]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/kernel/amd_iommu.c
amd-iommu: don't preallocate page tables with CONFIG_IOMMU_STRESS
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / amd_iommu.c
CommitLineData
b6c02715
JR
1/*
2 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/pci.h>
21#include <linux/gfp.h>
22#include <linux/bitops.h>
7f26508b 23#include <linux/debugfs.h>
b6c02715 24#include <linux/scatterlist.h>
51491367 25#include <linux/dma-mapping.h>
b6c02715 26#include <linux/iommu-helper.h>
c156e347 27#include <linux/iommu.h>
b6c02715 28#include <asm/proto.h>
46a7fa27 29#include <asm/iommu.h>
1d9b16d1 30#include <asm/gart.h>
b6c02715 31#include <asm/amd_iommu_types.h>
c6da992e 32#include <asm/amd_iommu.h>
b6c02715
JR
33
34#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
35
136f78a1
JR
36#define EXIT_LOOP_COUNT 10000000
37
b6c02715
JR
38static DEFINE_RWLOCK(amd_iommu_devtable_lock);
39
bd60b735
JR
40/* A list of preallocated protection domains */
41static LIST_HEAD(iommu_pd_list);
42static DEFINE_SPINLOCK(iommu_pd_list_lock);
43
26961efe
JR
44#ifdef CONFIG_IOMMU_API
45static struct iommu_ops amd_iommu_ops;
46#endif
47
431b2a20
JR
48/*
49 * general struct to manage commands send to an IOMMU
50 */
d6449536 51struct iommu_cmd {
b6c02715
JR
52 u32 data[4];
53};
54
bd0e5211
JR
55static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
56 struct unity_map_entry *e);
e275a2a0 57static struct dma_ops_domain *find_protection_domain(u16 devid);
8bda3092
JR
58static u64* alloc_pte(struct protection_domain *dom,
59 unsigned long address, u64
60 **pte_page, gfp_t gfp);
00cd122a
JR
61static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
62 unsigned long start_page,
63 unsigned int pages);
bd0e5211 64
7f26508b
JR
65#ifdef CONFIG_AMD_IOMMU_STATS
66
67/*
68 * Initialization code for statistics collection
69 */
70
da49f6df 71DECLARE_STATS_COUNTER(compl_wait);
0f2a86f2 72DECLARE_STATS_COUNTER(cnt_map_single);
146a6917 73DECLARE_STATS_COUNTER(cnt_unmap_single);
d03f067a 74DECLARE_STATS_COUNTER(cnt_map_sg);
55877a6b 75DECLARE_STATS_COUNTER(cnt_unmap_sg);
c8f0fb36 76DECLARE_STATS_COUNTER(cnt_alloc_coherent);
5d31ee7e 77DECLARE_STATS_COUNTER(cnt_free_coherent);
c1858976 78DECLARE_STATS_COUNTER(cross_page);
f57d98ae 79DECLARE_STATS_COUNTER(domain_flush_single);
18811f55 80DECLARE_STATS_COUNTER(domain_flush_all);
5774f7c5 81DECLARE_STATS_COUNTER(alloced_io_mem);
8ecaf8f1 82DECLARE_STATS_COUNTER(total_map_requests);
da49f6df 83
7f26508b
JR
84static struct dentry *stats_dir;
85static struct dentry *de_isolate;
86static struct dentry *de_fflush;
87
88static void amd_iommu_stats_add(struct __iommu_counter *cnt)
89{
90 if (stats_dir == NULL)
91 return;
92
93 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
94 &cnt->value);
95}
96
97static void amd_iommu_stats_init(void)
98{
99 stats_dir = debugfs_create_dir("amd-iommu", NULL);
100 if (stats_dir == NULL)
101 return;
102
103 de_isolate = debugfs_create_bool("isolation", 0444, stats_dir,
104 (u32 *)&amd_iommu_isolate);
105
106 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
107 (u32 *)&amd_iommu_unmap_flush);
da49f6df
JR
108
109 amd_iommu_stats_add(&compl_wait);
0f2a86f2 110 amd_iommu_stats_add(&cnt_map_single);
146a6917 111 amd_iommu_stats_add(&cnt_unmap_single);
d03f067a 112 amd_iommu_stats_add(&cnt_map_sg);
55877a6b 113 amd_iommu_stats_add(&cnt_unmap_sg);
c8f0fb36 114 amd_iommu_stats_add(&cnt_alloc_coherent);
5d31ee7e 115 amd_iommu_stats_add(&cnt_free_coherent);
c1858976 116 amd_iommu_stats_add(&cross_page);
f57d98ae 117 amd_iommu_stats_add(&domain_flush_single);
18811f55 118 amd_iommu_stats_add(&domain_flush_all);
5774f7c5 119 amd_iommu_stats_add(&alloced_io_mem);
8ecaf8f1 120 amd_iommu_stats_add(&total_map_requests);
7f26508b
JR
121}
122
123#endif
124
431b2a20 125/* returns !0 if the IOMMU is caching non-present entries in its TLB */
4da70b9e
JR
126static int iommu_has_npcache(struct amd_iommu *iommu)
127{
ae9b9403 128 return iommu->cap & (1UL << IOMMU_CAP_NPCACHE);
4da70b9e
JR
129}
130
a80dc3e0
JR
131/****************************************************************************
132 *
133 * Interrupt handling functions
134 *
135 ****************************************************************************/
136
90008ee4
JR
137static void iommu_print_event(void *__evt)
138{
139 u32 *event = __evt;
140 int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
141 int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
142 int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
143 int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
144 u64 address = (u64)(((u64)event[3]) << 32) | event[2];
145
146 printk(KERN_ERR "AMD IOMMU: Event logged [");
147
148 switch (type) {
149 case EVENT_TYPE_ILL_DEV:
150 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
151 "address=0x%016llx flags=0x%04x]\n",
152 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
153 address, flags);
154 break;
155 case EVENT_TYPE_IO_FAULT:
156 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
157 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
158 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
159 domid, address, flags);
160 break;
161 case EVENT_TYPE_DEV_TAB_ERR:
162 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
163 "address=0x%016llx flags=0x%04x]\n",
164 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
165 address, flags);
166 break;
167 case EVENT_TYPE_PAGE_TAB_ERR:
168 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
169 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
170 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
171 domid, address, flags);
172 break;
173 case EVENT_TYPE_ILL_CMD:
174 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
175 break;
176 case EVENT_TYPE_CMD_HARD_ERR:
177 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
178 "flags=0x%04x]\n", address, flags);
179 break;
180 case EVENT_TYPE_IOTLB_INV_TO:
181 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
182 "address=0x%016llx]\n",
183 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
184 address);
185 break;
186 case EVENT_TYPE_INV_DEV_REQ:
187 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
188 "address=0x%016llx flags=0x%04x]\n",
189 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
190 address, flags);
191 break;
192 default:
193 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
194 }
195}
196
197static void iommu_poll_events(struct amd_iommu *iommu)
198{
199 u32 head, tail;
200 unsigned long flags;
201
202 spin_lock_irqsave(&iommu->lock, flags);
203
204 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
205 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
206
207 while (head != tail) {
208 iommu_print_event(iommu->evt_buf + head);
209 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
210 }
211
212 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
213
214 spin_unlock_irqrestore(&iommu->lock, flags);
215}
216
a80dc3e0
JR
217irqreturn_t amd_iommu_int_handler(int irq, void *data)
218{
90008ee4
JR
219 struct amd_iommu *iommu;
220
221 list_for_each_entry(iommu, &amd_iommu_list, list)
222 iommu_poll_events(iommu);
223
224 return IRQ_HANDLED;
a80dc3e0
JR
225}
226
431b2a20
JR
227/****************************************************************************
228 *
229 * IOMMU command queuing functions
230 *
231 ****************************************************************************/
232
233/*
234 * Writes the command to the IOMMUs command buffer and informs the
235 * hardware about the new command. Must be called with iommu->lock held.
236 */
d6449536 237static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
238{
239 u32 tail, head;
240 u8 *target;
241
242 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
8a7c5ef3 243 target = iommu->cmd_buf + tail;
a19ae1ec
JR
244 memcpy_toio(target, cmd, sizeof(*cmd));
245 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
246 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
247 if (tail == head)
248 return -ENOMEM;
249 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
250
251 return 0;
252}
253
431b2a20
JR
254/*
255 * General queuing function for commands. Takes iommu->lock and calls
256 * __iommu_queue_command().
