]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/kernel/amd_iommu_init.c
amd-iommu: consolidate hardware initialization to one function
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / amd_iommu_init.c
CommitLineData
f6e2e6b6
JR
1/*
2 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/pci.h>
21#include <linux/acpi.h>
22#include <linux/gfp.h>
23#include <linux/list.h>
7441e9cb 24#include <linux/sysdev.h>
a80dc3e0
JR
25#include <linux/interrupt.h>
26#include <linux/msi.h>
f6e2e6b6
JR
27#include <asm/pci-direct.h>
28#include <asm/amd_iommu_types.h>
c6da992e 29#include <asm/amd_iommu.h>
46a7fa27 30#include <asm/iommu.h>
1d9b16d1 31#include <asm/gart.h>
f6e2e6b6
JR
32
33/*
34 * definitions for the ACPI scanning code
35 */
f6e2e6b6 36#define IVRS_HEADER_LENGTH 48
f6e2e6b6
JR
37
38#define ACPI_IVHD_TYPE 0x10
39#define ACPI_IVMD_TYPE_ALL 0x20
40#define ACPI_IVMD_TYPE 0x21
41#define ACPI_IVMD_TYPE_RANGE 0x22
42
43#define IVHD_DEV_ALL 0x01
44#define IVHD_DEV_SELECT 0x02
45#define IVHD_DEV_SELECT_RANGE_START 0x03
46#define IVHD_DEV_RANGE_END 0x04
47#define IVHD_DEV_ALIAS 0x42
48#define IVHD_DEV_ALIAS_RANGE 0x43
49#define IVHD_DEV_EXT_SELECT 0x46
50#define IVHD_DEV_EXT_SELECT_RANGE 0x47
51
6da7342f
JR
52#define IVHD_FLAG_HT_TUN_EN_MASK 0x01
53#define IVHD_FLAG_PASSPW_EN_MASK 0x02
54#define IVHD_FLAG_RESPASSPW_EN_MASK 0x04
55#define IVHD_FLAG_ISOC_EN_MASK 0x08
f6e2e6b6
JR
56
57#define IVMD_FLAG_EXCL_RANGE 0x08
58#define IVMD_FLAG_UNITY_MAP 0x01
59
60#define ACPI_DEVFLAG_INITPASS 0x01
61#define ACPI_DEVFLAG_EXTINT 0x02
62#define ACPI_DEVFLAG_NMI 0x04
63#define ACPI_DEVFLAG_SYSMGT1 0x10
64#define ACPI_DEVFLAG_SYSMGT2 0x20
65#define ACPI_DEVFLAG_LINT0 0x40
66#define ACPI_DEVFLAG_LINT1 0x80
67#define ACPI_DEVFLAG_ATSDIS 0x10000000
68
b65233a9
JR
69/*
70 * ACPI table definitions
71 *
72 * These data structures are laid over the table to parse the important values
73 * out of it.
74 */
75
76/*
77 * structure describing one IOMMU in the ACPI table. Typically followed by one
78 * or more ivhd_entrys.
79 */
f6e2e6b6
JR
80struct ivhd_header {
81 u8 type;
82 u8 flags;
83 u16 length;
84 u16 devid;
85 u16 cap_ptr;
86 u64 mmio_phys;
87 u16 pci_seg;
88 u16 info;
89 u32 reserved;
90} __attribute__((packed));
91
b65233a9
JR
92/*
93 * A device entry describing which devices a specific IOMMU translates and
94 * which requestor ids they use.
95 */
f6e2e6b6
JR
96struct ivhd_entry {
97 u8 type;
98 u16 devid;
99 u8 flags;
100 u32 ext;
101} __attribute__((packed));
102
b65233a9
JR
103/*
104 * An AMD IOMMU memory definition structure. It defines things like exclusion
105 * ranges for devices and regions that should be unity mapped.
106 */
f6e2e6b6
JR
107struct ivmd_header {
108 u8 type;
109 u8 flags;
110 u16 length;
111 u16 devid;
112 u16 aux;
113 u64 resv;
114 u64 range_start;
115 u64 range_length;
116} __attribute__((packed));
117
c1cbebee
JR
118static int __initdata amd_iommu_detected;
119
b65233a9
JR
120u16 amd_iommu_last_bdf; /* largest PCI device id we have
121 to handle */
2e22847f 122LIST_HEAD(amd_iommu_unity_map); /* a list of required unity mappings
b65233a9
JR
123 we find in ACPI */
124unsigned amd_iommu_aperture_order = 26; /* size of aperture in power of 2 */
c226f853
JR
125bool amd_iommu_isolate = true; /* if true, device isolation is
126 enabled */
afa9fdc2 127bool amd_iommu_unmap_flush; /* if true, flush on every unmap */
928abd25 128
2e22847f 129LIST_HEAD(amd_iommu_list); /* list of all AMD IOMMUs in the
b65233a9 130 system */
928abd25 131
b65233a9
JR
132/*
133 * Pointer to the device table which is shared by all AMD IOMMUs
134 * it is indexed by the PCI device id or the HT unit id and contains
135 * information about the domain the device belongs to as well as the
136 * page table root pointer.
137 */
928abd25 138struct dev_table_entry *amd_iommu_dev_table;
b65233a9
JR
139
140/*
141 * The alias table is a driver specific data structure which contains the
142 * mappings of the PCI device ids to the actual requestor ids on the IOMMU.
143 * More than one device can share the same requestor id.
144 */
928abd25 145u16 *amd_iommu_alias_table;
b65233a9
JR
146
147/*
148 * The rlookup table is used to find the IOMMU which is responsible
149 * for a specific device. It is also indexed by the PCI device id.
150 */
928abd25 151struct amd_iommu **amd_iommu_rlookup_table;
b65233a9
JR
152
153/*
154 * The pd table (protection domain table) is used to find the protection domain
155 * data structure a device belongs to. Indexed with the PCI device id too.
