]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/kernel/amd_iommu.c
x86/amd-iommu: Update copyright headers
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / amd_iommu.c
CommitLineData
b6c02715 1/*
bf3118c1 2 * Copyright (C) 2007-2009 Advanced Micro Devices, Inc.
b6c02715
JR
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/pci.h>
21#include <linux/gfp.h>
22#include <linux/bitops.h>
7f26508b 23#include <linux/debugfs.h>
b6c02715 24#include <linux/scatterlist.h>
51491367 25#include <linux/dma-mapping.h>
b6c02715 26#include <linux/iommu-helper.h>
c156e347 27#include <linux/iommu.h>
b6c02715 28#include <asm/proto.h>
46a7fa27 29#include <asm/iommu.h>
1d9b16d1 30#include <asm/gart.h>
6a9401a7 31#include <asm/amd_iommu_proto.h>
b6c02715 32#include <asm/amd_iommu_types.h>
c6da992e 33#include <asm/amd_iommu.h>
b6c02715
JR
34
35#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
36
136f78a1
JR
37#define EXIT_LOOP_COUNT 10000000
38
b6c02715
JR
39static DEFINE_RWLOCK(amd_iommu_devtable_lock);
40
bd60b735
JR
41/* A list of preallocated protection domains */
42static LIST_HEAD(iommu_pd_list);
43static DEFINE_SPINLOCK(iommu_pd_list_lock);
44
0feae533
JR
45/*
46 * Domain for untranslated devices - only allocated
47 * if iommu=pt passed on kernel cmd line.
48 */
49static struct protection_domain *pt_domain;
50
26961efe 51static struct iommu_ops amd_iommu_ops;
26961efe 52
431b2a20
JR
53/*
54 * general struct to manage commands send to an IOMMU
55 */
d6449536 56struct iommu_cmd {
b6c02715
JR
57 u32 data[4];
58};
59
bd0e5211
JR
60static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
61 struct unity_map_entry *e);
e275a2a0 62static struct dma_ops_domain *find_protection_domain(u16 devid);
8bc3e127 63static u64 *alloc_pte(struct protection_domain *domain,
abdc5eb3
JR
64 unsigned long address, int end_lvl,
65 u64 **pte_page, gfp_t gfp);
00cd122a
JR
66static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
67 unsigned long start_page,
68 unsigned int pages);
a345b23b 69static void reset_iommu_command_buffer(struct amd_iommu *iommu);
9355a081 70static u64 *fetch_pte(struct protection_domain *domain,
a6b256b4 71 unsigned long address, int map_size);
04bfdd84 72static void update_domain(struct protection_domain *domain);
c1eee67b 73
7f26508b
JR
74#ifdef CONFIG_AMD_IOMMU_STATS
75
76/*
77 * Initialization code for statistics collection
78 */
79
da49f6df 80DECLARE_STATS_COUNTER(compl_wait);
0f2a86f2 81DECLARE_STATS_COUNTER(cnt_map_single);
146a6917 82DECLARE_STATS_COUNTER(cnt_unmap_single);
d03f067a 83DECLARE_STATS_COUNTER(cnt_map_sg);
55877a6b 84DECLARE_STATS_COUNTER(cnt_unmap_sg);
c8f0fb36 85DECLARE_STATS_COUNTER(cnt_alloc_coherent);
5d31ee7e 86DECLARE_STATS_COUNTER(cnt_free_coherent);
c1858976 87DECLARE_STATS_COUNTER(cross_page);
f57d98ae 88DECLARE_STATS_COUNTER(domain_flush_single);
18811f55 89DECLARE_STATS_COUNTER(domain_flush_all);
5774f7c5 90DECLARE_STATS_COUNTER(alloced_io_mem);
8ecaf8f1 91DECLARE_STATS_COUNTER(total_map_requests);
da49f6df 92
7f26508b
JR
93static struct dentry *stats_dir;
94static struct dentry *de_isolate;
95static struct dentry *de_fflush;
96
97static void amd_iommu_stats_add(struct __iommu_counter *cnt)
98{
99 if (stats_dir == NULL)
100 return;
101
102 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
103 &cnt->value);
104}
105
106static void amd_iommu_stats_init(void)
107{
108 stats_dir = debugfs_create_dir("amd-iommu", NULL);
109 if (stats_dir == NULL)
110 return;
111
112 de_isolate = debugfs_create_bool("isolation", 0444, stats_dir,
113 (u32 *)&amd_iommu_isolate);
114
115 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
116 (u32 *)&amd_iommu_unmap_flush);
da49f6df
JR
117
118 amd_iommu_stats_add(&compl_wait);
0f2a86f2 119 amd_iommu_stats_add(&cnt_map_single);
146a6917 120 amd_iommu_stats_add(&cnt_unmap_single);
d03f067a 121 amd_iommu_stats_add(&cnt_map_sg);
55877a6b 122 amd_iommu_stats_add(&cnt_unmap_sg);
c8f0fb36 123 amd_iommu_stats_add(&cnt_alloc_coherent);
5d31ee7e 124 amd_iommu_stats_add(&cnt_free_coherent);
c1858976 125 amd_iommu_stats_add(&cross_page);
f57d98ae 126 amd_iommu_stats_add(&domain_flush_single);
18811f55 127 amd_iommu_stats_add(&domain_flush_all);
5774f7c5 128 amd_iommu_stats_add(&alloced_io_mem);
8ecaf8f1 129 amd_iommu_stats_add(&total_map_requests);
7f26508b
JR
130}
131
132#endif
133
431b2a20 134/* returns !0 if the IOMMU is caching non-present entries in its TLB */
4da70b9e
JR
135static int iommu_has_npcache(struct amd_iommu *iommu)
136{
ae9b9403 137 return iommu->cap & (1UL << IOMMU_CAP_NPCACHE);
4da70b9e
JR
138}
139
a80dc3e0
JR
140/****************************************************************************
141 *
142 * Interrupt handling functions
143 *
144 ****************************************************************************/
145
e3e59876
JR
146static void dump_dte_entry(u16 devid)
147{
148 int i;
149
150 for (i = 0; i < 8; ++i)
151 pr_err("AMD-Vi: DTE[%d]: %08x\n", i,
152 amd_iommu_dev_table[devid].data[i]);
153}
154
945b4ac4
JR
155static void dump_command(unsigned long phys_addr)
156{
157 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
158 int i;
159
160 for (i = 0; i < 4; ++i)
161 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
162}
163
a345b23b 164static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
90008ee4
JR
165{
166 u32 *event = __evt;
167 int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
168 int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
169 int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
170 int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
171 u64 address = (u64)(((u64)event[3]) << 32) | event[2];
172
4c6f40d4 173 printk(KERN_ERR "AMD-Vi: Event logged [");
90008ee4
JR
174
175 switch (type) {
176 case EVENT_TYPE_ILL_DEV:
177 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
178 "address=0x%016llx flags=0x%04x]\n",
179 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
180 address, flags);
e3e59876 181 dump_dte_entry(devid);
90008ee4
JR
182 break;
183 case EVENT_TYPE_IO_FAULT:
184 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
185 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
186 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
187 domid, address, flags);
188 break;
189 case EVENT_TYPE_DEV_TAB_ERR:
190 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
191 "address=0x%016llx flags=0x%04x]\n",
192 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
193 address, flags);
194 break;
195 case EVENT_TYPE_PAGE_TAB_ERR:
196 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
197 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
198 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
199 domid, address, flags);
200 break;
201 case EVENT_TYPE_ILL_CMD:
202 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
a345b23b 203 reset_iommu_command_buffer(iommu);
945b4ac4 204 dump_command(address);
90008ee4
JR
205 break;
206 case EVENT_TYPE_CMD_HARD_ERR:
207 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
208 "flags=0x%04x]\n", address, flags);
209 break;
210 case EVENT_TYPE_IOTLB_INV_TO:
211 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
212 "address=0x%016llx]\n",
213 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
214 address);
215 break;
216 case EVENT_TYPE_INV_DEV_REQ:
217 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
218 "address=0x%016llx flags=0x%04x]\n",
219 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
220 address, flags);
221 break;
222 default:
223 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
224 }
225}
226
227static void iommu_poll_events(struct amd_iommu *iommu)
228{
229 u32 head, tail;
230 unsigned long flags;
231
232 spin_lock_irqsave(&iommu->lock, flags);
233
234 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
235 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
236
237 while (head != tail) {
a345b23b 238 iommu_print_event(iommu, iommu->evt_buf + head);
90008ee4
JR
239 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
240 }
241
242 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
243
244 spin_unlock_irqrestore(&iommu->lock, flags);
245}
246
a80dc3e0
JR
247irqreturn_t amd_iommu_int_handler(int irq, void *data)
248{
90008ee4
JR
249 struct amd_iommu *iommu;
250
3bd22172 251 for_each_iommu(iommu)
90008ee4
JR
252 iommu_poll_events(iommu);
253
254 return IRQ_HANDLED;
a80dc3e0
JR
255}
256
431b2a20
JR
257/****************************************************************************
258 *
259 * IOMMU command queuing functions
260 *
261 ****************************************************************************/
262
263/*
264 * Writes the command to the IOMMUs command buffer and informs the
265 * hardware about the new command. Must be called with iommu->lock held.
266 */
d6449536 267static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
268{
269 u32 tail, head;
270 u8 *target;
271
272 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
8a7c5ef3 273 target = iommu->cmd_buf + tail;
a19ae1ec
JR
274 memcpy_toio(target, cmd, sizeof(*cmd));
275 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
276 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
277 if (tail == head)
278 return -ENOMEM;
279 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
280
281 return 0;
282}
283
431b2a20
JR
284/*
285 * General queuing function for commands. Takes iommu->lock and calls
286 * __iommu_queue_command().
