20
JR
1697/*
1698 * The exported map_sg function for dma_ops (handles scatter-gather
1699 * lists).
1700 */
65b050ad 1701static int map_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
1702 int nelems, enum dma_data_direction dir,
1703 struct dma_attrs *attrs)
65b050ad
JR
1704{
1705 unsigned long flags;
1706 struct amd_iommu *iommu;
1707 struct protection_domain *domain;
1708 u16 devid;
1709 int i;
1710 struct scatterlist *s;
1711 phys_addr_t paddr;
1712 int mapped_elems = 0;
832a90c3 1713 u64 dma_mask;
65b050ad 1714
d03f067a
JR
1715 INC_STATS_COUNTER(cnt_map_sg);
1716
dbcc112e
JR
1717 if (!check_device(dev))
1718 return 0;
1719
832a90c3 1720 dma_mask = *dev->dma_mask;
65b050ad
JR
1721
1722 get_device_resources(dev, &iommu, &domain, &devid);
1723
1724 if (!iommu || !domain)
1725 return map_sg_no_iommu(dev, sglist, nelems, dir);
1726
5b28df6f
JR
1727 if (!dma_ops_domain(domain))
1728 return 0;
1729
65b050ad
JR
1730 spin_lock_irqsave(&domain->lock, flags);
1731
1732 for_each_sg(sglist, s, nelems, i) {
1733 paddr = sg_phys(s);
1734
1735 s->dma_address = __map_single(dev, iommu, domain->priv,
832a90c3
JR
1736 paddr, s->length, dir, false,
1737 dma_mask);
65b050ad
JR
1738
1739 if (s->dma_address) {
1740 s->dma_length = s->length;
1741 mapped_elems++;
1742 } else
1743 goto unmap;
65b050ad
JR
1744 }
1745
09ee17eb 1746 iommu_completion_wait(iommu);
65b050ad
JR
1747
1748out:
1749 spin_unlock_irqrestore(&domain->lock, flags);
1750
1751 return mapped_elems;
1752unmap:
1753 for_each_sg(sglist, s, mapped_elems, i) {
1754 if (s->dma_address)
1755 __unmap_single(iommu, domain->priv, s->dma_address,
1756 s->dma_length, dir);
1757 s->dma_address = s->dma_length = 0;
1758 }
1759
1760 mapped_elems = 0;
1761
1762 goto out;
1763}
1764
431b2a20
JR
1765/*
1766 * The exported map_sg function for dma_ops (handles scatter-gather
1767 * lists).
1768 */
65b050ad 1769static void unmap_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
1770 int nelems, enum dma_data_direction dir,
1771 struct dma_attrs *attrs)
65b050ad
JR
1772{
1773 unsigned long flags;
1774 struct amd_iommu *iommu;
1775 struct protection_domain *domain;
1776 struct scatterlist *s;
1777 u16 devid;
1778 int i;
1779
55877a6b
JR
1780 INC_STATS_COUNTER(cnt_unmap_sg);
1781
dbcc112e
JR
1782 if (!check_device(dev) ||
1783 !get_device_resources(dev, &iommu, &domain, &devid))
65b050ad
JR
1784 return;
1785
5b28df6f
JR
1786 if (!dma_ops_domain(domain))
1787 return;
1788
65b050ad
JR
1789 spin_lock_irqsave(&domain->lock, flags);
1790
1791 for_each_sg(sglist, s, nelems, i) {
1792 __unmap_single(iommu, domain->priv, s->dma_address,
1793 s->dma_length, dir);
65b050ad
JR
1794 s->dma_address = s->dma_length = 0;
1795 }
1796
09ee17eb 1797 iommu_completion_wait(iommu);
65b050ad
JR
1798
1799 spin_unlock_irqrestore(&domain->lock, flags);
1800}
1801
431b2a20
JR
1802/*
1803 * The exported alloc_coherent function for dma_ops.