156 */
928abd25 157struct protection_domain **amd_iommu_pd_table;
b65233a9
JR
158
159/*
160 * AMD IOMMU allows up to 2^16 differend protection domains. This is a bitmap
161 * to know which ones are already in use.
162 */
928abd25
JR
163unsigned long *amd_iommu_pd_alloc_bitmap;
164
b65233a9
JR
165static u32 dev_table_size; /* size of the device table */
166static u32 alias_table_size; /* size of the alias table */
167static u32 rlookup_table_size; /* size if the rlookup table */
3e8064ba 168
208ec8c9
JR
169static inline void update_last_devid(u16 devid)
170{
171 if (devid > amd_iommu_last_bdf)
172 amd_iommu_last_bdf = devid;
173}
174
c571484e
JR
175static inline unsigned long tbl_size(int entry_size)
176{
177 unsigned shift = PAGE_SHIFT +
178 get_order(amd_iommu_last_bdf * entry_size);
179
180 return 1UL << shift;
181}
182
b65233a9
JR
183/****************************************************************************
184 *
185 * AMD IOMMU MMIO register space handling functions
186 *
187 * These functions are used to program the IOMMU device registers in
188 * MMIO space required for that driver.
189 *
190 ****************************************************************************/
3e8064ba 191
b65233a9
JR
192/*
193 * This function set the exclusion range in the IOMMU. DMA accesses to the
194 * exclusion range are passed through untranslated
195 */
b2026aa2
JR
196static void __init iommu_set_exclusion_range(struct amd_iommu *iommu)
197{
198 u64 start = iommu->exclusion_start & PAGE_MASK;
199 u64 limit = (start + iommu->exclusion_length) & PAGE_MASK;
200 u64 entry;
201
202 if (!iommu->exclusion_start)
203 return;
204
205 entry = start | MMIO_EXCL_ENABLE_MASK;
206 memcpy_toio(iommu->mmio_base + MMIO_EXCL_BASE_OFFSET,
207 &entry, sizeof(entry));
208
209 entry = limit;
210 memcpy_toio(iommu->mmio_base + MMIO_EXCL_LIMIT_OFFSET,
211 &entry, sizeof(entry));
212}
213
b65233a9 214/* Programs the physical address of the device table into the IOMMU hardware */
b2026aa2
JR
215static void __init iommu_set_device_table(struct amd_iommu *iommu)
216{
f609891f 217 u64 entry;
b2026aa2
JR
218
219 BUG_ON(iommu->mmio_base == NULL);
220
221 entry = virt_to_phys(amd_iommu_dev_table);
222 entry |= (dev_table_size >> 12) - 1;
223 memcpy_toio(iommu->mmio_base + MMIO_DEV_TABLE_OFFSET,
224 &entry, sizeof(entry));
225}
226
b65233a9 227/* Generic functions to enable/disable certain features of the IOMMU. */
b2026aa2
JR
228static void __init iommu_feature_enable(struct amd_iommu *iommu, u8 bit)
229{
230 u32 ctrl;
231
232 ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
233 ctrl |= (1 << bit);
234 writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
235}
236
237static void __init iommu_feature_disable(struct amd_iommu *iommu, u8 bit)
238{
239 u32 ctrl;
240
199d0d50 241 ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
b2026aa2
JR
242 ctrl &= ~(1 << bit);
243 writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
244}
245
b65233a9 246/* Function to enable the hardware */
412a1be2 247static void __init iommu_enable(struct amd_iommu *iommu)
b2026aa2 248{
a4e267c8
JR
249 printk(KERN_INFO "AMD IOMMU: Enabling IOMMU at %s cap 0x%hx\n",
250 dev_name(&iommu->dev->dev), iommu->cap_ptr);
b2026aa2
JR
251
252 iommu_feature_enable(iommu, CONTROL_IOMMU_EN);
b2026aa2
JR
253}
254
b65233a9
JR
255/*
256 * mapping and unmapping functions for the IOMMU MMIO space. Each AMD IOMMU in
257 * the system has one.
258 */
6c56747b
JR
259static u8 * __init iommu_map_mmio_space(u64 address)
260{
261 u8 *ret;
262
263 if (!request_mem_region(address, MMIO_REGION_LENGTH, "amd_iommu"))
264 return NULL;
265
266 ret = ioremap_nocache(address, MMIO_REGION_LENGTH);
267 if (ret != NULL)
268 return ret;
269
270 release_mem_region(address, MMIO_REGION_LENGTH);
271
272 return NULL;
273}
274
275static void __init iommu_unmap_mmio_space(struct amd_iommu *iommu)
276{
277 if (iommu->mmio_base)
278 iounmap(iommu->mmio_base);
279 release_mem_region(iommu->mmio_phys, MMIO_REGION_LENGTH);
280}
281
b65233a9
JR
282/****************************************************************************
283 *
284 * The functions below belong to the first pass of AMD IOMMU ACPI table
285 * parsing. In this pass we try to find out the highest device id this
286 * code has to handle. Upon this information the size of the shared data
287 * structures is determined later.