287 */
d6449536 288static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
289{
290 unsigned long flags;
291 int ret;
292
293 spin_lock_irqsave(&iommu->lock, flags);
294 ret = __iommu_queue_command(iommu, cmd);
09ee17eb 295 if (!ret)
0cfd7aa9 296 iommu->need_sync = true;
a19ae1ec
JR
297 spin_unlock_irqrestore(&iommu->lock, flags);
298
299 return ret;
300}
301
8d201968
JR
302/*
303 * This function waits until an IOMMU has completed a completion
304 * wait command
305 */
306static void __iommu_wait_for_completion(struct amd_iommu *iommu)
307{
308 int ready = 0;
309 unsigned status = 0;
310 unsigned long i = 0;
311
da49f6df
JR
312 INC_STATS_COUNTER(compl_wait);
313
8d201968
JR
314 while (!ready && (i < EXIT_LOOP_COUNT)) {
315 ++i;
316 /* wait for the bit to become one */
317 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
318 ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
319 }
320
321 /* set bit back to zero */
322 status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
323 writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);
324
6a1eddd2
JR
325 if (unlikely(i == EXIT_LOOP_COUNT)) {
326 spin_unlock(&iommu->lock);
327 reset_iommu_command_buffer(iommu);
328 spin_lock(&iommu->lock);
329 }
8d201968
JR
330}
331
332/*
333 * This function queues a completion wait command into the command
334 * buffer of an IOMMU
335 */
336static int __iommu_completion_wait(struct amd_iommu *iommu)
337{
338 struct iommu_cmd cmd;
339
340 memset(&cmd, 0, sizeof(cmd));
341 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
342 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);
343
344 return __iommu_queue_command(iommu, &cmd);
345}
346
431b2a20
JR
347/*
348 * This function is called whenever we need to ensure that the IOMMU has
349 * completed execution of all commands we sent. It sends a
350 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
351 * us about that by writing a value to a physical address we pass with
352 * the command.
353 */
a19ae1ec
JR
354static int iommu_completion_wait(struct amd_iommu *iommu)
355{
8d201968
JR
356 int ret = 0;
357 unsigned long flags;
a19ae1ec 358
7e4f88da
JR
359 spin_lock_irqsave(&iommu->lock, flags);
360
09ee17eb
JR
361 if (!iommu->need_sync)
362 goto out;
363
8d201968 364 ret = __iommu_completion_wait(iommu);
09ee17eb 365
0cfd7aa9 366 iommu->need_sync = false;
a19ae1ec
JR
367
368 if (ret)
7e4f88da 369 goto out;
a19ae1ec 370
8d201968 371 __iommu_wait_for_completion(iommu);
84df8175 372
7e4f88da
JR
373out:
374 spin_unlock_irqrestore(&iommu->lock, flags);
a19ae1ec
JR
375
376 return 0;
377}
378
431b2a20
JR
379/*
380 * Command send function for invalidating a device table entry
381 */
a19ae1ec
JR
382static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
383{
d6449536 384 struct iommu_cmd cmd;
ee2fa743 385 int ret;
a19ae1ec
JR
386
387 BUG_ON(iommu == NULL);
388
389 memset(&cmd, 0, sizeof(cmd));
390 CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
391 cmd.data[0] = devid;
392
ee2fa743
JR
393 ret = iommu_queue_command(iommu, &cmd);
394
ee2fa743 395 return ret;
a19ae1ec
JR
396}
397
237b6f33
JR
398static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
399 u16 domid, int pde, int s)
400{
401 memset(cmd, 0, sizeof(*cmd));
402 address &= PAGE_MASK;
403 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
404 cmd->data[1] |= domid;
405 cmd->data[2] = lower_32_bits(address);
406 cmd->data[3] = upper_32_bits(address);
407 if (s) /* size bit - we flush more than one 4kb page */
408 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
409 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
410 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
411}
412
431b2a20
JR
413/*
414 * Generic command send function for invalidaing TLB entries
415 */
a19ae1ec
JR
416static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
417 u64 address, u16 domid, int pde, int s)
418{
d6449536 419 struct iommu_cmd cmd;
ee2fa743 420 int ret;
a19ae1ec 421
237b6f33 422 __iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
a19ae1ec 423
ee2fa743
JR
424 ret = iommu_queue_command(iommu, &cmd);
425
ee2fa743 426 return ret;
a19ae1ec
JR
427}
428
431b2a20
JR
429/*
430 * TLB invalidation function which is called from the mapping functions.
431 * It invalidates a single PTE if the range to flush is within a single
432 * page. Otherwise it flushes the whole TLB of the IOMMU.
433 */
a19ae1ec
JR
434static int iommu_flush_pages(struct amd_iommu *iommu, u16 domid,
435 u64 address, size_t size)
436{
999ba417 437 int s = 0;
e3c449f5 438 unsigned pages = iommu_num_pages(address, size, PAGE_SIZE);
a19ae1ec
JR
439
440 address &= PAGE_MASK;
441
999ba417
JR
442 if (pages > 1) {
443 /*
444 * If we have to flush more than one page, flush all
445 * TLB entries for this domain
446 */
447 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
448 s = 1;
a19ae1ec
JR
449 }
450
999ba417
JR
451 iommu_queue_inv_iommu_pages(iommu, address, domid, 0, s);
452
a19ae1ec
JR
453 return 0;
454}
b6c02715 455
1c655773
JR
456/* Flush the whole IO/TLB for a given protection domain */
457static void iommu_flush_tlb(struct amd_iommu *iommu, u16 domid)
458{
459 u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
460
f57d98ae
JR
461 INC_STATS_COUNTER(domain_flush_single);
462
1c655773
JR
463 iommu_queue_inv_iommu_pages(iommu, address, domid, 0, 1);
464}
465
42a49f96
CW
466/* Flush the whole IO/TLB for a given protection domain - including PDE */
467static void iommu_flush_tlb_pde(struct amd_iommu *iommu, u16 domid)
468{
469 u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
470
471 INC_STATS_COUNTER(domain_flush_single);
472
473 iommu_queue_inv_iommu_pages(iommu, address, domid, 1, 1);
474}
475
43f49609 476/*
e394d72a 477 * This function flushes one domain on one IOMMU
43f49609 478 */
e394d72a 479static void flush_domain_on_iommu(struct amd_iommu *iommu, u16 domid)
43f49609 480{
43f49609 481 struct iommu_cmd cmd;
e394d72a 482 unsigned long flags;
18811f55 483
43f49609
JR
484 __iommu_build_inv_iommu_pages(&cmd, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
485 domid, 1, 1);
486
e394d72a
JR
487 spin_lock_irqsave(&iommu->lock, flags);
488 __iommu_queue_command(iommu, &cmd);
489 __iommu_completion_wait(iommu);
490 __iommu_wait_for_completion(iommu);
491 spin_unlock_irqrestore(&iommu->lock, flags);
43f49609 492}
43f49609 493
e394d72a 494static void flush_all_domains_on_iommu(struct amd_iommu *iommu)
bfd1be18
JR
495{
496 int i;
497
498 for (i = 1; i < MAX_DOMAIN_ID; ++i) {
499 if (!test_bit(i, amd_iommu_pd_alloc_bitmap))
500 continue;
e394d72a 501 flush_domain_on_iommu(iommu, i);
bfd1be18 502 }
e394d72a
JR
503
504}
505
43f49609
JR
506/*
507 * This function is used to flush the IO/TLB for a given protection domain
508 * on every IOMMU in the system
509 */
510static void iommu_flush_domain(u16 domid)
511{
43f49609 512 struct amd_iommu *iommu;
43f49609 513
18811f55
JR
514 INC_STATS_COUNTER(domain_flush_all);
515
e394d72a
JR
516 for_each_iommu(iommu)
517 flush_domain_on_iommu(iommu, domid);
43f49609 518}
43f49609 519
bfd1be18 520void amd_iommu_flush_all_domains(void)
e394d72a
JR
521{
522 struct amd_iommu *iommu;
523
524 for_each_iommu(iommu)
525 flush_all_domains_on_iommu(iommu);
bfd1be18
JR
526}
527
d586d785 528static void flush_all_devices_for_iommu(struct amd_iommu *iommu)
bfd1be18
JR
529{
530 int i;
531
d586d785
JR
532 for (i = 0; i <= amd_iommu_last_bdf; ++i) {
533 if (iommu != amd_iommu_rlookup_table[i])
bfd1be18 534 continue;
d586d785
JR
535
536 iommu_queue_inv_dev_entry(iommu, i);
537 iommu_completion_wait(iommu);
bfd1be18
JR
538 }
539}
540
6a0dbcbe 541static void flush_devices_by_domain(struct protection_domain *domain)
7d7a110c
JR
542{
543 struct amd_iommu *iommu;
544 int i;
545
546 for (i = 0; i <= amd_iommu_last_bdf; ++i) {
6a0dbcbe
JR
547 if ((domain == NULL && amd_iommu_pd_table[i] == NULL) ||
548 (amd_iommu_pd_table[i] != domain))
7d7a110c
JR
549 continue;
550
551 iommu = amd_iommu_rlookup_table[i];
552 if (!iommu)
553 continue;
554
555 iommu_queue_inv_dev_entry(iommu, i);
556 iommu_completion_wait(iommu);
557 }
558}
559
a345b23b
JR
560static void reset_iommu_command_buffer(struct amd_iommu *iommu)
561{
562 pr_err("AMD-Vi: Resetting IOMMU command buffer\n");
563
b26e81b8
JR
564 if (iommu->reset_in_progress)
565 panic("AMD-Vi: ILLEGAL_COMMAND_ERROR while resetting command buffer\n");
566
567 iommu->reset_in_progress = true;
568
a345b23b
JR
569 amd_iommu_reset_cmd_buffer(iommu);
570 flush_all_devices_for_iommu(iommu);
571 flush_all_domains_on_iommu(iommu);
b26e81b8
JR
572
573 iommu->reset_in_progress = false;
a345b23b
JR
574}
575
6a0dbcbe
JR
576void amd_iommu_flush_all_devices(void)
577{
578 flush_devices_by_domain(NULL);
579}
580
431b2a20
JR
581/****************************************************************************
582 *
583 * The functions below are used the create the page table mappings for
584 * unity mapped regions.
585 *
586 ****************************************************************************/
587
588/*
589 * Generic mapping functions. It maps a physical address into a DMA
590 * address space. It allocates the page table pages if necessary.
591 * In the future it can be extended to a generic mapping function
592 * supporting all features of AMD IOMMU page tables like level skipping
593 * and full 64 bit address spaces.