257 */
d6449536 258static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
259{
260 unsigned long flags;
261 int ret;
262
263 spin_lock_irqsave(&iommu->lock, flags);
264 ret = __iommu_queue_command(iommu, cmd);
09ee17eb 265 if (!ret)
0cfd7aa9 266 iommu->need_sync = true;
a19ae1ec
JR
267 spin_unlock_irqrestore(&iommu->lock, flags);
268
269 return ret;
270}
271
8d201968
JR
272/*
273 * This function waits until an IOMMU has completed a completion
274 * wait command
275 */
276static void __iommu_wait_for_completion(struct amd_iommu *iommu)
277{
278 int ready = 0;
279 unsigned status = 0;
280 unsigned long i = 0;
281
da49f6df
JR
282 INC_STATS_COUNTER(compl_wait);
283
8d201968
JR
284 while (!ready && (i < EXIT_LOOP_COUNT)) {
285 ++i;
286 /* wait for the bit to become one */
287 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
288 ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
289 }
290
291 /* set bit back to zero */
292 status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
293 writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);
294
295 if (unlikely(i == EXIT_LOOP_COUNT))
296 panic("AMD IOMMU: Completion wait loop failed\n");
297}
298
299/*
300 * This function queues a completion wait command into the command
301 * buffer of an IOMMU
302 */
303static int __iommu_completion_wait(struct amd_iommu *iommu)
304{
305 struct iommu_cmd cmd;
306
307 memset(&cmd, 0, sizeof(cmd));
308 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
309 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);
310
311 return __iommu_queue_command(iommu, &cmd);
312}
313
431b2a20
JR
314/*
315 * This function is called whenever we need to ensure that the IOMMU has
316 * completed execution of all commands we sent. It sends a
317 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
318 * us about that by writing a value to a physical address we pass with
319 * the command.
320 */
a19ae1ec
JR
321static int iommu_completion_wait(struct amd_iommu *iommu)
322{
8d201968
JR
323 int ret = 0;
324 unsigned long flags;
a19ae1ec 325
7e4f88da
JR
326 spin_lock_irqsave(&iommu->lock, flags);
327
09ee17eb
JR
328 if (!iommu->need_sync)
329 goto out;
330
8d201968 331 ret = __iommu_completion_wait(iommu);
09ee17eb 332
0cfd7aa9 333 iommu->need_sync = false;
a19ae1ec
JR
334
335 if (ret)
7e4f88da 336 goto out;
a19ae1ec 337
8d201968 338 __iommu_wait_for_completion(iommu);
84df8175 339
7e4f88da
JR
340out:
341 spin_unlock_irqrestore(&iommu->lock, flags);
a19ae1ec
JR
342
343 return 0;
344}
345
431b2a20
JR
346/*
347 * Command send function for invalidating a device table entry
348 */
a19ae1ec
JR
349static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
350{
d6449536 351 struct iommu_cmd cmd;
ee2fa743 352 int ret;
a19ae1ec
JR
353
354 BUG_ON(iommu == NULL);
355
356 memset(&cmd, 0, sizeof(cmd));
357 CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
358 cmd.data[0] = devid;
359
ee2fa743
JR
360 ret = iommu_queue_command(iommu, &cmd);
361
ee2fa743 362 return ret;
a19ae1ec
JR
363}
364
237b6f33
JR
365static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
366 u16 domid, int pde, int s)
367{
368 memset(cmd, 0, sizeof(*cmd));
369 address &= PAGE_MASK;
370 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
371 cmd->data[1] |= domid;
372 cmd->data[2] = lower_32_bits(address);
373 cmd->data[3] = upper_32_bits(address);
374 if (s) /* size bit - we flush more than one 4kb page */
375 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
376 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
377 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
378}
379
431b2a20
JR
380/*
381 * Generic command send function for invalidaing TLB entries
382 */
a19ae1ec
JR
383static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
384 u64 address, u16 domid, int pde, int s)
385{
d6449536 386 struct iommu_cmd cmd;
ee2fa743 387 int ret;
a19ae1ec 388
237b6f33 389 __iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
a19ae1ec 390
ee2fa743
JR
391 ret = iommu_queue_command(iommu, &cmd);
392
ee2fa743 393 return ret;
a19ae1ec
JR
394}
395
431b2a20
JR
396/*
397 * TLB invalidation function which is called from the mapping functions.
398 * It invalidates a single PTE if the range to flush is within a single
399 * page. Otherwise it flushes the whole TLB of the IOMMU.
400 */
a19ae1ec
JR
401static int iommu_flush_pages(struct amd_iommu *iommu, u16 domid,
402 u64 address, size_t size)
403{
999ba417 404 int s = 0;
e3c449f5 405 unsigned pages = iommu_num_pages(address, size, PAGE_SIZE);
a19ae1ec
JR
406
407 address &= PAGE_MASK;
408
999ba417
JR
409 if (pages > 1) {
410 /*
411 * If we have to flush more than one page, flush all
412 * TLB entries for this domain
413 */
414 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
415 s = 1;
a19ae1ec
JR
416 }
417
999ba417
JR
418 iommu_queue_inv_iommu_pages(iommu, address, domid, 0, s);
419
a19ae1ec
JR
420 return 0;
421}
b6c02715 422
1c655773
JR
423/* Flush the whole IO/TLB for a given protection domain */
424static void iommu_flush_tlb(struct amd_iommu *iommu, u16 domid)
425{
426 u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
427
f57d98ae
JR
428 INC_STATS_COUNTER(domain_flush_single);
429
1c655773
JR
430 iommu_queue_inv_iommu_pages(iommu, address, domid, 0, 1);
431}
432
43f49609
JR
433/*
434 * This function is used to flush the IO/TLB for a given protection domain
435 * on every IOMMU in the system
436 */
437static void iommu_flush_domain(u16 domid)
438{
439 unsigned long flags;
440 struct amd_iommu *iommu;
441 struct iommu_cmd cmd;
442
18811f55
JR
443 INC_STATS_COUNTER(domain_flush_all);
444
43f49609
JR
445 __iommu_build_inv_iommu_pages(&cmd, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
446 domid, 1, 1);
447
448 list_for_each_entry(iommu, &amd_iommu_list, list) {
449 spin_lock_irqsave(&iommu->lock, flags);
450 __iommu_queue_command(iommu, &cmd);
451 __iommu_completion_wait(iommu);
452 __iommu_wait_for_completion(iommu);
453 spin_unlock_irqrestore(&iommu->lock, flags);
454 }
455}
43f49609 456
431b2a20
JR
457/****************************************************************************
458 *
459 * The functions below are used the create the page table mappings for
460 * unity mapped regions.
461 *
462 ****************************************************************************/
463
464/*
465 * Generic mapping functions. It maps a physical address into a DMA
466 * address space. It allocates the page table pages if necessary.
467 * In the future it can be extended to a generic mapping function
468 * supporting all features of AMD IOMMU page tables like level skipping
469 * and full 64 bit address spaces.
470 */
38e817fe
JR
471static int iommu_map_page(struct protection_domain *dom,
472 unsigned long bus_addr,
473 unsigned long phys_addr,
474 int prot)
bd0e5211 475{
8bda3092 476 u64 __pte, *pte;
bd0e5211
JR
477
478 bus_addr = PAGE_ALIGN(bus_addr);
bb9d4ff8 479 phys_addr = PAGE_ALIGN(phys_addr);
bd0e5211
JR
480
481 /* only support 512GB address spaces for now */
482 if (bus_addr > IOMMU_MAP_SIZE_L3 || !(prot & IOMMU_PROT_MASK))
483 return -EINVAL;
484
8bda3092 485 pte = alloc_pte(dom, bus_addr, NULL, GFP_KERNEL);
bd0e5211
JR
486
487 if (IOMMU_PTE_PRESENT(*pte))
488 return -EBUSY;
489
490 __pte = phys_addr | IOMMU_PTE_P;
491 if (prot & IOMMU_PROT_IR)
492 __pte |= IOMMU_PTE_IR;
493 if (prot & IOMMU_PROT_IW)
494 __pte |= IOMMU_PTE_IW;
495
496 *pte = __pte;
497
498 return 0;
499}
500
eb74ff6c
JR
501static void iommu_unmap_page(struct protection_domain *dom,
502 unsigned long bus_addr)
503{
504 u64 *pte;
505
506 pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(bus_addr)];
507
508 if (!IOMMU_PTE_PRESENT(*pte))
509 return;
510
511 pte = IOMMU_PTE_PAGE(*pte);
512 pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];
513
514 if (!IOMMU_PTE_PRESENT(*pte))
515 return;
516
517 pte = IOMMU_PTE_PAGE(*pte);
518 pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];
519
520 *pte = 0;
521}
eb74ff6c 522
431b2a20
JR
523/*
524 * This function checks if a specific unity mapping entry is needed for
525 * this specific IOMMU.
526 */
bd0e5211
JR
527static int iommu_for_unity_map(struct amd_iommu *iommu,
528 struct unity_map_entry *entry)
529{
530 u16 bdf, i;
531
532 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
533 bdf = amd_iommu_alias_table[i];
534 if (amd_iommu_rlookup_table[bdf] == iommu)
535 return 1;
536 }
537
538 return 0;
539}
540
431b2a20
JR
541/*
542 * Init the unity mappings for a specific IOMMU in the system
543 *
544 * Basically iterates over all unity mapping entries and applies them to
545 * the default domain DMA of that IOMMU if necessary.