288 *
289 ****************************************************************************/
290
b514e555
JR
291/*
292 * This function calculates the length of a given IVHD entry
293 */
294static inline int ivhd_entry_length(u8 *ivhd)
295{
296 return 0x04 << (*ivhd >> 6);
297}
298
b65233a9
JR
299/*
300 * This function reads the last device id the IOMMU has to handle from the PCI
301 * capability header for this IOMMU
302 */
3e8064ba
JR
303static int __init find_last_devid_on_pci(int bus, int dev, int fn, int cap_ptr)
304{
305 u32 cap;
306
307 cap = read_pci_config(bus, dev, fn, cap_ptr+MMIO_RANGE_OFFSET);
d591b0a3 308 update_last_devid(calc_devid(MMIO_GET_BUS(cap), MMIO_GET_LD(cap)));
3e8064ba
JR
309
310 return 0;
311}
312
b65233a9
JR
313/*
314 * After reading the highest device id from the IOMMU PCI capability header
315 * this function looks if there is a higher device id defined in the ACPI table
316 */
3e8064ba
JR
317static int __init find_last_devid_from_ivhd(struct ivhd_header *h)
318{
319 u8 *p = (void *)h, *end = (void *)h;
320 struct ivhd_entry *dev;
321
322 p += sizeof(*h);
323 end += h->length;
324
325 find_last_devid_on_pci(PCI_BUS(h->devid),
326 PCI_SLOT(h->devid),
327 PCI_FUNC(h->devid),
328 h->cap_ptr);
329
330 while (p < end) {
331 dev = (struct ivhd_entry *)p;
332 switch (dev->type) {
333 case IVHD_DEV_SELECT:
334 case IVHD_DEV_RANGE_END:
335 case IVHD_DEV_ALIAS:
336 case IVHD_DEV_EXT_SELECT:
b65233a9 337 /* all the above subfield types refer to device ids */
208ec8c9 338 update_last_devid(dev->devid);
3e8064ba
JR
339 break;
340 default:
341 break;
342 }
b514e555 343 p += ivhd_entry_length(p);
3e8064ba
JR
344 }
345
346 WARN_ON(p != end);
347
348 return 0;
349}
350
b65233a9
JR
351/*
352 * Iterate over all IVHD entries in the ACPI table and find the highest device
353 * id which we need to handle. This is the first of three functions which parse
354 * the ACPI table. So we check the checksum here.
355 */
3e8064ba
JR
356static int __init find_last_devid_acpi(struct acpi_table_header *table)
357{
358 int i;
359 u8 checksum = 0, *p = (u8 *)table, *end = (u8 *)table;
360 struct ivhd_header *h;
361
362 /*
363 * Validate checksum here so we don't need to do it when
364 * we actually parse the table
365 */
366 for (i = 0; i < table->length; ++i)
367 checksum += p[i];
368 if (checksum != 0)
369 /* ACPI table corrupt */
370 return -ENODEV;
371
372 p += IVRS_HEADER_LENGTH;
373
374 end += table->length;
375 while (p < end) {
376 h = (struct ivhd_header *)p;
377 switch (h->type) {
378 case ACPI_IVHD_TYPE:
379 find_last_devid_from_ivhd(h);
380 break;
381 default:
382 break;
383 }
384 p += h->length;
385 }
386 WARN_ON(p != end);
387
388 return 0;
389}
390
b65233a9
JR
391/****************************************************************************
392 *
393 * The following functions belong the the code path which parses the ACPI table
394 * the second time. In this ACPI parsing iteration we allocate IOMMU specific
395 * data structures, initialize the device/alias/rlookup table and also
396 * basically initialize the hardware.
397 *
398 ****************************************************************************/
399
400/*
401 * Allocates the command buffer. This buffer is per AMD IOMMU. We can
402 * write commands to that buffer later and the IOMMU will execute them
403 * asynchronously
404 */
b36ca91e
JR
405static u8 * __init alloc_command_buffer(struct amd_iommu *iommu)
406{
d0312b21 407 u8 *cmd_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
b36ca91e 408 get_order(CMD_BUFFER_SIZE));
b36ca91e
JR
409
410 if (cmd_buf == NULL)
411 return NULL;
412
413 iommu->cmd_buf_size = CMD_BUFFER_SIZE;
414
58492e12
JR
415 return cmd_buf;
416}
417
418/*
419 * This function writes the command buffer address to the hardware and
420 * enables it.
421 */
422static void iommu_enable_command_buffer(struct amd_iommu *iommu)
423{
424 u64 entry;
425
426 BUG_ON(iommu->cmd_buf == NULL);
427
428 entry = (u64)virt_to_phys(iommu->cmd_buf);
b36ca91e 429 entry |= MMIO_CMD_SIZE_512;
58492e12 430
b36ca91e 431 memcpy_toio(iommu->mmio_base + MMIO_CMD_BUF_OFFSET,
58492e12 432 &entry, sizeof(entry));
b36ca91e 433
cf558d25
JR
434 /* set head and tail to zero manually */
435 writel(0x00, iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
436 writel(0x00, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
437
b36ca91e 438 iommu_feature_enable(iommu, CONTROL_CMDBUF_EN);
b36ca91e
JR
439}
440
441static void __init free_command_buffer(struct amd_iommu *iommu)
442{
23c1713f
JR
443 free_pages((unsigned long)iommu->cmd_buf,
444 get_order(iommu->cmd_buf_size));
b36ca91e
JR
445}
446
335503e5
JR
447/* allocates the memory where the IOMMU will log its events to */
448static u8 * __init alloc_event_buffer(struct amd_iommu *iommu)
449{
335503e5
JR
450 iommu->evt_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
451 get_order(EVT_BUFFER_SIZE));
452
453 if (iommu->evt_buf == NULL)