594 */
38e817fe
JR
595static int iommu_map_page(struct protection_domain *dom,
596 unsigned long bus_addr,
597 unsigned long phys_addr,
abdc5eb3
JR
598 int prot,
599 int map_size)
bd0e5211 600{
8bda3092 601 u64 __pte, *pte;
bd0e5211
JR
602
603 bus_addr = PAGE_ALIGN(bus_addr);
bb9d4ff8 604 phys_addr = PAGE_ALIGN(phys_addr);
bd0e5211 605
abdc5eb3
JR
606 BUG_ON(!PM_ALIGNED(map_size, bus_addr));
607 BUG_ON(!PM_ALIGNED(map_size, phys_addr));
608
bad1cac2 609 if (!(prot & IOMMU_PROT_MASK))
bd0e5211
JR
610 return -EINVAL;
611
abdc5eb3 612 pte = alloc_pte(dom, bus_addr, map_size, NULL, GFP_KERNEL);
bd0e5211
JR
613
614 if (IOMMU_PTE_PRESENT(*pte))
615 return -EBUSY;
616
617 __pte = phys_addr | IOMMU_PTE_P;
618 if (prot & IOMMU_PROT_IR)
619 __pte |= IOMMU_PTE_IR;
620 if (prot & IOMMU_PROT_IW)
621 __pte |= IOMMU_PTE_IW;
622
623 *pte = __pte;
624
04bfdd84
JR
625 update_domain(dom);
626
bd0e5211
JR
627 return 0;
628}
629
eb74ff6c 630static void iommu_unmap_page(struct protection_domain *dom,
a6b256b4 631 unsigned long bus_addr, int map_size)
eb74ff6c 632{
a6b256b4 633 u64 *pte = fetch_pte(dom, bus_addr, map_size);
eb74ff6c 634
38a76eee
JR
635 if (pte)
636 *pte = 0;
eb74ff6c 637}
eb74ff6c 638
431b2a20
JR
639/*
640 * This function checks if a specific unity mapping entry is needed for
641 * this specific IOMMU.
642 */
bd0e5211
JR
643static int iommu_for_unity_map(struct amd_iommu *iommu,
644 struct unity_map_entry *entry)
645{
646 u16 bdf, i;
647
648 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
649 bdf = amd_iommu_alias_table[i];
650 if (amd_iommu_rlookup_table[bdf] == iommu)
651 return 1;
652 }
653
654 return 0;
655}
656
431b2a20
JR
657/*
658 * Init the unity mappings for a specific IOMMU in the system
659 *
660 * Basically iterates over all unity mapping entries and applies them to
661 * the default domain DMA of that IOMMU if necessary.
662 */
bd0e5211
JR
663static int iommu_init_unity_mappings(struct amd_iommu *iommu)
664{
665 struct unity_map_entry *entry;
666 int ret;
667
668 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
669 if (!iommu_for_unity_map(iommu, entry))
670 continue;
671 ret = dma_ops_unity_map(iommu->default_dom, entry);
672 if (ret)
673 return ret;
674 }
675
676 return 0;
677}
678
431b2a20
JR
679/*
680 * This function actually applies the mapping to the page table of the
681 * dma_ops domain.
682 */
bd0e5211
JR
683static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
684 struct unity_map_entry *e)
685{
686 u64 addr;
687 int ret;
688
689 for (addr = e->address_start; addr < e->address_end;
690 addr += PAGE_SIZE) {
abdc5eb3
JR
691 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
692 PM_MAP_4k);
bd0e5211
JR
693 if (ret)
694 return ret;
695 /*
696 * if unity mapping is in aperture range mark the page
697 * as allocated in the aperture
698 */
699 if (addr < dma_dom->aperture_size)
c3239567 700 __set_bit(addr >> PAGE_SHIFT,
384de729 701 dma_dom->aperture[0]->bitmap);
bd0e5211
JR
702 }
703
704 return 0;
705}
706
431b2a20
JR
707/*
708 * Inits the unity mappings required for a specific device
709 */
bd0e5211
JR
710static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
711 u16 devid)
712{
713 struct unity_map_entry *e;
714 int ret;
715
716 list_for_each_entry(e, &amd_iommu_unity_map, list) {
717 if (!(devid >= e->devid_start && devid <= e->devid_end))
718 continue;
719 ret = dma_ops_unity_map(dma_dom, e);
720 if (ret)
721 return ret;
722 }
723
724 return 0;
725}
726
431b2a20
JR
727/****************************************************************************
728 *
729 * The next functions belong to the address allocator for the dma_ops
730 * interface functions. They work like the allocators in the other IOMMU
731 * drivers. Its basically a bitmap which marks the allocated pages in
732 * the aperture. Maybe it could be enhanced in the future to a more
733 * efficient allocator.
734 *
735 ****************************************************************************/
d3086444 736
431b2a20 737/*
384de729 738 * The address allocator core functions.
431b2a20
JR
739 *
740 * called with domain->lock held
741 */
384de729 742
00cd122a
JR
743/*
744 * This function checks if there is a PTE for a given dma address. If
745 * there is one, it returns the pointer to it.
746 */
9355a081 747static u64 *fetch_pte(struct protection_domain *domain,
a6b256b4 748 unsigned long address, int map_size)
00cd122a 749{
9355a081 750 int level;
00cd122a
JR
751 u64 *pte;
752
9355a081
JR
753 level = domain->mode - 1;
754 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
00cd122a 755
a6b256b4 756 while (level > map_size) {
9355a081
JR
757 if (!IOMMU_PTE_PRESENT(*pte))
758 return NULL;
00cd122a 759
9355a081 760 level -= 1;
00cd122a 761
9355a081
JR
762 pte = IOMMU_PTE_PAGE(*pte);
763 pte = &pte[PM_LEVEL_INDEX(level, address)];
00cd122a 764
a6b256b4
JR
765 if ((PM_PTE_LEVEL(*pte) == 0) && level != map_size) {
766 pte = NULL;
767 break;
768 }
9355a081 769 }
00cd122a
JR
770
771 return pte;
772}
773
9cabe89b
JR
774/*
775 * This function is used to add a new aperture range to an existing
776 * aperture in case of dma_ops domain allocation or address allocation
777 * failure.
778 */
00cd122a
JR
779static int alloc_new_range(struct amd_iommu *iommu,
780 struct dma_ops_domain *dma_dom,
9cabe89b
JR
781 bool populate, gfp_t gfp)
782{
783 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
00cd122a 784 int i;
9cabe89b 785
f5e9705c
JR
786#ifdef CONFIG_IOMMU_STRESS
787 populate = false;
788#endif
789
9cabe89b
JR
790 if (index >= APERTURE_MAX_RANGES)
791 return -ENOMEM;
792
793 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
794 if (!dma_dom->aperture[index])
795 return -ENOMEM;
796
797 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
798 if (!dma_dom->aperture[index]->bitmap)
799 goto out_free;
800
801 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
802
803 if (populate) {
804 unsigned long address = dma_dom->aperture_size;
805 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
806 u64 *pte, *pte_page;
807
808 for (i = 0; i < num_ptes; ++i) {
abdc5eb3 809 pte = alloc_pte(&dma_dom->domain, address, PM_MAP_4k,
9cabe89b
JR
810 &pte_page, gfp);
811 if (!pte)
812 goto out_free;
813
814 dma_dom->aperture[index]->pte_pages[i] = pte_page;
815
816 address += APERTURE_RANGE_SIZE / 64;
817 }
818 }
819
820 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
821
00cd122a
JR
822 /* Intialize the exclusion range if necessary */
823 if (iommu->exclusion_start &&
824 iommu->exclusion_start >= dma_dom->aperture[index]->offset &&
825 iommu->exclusion_start < dma_dom->aperture_size) {
826 unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
827 int pages = iommu_num_pages(iommu->exclusion_start,
828 iommu->exclusion_length,
829 PAGE_SIZE);
830 dma_ops_reserve_addresses(dma_dom, startpage, pages);
831 }
832
833 /*
834 * Check for areas already mapped as present in the new aperture
835 * range and mark those pages as reserved in the allocator. Such
836 * mappings may already exist as a result of requested unity
837 * mappings for devices.
838 */
839 for (i = dma_dom->aperture[index]->offset;
840 i < dma_dom->aperture_size;
841 i += PAGE_SIZE) {
a6b256b4 842 u64 *pte = fetch_pte(&dma_dom->domain, i, PM_MAP_4k);
00cd122a
JR
843 if (!pte || !IOMMU_PTE_PRESENT(*pte))
844 continue;
845
846 dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
847 }
848
04bfdd84
JR
849 update_domain(&dma_dom->domain);
850
9cabe89b
JR
851 return 0;
852
853out_free:
04bfdd84
JR
854 update_domain(&dma_dom->domain);
855
9cabe89b
JR
856 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
857
858 kfree(dma_dom->aperture[index]);
859 dma_dom->aperture[index] = NULL;
860
861 return -ENOMEM;
862}
863
384de729
JR
864static unsigned long dma_ops_area_alloc(struct device *dev,
865 struct dma_ops_domain *dom,
866 unsigned int pages,
867 unsigned long align_mask,
868 u64 dma_mask,
869 unsigned long start)
870{
803b8cb4 871 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
384de729
JR
872 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
873 int i = start >> APERTURE_RANGE_SHIFT;
874 unsigned long boundary_size;
875 unsigned long address = -1;
876 unsigned long limit;
877
803b8cb4
JR
878 next_bit >>= PAGE_SHIFT;
879
384de729
JR
880 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
881 PAGE_SIZE) >> PAGE_SHIFT;
882
883 for (;i < max_index; ++i) {
884 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
885
886 if (dom->aperture[i]->offset >= dma_mask)
887 break;
888
889 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
890 dma_mask >> PAGE_SHIFT);
891
892 address = iommu_area_alloc(dom->aperture[i]->bitmap,
893 limit, next_bit, pages, 0,
894 boundary_size, align_mask);
895 if (address != -1) {
896 address = dom->aperture[i]->offset +
897 (address << PAGE_SHIFT);
803b8cb4 898 dom->next_address = address + (pages << PAGE_SHIFT);
384de729
JR
899 break;
900 }
901
902 next_bit = 0;
903 }
904
905 return address;
906}
907
d3086444
JR
908static unsigned long dma_ops_alloc_addresses(struct device *dev,
909 struct dma_ops_domain *dom,
6d4f343f 910 unsigned int pages,
832a90c3
JR
911 unsigned long align_mask,
912 u64 dma_mask)
d3086444 913{
d3086444 914 unsigned long address;
d3086444 915
fe16f088
JR
916#ifdef CONFIG_IOMMU_STRESS
917 dom->next_address = 0;
918 dom->need_flush = true;
919#endif
d3086444 920
384de729 921 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
803b8cb4 922 dma_mask, dom->next_address);
d3086444 923
1c655773 924 if (address == -1) {
803b8cb4 925 dom->next_address = 0;
384de729
JR
926 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
927 dma_mask, 0);
1c655773
JR
928 dom->need_flush = true;
929 }
d3086444 930
384de729 931 if (unlikely(address == -1))
8fd524b3 932 address = DMA_ERROR_CODE;
d3086444
JR
933
934 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
935
936 return address;
937}
938
431b2a20
JR
939/*
940 * The address free function.