1804 */
5d8b53cf
JR
1805static void *alloc_coherent(struct device *dev, size_t size,
1806 dma_addr_t *dma_addr, gfp_t flag)
1807{
1808 unsigned long flags;
1809 void *virt_addr;
1810 struct amd_iommu *iommu;
1811 struct protection_domain *domain;
1812 u16 devid;
1813 phys_addr_t paddr;
832a90c3 1814 u64 dma_mask = dev->coherent_dma_mask;
5d8b53cf 1815
c8f0fb36
JR
1816 INC_STATS_COUNTER(cnt_alloc_coherent);
1817
dbcc112e
JR
1818 if (!check_device(dev))
1819 return NULL;
5d8b53cf 1820
13d9fead
FT
1821 if (!get_device_resources(dev, &iommu, &domain, &devid))
1822 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
5d8b53cf 1823
c97ac535 1824 flag |= __GFP_ZERO;
5d8b53cf
JR
1825 virt_addr = (void *)__get_free_pages(flag, get_order(size));
1826 if (!virt_addr)
b25ae679 1827 return NULL;
5d8b53cf 1828
5d8b53cf
JR
1829 paddr = virt_to_phys(virt_addr);
1830
5d8b53cf
JR
1831 if (!iommu || !domain) {
1832 *dma_addr = (dma_addr_t)paddr;
1833 return virt_addr;
1834 }
1835
5b28df6f
JR
1836 if (!dma_ops_domain(domain))
1837 goto out_free;
1838
832a90c3
JR
1839 if (!dma_mask)
1840 dma_mask = *dev->dma_mask;
1841
5d8b53cf
JR
1842 spin_lock_irqsave(&domain->lock, flags);
1843
1844 *dma_addr = __map_single(dev, iommu, domain->priv, paddr,
832a90c3 1845 size, DMA_BIDIRECTIONAL, true, dma_mask);
5d8b53cf 1846
367d04c4
JS
1847 if (*dma_addr == bad_dma_address) {
1848 spin_unlock_irqrestore(&domain->lock, flags);
5b28df6f 1849 goto out_free;
367d04c4 1850 }
5d8b53cf 1851
09ee17eb 1852 iommu_completion_wait(iommu);
5d8b53cf 1853
5d8b53cf
JR
1854 spin_unlock_irqrestore(&domain->lock, flags);
1855
1856 return virt_addr;
5b28df6f
JR
1857
1858out_free:
1859
1860 free_pages((unsigned long)virt_addr, get_order(size));
1861
1862 return NULL;
5d8b53cf
JR
1863}
1864
431b2a20
JR
1865/*
1866 * The exported free_coherent function for dma_ops.
431b2a20 1867 */
5d8b53cf
JR
1868static void free_coherent(struct device *dev, size_t size,
1869 void *virt_addr, dma_addr_t dma_addr)
1870{
1871 unsigned long flags;
1872 struct amd_iommu *iommu;
1873 struct protection_domain *domain;
1874 u16 devid;
1875
5d31ee7e
JR
1876 INC_STATS_COUNTER(cnt_free_coherent);
1877
dbcc112e
JR
1878 if (!check_device(dev))
1879 return;
1880
5d8b53cf
JR
1881 get_device_resources(dev, &iommu, &domain, &devid);
1882
1883 if (!iommu || !domain)
1884 goto free_mem;
1885
5b28df6f
JR
1886 if (!dma_ops_domain(domain))
1887 goto free_mem;
1888
5d8b53cf
JR
1889 spin_lock_irqsave(&domain->lock, flags);
1890
1891 __unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
5d8b53cf 1892
09ee17eb 1893 iommu_completion_wait(iommu);
5d8b53cf
JR
1894
1895 spin_unlock_irqrestore(&domain->lock, flags);
1896
1897free_mem:
1898 free_pages((unsigned long)virt_addr, get_order(size));
1899}
1900
b39ba6ad
JR
1901/*
1902 * This function is called by the DMA layer to find out if we can handle a
1903 * particular device. It is part of the dma_ops.