454 return NULL;
455
58492e12
JR
456 return iommu->evt_buf;
457}
458
459static void iommu_enable_event_buffer(struct amd_iommu *iommu)
460{
461 u64 entry;
462
463 BUG_ON(iommu->evt_buf == NULL);
464
335503e5 465 entry = (u64)virt_to_phys(iommu->evt_buf) | EVT_LEN_MASK;
58492e12 466
335503e5
JR
467 memcpy_toio(iommu->mmio_base + MMIO_EVT_BUF_OFFSET,
468 &entry, sizeof(entry));
469
58492e12 470 iommu_feature_enable(iommu, CONTROL_EVT_LOG_EN);
335503e5
JR
471}
472
473static void __init free_event_buffer(struct amd_iommu *iommu)
474{
475 free_pages((unsigned long)iommu->evt_buf, get_order(EVT_BUFFER_SIZE));
476}
477
b65233a9 478/* sets a specific bit in the device table entry. */
3566b778
JR
479static void set_dev_entry_bit(u16 devid, u8 bit)
480{
481 int i = (bit >> 5) & 0x07;
482 int _bit = bit & 0x1f;
483
484 amd_iommu_dev_table[devid].data[i] |= (1 << _bit);
485}
486
5ff4789d
JR
487/* Writes the specific IOMMU for a device into the rlookup table */
488static void __init set_iommu_for_device(struct amd_iommu *iommu, u16 devid)
489{
490 amd_iommu_rlookup_table[devid] = iommu;
491}
492
b65233a9
JR
493/*
494 * This function takes the device specific flags read from the ACPI
495 * table and sets up the device table entry with that information
496 */
5ff4789d
JR
497static void __init set_dev_entry_from_acpi(struct amd_iommu *iommu,
498 u16 devid, u32 flags, u32 ext_flags)
3566b778
JR
499{
500 if (flags & ACPI_DEVFLAG_INITPASS)
501 set_dev_entry_bit(devid, DEV_ENTRY_INIT_PASS);
502 if (flags & ACPI_DEVFLAG_EXTINT)
503 set_dev_entry_bit(devid, DEV_ENTRY_EINT_PASS);
504 if (flags & ACPI_DEVFLAG_NMI)
505 set_dev_entry_bit(devid, DEV_ENTRY_NMI_PASS);
506 if (flags & ACPI_DEVFLAG_SYSMGT1)
507 set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1);
508 if (flags & ACPI_DEVFLAG_SYSMGT2)
509 set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2);
510 if (flags & ACPI_DEVFLAG_LINT0)
511 set_dev_entry_bit(devid, DEV_ENTRY_LINT0_PASS);
512 if (flags & ACPI_DEVFLAG_LINT1)
513 set_dev_entry_bit(devid, DEV_ENTRY_LINT1_PASS);
3566b778 514
5ff4789d 515 set_iommu_for_device(iommu, devid);
3566b778
JR
516}
517
b65233a9
JR
518/*
519 * Reads the device exclusion range from ACPI and initialize IOMMU with
520 * it
521 */
3566b778
JR
522static void __init set_device_exclusion_range(u16 devid, struct ivmd_header *m)
523{
524 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
525
526 if (!(m->flags & IVMD_FLAG_EXCL_RANGE))
527 return;
528
529 if (iommu) {
b65233a9
JR
530 /*
531 * We only can configure exclusion ranges per IOMMU, not
532 * per device. But we can enable the exclusion range per
533 * device. This is done here
534 */
3566b778
JR
535 set_dev_entry_bit(m->devid, DEV_ENTRY_EX);
536 iommu->exclusion_start = m->range_start;
537 iommu->exclusion_length = m->range_length;
538 }
539}
540
b65233a9
JR
541/*
542 * This function reads some important data from the IOMMU PCI space and
543 * initializes the driver data structure with it. It reads the hardware
544 * capabilities and the first/last device entries
545 */
5d0c8e49
JR
546static void __init init_iommu_from_pci(struct amd_iommu *iommu)
547{
5d0c8e49 548 int cap_ptr = iommu->cap_ptr;
a80dc3e0 549 u32 range, misc;
5d0c8e49 550
3eaf28a1
JR
551 pci_read_config_dword(iommu->dev, cap_ptr + MMIO_CAP_HDR_OFFSET,
552 &iommu->cap);
553 pci_read_config_dword(iommu->dev, cap_ptr + MMIO_RANGE_OFFSET,
554 &range);
a80dc3e0
JR
555 pci_read_config_dword(iommu->dev, cap_ptr + MMIO_MISC_OFFSET,
556 &misc);
5d0c8e49 557
d591b0a3
JR
558 iommu->first_device = calc_devid(MMIO_GET_BUS(range),
559 MMIO_GET_FD(range));
560 iommu->last_device = calc_devid(MMIO_GET_BUS(range),
561 MMIO_GET_LD(range));
a80dc3e0 562 iommu->evt_msi_num = MMIO_MSI_NUM(misc);
5d0c8e49
JR
563}
564
b65233a9
JR
565/*
566 * Takes a pointer to an AMD IOMMU entry in the ACPI table and
567 * initializes the hardware and our data structures with it.
568 */
5d0c8e49
JR
569static void __init init_iommu_from_acpi(struct amd_iommu *iommu,
570 struct ivhd_header *h)
571{
572 u8 *p = (u8 *)h;
573 u8 *end = p, flags = 0;
574 u16 dev_i, devid = 0, devid_start = 0, devid_to = 0;
575 u32 ext_flags = 0;
58a3bee5 576 bool alias = false;
5d0c8e49
JR
577 struct ivhd_entry *e;
578
579 /*
580 * First set the recommended feature enable bits from ACPI
581 * into the IOMMU control registers
582 */
6da7342f 583 h->flags & IVHD_FLAG_HT_TUN_EN_MASK ?
5d0c8e49
JR
584 iommu_feature_enable(iommu, CONTROL_HT_TUN_EN) :
585 iommu_feature_disable(iommu, CONTROL_HT_TUN_EN);
586
6da7342f 587 h->flags & IVHD_FLAG_PASSPW_EN_MASK ?
5d0c8e49
JR
588 iommu_feature_enable(iommu, CONTROL_PASSPW_EN) :
589 iommu_feature_disable(iommu, CONTROL_PASSPW_EN);
590
6da7342f 591 h->flags & IVHD_FLAG_RESPASSPW_EN_MASK ?
5d0c8e49
JR
592 iommu_feature_enable(iommu, CONTROL_RESPASSPW_EN) :
593 iommu_feature_disable(iommu, CONTROL_RESPASSPW_EN);
594
6da7342f 595 h->flags & IVHD_FLAG_ISOC_EN_MASK ?