546 */
bd0e5211
JR
547static int iommu_init_unity_mappings(struct amd_iommu *iommu)
548{
549 struct unity_map_entry *entry;
550 int ret;
551
552 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
553 if (!iommu_for_unity_map(iommu, entry))
554 continue;
555 ret = dma_ops_unity_map(iommu->default_dom, entry);
556 if (ret)
557 return ret;
558 }
559
560 return 0;
561}
562
431b2a20
JR
563/*
564 * This function actually applies the mapping to the page table of the
565 * dma_ops domain.
566 */
bd0e5211
JR
567static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
568 struct unity_map_entry *e)
569{
570 u64 addr;
571 int ret;
572
573 for (addr = e->address_start; addr < e->address_end;
574 addr += PAGE_SIZE) {
38e817fe 575 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot);
bd0e5211
JR
576 if (ret)
577 return ret;
578 /*
579 * if unity mapping is in aperture range mark the page
580 * as allocated in the aperture
581 */
582 if (addr < dma_dom->aperture_size)
c3239567 583 __set_bit(addr >> PAGE_SHIFT,
384de729 584 dma_dom->aperture[0]->bitmap);
bd0e5211
JR
585 }
586
587 return 0;
588}
589
431b2a20
JR
590/*
591 * Inits the unity mappings required for a specific device
592 */
bd0e5211
JR
593static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
594 u16 devid)
595{
596 struct unity_map_entry *e;
597 int ret;
598
599 list_for_each_entry(e, &amd_iommu_unity_map, list) {
600 if (!(devid >= e->devid_start && devid <= e->devid_end))
601 continue;
602 ret = dma_ops_unity_map(dma_dom, e);
603 if (ret)
604 return ret;
605 }
606
607 return 0;
608}
609
431b2a20
JR
610/****************************************************************************
611 *
612 * The next functions belong to the address allocator for the dma_ops
613 * interface functions. They work like the allocators in the other IOMMU
614 * drivers. Its basically a bitmap which marks the allocated pages in
615 * the aperture. Maybe it could be enhanced in the future to a more
616 * efficient allocator.
617 *
618 ****************************************************************************/
d3086444 619
431b2a20 620/*
384de729 621 * The address allocator core functions.
431b2a20
JR
622 *
623 * called with domain->lock held
624 */
384de729 625
00cd122a
JR
626/*
627 * This function checks if there is a PTE for a given dma address. If
628 * there is one, it returns the pointer to it.
629 */
630static u64* fetch_pte(struct protection_domain *domain,
631 unsigned long address)
632{
633 u64 *pte;
634
635 pte = &domain->pt_root[IOMMU_PTE_L2_INDEX(address)];
636
637 if (!IOMMU_PTE_PRESENT(*pte))
638 return NULL;
639
640 pte = IOMMU_PTE_PAGE(*pte);
641 pte = &pte[IOMMU_PTE_L1_INDEX(address)];
642
643 if (!IOMMU_PTE_PRESENT(*pte))
644 return NULL;
645
646 pte = IOMMU_PTE_PAGE(*pte);
647 pte = &pte[IOMMU_PTE_L0_INDEX(address)];
648
649 return pte;
650}
651
9cabe89b
JR
652/*
653 * This function is used to add a new aperture range to an existing
654 * aperture in case of dma_ops domain allocation or address allocation
655 * failure.
656 */
00cd122a
JR
657static int alloc_new_range(struct amd_iommu *iommu,
658 struct dma_ops_domain *dma_dom,
9cabe89b
JR
659 bool populate, gfp_t gfp)
660{
661 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
00cd122a 662 int i;
9cabe89b 663
f5e9705c
JR
664#ifdef CONFIG_IOMMU_STRESS
665 populate = false;
666#endif
667
9cabe89b
JR
668 if (index >= APERTURE_MAX_RANGES)
669 return -ENOMEM;
670
671 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
672 if (!dma_dom->aperture[index])
673 return -ENOMEM;
674
675 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
676 if (!dma_dom->aperture[index]->bitmap)
677 goto out_free;
678
679 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
680
681 if (populate) {
682 unsigned long address = dma_dom->aperture_size;
683 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
684 u64 *pte, *pte_page;
685
686 for (i = 0; i < num_ptes; ++i) {
687 pte = alloc_pte(&dma_dom->domain, address,
688 &pte_page, gfp);
689 if (!pte)
690 goto out_free;
691
692 dma_dom->aperture[index]->pte_pages[i] = pte_page;
693
694 address += APERTURE_RANGE_SIZE / 64;
695 }
696 }
697
698 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
699
00cd122a
JR
700 /* Intialize the exclusion range if necessary */
701 if (iommu->exclusion_start &&
702 iommu->exclusion_start >= dma_dom->aperture[index]->offset &&
703 iommu->exclusion_start < dma_dom->aperture_size) {
704 unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
705 int pages = iommu_num_pages(iommu->exclusion_start,
706 iommu->exclusion_length,
707 PAGE_SIZE);
708 dma_ops_reserve_addresses(dma_dom, startpage, pages);
709 }
710
711 /*
712 * Check for areas already mapped as present in the new aperture
713 * range and mark those pages as reserved in the allocator. Such
714 * mappings may already exist as a result of requested unity
715 * mappings for devices.
716 */
717 for (i = dma_dom->aperture[index]->offset;
718 i < dma_dom->aperture_size;
719 i += PAGE_SIZE) {
720 u64 *pte = fetch_pte(&dma_dom->domain, i);
721 if (!pte || !IOMMU_PTE_PRESENT(*pte))
722 continue;
723
724 dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
725 }
726
9cabe89b
JR
727 return 0;
728
729out_free:
730 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
731
732 kfree(dma_dom->aperture[index]);
733 dma_dom->aperture[index] = NULL;
734
735 return -ENOMEM;
736}
737
384de729
JR
738static unsigned long dma_ops_area_alloc(struct device *dev,
739 struct dma_ops_domain *dom,
740 unsigned int pages,
741 unsigned long align_mask,
742 u64 dma_mask,
743 unsigned long start)
744{
803b8cb4 745 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
384de729
JR
746 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
747 int i = start >> APERTURE_RANGE_SHIFT;
748 unsigned long boundary_size;
749 unsigned long address = -1;
750 unsigned long limit;
751
803b8cb4
JR
752 next_bit >>= PAGE_SHIFT;
753
384de729
JR
754 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
755 PAGE_SIZE) >> PAGE_SHIFT;
756
757 for (;i < max_index; ++i) {
758 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
759
760 if (dom->aperture[i]->offset >= dma_mask)
761 break;
762
763 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
764 dma_mask >> PAGE_SHIFT);
765
766 address = iommu_area_alloc(dom->aperture[i]->bitmap,
767 limit, next_bit, pages, 0,
768 boundary_size, align_mask);
769 if (address != -1) {
770 address = dom->aperture[i]->offset +
771 (address << PAGE_SHIFT);
803b8cb4 772 dom->next_address = address + (pages << PAGE_SHIFT);
384de729
JR
773 break;
774 }
775
776 next_bit = 0;
777 }
778
779 return address;
780}
781
d3086444
JR
782static unsigned long dma_ops_alloc_addresses(struct device *dev,
783 struct dma_ops_domain *dom,
6d4f343f 784 unsigned int pages,
832a90c3
JR
785 unsigned long align_mask,
786 u64 dma_mask)
d3086444 787{
d3086444 788 unsigned long address;
d3086444 789
fe16f088
JR
790#ifdef CONFIG_IOMMU_STRESS
791 dom->next_address = 0;
792 dom->need_flush = true;
793#endif
794
384de729 795 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
803b8cb4 796 dma_mask, dom->next_address);
d3086444 797
1c655773 798 if (address == -1) {
803b8cb4 799 dom->next_address = 0;
384de729
JR
800 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
801 dma_mask, 0);
1c655773
JR
802 dom->need_flush = true;
803 }
d3086444 804
384de729 805 if (unlikely(address == -1))
d3086444
JR
806 address = bad_dma_address;
807
808 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
809
810 return address;
811}
812
431b2a20
JR
813/*
814 * The address free function.
815 *
816 * called with domain->lock held
817 */
d3086444
JR
818static void dma_ops_free_addresses(struct dma_ops_domain *dom,
819 unsigned long address,
820 unsigned int pages)
821{
384de729
JR
822 unsigned i = address >> APERTURE_RANGE_SHIFT;
823 struct aperture_range *range = dom->aperture[i];
80be308d 824
384de729
JR
825 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
826
803b8cb4 827 if (address >= dom->next_address)
80be308d 828 dom->need_flush = true;
384de729
JR
829
830 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
803b8cb4 831
384de729
JR
832 iommu_area_free(range->bitmap, address, pages);
833
d3086444
JR
834}
835
431b2a20
JR
836/****************************************************************************
837 *
838 * The next functions belong to the domain allocation. A domain is
839 * allocated for every IOMMU as the default domain. If device isolation
840 * is enabled, every device get its own domain. The most important thing
841 * about domains is the page table mapping the DMA address space they
842 * contain.