941 *
942 * called with domain->lock held
943 */
d3086444
JR
944static void dma_ops_free_addresses(struct dma_ops_domain *dom,
945 unsigned long address,
946 unsigned int pages)
947{
384de729
JR
948 unsigned i = address >> APERTURE_RANGE_SHIFT;
949 struct aperture_range *range = dom->aperture[i];
80be308d 950
384de729
JR
951 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
952
47bccd6b
JR
953#ifdef CONFIG_IOMMU_STRESS
954 if (i < 4)
955 return;
956#endif
80be308d 957
803b8cb4 958 if (address >= dom->next_address)
80be308d 959 dom->need_flush = true;
384de729
JR
960
961 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
803b8cb4 962
384de729
JR
963 iommu_area_free(range->bitmap, address, pages);
964
d3086444
JR
965}
966
431b2a20
JR
967/****************************************************************************
968 *
969 * The next functions belong to the domain allocation. A domain is
970 * allocated for every IOMMU as the default domain. If device isolation
971 * is enabled, every device get its own domain. The most important thing
972 * about domains is the page table mapping the DMA address space they
973 * contain.
974 *
975 ****************************************************************************/
976
ec487d1a
JR
977static u16 domain_id_alloc(void)
978{
979 unsigned long flags;
980 int id;
981
982 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
983 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
984 BUG_ON(id == 0);
985 if (id > 0 && id < MAX_DOMAIN_ID)
986 __set_bit(id, amd_iommu_pd_alloc_bitmap);
987 else
988 id = 0;
989 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
990
991 return id;
992}
993
a2acfb75
JR
994static void domain_id_free(int id)
995{
996 unsigned long flags;
997
998 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
999 if (id > 0 && id < MAX_DOMAIN_ID)
1000 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1001 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1002}
a2acfb75 1003
431b2a20
JR
1004/*
1005 * Used to reserve address ranges in the aperture (e.g. for exclusion
1006 * ranges.
1007 */
ec487d1a
JR
1008static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1009 unsigned long start_page,
1010 unsigned int pages)
1011{
384de729 1012 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
ec487d1a
JR
1013
1014 if (start_page + pages > last_page)
1015 pages = last_page - start_page;
1016
384de729
JR
1017 for (i = start_page; i < start_page + pages; ++i) {
1018 int index = i / APERTURE_RANGE_PAGES;
1019 int page = i % APERTURE_RANGE_PAGES;
1020 __set_bit(page, dom->aperture[index]->bitmap);
1021 }
ec487d1a
JR
1022}
1023
86db2e5d 1024static void free_pagetable(struct protection_domain *domain)
ec487d1a
JR
1025{
1026 int i, j;
1027 u64 *p1, *p2, *p3;
1028
86db2e5d 1029 p1 = domain->pt_root;
ec487d1a
JR
1030
1031 if (!p1)
1032 return;
1033
1034 for (i = 0; i < 512; ++i) {
1035 if (!IOMMU_PTE_PRESENT(p1[i]))
1036 continue;
1037
1038 p2 = IOMMU_PTE_PAGE(p1[i]);
3cc3d84b 1039 for (j = 0; j < 512; ++j) {
ec487d1a
JR
1040 if (!IOMMU_PTE_PRESENT(p2[j]))
1041 continue;
1042 p3 = IOMMU_PTE_PAGE(p2[j]);
1043 free_page((unsigned long)p3);
1044 }
1045
1046 free_page((unsigned long)p2);
1047 }
1048
1049 free_page((unsigned long)p1);
86db2e5d
JR
1050
1051 domain->pt_root = NULL;
ec487d1a
JR
1052}
1053
431b2a20
JR
1054/*
1055 * Free a domain, only used if something went wrong in the
1056 * allocation path and we need to free an already allocated page table
1057 */
ec487d1a
JR
1058static void dma_ops_domain_free(struct dma_ops_domain *dom)
1059{
384de729
JR
1060 int i;
1061
ec487d1a
JR
1062 if (!dom)
1063 return;
1064
86db2e5d 1065 free_pagetable(&dom->domain);
ec487d1a 1066
384de729
JR
1067 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1068 if (!dom->aperture[i])
1069 continue;
1070 free_page((unsigned long)dom->aperture[i]->bitmap);
1071 kfree(dom->aperture[i]);
1072 }
ec487d1a
JR
1073
1074 kfree(dom);
1075}
1076
431b2a20
JR
1077/*
1078 * Allocates a new protection domain usable for the dma_ops functions.
1079 * It also intializes the page table and the address allocator data
1080 * structures required for the dma_ops interface
1081 */
d9cfed92 1082static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu)
ec487d1a
JR
1083{
1084 struct dma_ops_domain *dma_dom;
ec487d1a
JR
1085
1086 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1087 if (!dma_dom)
1088 return NULL;
1089
1090 spin_lock_init(&dma_dom->domain.lock);
1091
1092 dma_dom->domain.id = domain_id_alloc();
1093 if (dma_dom->domain.id == 0)
1094 goto free_dma_dom;
8f7a017c 1095 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
ec487d1a 1096 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
9fdb19d6 1097 dma_dom->domain.flags = PD_DMA_OPS_MASK;
ec487d1a
JR
1098 dma_dom->domain.priv = dma_dom;
1099 if (!dma_dom->domain.pt_root)
1100 goto free_dma_dom;
ec487d1a 1101
1c655773 1102 dma_dom->need_flush = false;
bd60b735 1103 dma_dom->target_dev = 0xffff;
1c655773 1104
00cd122a 1105 if (alloc_new_range(iommu, dma_dom, true, GFP_KERNEL))
ec487d1a 1106 goto free_dma_dom;
ec487d1a 1107
431b2a20 1108 /*
ec487d1a
JR
1109 * mark the first page as allocated so we never return 0 as
1110 * a valid dma-address. So we can use 0 as error value
431b2a20 1111 */
384de729 1112 dma_dom->aperture[0]->bitmap[0] = 1;
803b8cb4 1113 dma_dom->next_address = 0;
ec487d1a 1114
ec487d1a
JR
1115
1116 return dma_dom;
1117
1118free_dma_dom:
1119 dma_ops_domain_free(dma_dom);
1120
1121 return NULL;
1122}
1123
5b28df6f
JR
1124/*
1125 * little helper function to check whether a given protection domain is a
1126 * dma_ops domain
1127 */
1128static bool dma_ops_domain(struct protection_domain *domain)
1129{
1130 return domain->flags & PD_DMA_OPS_MASK;
1131}
1132
431b2a20
JR
1133/*
1134 * Find out the protection domain structure for a given PCI device. This
1135 * will give us the pointer to the page table root for example.
1136 */
b20ac0d4
JR
1137static struct protection_domain *domain_for_device(u16 devid)
1138{
1139 struct protection_domain *dom;
1140 unsigned long flags;
1141
1142 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
1143 dom = amd_iommu_pd_table[devid];
1144 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1145
1146 return dom;
1147}
1148
407d733e 1149static void set_dte_entry(u16 devid, struct protection_domain *domain)
b20ac0d4 1150{
b20ac0d4 1151 u64 pte_root = virt_to_phys(domain->pt_root);
863c74eb 1152
38ddf41b
JR
1153 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1154 << DEV_ENTRY_MODE_SHIFT;
1155 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
b20ac0d4 1156
b20ac0d4 1157 amd_iommu_dev_table[devid].data[2] = domain->id;
aa879fff
JR
1158 amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
1159 amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
b20ac0d4
JR
1160
1161 amd_iommu_pd_table[devid] = domain;
2b681faf
JR
1162}
1163
1164/*
1165 * If a device is not yet associated with a domain, this function does
1166 * assigns it visible for the hardware
1167 */
1168static void __attach_device(struct amd_iommu *iommu,
1169 struct protection_domain *domain,
1170 u16 devid)
1171{
1172 /* lock domain */
1173 spin_lock(&domain->lock);
1174
1175 /* update DTE entry */
1176 set_dte_entry(devid, domain);
eba6ac60
JR
1177
1178 domain->dev_cnt += 1;
1179
1180 /* ready */
1181 spin_unlock(&domain->lock);
0feae533 1182}
b20ac0d4 1183
407d733e
JR
1184/*
1185 * If a device is not yet associated with a domain, this function does
1186 * assigns it visible for the hardware
1187 */
0feae533
JR
1188static void attach_device(struct amd_iommu *iommu,
1189 struct protection_domain *domain,
1190 u16 devid)
1191{
eba6ac60
JR
1192 unsigned long flags;
1193
1194 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
0feae533 1195 __attach_device(iommu, domain, devid);
b20ac0d4
JR
1196 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1197
0feae533
JR
1198 /*
1199 * We might boot into a crash-kernel here. The crashed kernel
1200 * left the caches in the IOMMU dirty. So we have to flush
1201 * here to evict all dirty stuff.