5d0c8e49
JR
596 iommu_feature_enable(iommu, CONTROL_ISOC_EN) :
597 iommu_feature_disable(iommu, CONTROL_ISOC_EN);
598
599 /*
600 * make IOMMU memory accesses cache coherent
601 */
602 iommu_feature_enable(iommu, CONTROL_COHERENT_EN);
603
604 /*
605 * Done. Now parse the device entries
606 */
607 p += sizeof(struct ivhd_header);
608 end += h->length;
609
610 while (p < end) {
611 e = (struct ivhd_entry *)p;
612 switch (e->type) {
613 case IVHD_DEV_ALL:
614 for (dev_i = iommu->first_device;
615 dev_i <= iommu->last_device; ++dev_i)
5ff4789d
JR
616 set_dev_entry_from_acpi(iommu, dev_i,
617 e->flags, 0);
5d0c8e49
JR
618 break;
619 case IVHD_DEV_SELECT:
620 devid = e->devid;
5ff4789d 621 set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
5d0c8e49
JR
622 break;
623 case IVHD_DEV_SELECT_RANGE_START:
624 devid_start = e->devid;
625 flags = e->flags;
626 ext_flags = 0;
58a3bee5 627 alias = false;
5d0c8e49
JR
628 break;
629 case IVHD_DEV_ALIAS:
630 devid = e->devid;
631 devid_to = e->ext >> 8;
5ff4789d 632 set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
5d0c8e49
JR
633 amd_iommu_alias_table[devid] = devid_to;
634 break;
635 case IVHD_DEV_ALIAS_RANGE:
636 devid_start = e->devid;
637 flags = e->flags;
638 devid_to = e->ext >> 8;
639 ext_flags = 0;
58a3bee5 640 alias = true;
5d0c8e49
JR
641 break;
642 case IVHD_DEV_EXT_SELECT:
643 devid = e->devid;
5ff4789d
JR
644 set_dev_entry_from_acpi(iommu, devid, e->flags,
645 e->ext);
5d0c8e49
JR
646 break;
647 case IVHD_DEV_EXT_SELECT_RANGE:
648 devid_start = e->devid;
649 flags = e->flags;
650 ext_flags = e->ext;
58a3bee5 651 alias = false;
5d0c8e49
JR
652 break;
653 case IVHD_DEV_RANGE_END:
654 devid = e->devid;
655 for (dev_i = devid_start; dev_i <= devid; ++dev_i) {
656 if (alias)
657 amd_iommu_alias_table[dev_i] = devid_to;
5ff4789d 658 set_dev_entry_from_acpi(iommu,
5d0c8e49
JR
659 amd_iommu_alias_table[dev_i],
660 flags, ext_flags);
661 }
662 break;
663 default:
664 break;
665 }
666
b514e555 667 p += ivhd_entry_length(p);
5d0c8e49
JR
668 }
669}
670
b65233a9 671/* Initializes the device->iommu mapping for the driver */
5d0c8e49
JR
672static int __init init_iommu_devices(struct amd_iommu *iommu)
673{
674 u16 i;
675
676 for (i = iommu->first_device; i <= iommu->last_device; ++i)
677 set_iommu_for_device(iommu, i);
678
679 return 0;
680}
681
e47d402d
JR
682static void __init free_iommu_one(struct amd_iommu *iommu)
683{
684 free_command_buffer(iommu);
335503e5 685 free_event_buffer(iommu);
e47d402d
JR
686 iommu_unmap_mmio_space(iommu);
687}
688
689static void __init free_iommu_all(void)
690{
691 struct amd_iommu *iommu, *next;
692
3bd22172 693 for_each_iommu_safe(iommu, next) {
e47d402d
JR
694 list_del(&iommu->list);
695 free_iommu_one(iommu);
696 kfree(iommu);
697 }
698}
699
b65233a9
JR
700/*
701 * This function clues the initialization function for one IOMMU
702 * together and also allocates the command buffer and programs the
703 * hardware. It does NOT enable the IOMMU. This is done afterwards.
704 */
e47d402d
JR
705static int __init init_iommu_one(struct amd_iommu *iommu, struct ivhd_header *h)
706{
707 spin_lock_init(&iommu->lock);
708 list_add_tail(&iommu->list, &amd_iommu_list);
709
710 /*
711 * Copy data from ACPI table entry to the iommu struct
712 */
3eaf28a1
JR
713 iommu->dev = pci_get_bus_and_slot(PCI_BUS(h->devid), h->devid & 0xff);
714 if (!iommu->dev)
715 return 1;
716
e47d402d 717 iommu->cap_ptr = h->cap_ptr;
ee893c24 718 iommu->pci_seg = h->pci_seg;
e47d402d
JR
719 iommu->mmio_phys = h->mmio_phys;
720 iommu->mmio_base = iommu_map_mmio_space(h->mmio_phys);
721 if (!iommu->mmio_base)
722 return -ENOMEM;
723
e47d402d
JR
724 iommu->cmd_buf = alloc_command_buffer(iommu);
725 if (!iommu->cmd_buf)
726 return -ENOMEM;
727
335503e5
JR
728 iommu->evt_buf = alloc_event_buffer(iommu);
729 if (!iommu->evt_buf)
730 return -ENOMEM;
731
a80dc3e0
JR
732 iommu->int_enabled = false;
733
e47d402d
JR
734 init_iommu_from_pci(iommu);
735 init_iommu_from_acpi(iommu, h);
736 init_iommu_devices(iommu);
737
8a66712b 738 return pci_enable_device(iommu->dev);
e47d402d
JR
739}
740
b65233a9
JR
741/*
742 * Iterates over all IOMMU entries in the ACPI table, allocates the
743 * IOMMU structure and initializes it with init_iommu_one()
744 */
e47d402d
JR
745static int __init init_iommu_all(struct acpi_table_header *table)
746{
747 u8 *p = (u8 *)table, *end = (u8 *)table;
748 struct ivhd_header *h;
749 struct amd_iommu *iommu;
750 int ret;
751
e47d402d
JR
752 end += table->length;
753 p += IVRS_HEADER_LENGTH;
754
755 while (p < end) {
756 h = (struct ivhd_header *)p;
757 switch (*p) {
758 case ACPI_IVHD_TYPE:
759 iommu = kzalloc(sizeof(struct amd_iommu), GFP_KERNEL);
760 if (iommu == NULL)
761 return -ENOMEM;
762 ret = init_iommu_one(iommu, h);
763 if (ret)
764 return ret;
765 break;
766 default:
767 break;
768 }
769 p += h->length;
770
771 }
772 WARN_ON(p != end);
773
774 return 0;
775}
776
a80dc3e0
JR
777/****************************************************************************
778 *
779 * The following functions initialize the MSI interrupts for all IOMMUs
780 * in the system. Its a bit challenging because there could be multiple
781 * IOMMUs per PCI BDF but we can call pci_enable_msi(x) only once per
782 * pci_dev.