843 *
844 ****************************************************************************/
845
ec487d1a
JR
846static u16 domain_id_alloc(void)
847{
848 unsigned long flags;
849 int id;
850
851 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
852 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
853 BUG_ON(id == 0);
854 if (id > 0 && id < MAX_DOMAIN_ID)
855 __set_bit(id, amd_iommu_pd_alloc_bitmap);
856 else
857 id = 0;
858 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
859
860 return id;
861}
862
a2acfb75
JR
863static void domain_id_free(int id)
864{
865 unsigned long flags;
866
867 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
868 if (id > 0 && id < MAX_DOMAIN_ID)
869 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
870 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
871}
a2acfb75 872
431b2a20
JR
873/*
874 * Used to reserve address ranges in the aperture (e.g. for exclusion
875 * ranges.
876 */
ec487d1a
JR
877static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
878 unsigned long start_page,
879 unsigned int pages)
880{
384de729 881 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
ec487d1a
JR
882
883 if (start_page + pages > last_page)
884 pages = last_page - start_page;
885
384de729
JR
886 for (i = start_page; i < start_page + pages; ++i) {
887 int index = i / APERTURE_RANGE_PAGES;
888 int page = i % APERTURE_RANGE_PAGES;
889 __set_bit(page, dom->aperture[index]->bitmap);
890 }
ec487d1a
JR
891}
892
86db2e5d 893static void free_pagetable(struct protection_domain *domain)
ec487d1a
JR
894{
895 int i, j;
896 u64 *p1, *p2, *p3;
897
86db2e5d 898 p1 = domain->pt_root;
ec487d1a
JR
899
900 if (!p1)
901 return;
902
903 for (i = 0; i < 512; ++i) {
904 if (!IOMMU_PTE_PRESENT(p1[i]))
905 continue;
906
907 p2 = IOMMU_PTE_PAGE(p1[i]);
3cc3d84b 908 for (j = 0; j < 512; ++j) {
ec487d1a
JR
909 if (!IOMMU_PTE_PRESENT(p2[j]))
910 continue;
911 p3 = IOMMU_PTE_PAGE(p2[j]);
912 free_page((unsigned long)p3);
913 }
914
915 free_page((unsigned long)p2);
916 }
917
918 free_page((unsigned long)p1);
86db2e5d
JR
919
920 domain->pt_root = NULL;
ec487d1a
JR
921}
922
431b2a20
JR
923/*
924 * Free a domain, only used if something went wrong in the
925 * allocation path and we need to free an already allocated page table
926 */
ec487d1a
JR
927static void dma_ops_domain_free(struct dma_ops_domain *dom)
928{
384de729
JR
929 int i;
930
ec487d1a
JR
931 if (!dom)
932 return;
933
86db2e5d 934 free_pagetable(&dom->domain);
ec487d1a 935
384de729
JR
936 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
937 if (!dom->aperture[i])
938 continue;
939 free_page((unsigned long)dom->aperture[i]->bitmap);
940 kfree(dom->aperture[i]);
941 }
ec487d1a
JR
942
943 kfree(dom);
944}
945
431b2a20
JR
946/*
947 * Allocates a new protection domain usable for the dma_ops functions.
948 * It also intializes the page table and the address allocator data
949 * structures required for the dma_ops interface
950 */
d9cfed92 951static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu)
ec487d1a
JR
952{
953 struct dma_ops_domain *dma_dom;
ec487d1a 954
ec487d1a
JR
955 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
956 if (!dma_dom)
957 return NULL;
958
959 spin_lock_init(&dma_dom->domain.lock);
960
961 dma_dom->domain.id = domain_id_alloc();
962 if (dma_dom->domain.id == 0)
963 goto free_dma_dom;
964 dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
965 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
9fdb19d6 966 dma_dom->domain.flags = PD_DMA_OPS_MASK;
ec487d1a
JR
967 dma_dom->domain.priv = dma_dom;
968 if (!dma_dom->domain.pt_root)
969 goto free_dma_dom;
9cabe89b
JR
970
971 dma_dom->need_flush = false;
972 dma_dom->target_dev = 0xffff;
973
00cd122a 974 if (alloc_new_range(iommu, dma_dom, true, GFP_KERNEL))
ec487d1a 975 goto free_dma_dom;
9cabe89b 976
ec487d1a
JR
977 /*
978 * mark the first page as allocated so we never return 0 as
979 * a valid dma-address. So we can use 0 as error value
980 */
384de729 981 dma_dom->aperture[0]->bitmap[0] = 1;
803b8cb4 982 dma_dom->next_address = 0;
ec487d1a 983
ec487d1a 984
ec487d1a
JR
985 return dma_dom;
986
987free_dma_dom:
988 dma_ops_domain_free(dma_dom);
989
990 return NULL;
991}
992
5b28df6f
JR
993/*
994 * little helper function to check whether a given protection domain is a
995 * dma_ops domain
996 */
997static bool dma_ops_domain(struct protection_domain *domain)
998{
999 return domain->flags & PD_DMA_OPS_MASK;
1000}
1001
431b2a20
JR
1002/*
1003 * Find out the protection domain structure for a given PCI device. This
1004 * will give us the pointer to the page table root for example.
1005 */
b20ac0d4
JR
1006static struct protection_domain *domain_for_device(u16 devid)
1007{
1008 struct protection_domain *dom;
1009 unsigned long flags;
1010
1011 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
1012 dom = amd_iommu_pd_table[devid];
1013 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1014
1015 return dom;
1016}
1017
431b2a20
JR
1018/*
1019 * If a device is not yet associated with a domain, this function does
1020 * assigns it visible for the hardware
1021 */
f1179dc0
JR
1022static void attach_device(struct amd_iommu *iommu,
1023 struct protection_domain *domain,
1024 u16 devid)
b20ac0d4
JR
1025{
1026 unsigned long flags;
b20ac0d4
JR
1027 u64 pte_root = virt_to_phys(domain->pt_root);
1028
863c74eb
JR
1029 domain->dev_cnt += 1;
1030
38ddf41b
JR
1031 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1032 << DEV_ENTRY_MODE_SHIFT;
1033 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
b20ac0d4
JR
1034
1035 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
38ddf41b
JR
1036 amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
1037 amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
b20ac0d4
JR
1038 amd_iommu_dev_table[devid].data[2] = domain->id;
1039
1040 amd_iommu_pd_table[devid] = domain;
1041 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1042
1043 iommu_queue_inv_dev_entry(iommu, devid);
b20ac0d4
JR
1044}
1045
355bf553
JR
1046/*
1047 * Removes a device from a protection domain (unlocked)
1048 */
1049static void __detach_device(struct protection_domain *domain, u16 devid)
1050{
1051
1052 /* lock domain */
1053 spin_lock(&domain->lock);
1054
1055 /* remove domain from the lookup table */
1056 amd_iommu_pd_table[devid] = NULL;
1057
1058 /* remove entry from the device table seen by the hardware */
1059 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1060 amd_iommu_dev_table[devid].data[1] = 0;
1061 amd_iommu_dev_table[devid].data[2] = 0;
1062
1063 /* decrease reference counter */
1064 domain->dev_cnt -= 1;
1065
1066 /* ready */
1067 spin_unlock(&domain->lock);
1068}
1069
1070/*
1071 * Removes a device from a protection domain (with devtable_lock held)
1072 */
1073static void detach_device(struct protection_domain *domain, u16 devid)
1074{
1075 unsigned long flags;
1076
1077 /* lock device table */
1078 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1079 __detach_device(domain, devid);
1080 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1081}
e275a2a0
JR
1082
1083static int device_change_notifier(struct notifier_block *nb,
1084 unsigned long action, void *data)
1085{
1086 struct device *dev = data;
1087 struct pci_dev *pdev = to_pci_dev(dev);
1088 u16 devid = calc_devid(pdev->bus->number, pdev->devfn);
1089 struct protection_domain *domain;
1090 struct dma_ops_domain *dma_domain;
1091 struct amd_iommu *iommu;
1ac4cbbc 1092 unsigned long flags;
e275a2a0
JR
1093
1094 if (devid > amd_iommu_last_bdf)
1095 goto out;
1096
1097 devid = amd_iommu_alias_table[devid];
1098
1099 iommu = amd_iommu_rlookup_table[devid];
1100 if (iommu == NULL)
1101 goto out;
1102
1103 domain = domain_for_device(devid);
1104
1105 if (domain && !dma_ops_domain(domain))
1106 WARN_ONCE(1, "AMD IOMMU WARNING: device %s already bound "
1107 "to a non-dma-ops domain\n", dev_name(dev));
1108
1109 switch (action) {
1110 case BUS_NOTIFY_BOUND_DRIVER:
1111 if (domain)
1112 goto out;
1113 dma_domain = find_protection_domain(devid);
1114 if (!dma_domain)
1115 dma_domain = iommu->default_dom;
1116 attach_device(iommu, &dma_domain->domain, devid);
1117 printk(KERN_INFO "AMD IOMMU: Using protection domain %d for "
1118 "device %s\n", dma_domain->domain.id, dev_name(dev));
1119 break;
1120 case BUS_NOTIFY_UNBIND_DRIVER:
1121 if (!domain)
1122 goto out;
1123 detach_device(domain, devid);
1ac4cbbc
JR
1124 break;
1125 case BUS_NOTIFY_ADD_DEVICE:
1126 /* allocate a protection domain if a device is added */
1127 dma_domain = find_protection_domain(devid);
1128 if (dma_domain)
1129 goto out;
d9cfed92 1130 dma_domain = dma_ops_domain_alloc(iommu);
1ac4cbbc
JR
1131 if (!dma_domain)
1132 goto out;
1133 dma_domain->target_dev = devid;
1134
1135 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1136 list_add_tail(&dma_domain->list, &iommu_pd_list);
1137 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1138
e275a2a0
JR
1139 break;
1140 default:
1141 goto out;
1142 }
1143
1144 iommu_queue_inv_dev_entry(iommu, devid);
1145 iommu_completion_wait(iommu);
1146
1147out:
1148 return 0;
1149}
1150
1151struct notifier_block device_nb = {
1152 .notifier_call = device_change_notifier,
1153};
355bf553 1154
431b2a20
JR
1155/*****************************************************************************
1156 *
1157 * The next functions belong to the dma_ops mapping/unmapping code.