1202 */
b20ac0d4 1203 iommu_queue_inv_dev_entry(iommu, devid);
42a49f96 1204 iommu_flush_tlb_pde(iommu, domain->id);
b20ac0d4
JR
1205}
1206
355bf553
JR
1207/*
1208 * Removes a device from a protection domain (unlocked)
1209 */
1210static void __detach_device(struct protection_domain *domain, u16 devid)
1211{
1212
1213 /* lock domain */
1214 spin_lock(&domain->lock);
1215
1216 /* remove domain from the lookup table */
1217 amd_iommu_pd_table[devid] = NULL;
1218
1219 /* remove entry from the device table seen by the hardware */
1220 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1221 amd_iommu_dev_table[devid].data[1] = 0;
1222 amd_iommu_dev_table[devid].data[2] = 0;
1223
c5cca146
JR
1224 amd_iommu_apply_erratum_63(devid);
1225
355bf553
JR
1226 /* decrease reference counter */
1227 domain->dev_cnt -= 1;
1228
1229 /* ready */
1230 spin_unlock(&domain->lock);
21129f78
JR
1231
1232 /*
1233 * If we run in passthrough mode the device must be assigned to the
1234 * passthrough domain if it is detached from any other domain
1235 */
1236 if (iommu_pass_through) {
1237 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
1238 __attach_device(iommu, pt_domain, devid);
1239 }
355bf553
JR
1240}
1241
1242/*
1243 * Removes a device from a protection domain (with devtable_lock held)
1244 */
1245static void detach_device(struct protection_domain *domain, u16 devid)
1246{
1247 unsigned long flags;
1248
1249 /* lock device table */
1250 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1251 __detach_device(domain, devid);
1252 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1253}
e275a2a0
JR
1254
1255static int device_change_notifier(struct notifier_block *nb,
1256 unsigned long action, void *data)
1257{
1258 struct device *dev = data;
1259 struct pci_dev *pdev = to_pci_dev(dev);
1260 u16 devid = calc_devid(pdev->bus->number, pdev->devfn);
1261 struct protection_domain *domain;
1262 struct dma_ops_domain *dma_domain;
1263 struct amd_iommu *iommu;
1ac4cbbc 1264 unsigned long flags;
e275a2a0
JR
1265
1266 if (devid > amd_iommu_last_bdf)
1267 goto out;
1268
1269 devid = amd_iommu_alias_table[devid];
1270
1271 iommu = amd_iommu_rlookup_table[devid];
1272 if (iommu == NULL)
1273 goto out;
1274
1275 domain = domain_for_device(devid);
1276
1277 if (domain && !dma_ops_domain(domain))
1278 WARN_ONCE(1, "AMD IOMMU WARNING: device %s already bound "
1279 "to a non-dma-ops domain\n", dev_name(dev));
1280
1281 switch (action) {
c1eee67b 1282 case BUS_NOTIFY_UNBOUND_DRIVER:
e275a2a0
JR
1283 if (!domain)
1284 goto out;
a1ca331c
JR
1285 if (iommu_pass_through)
1286 break;
e275a2a0 1287 detach_device(domain, devid);
1ac4cbbc
JR
1288 break;
1289 case BUS_NOTIFY_ADD_DEVICE:
1290 /* allocate a protection domain if a device is added */
1291 dma_domain = find_protection_domain(devid);
1292 if (dma_domain)
1293 goto out;
d9cfed92 1294 dma_domain = dma_ops_domain_alloc(iommu);
1ac4cbbc
JR
1295 if (!dma_domain)
1296 goto out;
1297 dma_domain->target_dev = devid;
1298
1299 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1300 list_add_tail(&dma_domain->list, &iommu_pd_list);
1301 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1302
e275a2a0
JR
1303 break;
1304 default:
1305 goto out;
1306 }
1307
1308 iommu_queue_inv_dev_entry(iommu, devid);
1309 iommu_completion_wait(iommu);
1310
1311out:
1312 return 0;
1313}
1314
b25ae679 1315static struct notifier_block device_nb = {
e275a2a0
JR
1316 .notifier_call = device_change_notifier,
1317};
355bf553 1318
431b2a20
JR
1319/*****************************************************************************
1320 *
1321 * The next functions belong to the dma_ops mapping/unmapping code.
1322 *
1323 *****************************************************************************/
1324
dbcc112e
JR
1325/*
1326 * This function checks if the driver got a valid device from the caller to
1327 * avoid dereferencing invalid pointers.
1328 */
1329static bool check_device(struct device *dev)
1330{
1331 if (!dev || !dev->dma_mask)
1332 return false;
1333
1334 return true;
1335}
1336
bd60b735
JR
1337/*
1338 * In this function the list of preallocated protection domains is traversed to
1339 * find the domain for a specific device
1340 */
1341static struct dma_ops_domain *find_protection_domain(u16 devid)
1342{
1343 struct dma_ops_domain *entry, *ret = NULL;
1344 unsigned long flags;
1345
1346 if (list_empty(&iommu_pd_list))
1347 return NULL;
1348
1349 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1350
1351 list_for_each_entry(entry, &iommu_pd_list, list) {
1352 if (entry->target_dev == devid) {
1353 ret = entry;
bd60b735
JR
1354 break;
1355 }
1356 }
1357
1358 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1359
1360 return ret;
1361}
1362
431b2a20
JR
1363/*
1364 * In the dma_ops path we only have the struct device. This function
1365 * finds the corresponding IOMMU, the protection domain and the
1366 * requestor id for a given device.
1367 * If the device is not yet associated with a domain this is also done
1368 * in this function.
1369 */
b20ac0d4
JR
1370static int get_device_resources(struct device *dev,
1371 struct amd_iommu **iommu,
1372 struct protection_domain **domain,
1373 u16 *bdf)
1374{
1375 struct dma_ops_domain *dma_dom;
1376 struct pci_dev *pcidev;
1377 u16 _bdf;
1378
dbcc112e
JR
1379 *iommu = NULL;
1380 *domain = NULL;
1381 *bdf = 0xffff;
1382
1383 if (dev->bus != &pci_bus_type)
1384 return 0;
b20ac0d4
JR
1385
1386 pcidev = to_pci_dev(dev);
d591b0a3 1387 _bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
b20ac0d4 1388
431b2a20 1389 /* device not translated by any IOMMU in the system? */
dbcc112e 1390 if (_bdf > amd_iommu_last_bdf)
b20ac0d4 1391 return 0;
b20ac0d4
JR
1392
1393 *bdf = amd_iommu_alias_table[_bdf];
1394
1395 *iommu = amd_iommu_rlookup_table[*bdf];
1396 if (*iommu == NULL)
1397 return 0;
b20ac0d4
JR
1398 *domain = domain_for_device(*bdf);
1399 if (*domain == NULL) {
bd60b735
JR
1400 dma_dom = find_protection_domain(*bdf);
1401 if (!dma_dom)
1402 dma_dom = (*iommu)->default_dom;
b20ac0d4 1403 *domain = &dma_dom->domain;
f1179dc0 1404 attach_device(*iommu, *domain, *bdf);
e9a22a13
JR
1405 DUMP_printk("Using protection domain %d for device %s\n",
1406 (*domain)->id, dev_name(dev));
b20ac0d4
JR
1407 }
1408
f91ba190 1409 if (domain_for_device(_bdf) == NULL)
f1179dc0 1410 attach_device(*iommu, *domain, _bdf);
f91ba190 1411
b20ac0d4
JR
1412 return 1;
1413}
1414
04bfdd84
JR
1415static void update_device_table(struct protection_domain *domain)
1416{
2b681faf 1417 unsigned long flags;
04bfdd84
JR
1418 int i;
1419
1420 for (i = 0; i <= amd_iommu_last_bdf; ++i) {
1421 if (amd_iommu_pd_table[i] != domain)
1422 continue;
2b681faf 1423 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
04bfdd84 1424 set_dte_entry(i, domain);
2b681faf 1425 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
04bfdd84
JR
1426 }
1427}
1428
1429static void update_domain(struct protection_domain *domain)
1430{
1431 if (!domain->updated)
1432 return;
1433
1434 update_device_table(domain);
1435 flush_devices_by_domain(domain);
1436 iommu_flush_domain(domain->id);
1437
1438 domain->updated = false;
1439}
1440
8bda3092 1441/*
50020fb6
JR
1442 * This function is used to add another level to an IO page table. Adding
1443 * another level increases the size of the address space by 9 bits to a size up
1444 * to 64 bits.
8bda3092 1445 */
50020fb6
JR
1446static bool increase_address_space(struct protection_domain *domain,
1447 gfp_t gfp)
1448{
1449 u64 *pte;
1450
1451 if (domain->mode == PAGE_MODE_6_LEVEL)
1452 /* address space already 64 bit large */
1453 return false;
1454
1455 pte = (void *)get_zeroed_page(gfp);
1456 if (!pte)
1457 return false;
1458
1459 *pte = PM_LEVEL_PDE(domain->mode,
1460 virt_to_phys(domain->pt_root));
1461 domain->pt_root = pte;
1462 domain->mode += 1;
1463 domain->updated = true;
1464
1465 return true;
1466}
1467
8bc3e127 1468static u64 *alloc_pte(struct protection_domain *domain,
abdc5eb3
JR
1469 unsigned long address,
1470 int end_lvl,
1471 u64 **pte_page,
1472 gfp_t gfp)
8bda3092
JR
1473{
1474 u64 *pte, *page;
8bc3e127 1475 int level;
8bda3092 1476
8bc3e127
JR
1477 while (address > PM_LEVEL_SIZE(domain->mode))
1478 increase_address_space(domain, gfp);
8bda3092 1479
8bc3e127
JR
1480 level = domain->mode - 1;
1481 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
8bda3092 1482
abdc5eb3 1483 while (level > end_lvl) {
8bc3e127
JR
1484 if (!IOMMU_PTE_PRESENT(*pte)) {
1485 page = (u64 *)get_zeroed_page(gfp);
1486 if (!page)
1487 return NULL;
1488 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
1489 }
8bda3092 1490
8bc3e127 1491 level -= 1;
8bda3092 1492
8bc3e127 1493 pte = IOMMU_PTE_PAGE(*pte);
8bda3092 1494
abdc5eb3 1495 if (pte_page && level == end_lvl)
8bc3e127 1496 *pte_page = pte;
8bda3092 1497
8bc3e127
JR
1498 pte = &pte[PM_LEVEL_INDEX(level, address)];
1499 }
8bda3092
JR
1500
1501 return pte;
1502}
1503
1504/*
1505 * This function fetches the PTE for a given address in the aperture
1506 */
1507static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
1508 unsigned long address)
1509{
384de729 1510 struct aperture_range *aperture;
8bda3092
JR
1511 u64 *pte, *pte_page;
1512
384de729
JR
1513 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1514 if (!aperture)
1515 return NULL;
1516
1517 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
8bda3092 1518 if (!pte) {
abdc5eb3
JR
1519 pte = alloc_pte(&dom->domain, address, PM_MAP_4k, &pte_page,
1520 GFP_ATOMIC);
384de729
JR
1521 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
1522 } else
8c8c143c 1523 pte += PM_LEVEL_INDEX(0, address);
8bda3092 1524
04bfdd84 1525 update_domain(&dom->domain);
8bda3092
JR
1526
1527 return pte;
1528}
1529
431b2a20
JR
1530/*
1531 * This is the generic map function. It maps one 4kb page at paddr to
1532 * the given address in the DMA address space for the domain.
1533 */
cb76c322
JR
1534static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
1535 struct dma_ops_domain *dom,
1536 unsigned long address,
1537 phys_addr_t paddr,
1538 int direction)
1539{
1540 u64 *pte, __pte;
1541
1542 WARN_ON(address > dom->aperture_size);
1543
1544 paddr &= PAGE_MASK;
1545
8bda3092 1546 pte = dma_ops_get_pte(dom, address);
53812c11 1547 if (!pte)
8fd524b3 1548 return DMA_ERROR_CODE;
cb76c322
JR
1549
1550 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
1551
1552 if (direction == DMA_TO_DEVICE)
1553 __pte |= IOMMU_PTE_IR;
1554 else if (direction == DMA_FROM_DEVICE)
1555 __pte |= IOMMU_PTE_IW;
1556 else if (direction == DMA_BIDIRECTIONAL)
1557 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
1558
1559 WARN_ON(*pte);
1560
1561 *pte = __pte;
1562
1563 return (dma_addr_t)address;
1564}
1565
431b2a20
JR
1566/*
1567 * The generic unmapping function for on page in the DMA address space.