783 *
784 ****************************************************************************/
785
786static int __init iommu_setup_msix(struct amd_iommu *iommu)
787{
788 struct amd_iommu *curr;
789 struct msix_entry entries[32]; /* only 32 supported by AMD IOMMU */
790 int nvec = 0, i;
791
3bd22172 792 for_each_iommu(curr) {
a80dc3e0
JR
793 if (curr->dev == iommu->dev) {
794 entries[nvec].entry = curr->evt_msi_num;
795 entries[nvec].vector = 0;
796 curr->int_enabled = true;
797 nvec++;
798 }
799 }
800
801 if (pci_enable_msix(iommu->dev, entries, nvec)) {
802 pci_disable_msix(iommu->dev);
803 return 1;
804 }
805
806 for (i = 0; i < nvec; ++i) {
807 int r = request_irq(entries->vector, amd_iommu_int_handler,
808 IRQF_SAMPLE_RANDOM,
809 "AMD IOMMU",
810 NULL);
811 if (r)
812 goto out_free;
813 }
814
815 return 0;
816
817out_free:
818 for (i -= 1; i >= 0; --i)
819 free_irq(entries->vector, NULL);
820
821 pci_disable_msix(iommu->dev);
822
823 return 1;
824}
825
826static int __init iommu_setup_msi(struct amd_iommu *iommu)
827{
828 int r;
829 struct amd_iommu *curr;
830
3bd22172 831 for_each_iommu(curr) {
a80dc3e0
JR
832 if (curr->dev == iommu->dev)
833 curr->int_enabled = true;
834 }
835
836
837 if (pci_enable_msi(iommu->dev))
838 return 1;
839
840 r = request_irq(iommu->dev->irq, amd_iommu_int_handler,
841 IRQF_SAMPLE_RANDOM,
842 "AMD IOMMU",
843 NULL);
844
845 if (r) {
846 pci_disable_msi(iommu->dev);
847 return 1;
848 }
849
58492e12
JR
850 iommu_feature_enable(iommu, CONTROL_EVT_INT_EN);
851
a80dc3e0
JR
852 return 0;
853}
854
855static int __init iommu_init_msi(struct amd_iommu *iommu)
856{
857 if (iommu->int_enabled)
858 return 0;
859
860 if (pci_find_capability(iommu->dev, PCI_CAP_ID_MSIX))
861 return iommu_setup_msix(iommu);
862 else if (pci_find_capability(iommu->dev, PCI_CAP_ID_MSI))
863 return iommu_setup_msi(iommu);
864
865 return 1;
866}
867
b65233a9
JR
868/****************************************************************************
869 *
870 * The next functions belong to the third pass of parsing the ACPI
871 * table. In this last pass the memory mapping requirements are
872 * gathered (like exclusion and unity mapping reanges).
873 *
874 ****************************************************************************/
875
be2a022c
JR
876static void __init free_unity_maps(void)
877{
878 struct unity_map_entry *entry, *next;
879
880 list_for_each_entry_safe(entry, next, &amd_iommu_unity_map, list) {
881 list_del(&entry->list);
882 kfree(entry);
883 }
884}
885
b65233a9 886/* called when we find an exclusion range definition in ACPI */
be2a022c
JR
887static int __init init_exclusion_range(struct ivmd_header *m)
888{
889 int i;
890
891 switch (m->type) {
892 case ACPI_IVMD_TYPE:
893 set_device_exclusion_range(m->devid, m);
894 break;
895 case ACPI_IVMD_TYPE_ALL:
3a61ec38 896 for (i = 0; i <= amd_iommu_last_bdf; ++i)
be2a022c
JR
897 set_device_exclusion_range(i, m);
898 break;
899 case ACPI_IVMD_TYPE_RANGE:
900 for (i = m->devid; i <= m->aux; ++i)
901 set_device_exclusion_range(i, m);
902 break;
903 default:
904 break;
905 }
906
907 return 0;
908}
909
b65233a9 910/* called for unity map ACPI definition */
be2a022c
JR
911static int __init init_unity_map_range(struct ivmd_header *m)
912{
913 struct unity_map_entry *e = 0;
914
915 e = kzalloc(sizeof(*e), GFP_KERNEL);
916 if (e == NULL)
917 return -ENOMEM;
918
919 switch (m->type) {
920 default:
921 case ACPI_IVMD_TYPE:
922 e->devid_start = e->devid_end = m->devid;
923 break;
924 case ACPI_IVMD_TYPE_ALL:
925 e->devid_start = 0;
926 e->devid_end = amd_iommu_last_bdf;
927 break;
928 case ACPI_IVMD_TYPE_RANGE:
929 e->devid_start = m->devid;
930 e->devid_end = m->aux;
931 break;
932 }
933 e->address_start = PAGE_ALIGN(m->range_start);
934 e->address_end = e->address_start + PAGE_ALIGN(m->range_length);
935 e->prot = m->flags >> 1;
936
937 list_add_tail(&e->list, &amd_iommu_unity_map);
938
939 return 0;
940}
941
b65233a9 942/* iterates over all memory definitions we find in the ACPI table */
be2a022c
JR
943static int __init init_memory_definitions(struct acpi_table_header *table)
944{
945 u8 *p = (u8 *)table, *end = (u8 *)table;
946 struct ivmd_header *m;
947
be2a022c
JR
948 end += table->length;
949 p += IVRS_HEADER_LENGTH;
950
951 while (p < end) {
952 m = (struct ivmd_header *)p;
953 if (m->flags & IVMD_FLAG_EXCL_RANGE)
954 init_exclusion_range(m);
955 else if (m->flags & IVMD_FLAG_UNITY_MAP)
956 init_unity_map_range(m);
957
958 p += m->length;
959 }
960
961 return 0;
962}
963
9f5f5fb3
JR
964/*
965 * Init the device table to not allow DMA access for devices and