1158 *
1159 *****************************************************************************/
1160
dbcc112e
JR
1161/*
1162 * This function checks if the driver got a valid device from the caller to
1163 * avoid dereferencing invalid pointers.
1164 */
1165static bool check_device(struct device *dev)
1166{
1167 if (!dev || !dev->dma_mask)
1168 return false;
1169
1170 return true;
1171}
1172
bd60b735
JR
1173/*
1174 * In this function the list of preallocated protection domains is traversed to
1175 * find the domain for a specific device
1176 */
1177static struct dma_ops_domain *find_protection_domain(u16 devid)
1178{
1179 struct dma_ops_domain *entry, *ret = NULL;
1180 unsigned long flags;
1181
1182 if (list_empty(&iommu_pd_list))
1183 return NULL;
1184
1185 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1186
1187 list_for_each_entry(entry, &iommu_pd_list, list) {
1188 if (entry->target_dev == devid) {
1189 ret = entry;
bd60b735
JR
1190 break;
1191 }
1192 }
1193
1194 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1195
1196 return ret;
1197}
1198
431b2a20
JR
1199/*
1200 * In the dma_ops path we only have the struct device. This function
1201 * finds the corresponding IOMMU, the protection domain and the
1202 * requestor id for a given device.
1203 * If the device is not yet associated with a domain this is also done
1204 * in this function.
1205 */
b20ac0d4
JR
1206static int get_device_resources(struct device *dev,
1207 struct amd_iommu **iommu,
1208 struct protection_domain **domain,
1209 u16 *bdf)
1210{
1211 struct dma_ops_domain *dma_dom;
1212 struct pci_dev *pcidev;
1213 u16 _bdf;
1214
dbcc112e
JR
1215 *iommu = NULL;
1216 *domain = NULL;
1217 *bdf = 0xffff;
1218
1219 if (dev->bus != &pci_bus_type)
1220 return 0;
b20ac0d4
JR
1221
1222 pcidev = to_pci_dev(dev);
d591b0a3 1223 _bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
b20ac0d4 1224
431b2a20 1225 /* device not translated by any IOMMU in the system? */
dbcc112e 1226 if (_bdf > amd_iommu_last_bdf)
b20ac0d4 1227 return 0;
b20ac0d4
JR
1228
1229 *bdf = amd_iommu_alias_table[_bdf];
1230
1231 *iommu = amd_iommu_rlookup_table[*bdf];
1232 if (*iommu == NULL)
1233 return 0;
b20ac0d4
JR
1234 *domain = domain_for_device(*bdf);
1235 if (*domain == NULL) {
bd60b735
JR
1236 dma_dom = find_protection_domain(*bdf);
1237 if (!dma_dom)
1238 dma_dom = (*iommu)->default_dom;
b20ac0d4 1239 *domain = &dma_dom->domain;
f1179dc0 1240 attach_device(*iommu, *domain, *bdf);
b20ac0d4 1241 printk(KERN_INFO "AMD IOMMU: Using protection domain %d for "
ab896722 1242 "device %s\n", (*domain)->id, dev_name(dev));
b20ac0d4
JR
1243 }
1244
f91ba190 1245 if (domain_for_device(_bdf) == NULL)
f1179dc0 1246 attach_device(*iommu, *domain, _bdf);
f91ba190 1247
b20ac0d4
JR
1248 return 1;
1249}
1250
8bda3092
JR
1251/*
1252 * If the pte_page is not yet allocated this function is called
1253 */
1254static u64* alloc_pte(struct protection_domain *dom,
1255 unsigned long address, u64 **pte_page, gfp_t gfp)
1256{
1257 u64 *pte, *page;
1258
1259 pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(address)];
1260
1261 if (!IOMMU_PTE_PRESENT(*pte)) {
1262 page = (u64 *)get_zeroed_page(gfp);
1263 if (!page)
1264 return NULL;
1265 *pte = IOMMU_L2_PDE(virt_to_phys(page));
1266 }
1267
1268 pte = IOMMU_PTE_PAGE(*pte);
1269 pte = &pte[IOMMU_PTE_L1_INDEX(address)];
1270
1271 if (!IOMMU_PTE_PRESENT(*pte)) {
1272 page = (u64 *)get_zeroed_page(gfp);
1273 if (!page)
1274 return NULL;
1275 *pte = IOMMU_L1_PDE(virt_to_phys(page));
1276 }
1277
1278 pte = IOMMU_PTE_PAGE(*pte);
1279
1280 if (pte_page)
1281 *pte_page = pte;
1282
1283 pte = &pte[IOMMU_PTE_L0_INDEX(address)];
1284
1285 return pte;
1286}
1287
1288/*
1289 * This function fetches the PTE for a given address in the aperture
1290 */
1291static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
1292 unsigned long address)
1293{
384de729 1294 struct aperture_range *aperture;
8bda3092
JR
1295 u64 *pte, *pte_page;
1296
384de729
JR
1297 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1298 if (!aperture)
1299 return NULL;
1300
1301 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
8bda3092
JR
1302 if (!pte) {
1303 pte = alloc_pte(&dom->domain, address, &pte_page, GFP_ATOMIC);
384de729
JR
1304 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
1305 } else
1306 pte += IOMMU_PTE_L0_INDEX(address);
8bda3092
JR
1307
1308 return pte;
1309}
1310
431b2a20
JR
1311/*
1312 * This is the generic map function. It maps one 4kb page at paddr to
1313 * the given address in the DMA address space for the domain.
1314 */
cb76c322
JR
1315static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
1316 struct dma_ops_domain *dom,
1317 unsigned long address,
1318 phys_addr_t paddr,
1319 int direction)
1320{
1321 u64 *pte, __pte;
1322
1323 WARN_ON(address > dom->aperture_size);
1324
1325 paddr &= PAGE_MASK;
1326
8bda3092 1327 pte = dma_ops_get_pte(dom, address);
53812c11
JR
1328 if (!pte)
1329 return bad_dma_address;
cb76c322
JR
1330
1331 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
1332
1333 if (direction == DMA_TO_DEVICE)
1334 __pte |= IOMMU_PTE_IR;
1335 else if (direction == DMA_FROM_DEVICE)
1336 __pte |= IOMMU_PTE_IW;
1337 else if (direction == DMA_BIDIRECTIONAL)
1338 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
1339
1340 WARN_ON(*pte);
1341
1342 *pte = __pte;
1343
1344 return (dma_addr_t)address;
1345}
1346
431b2a20
JR
1347/*
1348 * The generic unmapping function for on page in the DMA address space.
1349 */
cb76c322
JR
1350static void dma_ops_domain_unmap(struct amd_iommu *iommu,
1351 struct dma_ops_domain *dom,
1352 unsigned long address)
1353{
384de729 1354 struct aperture_range *aperture;
cb76c322
JR
1355 u64 *pte;
1356
1357 if (address >= dom->aperture_size)
1358 return;
1359
384de729
JR
1360 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1361 if (!aperture)
1362 return;
1363
1364 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1365 if (!pte)
1366 return;
cb76c322 1367
cb76c322
JR
1368 pte += IOMMU_PTE_L0_INDEX(address);
1369
1370 WARN_ON(!*pte);
1371
1372 *pte = 0ULL;
1373}
1374
431b2a20
JR
1375/*
1376 * This function contains common code for mapping of a physically
24f81160
JR
1377 * contiguous memory region into DMA address space. It is used by all
1378 * mapping functions provided with this IOMMU driver.
431b2a20
JR
1379 * Must be called with the domain lock held.