1568 */
cb76c322
JR
1569static void dma_ops_domain_unmap(struct amd_iommu *iommu,
1570 struct dma_ops_domain *dom,
1571 unsigned long address)
1572{
384de729 1573 struct aperture_range *aperture;
cb76c322
JR
1574 u64 *pte;
1575
1576 if (address >= dom->aperture_size)
1577 return;
1578
384de729
JR
1579 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1580 if (!aperture)
1581 return;
1582
1583 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1584 if (!pte)
1585 return;
cb76c322 1586
8c8c143c 1587 pte += PM_LEVEL_INDEX(0, address);
cb76c322
JR
1588
1589 WARN_ON(!*pte);
1590
1591 *pte = 0ULL;
1592}
1593
431b2a20
JR
1594/*
1595 * This function contains common code for mapping of a physically
24f81160
JR
1596 * contiguous memory region into DMA address space. It is used by all
1597 * mapping functions provided with this IOMMU driver.
431b2a20
JR
1598 * Must be called with the domain lock held.
1599 */
cb76c322
JR
1600static dma_addr_t __map_single(struct device *dev,
1601 struct amd_iommu *iommu,
1602 struct dma_ops_domain *dma_dom,
1603 phys_addr_t paddr,
1604 size_t size,
6d4f343f 1605 int dir,
832a90c3
JR
1606 bool align,
1607 u64 dma_mask)
cb76c322
JR
1608{
1609 dma_addr_t offset = paddr & ~PAGE_MASK;
53812c11 1610 dma_addr_t address, start, ret;
cb76c322 1611 unsigned int pages;
6d4f343f 1612 unsigned long align_mask = 0;
cb76c322
JR
1613 int i;
1614
e3c449f5 1615 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
cb76c322
JR
1616 paddr &= PAGE_MASK;
1617
8ecaf8f1
JR
1618 INC_STATS_COUNTER(total_map_requests);
1619
c1858976
JR
1620 if (pages > 1)
1621 INC_STATS_COUNTER(cross_page);
1622
6d4f343f
JR
1623 if (align)
1624 align_mask = (1UL << get_order(size)) - 1;
1625
11b83888 1626retry:
832a90c3
JR
1627 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
1628 dma_mask);
8fd524b3 1629 if (unlikely(address == DMA_ERROR_CODE)) {
11b83888
JR
1630 /*
1631 * setting next_address here will let the address
1632 * allocator only scan the new allocated range in the
1633 * first run. This is a small optimization.
1634 */
1635 dma_dom->next_address = dma_dom->aperture_size;
1636
1637 if (alloc_new_range(iommu, dma_dom, false, GFP_ATOMIC))
1638 goto out;
1639
1640 /*
1641 * aperture was sucessfully enlarged by 128 MB, try
1642 * allocation again
1643 */
1644 goto retry;
1645 }
cb76c322
JR
1646
1647 start = address;
1648 for (i = 0; i < pages; ++i) {
53812c11 1649 ret = dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
8fd524b3 1650 if (ret == DMA_ERROR_CODE)
53812c11
JR
1651 goto out_unmap;
1652
cb76c322
JR
1653 paddr += PAGE_SIZE;
1654 start += PAGE_SIZE;
1655 }
1656 address += offset;
1657
5774f7c5
JR
1658 ADD_STATS_COUNTER(alloced_io_mem, size);
1659
afa9fdc2 1660 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
1c655773
JR
1661 iommu_flush_tlb(iommu, dma_dom->domain.id);
1662 dma_dom->need_flush = false;
1663 } else if (unlikely(iommu_has_npcache(iommu)))
270cab24
JR
1664 iommu_flush_pages(iommu, dma_dom->domain.id, address, size);
1665
cb76c322
JR
1666out:
1667 return address;
53812c11
JR
1668
1669out_unmap:
1670
1671 for (--i; i >= 0; --i) {
1672 start -= PAGE_SIZE;
1673 dma_ops_domain_unmap(iommu, dma_dom, start);
1674 }
1675
1676 dma_ops_free_addresses(dma_dom, address, pages);
1677
8fd524b3 1678 return DMA_ERROR_CODE;
cb76c322
JR
1679}
1680
431b2a20
JR
1681/*
1682 * Does the reverse of the __map_single function. Must be called with
1683 * the domain lock held too
1684 */
cb76c322
JR
1685static void __unmap_single(struct amd_iommu *iommu,
1686 struct dma_ops_domain *dma_dom,
1687 dma_addr_t dma_addr,
1688 size_t size,
1689 int dir)
1690{
1691 dma_addr_t i, start;
1692 unsigned int pages;
1693
8fd524b3 1694 if ((dma_addr == DMA_ERROR_CODE) ||
b8d9905d 1695 (dma_addr + size > dma_dom->aperture_size))
cb76c322
JR
1696 return;
1697
e3c449f5 1698 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
cb76c322
JR
1699 dma_addr &= PAGE_MASK;
1700 start = dma_addr;
1701
1702 for (i = 0; i < pages; ++i) {
1703 dma_ops_domain_unmap(iommu, dma_dom, start);
1704 start += PAGE_SIZE;
1705 }
1706
5774f7c5
JR
1707 SUB_STATS_COUNTER(alloced_io_mem, size);
1708
cb76c322 1709 dma_ops_free_addresses(dma_dom, dma_addr, pages);
270cab24 1710
80be308d 1711 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
1c655773 1712 iommu_flush_pages(iommu, dma_dom->domain.id, dma_addr, size);
80be308d
JR
1713 dma_dom->need_flush = false;
1714 }
cb76c322
JR
1715}
1716
431b2a20
JR
1717/*
1718 * The exported map_single function for dma_ops.
1719 */
51491367
FT
1720static dma_addr_t map_page(struct device *dev, struct page *page,
1721 unsigned long offset, size_t size,
1722 enum dma_data_direction dir,
1723 struct dma_attrs *attrs)
4da70b9e
JR
1724{
1725 unsigned long flags;
1726 struct amd_iommu *iommu;
1727 struct protection_domain *domain;
1728 u16 devid;
1729 dma_addr_t addr;
832a90c3 1730 u64 dma_mask;
51491367 1731 phys_addr_t paddr = page_to_phys(page) + offset;
4da70b9e 1732
0f2a86f2
JR
1733 INC_STATS_COUNTER(cnt_map_single);
1734
dbcc112e 1735 if (!check_device(dev))
8fd524b3 1736 return DMA_ERROR_CODE;
dbcc112e 1737
832a90c3 1738 dma_mask = *dev->dma_mask;
4da70b9e
JR
1739
1740 get_device_resources(dev, &iommu, &domain, &devid);
1741
1742 if (iommu == NULL || domain == NULL)
431b2a20 1743 /* device not handled by any AMD IOMMU */
4da70b9e
JR
1744 return (dma_addr_t)paddr;
1745
5b28df6f 1746 if (!dma_ops_domain(domain))
8fd524b3 1747 return DMA_ERROR_CODE;
5b28df6f 1748
4da70b9e 1749 spin_lock_irqsave(&domain->lock, flags);
832a90c3
JR
1750 addr = __map_single(dev, iommu, domain->priv, paddr, size, dir, false,
1751 dma_mask);
8fd524b3 1752 if (addr == DMA_ERROR_CODE)
4da70b9e
JR
1753 goto out;
1754
09ee17eb 1755 iommu_completion_wait(iommu);
4da70b9e
JR
1756
1757out:
1758 spin_unlock_irqrestore(&domain->lock, flags);
1759
1760 return addr;
1761}
1762
431b2a20
JR
1763/*
1764 * The exported unmap_single function for dma_ops.
1765 */
51491367
FT
1766static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
1767 enum dma_data_direction dir, struct dma_attrs *attrs)
4da70b9e
JR
1768{
1769 unsigned long flags;
1770 struct amd_iommu *iommu;
1771 struct protection_domain *domain;
1772 u16 devid;
1773
146a6917
JR
1774 INC_STATS_COUNTER(cnt_unmap_single);
1775
dbcc112e
JR
1776 if (!check_device(dev) ||
1777 !get_device_resources(dev, &iommu, &domain, &devid))
431b2a20 1778 /* device not handled by any AMD IOMMU */
4da70b9e
JR
1779 return;
1780
5b28df6f
JR
1781 if (!dma_ops_domain(domain))
1782 return;
1783
4da70b9e
JR
1784 spin_lock_irqsave(&domain->lock, flags);
1785
1786 __unmap_single(iommu, domain->priv, dma_addr, size, dir);
1787
09ee17eb 1788 iommu_completion_wait(iommu);
4da70b9e
JR
1789
1790 spin_unlock_irqrestore(&domain->lock, flags);
1791}
1792
431b2a20
JR
1793/*
1794 * This is a special map_sg function which is used if we should map a
1795 * device which is not handled by an AMD IOMMU in the system.
1796 */
65b050ad
JR
1797static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
1798 int nelems, int dir)
1799{
1800 struct scatterlist *s;
1801 int i;
1802
1803 for_each_sg(sglist, s, nelems, i) {
1804 s->dma_address = (dma_addr_t)sg_phys(s);
1805 s->dma_length = s->length;
1806 }
1807
1808 return nelems;
1809}
1810
431b2a20
JR
1811/*
1812 * The exported map_sg function for dma_ops (handles scatter-gather
1813 * lists).