1904 */
1905static int amd_iommu_dma_supported(struct device *dev, u64 mask)
1906{
1907 u16 bdf;
1908 struct pci_dev *pcidev;
1909
1910 /* No device or no PCI device */
1911 if (!dev || dev->bus != &pci_bus_type)
1912 return 0;
1913
1914 pcidev = to_pci_dev(dev);
1915
1916 bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
1917
1918 /* Out of our scope? */
1919 if (bdf > amd_iommu_last_bdf)
1920 return 0;
1921
1922 return 1;
1923}
1924
c432f3df 1925/*
431b2a20
JR
1926 * The function for pre-allocating protection domains.
1927 *
c432f3df
JR
1928 * If the driver core informs the DMA layer if a driver grabs a device
1929 * we don't need to preallocate the protection domains anymore.
1930 * For now we have to.
1931 */
0e93dd88 1932static void prealloc_protection_domains(void)
c432f3df
JR
1933{
1934 struct pci_dev *dev = NULL;
1935 struct dma_ops_domain *dma_dom;
1936 struct amd_iommu *iommu;
c432f3df
JR
1937 u16 devid;
1938
1939 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
edcb34da 1940 devid = calc_devid(dev->bus->number, dev->devfn);
3a61ec38 1941 if (devid > amd_iommu_last_bdf)
c432f3df
JR
1942 continue;
1943 devid = amd_iommu_alias_table[devid];
1944 if (domain_for_device(devid))
1945 continue;
1946 iommu = amd_iommu_rlookup_table[devid];
1947 if (!iommu)
1948 continue;
d9cfed92 1949 dma_dom = dma_ops_domain_alloc(iommu);
c432f3df
JR
1950 if (!dma_dom)
1951 continue;
1952 init_unity_mappings_for_device(dma_dom, devid);
bd60b735
JR
1953 dma_dom->target_dev = devid;
1954
1955 list_add_tail(&dma_dom->list, &iommu_pd_list);
c432f3df
JR
1956 }
1957}
1958
160c1d8e 1959static struct dma_map_ops amd_iommu_dma_ops = {
6631ee9d
JR
1960 .alloc_coherent = alloc_coherent,
1961 .free_coherent = free_coherent,
51491367
FT
1962 .map_page = map_page,
1963 .unmap_page = unmap_page,
6631ee9d
JR
1964 .map_sg = map_sg,
1965 .unmap_sg = unmap_sg,
b39ba6ad 1966 .dma_supported = amd_iommu_dma_supported,
6631ee9d
JR
1967};
1968
431b2a20
JR
1969/*
1970 * The function which clues the AMD IOMMU driver into dma_ops.
1971 */
6631ee9d
JR
1972int __init amd_iommu_init_dma_ops(void)
1973{
1974 struct amd_iommu *iommu;
6631ee9d
JR
1975 int ret;
1976
431b2a20
JR
1977 /*
1978 * first allocate a default protection domain for every IOMMU we
1979 * found in the system. Devices not assigned to any other
1980 * protection domain will be assigned to the default one.
1981 */
3bd22172 1982 for_each_iommu(iommu) {
d9cfed92 1983 iommu->default_dom = dma_ops_domain_alloc(iommu);
6631ee9d
JR
1984 if (iommu->default_dom == NULL)
1985 return -ENOMEM;
e2dc14a2 1986 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
6631ee9d
JR
1987 ret = iommu_init_unity_mappings(iommu);
1988 if (ret)
1989 goto free_domains;
1990 }
1991
431b2a20
JR
1992 /*
1993 * If device isolation is enabled, pre-allocate the protection
1994 * domains for each device.