1380 */
cb76c322
JR
1381static dma_addr_t __map_single(struct device *dev,
1382 struct amd_iommu *iommu,
1383 struct dma_ops_domain *dma_dom,
1384 phys_addr_t paddr,
1385 size_t size,
6d4f343f 1386 int dir,
832a90c3
JR
1387 bool align,
1388 u64 dma_mask)
cb76c322
JR
1389{
1390 dma_addr_t offset = paddr & ~PAGE_MASK;
53812c11 1391 dma_addr_t address, start, ret;
cb76c322 1392 unsigned int pages;
6d4f343f 1393 unsigned long align_mask = 0;
cb76c322
JR
1394 int i;
1395
e3c449f5 1396 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
cb76c322
JR
1397 paddr &= PAGE_MASK;
1398
8ecaf8f1
JR
1399 INC_STATS_COUNTER(total_map_requests);
1400
c1858976
JR
1401 if (pages > 1)
1402 INC_STATS_COUNTER(cross_page);
1403
6d4f343f
JR
1404 if (align)
1405 align_mask = (1UL << get_order(size)) - 1;
1406
11b83888 1407retry:
832a90c3
JR
1408 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
1409 dma_mask);
11b83888
JR
1410 if (unlikely(address == bad_dma_address)) {
1411 /*
1412 * setting next_address here will let the address
1413 * allocator only scan the new allocated range in the
1414 * first run. This is a small optimization.
1415 */
1416 dma_dom->next_address = dma_dom->aperture_size;
1417
1418 if (alloc_new_range(iommu, dma_dom, false, GFP_ATOMIC))
1419 goto out;
1420
1421 /*
1422 * aperture was sucessfully enlarged by 128 MB, try
1423 * allocation again
1424 */
1425 goto retry;
1426 }
cb76c322
JR
1427
1428 start = address;
1429 for (i = 0; i < pages; ++i) {
53812c11
JR
1430 ret = dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
1431 if (ret == bad_dma_address)
1432 goto out_unmap;
1433
cb76c322
JR
1434 paddr += PAGE_SIZE;
1435 start += PAGE_SIZE;
1436 }
1437 address += offset;
1438
5774f7c5
JR
1439 ADD_STATS_COUNTER(alloced_io_mem, size);
1440
afa9fdc2 1441 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
1c655773
JR
1442 iommu_flush_tlb(iommu, dma_dom->domain.id);
1443 dma_dom->need_flush = false;
1444 } else if (unlikely(iommu_has_npcache(iommu)))
270cab24
JR
1445 iommu_flush_pages(iommu, dma_dom->domain.id, address, size);
1446
cb76c322
JR
1447out:
1448 return address;
53812c11
JR
1449
1450out_unmap:
1451
1452 for (--i; i >= 0; --i) {
1453 start -= PAGE_SIZE;
1454 dma_ops_domain_unmap(iommu, dma_dom, start);
1455 }
1456
1457 dma_ops_free_addresses(dma_dom, address, pages);
1458
1459 return bad_dma_address;
cb76c322
JR
1460}
1461
431b2a20
JR
1462/*
1463 * Does the reverse of the __map_single function. Must be called with
1464 * the domain lock held too
1465 */
cb76c322
JR
1466static void __unmap_single(struct amd_iommu *iommu,
1467 struct dma_ops_domain *dma_dom,
1468 dma_addr_t dma_addr,
1469 size_t size,
1470 int dir)
1471{
1472 dma_addr_t i, start;
1473 unsigned int pages;
1474
b8d9905d
JR
1475 if ((dma_addr == bad_dma_address) ||
1476 (dma_addr + size > dma_dom->aperture_size))
cb76c322
JR
1477 return;
1478
e3c449f5 1479 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
cb76c322
JR
1480 dma_addr &= PAGE_MASK;
1481 start = dma_addr;
1482
1483 for (i = 0; i < pages; ++i) {
1484 dma_ops_domain_unmap(iommu, dma_dom, start);
1485 start += PAGE_SIZE;
1486 }
1487
5774f7c5
JR
1488 SUB_STATS_COUNTER(alloced_io_mem, size);
1489
cb76c322 1490 dma_ops_free_addresses(dma_dom, dma_addr, pages);
270cab24 1491
80be308d 1492 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
1c655773 1493 iommu_flush_pages(iommu, dma_dom->domain.id, dma_addr, size);
80be308d
JR
1494 dma_dom->need_flush = false;
1495 }
cb76c322
JR
1496}
1497
431b2a20
JR
1498/*
1499 * The exported map_single function for dma_ops.
1500 */
51491367
FT
1501static dma_addr_t map_page(struct device *dev, struct page *page,
1502 unsigned long offset, size_t size,
1503 enum dma_data_direction dir,
1504 struct dma_attrs *attrs)
4da70b9e
JR
1505{
1506 unsigned long flags;
1507 struct amd_iommu *iommu;
1508 struct protection_domain *domain;
1509 u16 devid;
1510 dma_addr_t addr;
832a90c3 1511 u64 dma_mask;
51491367 1512 phys_addr_t paddr = page_to_phys(page) + offset;
4da70b9e 1513
0f2a86f2
JR
1514 INC_STATS_COUNTER(cnt_map_single);
1515
dbcc112e
JR
1516 if (!check_device(dev))
1517 return bad_dma_address;
1518
832a90c3 1519 dma_mask = *dev->dma_mask;
4da70b9e
JR
1520
1521 get_device_resources(dev, &iommu, &domain, &devid);
1522
1523 if (iommu == NULL || domain == NULL)
431b2a20 1524 /* device not handled by any AMD IOMMU */
4da70b9e
JR
1525 return (dma_addr_t)paddr;
1526
5b28df6f
JR
1527 if (!dma_ops_domain(domain))
1528 return bad_dma_address;
1529
4da70b9e 1530 spin_lock_irqsave(&domain->lock, flags);
832a90c3
JR
1531 addr = __map_single(dev, iommu, domain->priv, paddr, size, dir, false,
1532 dma_mask);
4da70b9e
JR
1533 if (addr == bad_dma_address)
1534 goto out;
1535
09ee17eb 1536 iommu_completion_wait(iommu);
4da70b9e
JR
1537
1538out:
1539 spin_unlock_irqrestore(&domain->lock, flags);
1540
1541 return addr;
1542}
1543
431b2a20
JR
1544/*
1545 * The exported unmap_single function for dma_ops.
1546 */
51491367
FT
1547static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
1548 enum dma_data_direction dir, struct dma_attrs *attrs)
4da70b9e
JR
1549{
1550 unsigned long flags;
1551 struct amd_iommu *iommu;
1552 struct protection_domain *domain;
1553 u16 devid;
1554
146a6917
JR
1555 INC_STATS_COUNTER(cnt_unmap_single);
1556
dbcc112e
JR
1557 if (!check_device(dev) ||
1558 !get_device_resources(dev, &iommu, &domain, &devid))
431b2a20 1559 /* device not handled by any AMD IOMMU */
4da70b9e
JR
1560 return;
1561
5b28df6f
JR
1562 if (!dma_ops_domain(domain))
1563 return;
1564
4da70b9e
JR
1565 spin_lock_irqsave(&domain->lock, flags);
1566
1567 __unmap_single(iommu, domain->priv, dma_addr, size, dir);
1568
09ee17eb 1569 iommu_completion_wait(iommu);
4da70b9e
JR
1570
1571 spin_unlock_irqrestore(&domain->lock, flags);
1572}
1573
431b2a20
JR
1574/*
1575 * This is a special map_sg function which is used if we should map a
1576 * device which is not handled by an AMD IOMMU in the system.
1577 */
65b050ad
JR
1578static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
1579 int nelems, int dir)
1580{
1581 struct scatterlist *s;
1582 int i;
1583
1584 for_each_sg(sglist, s, nelems, i) {
1585 s->dma_address = (dma_addr_t)sg_phys(s);
1586 s->dma_length = s->length;
1587 }
1588
1589 return nelems;
1590}
1591
431b2a20
JR
1592/*
1593 * The exported map_sg function for dma_ops (handles scatter-gather
1594 * lists).
1595 */
65b050ad 1596static int map_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
1597 int nelems, enum dma_data_direction dir,
1598 struct dma_attrs *attrs)
65b050ad
JR
1599{
1600 unsigned long flags;
1601 struct amd_iommu *iommu;
1602 struct protection_domain *domain;
1603 u16 devid;
1604 int i;
1605 struct scatterlist *s;
1606 phys_addr_t paddr;
1607 int mapped_elems = 0;
832a90c3 1608 u64 dma_mask;
65b050ad 1609
d03f067a
JR
1610 INC_STATS_COUNTER(cnt_map_sg);
1611
dbcc112e
JR
1612 if (!check_device(dev))
1613 return 0;
1614
832a90c3 1615 dma_mask = *dev->dma_mask;
65b050ad
JR
1616
1617 get_device_resources(dev, &iommu, &domain, &devid);
1618
1619 if (!iommu || !domain)
1620 return map_sg_no_iommu(dev, sglist, nelems, dir);
1621
5b28df6f
JR
1622 if (!dma_ops_domain(domain))
1623 return 0;
1624
65b050ad
JR
1625 spin_lock_irqsave(&domain->lock, flags);
1626
1627 for_each_sg(sglist, s, nelems, i) {
1628 paddr = sg_phys(s);
1629
1630 s->dma_address = __map_single(dev, iommu, domain->priv,
832a90c3
JR
1631 paddr, s->length, dir, false,
1632 dma_mask);
65b050ad
JR
1633
1634 if (s->dma_address) {
1635 s->dma_length = s->length;
1636 mapped_elems++;
1637 } else
1638 goto unmap;
65b050ad
JR
1639 }
1640
09ee17eb 1641 iommu_completion_wait(iommu);
65b050ad
JR
1642
1643out:
1644 spin_unlock_irqrestore(&domain->lock, flags);
1645
1646 return mapped_elems;
1647unmap:
1648 for_each_sg(sglist, s, mapped_elems, i) {
1649 if (s->dma_address)
1650 __unmap_single(iommu, domain->priv, s->dma_address,
1651 s->dma_length, dir);
1652 s->dma_address = s->dma_length = 0;
1653 }
1654
1655 mapped_elems = 0;
1656
1657 goto out;
1658}
1659
431b2a20
JR
1660/*
1661 * The exported map_sg function for dma_ops (handles scatter-gather
1662 * lists).