966 * suppress all page faults
967 */
968static void init_device_table(void)
969{
970 u16 devid;
971
972 for (devid = 0; devid <= amd_iommu_last_bdf; ++devid) {
973 set_dev_entry_bit(devid, DEV_ENTRY_VALID);
974 set_dev_entry_bit(devid, DEV_ENTRY_TRANSLATION);
9f5f5fb3
JR
975 }
976}
977
b65233a9
JR
978/*
979 * This function finally enables all IOMMUs found in the system after
980 * they have been initialized
981 */
8736197b
JR
982static void __init enable_iommus(void)
983{
984 struct amd_iommu *iommu;
985
3bd22172 986 for_each_iommu(iommu) {
58492e12
JR
987 iommu_set_device_table(iommu);
988 iommu_enable_command_buffer(iommu);
989 iommu_enable_event_buffer(iommu);
8736197b 990 iommu_set_exclusion_range(iommu);
a80dc3e0 991 iommu_init_msi(iommu);
8736197b
JR
992 iommu_enable(iommu);
993 }
994}
995
7441e9cb
JR
996/*
997 * Suspend/Resume support
998 * disable suspend until real resume implemented
999 */
1000
1001static int amd_iommu_resume(struct sys_device *dev)
1002{
1003 return 0;
1004}
1005
1006static int amd_iommu_suspend(struct sys_device *dev, pm_message_t state)
1007{
1008 return -EINVAL;
1009}
1010
1011static struct sysdev_class amd_iommu_sysdev_class = {
1012 .name = "amd_iommu",
1013 .suspend = amd_iommu_suspend,
1014 .resume = amd_iommu_resume,
1015};
1016
1017static struct sys_device device_amd_iommu = {
1018 .id = 0,
1019 .cls = &amd_iommu_sysdev_class,
1020};
1021
b65233a9
JR
1022/*
1023 * This is the core init function for AMD IOMMU hardware in the system.
1024 * This function is called from the generic x86 DMA layer initialization
1025 * code.
1026 *
1027 * This function basically parses the ACPI table for AMD IOMMU (IVRS)
1028 * three times:
1029 *
1030 * 1 pass) Find the highest PCI device id the driver has to handle.
1031 * Upon this information the size of the data structures is
1032 * determined that needs to be allocated.
1033 *
1034 * 2 pass) Initialize the data structures just allocated with the
1035 * information in the ACPI table about available AMD IOMMUs
1036 * in the system. It also maps the PCI devices in the
1037 * system to specific IOMMUs
1038 *
1039 * 3 pass) After the basic data structures are allocated and
1040 * initialized we update them with information about memory
1041 * remapping requirements parsed out of the ACPI table in
1042 * this last pass.
1043 *
1044 * After that the hardware is initialized and ready to go. In the last
1045 * step we do some Linux specific things like registering the driver in
1046 * the dma_ops interface and initializing the suspend/resume support
1047 * functions. Finally it prints some information about AMD IOMMUs and
1048 * the driver state and enables the hardware.
1049 */
fe74c9cf
JR
1050int __init amd_iommu_init(void)
1051{
1052 int i, ret = 0;
1053
1054
8b14518f 1055 if (no_iommu) {
fe74c9cf
JR
1056 printk(KERN_INFO "AMD IOMMU disabled by kernel command line\n");
1057 return 0;
1058 }
1059
c1cbebee
JR
1060 if (!amd_iommu_detected)
1061 return -ENODEV;
1062
fe74c9cf
JR
1063 /*
1064 * First parse ACPI tables to find the largest Bus/Dev/Func
1065 * we need to handle. Upon this information the shared data
1066 * structures for the IOMMUs in the system will be allocated
1067 */
1068 if (acpi_table_parse("IVRS", find_last_devid_acpi) != 0)
1069 return -ENODEV;
1070
c571484e
JR
1071 dev_table_size = tbl_size(DEV_TABLE_ENTRY_SIZE);
1072 alias_table_size = tbl_size(ALIAS_TABLE_ENTRY_SIZE);
1073 rlookup_table_size = tbl_size(RLOOKUP_TABLE_ENTRY_SIZE);
fe74c9cf
JR
1074
1075 ret = -ENOMEM;
1076
1077 /* Device table - directly used by all IOMMUs */
5dc8bff0 1078 amd_iommu_dev_table = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
fe74c9cf
JR
1079 get_order(dev_table_size));
1080 if (amd_iommu_dev_table == NULL)
1081 goto out;
1082
1083 /*
1084 * Alias table - map PCI Bus/Dev/Func to Bus/Dev/Func the
1085 * IOMMU see for that device
1086 */
1087 amd_iommu_alias_table = (void *)__get_free_pages(GFP_KERNEL,
1088 get_order(alias_table_size));
1089 if (amd_iommu_alias_table == NULL)
1090 goto free;
1091
1092 /* IOMMU rlookup table - find the IOMMU for a specific device */
83fd5cc6
JR
1093 amd_iommu_rlookup_table = (void *)__get_free_pages(
1094 GFP_KERNEL | __GFP_ZERO,
fe74c9cf
JR
1095 get_order(rlookup_table_size));
1096 if (amd_iommu_rlookup_table == NULL)
1097 goto free;
1098
1099 /*
1100 * Protection Domain table - maps devices to protection domains
1101 * This table has the same size as the rlookup_table
1102 */
5dc8bff0 1103 amd_iommu_pd_table = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
fe74c9cf
JR
1104 get_order(rlookup_table_size));