1814 */
65b050ad 1815static int map_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
1816 int nelems, enum dma_data_direction dir,
1817 struct dma_attrs *attrs)
65b050ad
JR
1818{
1819 unsigned long flags;
1820 struct amd_iommu *iommu;
1821 struct protection_domain *domain;
1822 u16 devid;
1823 int i;
1824 struct scatterlist *s;
1825 phys_addr_t paddr;
1826 int mapped_elems = 0;
832a90c3 1827 u64 dma_mask;
65b050ad 1828
d03f067a
JR
1829 INC_STATS_COUNTER(cnt_map_sg);
1830
dbcc112e
JR
1831 if (!check_device(dev))
1832 return 0;
1833
832a90c3 1834 dma_mask = *dev->dma_mask;
65b050ad
JR
1835
1836 get_device_resources(dev, &iommu, &domain, &devid);
1837
1838 if (!iommu || !domain)
1839 return map_sg_no_iommu(dev, sglist, nelems, dir);
1840
5b28df6f
JR
1841 if (!dma_ops_domain(domain))
1842 return 0;
1843
65b050ad
JR
1844 spin_lock_irqsave(&domain->lock, flags);
1845
1846 for_each_sg(sglist, s, nelems, i) {
1847 paddr = sg_phys(s);
1848
1849 s->dma_address = __map_single(dev, iommu, domain->priv,
832a90c3
JR
1850 paddr, s->length, dir, false,
1851 dma_mask);
65b050ad
JR
1852
1853 if (s->dma_address) {
1854 s->dma_length = s->length;
1855 mapped_elems++;
1856 } else
1857 goto unmap;
65b050ad
JR
1858 }
1859
09ee17eb 1860 iommu_completion_wait(iommu);
65b050ad
JR
1861
1862out:
1863 spin_unlock_irqrestore(&domain->lock, flags);
1864
1865 return mapped_elems;
1866unmap:
1867 for_each_sg(sglist, s, mapped_elems, i) {
1868 if (s->dma_address)
1869 __unmap_single(iommu, domain->priv, s->dma_address,
1870 s->dma_length, dir);
1871 s->dma_address = s->dma_length = 0;
1872 }
1873
1874 mapped_elems = 0;
1875
1876 goto out;
1877}
1878
431b2a20
JR
1879/*
1880 * The exported map_sg function for dma_ops (handles scatter-gather
1881 * lists).
1882 */
65b050ad 1883static void unmap_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
1884 int nelems, enum dma_data_direction dir,
1885 struct dma_attrs *attrs)
65b050ad
JR
1886{
1887 unsigned long flags;
1888 struct amd_iommu *iommu;
1889 struct protection_domain *domain;
1890 struct scatterlist *s;
1891 u16 devid;
1892 int i;
1893
55877a6b
JR
1894 INC_STATS_COUNTER(cnt_unmap_sg);
1895
dbcc112e
JR
1896 if (!check_device(dev) ||
1897 !get_device_resources(dev, &iommu, &domain, &devid))
65b050ad
JR
1898 return;
1899
5b28df6f
JR
1900 if (!dma_ops_domain(domain))
1901 return;
1902
65b050ad
JR
1903 spin_lock_irqsave(&domain->lock, flags);
1904
1905 for_each_sg(sglist, s, nelems, i) {
1906 __unmap_single(iommu, domain->priv, s->dma_address,
1907 s->dma_length, dir);
65b050ad
JR
1908 s->dma_address = s->dma_length = 0;
1909 }
1910
09ee17eb 1911 iommu_completion_wait(iommu);
65b050ad
JR
1912
1913 spin_unlock_irqrestore(&domain->lock, flags);
1914}
1915
431b2a20
JR
1916/*
1917 * The exported alloc_coherent function for dma_ops.
1918 */
5d8b53cf
JR
1919static void *alloc_coherent(struct device *dev, size_t size,
1920 dma_addr_t *dma_addr, gfp_t flag)
1921{
1922 unsigned long flags;
1923 void *virt_addr;
1924 struct amd_iommu *iommu;
1925 struct protection_domain *domain;
1926 u16 devid;
1927 phys_addr_t paddr;
832a90c3 1928 u64 dma_mask = dev->coherent_dma_mask;
5d8b53cf 1929
c8f0fb36
JR
1930 INC_STATS_COUNTER(cnt_alloc_coherent);
1931
dbcc112e
JR
1932 if (!check_device(dev))
1933 return NULL;
5d8b53cf 1934
13d9fead
FT
1935 if (!get_device_resources(dev, &iommu, &domain, &devid))
1936 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
5d8b53cf 1937
c97ac535 1938 flag |= __GFP_ZERO;
5d8b53cf
JR
1939 virt_addr = (void *)__get_free_pages(flag, get_order(size));
1940 if (!virt_addr)
b25ae679 1941 return NULL;
5d8b53cf 1942
5d8b53cf
JR
1943 paddr = virt_to_phys(virt_addr);
1944
5d8b53cf
JR
1945 if (!iommu || !domain) {
1946 *dma_addr = (dma_addr_t)paddr;
1947 return virt_addr;
1948 }
1949
5b28df6f
JR
1950 if (!dma_ops_domain(domain))
1951 goto out_free;
1952
832a90c3
JR
1953 if (!dma_mask)
1954 dma_mask = *dev->dma_mask;
1955
5d8b53cf
JR
1956 spin_lock_irqsave(&domain->lock, flags);
1957
1958 *dma_addr = __map_single(dev, iommu, domain->priv, paddr,
832a90c3 1959 size, DMA_BIDIRECTIONAL, true, dma_mask);
5d8b53cf 1960
8fd524b3 1961 if (*dma_addr == DMA_ERROR_CODE) {
367d04c4 1962 spin_unlock_irqrestore(&domain->lock, flags);
5b28df6f 1963 goto out_free;
367d04c4 1964 }
5d8b53cf 1965
09ee17eb 1966 iommu_completion_wait(iommu);
5d8b53cf 1967
5d8b53cf
JR
1968 spin_unlock_irqrestore(&domain->lock, flags);
1969
1970 return virt_addr;
5b28df6f
JR
1971
1972out_free:
1973
1974 free_pages((unsigned long)virt_addr, get_order(size));
1975
1976 return NULL;
5d8b53cf
JR
1977}
1978
431b2a20
JR
1979/*
1980 * The exported free_coherent function for dma_ops.
431b2a20 1981 */
5d8b53cf
JR
1982static void free_coherent(struct device *dev, size_t size,
1983 void *virt_addr, dma_addr_t dma_addr)
1984{
1985 unsigned long flags;
1986 struct amd_iommu *iommu;
1987 struct protection_domain *domain;
1988 u16 devid;
1989
5d31ee7e
JR
1990 INC_STATS_COUNTER(cnt_free_coherent);
1991
dbcc112e
JR
1992 if (!check_device(dev))
1993 return;
1994
5d8b53cf
JR
1995 get_device_resources(dev, &iommu, &domain, &devid);
1996
1997 if (!iommu || !domain)
1998 goto free_mem;
1999
5b28df6f
JR
2000 if (!dma_ops_domain(domain))
2001 goto free_mem;
2002
5d8b53cf
JR
2003 spin_lock_irqsave(&domain->lock, flags);
2004
2005 __unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
5d8b53cf 2006
09ee17eb 2007 iommu_completion_wait(iommu);
5d8b53cf
JR
2008
2009 spin_unlock_irqrestore(&domain->lock, flags);
2010
2011free_mem:
2012 free_pages((unsigned long)virt_addr, get_order(size));
2013}
2014
b39ba6ad
JR
2015/*
2016 * This function is called by the DMA layer to find out if we can handle a
2017 * particular device. It is part of the dma_ops.
2018 */
2019static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2020{
2021 u16 bdf;
2022 struct pci_dev *pcidev;
2023
2024 /* No device or no PCI device */
2025 if (!dev || dev->bus != &pci_bus_type)
2026 return 0;
2027
2028 pcidev = to_pci_dev(dev);
2029
2030 bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
2031
2032 /* Out of our scope? */
2033 if (bdf > amd_iommu_last_bdf)
2034 return 0;
2035
2036 return 1;
2037}
2038
c432f3df 2039/*
431b2a20
JR
2040 * The function for pre-allocating protection domains.
2041 *
c432f3df
JR
2042 * If the driver core informs the DMA layer if a driver grabs a device
2043 * we don't need to preallocate the protection domains anymore.
2044 * For now we have to.
2045 */
0e93dd88 2046static void prealloc_protection_domains(void)
c432f3df
JR
2047{
2048 struct pci_dev *dev = NULL;
2049 struct dma_ops_domain *dma_dom;
2050 struct amd_iommu *iommu;
be831297 2051 u16 devid, __devid;
c432f3df
JR
2052
2053 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
be831297 2054 __devid = devid = calc_devid(dev->bus->number, dev->devfn);
3a61ec38 2055 if (devid > amd_iommu_last_bdf)
c432f3df
JR
2056 continue;
2057 devid = amd_iommu_alias_table[devid];
2058 if (domain_for_device(devid))
2059 continue;
2060 iommu = amd_iommu_rlookup_table[devid];
2061 if (!iommu)
2062 continue;
d9cfed92 2063 dma_dom = dma_ops_domain_alloc(iommu);
c432f3df
JR
2064 if (!dma_dom)
2065 continue;
2066 init_unity_mappings_for_device(dma_dom, devid);
bd60b735
JR
2067 dma_dom->target_dev = devid;
2068
be831297
JR
2069 attach_device(iommu, &dma_dom->domain, devid);
2070 if (__devid != devid)
2071 attach_device(iommu, &dma_dom->domain, __devid);
2072
bd60b735 2073 list_add_tail(&dma_dom->list, &iommu_pd_list);
c432f3df
JR
2074 }
2075}
2076
160c1d8e 2077static struct dma_map_ops amd_iommu_dma_ops = {
6631ee9d
JR
2078 .alloc_coherent = alloc_coherent,
2079 .free_coherent = free_coherent,
51491367
FT
2080 .map_page = map_page,
2081 .unmap_page = unmap_page,
6631ee9d
JR
2082 .map_sg = map_sg,
2083 .unmap_sg = unmap_sg,
b39ba6ad 2084 .dma_supported = amd_iommu_dma_supported,
6631ee9d
JR
2085};
2086
431b2a20
JR
2087/*
2088 * The function which clues the AMD IOMMU driver into dma_ops.
2089 */
6631ee9d
JR
2090int __init amd_iommu_init_dma_ops(void)
2091{
2092 struct amd_iommu *iommu;
6631ee9d
JR
2093 int ret;
2094
431b2a20
JR
2095 /*
2096 * first allocate a default protection domain for every IOMMU we
2097 * found in the system. Devices not assigned to any other
2098 * protection domain will be assigned to the default one.
2099 */
3bd22172 2100 for_each_iommu(iommu) {
d9cfed92 2101 iommu->default_dom = dma_ops_domain_alloc(iommu);
6631ee9d
JR
2102 if (iommu->default_dom == NULL)
2103 return -ENOMEM;
e2dc14a2 2104 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
6631ee9d
JR
2105 ret = iommu_init_unity_mappings(iommu);
2106 if (ret)
2107 goto free_domains;
2108 }
2109
431b2a20
JR
2110 /*
2111 * If device isolation is enabled, pre-allocate the protection
2112 * domains for each device.