1663 */
65b050ad 1664static void unmap_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
1665 int nelems, enum dma_data_direction dir,
1666 struct dma_attrs *attrs)
65b050ad
JR
1667{
1668 unsigned long flags;
1669 struct amd_iommu *iommu;
1670 struct protection_domain *domain;
1671 struct scatterlist *s;
1672 u16 devid;
1673 int i;
1674
55877a6b
JR
1675 INC_STATS_COUNTER(cnt_unmap_sg);
1676
dbcc112e
JR
1677 if (!check_device(dev) ||
1678 !get_device_resources(dev, &iommu, &domain, &devid))
65b050ad
JR
1679 return;
1680
5b28df6f
JR
1681 if (!dma_ops_domain(domain))
1682 return;
1683
65b050ad
JR
1684 spin_lock_irqsave(&domain->lock, flags);
1685
1686 for_each_sg(sglist, s, nelems, i) {
1687 __unmap_single(iommu, domain->priv, s->dma_address,
1688 s->dma_length, dir);
65b050ad
JR
1689 s->dma_address = s->dma_length = 0;
1690 }
1691
09ee17eb 1692 iommu_completion_wait(iommu);
65b050ad
JR
1693
1694 spin_unlock_irqrestore(&domain->lock, flags);
1695}
1696
431b2a20
JR
1697/*
1698 * The exported alloc_coherent function for dma_ops.
1699 */
5d8b53cf
JR
1700static void *alloc_coherent(struct device *dev, size_t size,
1701 dma_addr_t *dma_addr, gfp_t flag)
1702{
1703 unsigned long flags;
1704 void *virt_addr;
1705 struct amd_iommu *iommu;
1706 struct protection_domain *domain;
1707 u16 devid;
1708 phys_addr_t paddr;
832a90c3 1709 u64 dma_mask = dev->coherent_dma_mask;
5d8b53cf 1710
c8f0fb36
JR
1711 INC_STATS_COUNTER(cnt_alloc_coherent);
1712
dbcc112e
JR
1713 if (!check_device(dev))
1714 return NULL;
5d8b53cf 1715
13d9fead
FT
1716 if (!get_device_resources(dev, &iommu, &domain, &devid))
1717 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
5d8b53cf 1718
c97ac535 1719 flag |= __GFP_ZERO;
5d8b53cf
JR
1720 virt_addr = (void *)__get_free_pages(flag, get_order(size));
1721 if (!virt_addr)
1722 return 0;
1723
5d8b53cf
JR
1724 paddr = virt_to_phys(virt_addr);
1725
5d8b53cf
JR
1726 if (!iommu || !domain) {
1727 *dma_addr = (dma_addr_t)paddr;
1728 return virt_addr;
1729 }
1730
5b28df6f
JR
1731 if (!dma_ops_domain(domain))
1732 goto out_free;
1733
832a90c3
JR
1734 if (!dma_mask)
1735 dma_mask = *dev->dma_mask;
1736
5d8b53cf
JR
1737 spin_lock_irqsave(&domain->lock, flags);
1738
1739 *dma_addr = __map_single(dev, iommu, domain->priv, paddr,
832a90c3 1740 size, DMA_BIDIRECTIONAL, true, dma_mask);
5d8b53cf 1741
5b28df6f
JR
1742 if (*dma_addr == bad_dma_address)
1743 goto out_free;
5d8b53cf 1744
09ee17eb 1745 iommu_completion_wait(iommu);
5d8b53cf 1746
5d8b53cf
JR
1747 spin_unlock_irqrestore(&domain->lock, flags);
1748
1749 return virt_addr;
5b28df6f
JR
1750
1751out_free:
1752
1753 free_pages((unsigned long)virt_addr, get_order(size));
1754
1755 return NULL;
5d8b53cf
JR
1756}
1757
431b2a20
JR
1758/*
1759 * The exported free_coherent function for dma_ops.
431b2a20 1760 */
5d8b53cf
JR
1761static void free_coherent(struct device *dev, size_t size,
1762 void *virt_addr, dma_addr_t dma_addr)
1763{
1764 unsigned long flags;
1765 struct amd_iommu *iommu;
1766 struct protection_domain *domain;
1767 u16 devid;
1768
5d31ee7e
JR
1769 INC_STATS_COUNTER(cnt_free_coherent);
1770
dbcc112e
JR
1771 if (!check_device(dev))
1772 return;
1773
5d8b53cf
JR
1774 get_device_resources(dev, &iommu, &domain, &devid);
1775
1776 if (!iommu || !domain)
1777 goto free_mem;
1778
5b28df6f
JR
1779 if (!dma_ops_domain(domain))
1780 goto free_mem;
1781
5d8b53cf
JR
1782 spin_lock_irqsave(&domain->lock, flags);
1783
1784 __unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
5d8b53cf 1785
09ee17eb 1786 iommu_completion_wait(iommu);
5d8b53cf
JR
1787
1788 spin_unlock_irqrestore(&domain->lock, flags);
1789
1790free_mem:
1791 free_pages((unsigned long)virt_addr, get_order(size));
1792}
1793
b39ba6ad
JR
1794/*
1795 * This function is called by the DMA layer to find out if we can handle a
1796 * particular device. It is part of the dma_ops.
1797 */
1798static int amd_iommu_dma_supported(struct device *dev, u64 mask)
1799{
1800 u16 bdf;
1801 struct pci_dev *pcidev;
1802
1803 /* No device or no PCI device */
1804 if (!dev || dev->bus != &pci_bus_type)
1805 return 0;
1806
1807 pcidev = to_pci_dev(dev);
1808
1809 bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
1810
1811 /* Out of our scope? */
1812 if (bdf > amd_iommu_last_bdf)
1813 return 0;
1814
1815 return 1;
1816}
1817
c432f3df 1818/*
431b2a20
JR
1819 * The function for pre-allocating protection domains.
1820 *
c432f3df
JR
1821 * If the driver core informs the DMA layer if a driver grabs a device
1822 * we don't need to preallocate the protection domains anymore.
1823 * For now we have to.
1824 */
0e93dd88 1825static void prealloc_protection_domains(void)
c432f3df
JR
1826{
1827 struct pci_dev *dev = NULL;
1828 struct dma_ops_domain *dma_dom;
1829 struct amd_iommu *iommu;
c432f3df
JR
1830 u16 devid;
1831
1832 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
edcb34da 1833 devid = calc_devid(dev->bus->number, dev->devfn);
3a61ec38 1834 if (devid > amd_iommu_last_bdf)
c432f3df
JR
1835 continue;
1836 devid = amd_iommu_alias_table[devid];
1837 if (domain_for_device(devid))
1838 continue;
1839 iommu = amd_iommu_rlookup_table[devid];
1840 if (!iommu)
1841 continue;
d9cfed92 1842 dma_dom = dma_ops_domain_alloc(iommu);
c432f3df
JR
1843 if (!dma_dom)
1844 continue;
1845 init_unity_mappings_for_device(dma_dom, devid);
bd60b735
JR
1846 dma_dom->target_dev = devid;
1847
1848 list_add_tail(&dma_dom->list, &iommu_pd_list);
c432f3df
JR
1849 }
1850}
1851
160c1d8e 1852static struct dma_map_ops amd_iommu_dma_ops = {
6631ee9d
JR
1853 .alloc_coherent = alloc_coherent,
1854 .free_coherent = free_coherent,
51491367
FT
1855 .map_page = map_page,
1856 .unmap_page = unmap_page,
6631ee9d
JR
1857 .map_sg = map_sg,
1858 .unmap_sg = unmap_sg,
b39ba6ad 1859 .dma_supported = amd_iommu_dma_supported,
6631ee9d
JR
1860};
1861
431b2a20
JR
1862/*
1863 * The function which clues the AMD IOMMU driver into dma_ops.
1864 */
6631ee9d
JR
1865int __init amd_iommu_init_dma_ops(void)
1866{
1867 struct amd_iommu *iommu;
6631ee9d
JR
1868 int ret;
1869
431b2a20
JR
1870 /*
1871 * first allocate a default protection domain for every IOMMU we
1872 * found in the system. Devices not assigned to any other
1873 * protection domain will be assigned to the default one.