1105 if (amd_iommu_pd_table == NULL)
1106 goto free;
1107
5dc8bff0
JR
1108 amd_iommu_pd_alloc_bitmap = (void *)__get_free_pages(
1109 GFP_KERNEL | __GFP_ZERO,
fe74c9cf
JR
1110 get_order(MAX_DOMAIN_ID/8));
1111 if (amd_iommu_pd_alloc_bitmap == NULL)
1112 goto free;
1113
9f5f5fb3
JR
1114 /* init the device table */
1115 init_device_table();
1116
fe74c9cf 1117 /*
5dc8bff0 1118 * let all alias entries point to itself
fe74c9cf 1119 */
3a61ec38 1120 for (i = 0; i <= amd_iommu_last_bdf; ++i)
fe74c9cf
JR
1121 amd_iommu_alias_table[i] = i;
1122
fe74c9cf
JR
1123 /*
1124 * never allocate domain 0 because its used as the non-allocated and
1125 * error value placeholder
1126 */
1127 amd_iommu_pd_alloc_bitmap[0] = 1;
1128
1129 /*
1130 * now the data structures are allocated and basically initialized
1131 * start the real acpi table scan
1132 */
1133 ret = -ENODEV;
1134 if (acpi_table_parse("IVRS", init_iommu_all) != 0)
1135 goto free;
1136
1137 if (acpi_table_parse("IVRS", init_memory_definitions) != 0)
1138 goto free;
1139
129d6aba 1140 ret = sysdev_class_register(&amd_iommu_sysdev_class);
8736197b
JR
1141 if (ret)
1142 goto free;
1143
129d6aba 1144 ret = sysdev_register(&device_amd_iommu);
7441e9cb
JR
1145 if (ret)
1146 goto free;
1147
129d6aba 1148 ret = amd_iommu_init_dma_ops();
7441e9cb
JR
1149 if (ret)
1150 goto free;
1151
8736197b
JR
1152 enable_iommus();
1153
fe74c9cf
JR
1154 printk(KERN_INFO "AMD IOMMU: aperture size is %d MB\n",
1155 (1 << (amd_iommu_aperture_order-20)));
1156
1157 printk(KERN_INFO "AMD IOMMU: device isolation ");
1158 if (amd_iommu_isolate)
1159 printk("enabled\n");
1160 else
1161 printk("disabled\n");
1162
afa9fdc2 1163 if (amd_iommu_unmap_flush)
1c655773
JR
1164 printk(KERN_INFO "AMD IOMMU: IO/TLB flush on unmap enabled\n");
1165 else
1166 printk(KERN_INFO "AMD IOMMU: Lazy IO/TLB flushing enabled\n");
1167
fe74c9cf
JR
1168out:
1169 return ret;
1170
1171free:
d58befd3
JR
1172 free_pages((unsigned long)amd_iommu_pd_alloc_bitmap,
1173 get_order(MAX_DOMAIN_ID/8));
fe74c9cf 1174
9a836de0
JR
1175 free_pages((unsigned long)amd_iommu_pd_table,
1176 get_order(rlookup_table_size));
fe74c9cf 1177
9a836de0
JR
1178 free_pages((unsigned long)amd_iommu_rlookup_table,
1179 get_order(rlookup_table_size));
fe74c9cf 1180
9a836de0
JR
1181 free_pages((unsigned long)amd_iommu_alias_table,
1182 get_order(alias_table_size));
fe74c9cf 1183
9a836de0
JR
1184 free_pages((unsigned long)amd_iommu_dev_table,
1185 get_order(dev_table_size));
fe74c9cf
JR
1186
1187 free_iommu_all();
1188
1189 free_unity_maps();
1190
1191 goto out;
1192}
1193
b65233a9
JR
1194/****************************************************************************
1195 *
1196 * Early detect code. This code runs at IOMMU detection time in the DMA
1197 * layer. It just looks if there is an IVRS ACPI table to detect AMD
1198 * IOMMUs
1199 *
1200 ****************************************************************************/
ae7877de
JR
1201static int __init early_amd_iommu_detect(struct acpi_table_header *table)
1202{
1203 return 0;
1204}
1205
1206void __init amd_iommu_detect(void)
1207{
299a140d 1208 if (swiotlb || no_iommu || (iommu_detected && !gart_iommu_aperture))
ae7877de
JR
1209 return;
1210
ae7877de
JR
1211 if (acpi_table_parse("IVRS", early_amd_iommu_detect) == 0) {
1212 iommu_detected = 1;
c1cbebee 1213 amd_iommu_detected = 1;
92af4e29 1214#ifdef CONFIG_GART_IOMMU
ae7877de
JR
1215 gart_iommu_aperture_disabled = 1;
1216 gart_iommu_aperture = 0;
92af4e29 1217#endif
ae7877de
JR
1218 }
1219}
1220
b65233a9
JR
1221/****************************************************************************
1222 *
1223 * Parsing functions for the AMD IOMMU specific kernel command line
1224 * options.
1225 *
1226 ****************************************************************************/
1227
918ad6c5
JR
1228static int __init parse_amd_iommu_options(char *str)
1229{
1230 for (; *str; ++str) {
1c655773 1231 if (strncmp(str, "isolate", 7) == 0)
c226f853 1232 amd_iommu_isolate = true;
e5e1f606 1233 if (strncmp(str, "share", 5) == 0)
c226f853 1234 amd_iommu_isolate = false;
695b5676 1235 if (strncmp(str, "fullflush", 9) == 0)
afa9fdc2 1236 amd_iommu_unmap_flush = true;
918ad6c5
JR
1237 }
1238
1239 return 1;
1240}
1241
1242static int __init parse_amd_iommu_size_options(char *str)
1243{
0906372e
JR
1244 unsigned order = PAGE_SHIFT + get_order(memparse(str, &str));
1245
1246 if ((order > 24) && (order < 31))
1247 amd_iommu_aperture_order = order;
918ad6c5
JR
1248
1249 return 1;
1250}
1251
1252__setup("amd_iommu=", parse_amd_iommu_options);
1253__setup("amd_iommu_size=", parse_amd_iommu_size_options);