2113 */
6631ee9d
JR
2114 if (amd_iommu_isolate)
2115 prealloc_protection_domains();
2116
2117 iommu_detected = 1;
75f1cdf1 2118 swiotlb = 0;
92af4e29 2119#ifdef CONFIG_GART_IOMMU
6631ee9d
JR
2120 gart_iommu_aperture_disabled = 1;
2121 gart_iommu_aperture = 0;
92af4e29 2122#endif
6631ee9d 2123
431b2a20 2124 /* Make the driver finally visible to the drivers */
6631ee9d
JR
2125 dma_ops = &amd_iommu_dma_ops;
2126
26961efe 2127 register_iommu(&amd_iommu_ops);
26961efe 2128
e275a2a0
JR
2129 bus_register_notifier(&pci_bus_type, &device_nb);
2130
7f26508b
JR
2131 amd_iommu_stats_init();
2132
6631ee9d
JR
2133 return 0;
2134
2135free_domains:
2136
3bd22172 2137 for_each_iommu(iommu) {
6631ee9d
JR
2138 if (iommu->default_dom)
2139 dma_ops_domain_free(iommu->default_dom);
2140 }
2141
2142 return ret;
2143}
6d98cd80
JR
2144
2145/*****************************************************************************
2146 *
2147 * The following functions belong to the exported interface of AMD IOMMU
2148 *
2149 * This interface allows access to lower level functions of the IOMMU
2150 * like protection domain handling and assignement of devices to domains
2151 * which is not possible with the dma_ops interface.
2152 *
2153 *****************************************************************************/
2154
6d98cd80
JR
2155static void cleanup_domain(struct protection_domain *domain)
2156{
2157 unsigned long flags;
2158 u16 devid;
2159
2160 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2161
2162 for (devid = 0; devid <= amd_iommu_last_bdf; ++devid)
2163 if (amd_iommu_pd_table[devid] == domain)
2164 __detach_device(domain, devid);
2165
2166 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2167}
2168
2650815f
JR
2169static void protection_domain_free(struct protection_domain *domain)
2170{
2171 if (!domain)
2172 return;
2173
2174 if (domain->id)
2175 domain_id_free(domain->id);
2176
2177 kfree(domain);
2178}
2179
2180static struct protection_domain *protection_domain_alloc(void)
c156e347
JR
2181{
2182 struct protection_domain *domain;
2183
2184 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2185 if (!domain)
2650815f 2186 return NULL;
c156e347
JR
2187
2188 spin_lock_init(&domain->lock);
c156e347
JR
2189 domain->id = domain_id_alloc();
2190 if (!domain->id)
2650815f
JR
2191 goto out_err;
2192
2193 return domain;
2194
2195out_err:
2196 kfree(domain);
2197
2198 return NULL;
2199}
2200
2201static int amd_iommu_domain_init(struct iommu_domain *dom)
2202{
2203 struct protection_domain *domain;
2204
2205 domain = protection_domain_alloc();
2206 if (!domain)
c156e347 2207 goto out_free;
2650815f
JR
2208
2209 domain->mode = PAGE_MODE_3_LEVEL;
c156e347
JR
2210 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2211 if (!domain->pt_root)
2212 goto out_free;
2213
2214 dom->priv = domain;
2215
2216 return 0;
2217
2218out_free:
2650815f 2219 protection_domain_free(domain);
c156e347
JR
2220
2221 return -ENOMEM;
2222}
2223
98383fc3
JR
2224static void amd_iommu_domain_destroy(struct iommu_domain *dom)
2225{
2226 struct protection_domain *domain = dom->priv;
2227
2228 if (!domain)
2229 return;
2230
2231 if (domain->dev_cnt > 0)
2232 cleanup_domain(domain);
2233
2234 BUG_ON(domain->dev_cnt != 0);
2235
2236 free_pagetable(domain);
2237
2238 domain_id_free(domain->id);
2239
2240 kfree(domain);
2241
2242 dom->priv = NULL;
2243}
2244
684f2888
JR
2245static void amd_iommu_detach_device(struct iommu_domain *dom,
2246 struct device *dev)
2247{
2248 struct protection_domain *domain = dom->priv;
2249 struct amd_iommu *iommu;
2250 struct pci_dev *pdev;
2251 u16 devid;
2252
2253 if (dev->bus != &pci_bus_type)
2254 return;
2255
2256 pdev = to_pci_dev(dev);
2257
2258 devid = calc_devid(pdev->bus->number, pdev->devfn);
2259
2260 if (devid > 0)
2261 detach_device(domain, devid);
2262
2263 iommu = amd_iommu_rlookup_table[devid];
2264 if (!iommu)
2265 return;
2266
2267 iommu_queue_inv_dev_entry(iommu, devid);
2268 iommu_completion_wait(iommu);
2269}
2270
01106066
JR
2271static int amd_iommu_attach_device(struct iommu_domain *dom,
2272 struct device *dev)
2273{
2274 struct protection_domain *domain = dom->priv;
2275 struct protection_domain *old_domain;
2276 struct amd_iommu *iommu;
2277 struct pci_dev *pdev;
2278 u16 devid;
2279
2280 if (dev->bus != &pci_bus_type)
2281 return -EINVAL;
2282
2283 pdev = to_pci_dev(dev);
2284
2285 devid = calc_devid(pdev->bus->number, pdev->devfn);
2286
2287 if (devid >= amd_iommu_last_bdf ||
2288 devid != amd_iommu_alias_table[devid])
2289 return -EINVAL;
2290
2291 iommu = amd_iommu_rlookup_table[devid];
2292 if (!iommu)
2293 return -EINVAL;
2294
2295 old_domain = domain_for_device(devid);
2296 if (old_domain)
71ff3bca 2297 detach_device(old_domain, devid);
01106066
JR
2298
2299 attach_device(iommu, domain, devid);
2300
2301 iommu_completion_wait(iommu);
2302
2303 return 0;
2304}
2305
c6229ca6
JR
2306static int amd_iommu_map_range(struct iommu_domain *dom,
2307 unsigned long iova, phys_addr_t paddr,
2308 size_t size, int iommu_prot)
2309{
2310 struct protection_domain *domain = dom->priv;
2311 unsigned long i, npages = iommu_num_pages(paddr, size, PAGE_SIZE);
2312 int prot = 0;
2313 int ret;
2314
2315 if (iommu_prot & IOMMU_READ)
2316 prot |= IOMMU_PROT_IR;
2317 if (iommu_prot & IOMMU_WRITE)
2318 prot |= IOMMU_PROT_IW;
2319
2320 iova &= PAGE_MASK;
2321 paddr &= PAGE_MASK;
2322
2323 for (i = 0; i < npages; ++i) {
abdc5eb3 2324 ret = iommu_map_page(domain, iova, paddr, prot, PM_MAP_4k);
c6229ca6
JR
2325 if (ret)
2326 return ret;
2327
2328 iova += PAGE_SIZE;
2329 paddr += PAGE_SIZE;
2330 }
2331
2332 return 0;
2333}
2334
eb74ff6c
JR
2335static void amd_iommu_unmap_range(struct iommu_domain *dom,
2336 unsigned long iova, size_t size)
2337{
2338
2339 struct protection_domain *domain = dom->priv;
2340 unsigned long i, npages = iommu_num_pages(iova, size, PAGE_SIZE);
2341
2342 iova &= PAGE_MASK;
2343
2344 for (i = 0; i < npages; ++i) {
a6b256b4 2345 iommu_unmap_page(domain, iova, PM_MAP_4k);
eb74ff6c
JR
2346 iova += PAGE_SIZE;
2347 }
2348
2349 iommu_flush_domain(domain->id);
2350}
2351
645c4c8d
JR
2352static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2353 unsigned long iova)
2354{
2355 struct protection_domain *domain = dom->priv;
2356 unsigned long offset = iova & ~PAGE_MASK;
2357 phys_addr_t paddr;
2358 u64 *pte;
2359
a6b256b4 2360 pte = fetch_pte(domain, iova, PM_MAP_4k);
645c4c8d 2361
a6d41a40 2362 if (!pte || !IOMMU_PTE_PRESENT(*pte))
645c4c8d
JR
2363 return 0;
2364
2365 paddr = *pte & IOMMU_PAGE_MASK;
2366 paddr |= offset;
2367
2368 return paddr;
2369}
2370
dbb9fd86
SY
2371static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
2372 unsigned long cap)
2373{
2374 return 0;
2375}
2376
26961efe
JR
2377static struct iommu_ops amd_iommu_ops = {
2378 .domain_init = amd_iommu_domain_init,
2379 .domain_destroy = amd_iommu_domain_destroy,
2380 .attach_dev = amd_iommu_attach_device,
2381 .detach_dev = amd_iommu_detach_device,
2382 .map = amd_iommu_map_range,
2383 .unmap = amd_iommu_unmap_range,
2384 .iova_to_phys = amd_iommu_iova_to_phys,
dbb9fd86 2385 .domain_has_cap = amd_iommu_domain_has_cap,
26961efe
JR
2386};
2387
0feae533
JR
2388/*****************************************************************************
2389 *
2390 * The next functions do a basic initialization of IOMMU for pass through
2391 * mode
2392 *
2393 * In passthrough mode the IOMMU is initialized and enabled but not used for
2394 * DMA-API translation.
2395 *
2396 *****************************************************************************/
2397
2398int __init amd_iommu_init_passthrough(void)
2399{
2400 struct pci_dev *dev = NULL;
2401 u16 devid, devid2;
2402
2403 /* allocate passthroug domain */
2404 pt_domain = protection_domain_alloc();
2405 if (!pt_domain)
2406 return -ENOMEM;
2407
2408 pt_domain->mode |= PAGE_MODE_NONE;
2409
2410 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
2411 struct amd_iommu *iommu;
2412
2413 devid = calc_devid(dev->bus->number, dev->devfn);
2414 if (devid > amd_iommu_last_bdf)
2415 continue;
2416
2417 devid2 = amd_iommu_alias_table[devid];
2418
2419 iommu = amd_iommu_rlookup_table[devid2];
2420 if (!iommu)
2421 continue;
2422
2423 __attach_device(iommu, pt_domain, devid);
2424 __attach_device(iommu, pt_domain, devid2);
2425 }
2426
2427 pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
2428
2429 return 0;
2430}