1874 */
6631ee9d 1875 list_for_each_entry(iommu, &amd_iommu_list, list) {
d9cfed92 1876 iommu->default_dom = dma_ops_domain_alloc(iommu);
6631ee9d
JR
1877 if (iommu->default_dom == NULL)
1878 return -ENOMEM;
e2dc14a2 1879 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
6631ee9d
JR
1880 ret = iommu_init_unity_mappings(iommu);
1881 if (ret)
1882 goto free_domains;
1883 }
1884
431b2a20
JR
1885 /*
1886 * If device isolation is enabled, pre-allocate the protection
1887 * domains for each device.
1888 */
6631ee9d
JR
1889 if (amd_iommu_isolate)
1890 prealloc_protection_domains();
1891
1892 iommu_detected = 1;
1893 force_iommu = 1;
1894 bad_dma_address = 0;
92af4e29 1895#ifdef CONFIG_GART_IOMMU
6631ee9d
JR
1896 gart_iommu_aperture_disabled = 1;
1897 gart_iommu_aperture = 0;
92af4e29 1898#endif
6631ee9d 1899
431b2a20 1900 /* Make the driver finally visible to the drivers */
6631ee9d
JR
1901 dma_ops = &amd_iommu_dma_ops;
1902
26961efe 1903 register_iommu(&amd_iommu_ops);
26961efe 1904
e275a2a0
JR
1905 bus_register_notifier(&pci_bus_type, &device_nb);
1906
7f26508b
JR
1907 amd_iommu_stats_init();
1908
6631ee9d
JR
1909 return 0;
1910
1911free_domains:
1912
1913 list_for_each_entry(iommu, &amd_iommu_list, list) {
1914 if (iommu->default_dom)
1915 dma_ops_domain_free(iommu->default_dom);
1916 }
1917
1918 return ret;
1919}
6d98cd80
JR
1920
1921/*****************************************************************************
1922 *
1923 * The following functions belong to the exported interface of AMD IOMMU
1924 *
1925 * This interface allows access to lower level functions of the IOMMU
1926 * like protection domain handling and assignement of devices to domains
1927 * which is not possible with the dma_ops interface.
1928 *
1929 *****************************************************************************/
1930
6d98cd80
JR
1931static void cleanup_domain(struct protection_domain *domain)
1932{
1933 unsigned long flags;
1934 u16 devid;
1935
1936 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1937
1938 for (devid = 0; devid <= amd_iommu_last_bdf; ++devid)
1939 if (amd_iommu_pd_table[devid] == domain)
1940 __detach_device(domain, devid);
1941
1942 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1943}
1944
c156e347
JR
1945static int amd_iommu_domain_init(struct iommu_domain *dom)
1946{
1947 struct protection_domain *domain;
1948
1949 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
1950 if (!domain)
1951 return -ENOMEM;
1952
1953 spin_lock_init(&domain->lock);
1954 domain->mode = PAGE_MODE_3_LEVEL;
1955 domain->id = domain_id_alloc();
1956 if (!domain->id)
1957 goto out_free;
1958 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1959 if (!domain->pt_root)
1960 goto out_free;
1961
1962 dom->priv = domain;
1963
1964 return 0;
1965
1966out_free:
1967 kfree(domain);
1968
1969 return -ENOMEM;
1970}
1971
98383fc3
JR
1972static void amd_iommu_domain_destroy(struct iommu_domain *dom)
1973{
1974 struct protection_domain *domain = dom->priv;
1975
1976 if (!domain)
1977 return;
1978
1979 if (domain->dev_cnt > 0)
1980 cleanup_domain(domain);
1981
1982 BUG_ON(domain->dev_cnt != 0);
1983
1984 free_pagetable(domain);
1985
1986 domain_id_free(domain->id);
1987
1988 kfree(domain);
1989
1990 dom->priv = NULL;
1991}
1992
684f2888
JR
1993static void amd_iommu_detach_device(struct iommu_domain *dom,
1994 struct device *dev)
1995{
1996 struct protection_domain *domain = dom->priv;
1997 struct amd_iommu *iommu;
1998 struct pci_dev *pdev;
1999 u16 devid;
2000
2001 if (dev->bus != &pci_bus_type)
2002 return;
2003
2004 pdev = to_pci_dev(dev);
2005
2006 devid = calc_devid(pdev->bus->number, pdev->devfn);
2007
2008 if (devid > 0)
2009 detach_device(domain, devid);
2010
2011 iommu = amd_iommu_rlookup_table[devid];
2012 if (!iommu)
2013 return;
2014
2015 iommu_queue_inv_dev_entry(iommu, devid);
2016 iommu_completion_wait(iommu);
2017}
2018
01106066
JR
2019static int amd_iommu_attach_device(struct iommu_domain *dom,
2020 struct device *dev)
2021{
2022 struct protection_domain *domain = dom->priv;
2023 struct protection_domain *old_domain;
2024 struct amd_iommu *iommu;
2025 struct pci_dev *pdev;
2026 u16 devid;
2027
2028 if (dev->bus != &pci_bus_type)
2029 return -EINVAL;
2030
2031 pdev = to_pci_dev(dev);
2032
2033 devid = calc_devid(pdev->bus->number, pdev->devfn);
2034
2035 if (devid >= amd_iommu_last_bdf ||
2036 devid != amd_iommu_alias_table[devid])
2037 return -EINVAL;
2038
2039 iommu = amd_iommu_rlookup_table[devid];
2040 if (!iommu)
2041 return -EINVAL;
2042
2043 old_domain = domain_for_device(devid);
2044 if (old_domain)
2045 return -EBUSY;
2046
2047 attach_device(iommu, domain, devid);
2048
2049 iommu_completion_wait(iommu);
2050
2051 return 0;
2052}
2053
c6229ca6
JR
2054static int amd_iommu_map_range(struct iommu_domain *dom,
2055 unsigned long iova, phys_addr_t paddr,
2056 size_t size, int iommu_prot)
2057{
2058 struct protection_domain *domain = dom->priv;
2059 unsigned long i, npages = iommu_num_pages(paddr, size, PAGE_SIZE);
2060 int prot = 0;
2061 int ret;
2062
2063 if (iommu_prot & IOMMU_READ)
2064 prot |= IOMMU_PROT_IR;
2065 if (iommu_prot & IOMMU_WRITE)
2066 prot |= IOMMU_PROT_IW;
2067
2068 iova &= PAGE_MASK;
2069 paddr &= PAGE_MASK;
2070
2071 for (i = 0; i < npages; ++i) {
2072 ret = iommu_map_page(domain, iova, paddr, prot);
2073 if (ret)
2074 return ret;
2075
2076 iova += PAGE_SIZE;
2077 paddr += PAGE_SIZE;
2078 }
2079
2080 return 0;
2081}
2082
eb74ff6c
JR
2083static void amd_iommu_unmap_range(struct iommu_domain *dom,
2084 unsigned long iova, size_t size)
2085{
2086
2087 struct protection_domain *domain = dom->priv;
2088 unsigned long i, npages = iommu_num_pages(iova, size, PAGE_SIZE);
2089
2090 iova &= PAGE_MASK;
2091
2092 for (i = 0; i < npages; ++i) {
2093 iommu_unmap_page(domain, iova);
2094 iova += PAGE_SIZE;
2095 }
2096
2097 iommu_flush_domain(domain->id);
2098}
2099
645c4c8d
JR
2100static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2101 unsigned long iova)
2102{
2103 struct protection_domain *domain = dom->priv;
2104 unsigned long offset = iova & ~PAGE_MASK;
2105 phys_addr_t paddr;
2106 u64 *pte;
2107
2108 pte = &domain->pt_root[IOMMU_PTE_L2_INDEX(iova)];
2109
2110 if (!IOMMU_PTE_PRESENT(*pte))
2111 return 0;
2112
2113 pte = IOMMU_PTE_PAGE(*pte);
2114 pte = &pte[IOMMU_PTE_L1_INDEX(iova)];
2115
2116 if (!IOMMU_PTE_PRESENT(*pte))
2117 return 0;
2118
2119 pte = IOMMU_PTE_PAGE(*pte);
2120 pte = &pte[IOMMU_PTE_L0_INDEX(iova)];
2121
2122 if (!IOMMU_PTE_PRESENT(*pte))
2123 return 0;
2124
2125 paddr = *pte & IOMMU_PAGE_MASK;
2126 paddr |= offset;
2127
2128 return paddr;
2129}
2130
dbb9fd86
SY
2131static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
2132 unsigned long cap)
2133{
2134 return 0;
2135}
2136
26961efe
JR
2137static struct iommu_ops amd_iommu_ops = {
2138 .domain_init = amd_iommu_domain_init,
2139 .domain_destroy = amd_iommu_domain_destroy,
2140 .attach_dev = amd_iommu_attach_device,
2141 .detach_dev = amd_iommu_detach_device,
2142 .map = amd_iommu_map_range,
2143 .unmap = amd_iommu_unmap_range,
2144 .iova_to_phys = amd_iommu_iova_to_phys,
dbb9fd86 2145 .domain_has_cap = amd_iommu_domain_has_cap,
26961efe
JR
2146};
2147