1995 */
6631ee9d
JR
1996 if (amd_iommu_isolate)
1997 prealloc_protection_domains();
1998
1999 iommu_detected = 1;
2000 force_iommu = 1;
2001 bad_dma_address = 0;
92af4e29 2002#ifdef CONFIG_GART_IOMMU
6631ee9d
JR
2003 gart_iommu_aperture_disabled = 1;
2004 gart_iommu_aperture = 0;
92af4e29 2005#endif
6631ee9d 2006
431b2a20 2007 /* Make the driver finally visible to the drivers */
6631ee9d
JR
2008 dma_ops = &amd_iommu_dma_ops;
2009
26961efe 2010 register_iommu(&amd_iommu_ops);
26961efe 2011
e275a2a0
JR
2012 bus_register_notifier(&pci_bus_type, &device_nb);
2013
7f26508b
JR
2014 amd_iommu_stats_init();
2015
6631ee9d
JR
2016 return 0;
2017
2018free_domains:
2019
3bd22172 2020 for_each_iommu(iommu) {
6631ee9d
JR
2021 if (iommu->default_dom)
2022 dma_ops_domain_free(iommu->default_dom);
2023 }
2024
2025 return ret;
2026}
6d98cd80
JR
2027
2028/*****************************************************************************
2029 *
2030 * The following functions belong to the exported interface of AMD IOMMU
2031 *
2032 * This interface allows access to lower level functions of the IOMMU
2033 * like protection domain handling and assignement of devices to domains
2034 * which is not possible with the dma_ops interface.
2035 *
2036 *****************************************************************************/
2037
6d98cd80
JR
2038static void cleanup_domain(struct protection_domain *domain)
2039{
2040 unsigned long flags;
2041 u16 devid;
2042
2043 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2044
2045 for (devid = 0; devid <= amd_iommu_last_bdf; ++devid)
2046 if (amd_iommu_pd_table[devid] == domain)
2047 __detach_device(domain, devid);
2048
2049 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2050}
2051
c156e347
JR
2052static int amd_iommu_domain_init(struct iommu_domain *dom)
2053{
2054 struct protection_domain *domain;
2055
2056 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2057 if (!domain)
2058 return -ENOMEM;
2059
2060 spin_lock_init(&domain->lock);
2061 domain->mode = PAGE_MODE_3_LEVEL;
2062 domain->id = domain_id_alloc();
2063 if (!domain->id)
2064 goto out_free;
2065 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2066 if (!domain->pt_root)
2067 goto out_free;
2068
2069 dom->priv = domain;
2070
2071 return 0;
2072
2073out_free:
2074 kfree(domain);
2075
2076 return -ENOMEM;
2077}
2078
98383fc3
JR
2079static void amd_iommu_domain_destroy(struct iommu_domain *dom)
2080{
2081 struct protection_domain *domain = dom->priv;
2082
2083 if (!domain)
2084 return;
2085
2086 if (domain->dev_cnt > 0)
2087 cleanup_domain(domain);
2088
2089 BUG_ON(domain->dev_cnt != 0);
2090
2091 free_pagetable(domain);
2092
2093 domain_id_free(domain->id);
2094
2095 kfree(domain);
2096
2097 dom->priv = NULL;
2098}
2099
684f2888
JR
2100static void amd_iommu_detach_device(struct iommu_domain *dom,
2101 struct device *dev)
2102{
2103 struct protection_domain *domain = dom->priv;
2104 struct amd_iommu *iommu;
2105 struct pci_dev *pdev;
2106 u16 devid;
2107
2108 if (dev->bus != &pci_bus_type)
2109 return;
2110
2111 pdev = to_pci_dev(dev);
2112
2113 devid = calc_devid(pdev->bus->number, pdev->devfn);
2114
2115 if (devid > 0)
2116 detach_device(domain, devid);
2117
2118 iommu = amd_iommu_rlookup_table[devid];
2119 if (!iommu)
2120 return;
2121
2122 iommu_queue_inv_dev_entry(iommu, devid);
2123 iommu_completion_wait(iommu);
2124}
2125
01106066
JR
2126static int amd_iommu_attach_device(struct iommu_domain *dom,
2127 struct device *dev)
2128{
2129 struct protection_domain *domain = dom->priv;
2130 struct protection_domain *old_domain;
2131 struct amd_iommu *iommu;
2132 struct pci_dev *pdev;
2133 u16 devid;
2134
2135 if (dev->bus != &pci_bus_type)
2136 return -EINVAL;
2137
2138 pdev = to_pci_dev(dev);
2139
2140 devid = calc_devid(pdev->bus->number, pdev->devfn);
2141
2142 if (devid >= amd_iommu_last_bdf ||
2143 devid != amd_iommu_alias_table[devid])
2144 return -EINVAL;
2145
2146 iommu = amd_iommu_rlookup_table[devid];
2147 if (!iommu)
2148 return -EINVAL;
2149
2150 old_domain = domain_for_device(devid);
2151 if (old_domain)
71ff3bca 2152 detach_device(old_domain, devid);
01106066
JR
2153
2154 attach_device(iommu, domain, devid);
2155
2156 iommu_completion_wait(iommu);
2157
2158 return 0;
2159}
2160
c6229ca6
JR
2161static int amd_iommu_map_range(struct iommu_domain *dom,
2162 unsigned long iova, phys_addr_t paddr,
2163 size_t size, int iommu_prot)
2164{
2165 struct protection_domain *domain = dom->priv;
2166 unsigned long i, npages = iommu_num_pages(paddr, size, PAGE_SIZE);
2167 int prot = 0;
2168 int ret;
2169
2170 if (iommu_prot & IOMMU_READ)
2171 prot |= IOMMU_PROT_IR;
2172 if (iommu_prot & IOMMU_WRITE)
2173 prot |= IOMMU_PROT_IW;
2174
2175 iova &= PAGE_MASK;
2176 paddr &= PAGE_MASK;
2177
2178 for (i = 0; i < npages; ++i) {
2179 ret = iommu_map_page(domain, iova, paddr, prot);
2180 if (ret)
2181 return ret;
2182
2183 iova += PAGE_SIZE;
2184 paddr += PAGE_SIZE;
2185 }
2186
2187 return 0;
2188}
2189
eb74ff6c
JR
2190static void amd_iommu_unmap_range(struct iommu_domain *dom,
2191 unsigned long iova, size_t size)
2192{
2193
2194 struct protection_domain *domain = dom->priv;
2195 unsigned long i, npages = iommu_num_pages(iova, size, PAGE_SIZE);
2196
2197 iova &= PAGE_MASK;
2198
2199 for (i = 0; i < npages; ++i) {
a6b256b4 2200 iommu_unmap_page(domain, iova, PM_MAP_4k);
eb74ff6c
JR
2201 iova += PAGE_SIZE;
2202 }
2203
2204 iommu_flush_domain(domain->id);
2205}
2206
645c4c8d
JR
2207static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2208 unsigned long iova)
2209{
2210 struct protection_domain *domain = dom->priv;
2211 unsigned long offset = iova & ~PAGE_MASK;
2212 phys_addr_t paddr;
2213 u64 *pte;
2214
a6b256b4 2215 pte = fetch_pte(domain, iova, PM_MAP_4k);
645c4c8d 2216
a6d41a40 2217 if (!pte || !IOMMU_PTE_PRESENT(*pte))
645c4c8d
JR
2218 return 0;
2219
2220 paddr = *pte & IOMMU_PAGE_MASK;
2221 paddr |= offset;
2222
2223 return paddr;
2224}
2225
dbb9fd86
SY
2226static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
2227 unsigned long cap)
2228{
2229 return 0;
2230}
2231
26961efe
JR
2232static struct iommu_ops amd_iommu_ops = {
2233 .domain_init = amd_iommu_domain_init,
2234 .domain_destroy = amd_iommu_domain_destroy,
2235 .attach_dev = amd_iommu_attach_device,
2236 .detach_dev = amd_iommu_detach_device,
2237 .map = amd_iommu_map_range,
2238 .unmap = amd_iommu_unmap_range,
2239 .iova_to_phys = amd_iommu_iova_to_phys,
dbb9fd86 2240 .domain_has_cap = amd_iommu_domain_has_cap,
26961efe
JR
2241};
2242