]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - arch/x86/kernel/amd_iommu_init.c
Merge branch 'linus' into x86/amd-iommu
[mirror_ubuntu-hirsute-kernel.git] / arch / x86 / kernel / amd_iommu_init.c
CommitLineData
f6e2e6b6
JR
1/*
2 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/pci.h>
21#include <linux/acpi.h>
22#include <linux/gfp.h>
23#include <linux/list.h>
7441e9cb 24#include <linux/sysdev.h>
f6e2e6b6
JR
25#include <asm/pci-direct.h>
26#include <asm/amd_iommu_types.h>
c6da992e 27#include <asm/amd_iommu.h>
f6e2e6b6
JR
28#include <asm/gart.h>
29
30/*
31 * definitions for the ACPI scanning code
32 */
f6e2e6b6
JR
33#define PCI_BUS(x) (((x) >> 8) & 0xff)
34#define IVRS_HEADER_LENGTH 48
f6e2e6b6
JR
35
36#define ACPI_IVHD_TYPE 0x10
37#define ACPI_IVMD_TYPE_ALL 0x20
38#define ACPI_IVMD_TYPE 0x21
39#define ACPI_IVMD_TYPE_RANGE 0x22
40
41#define IVHD_DEV_ALL 0x01
42#define IVHD_DEV_SELECT 0x02
43#define IVHD_DEV_SELECT_RANGE_START 0x03
44#define IVHD_DEV_RANGE_END 0x04
45#define IVHD_DEV_ALIAS 0x42
46#define IVHD_DEV_ALIAS_RANGE 0x43
47#define IVHD_DEV_EXT_SELECT 0x46
48#define IVHD_DEV_EXT_SELECT_RANGE 0x47
49
50#define IVHD_FLAG_HT_TUN_EN 0x00
51#define IVHD_FLAG_PASSPW_EN 0x01
52#define IVHD_FLAG_RESPASSPW_EN 0x02
53#define IVHD_FLAG_ISOC_EN 0x03
54
55#define IVMD_FLAG_EXCL_RANGE 0x08
56#define IVMD_FLAG_UNITY_MAP 0x01
57
58#define ACPI_DEVFLAG_INITPASS 0x01
59#define ACPI_DEVFLAG_EXTINT 0x02
60#define ACPI_DEVFLAG_NMI 0x04
61#define ACPI_DEVFLAG_SYSMGT1 0x10
62#define ACPI_DEVFLAG_SYSMGT2 0x20
63#define ACPI_DEVFLAG_LINT0 0x40
64#define ACPI_DEVFLAG_LINT1 0x80
65#define ACPI_DEVFLAG_ATSDIS 0x10000000
66
b65233a9
JR
67/*
68 * ACPI table definitions
69 *
70 * These data structures are laid over the table to parse the important values
71 * out of it.
72 */
73
74/*
75 * structure describing one IOMMU in the ACPI table. Typically followed by one
76 * or more ivhd_entrys.
77 */
f6e2e6b6
JR
78struct ivhd_header {
79 u8 type;
80 u8 flags;
81 u16 length;
82 u16 devid;
83 u16 cap_ptr;
84 u64 mmio_phys;
85 u16 pci_seg;
86 u16 info;
87 u32 reserved;
88} __attribute__((packed));
89
b65233a9
JR
90/*
91 * A device entry describing which devices a specific IOMMU translates and
92 * which requestor ids they use.
93 */
f6e2e6b6
JR
94struct ivhd_entry {
95 u8 type;
96 u16 devid;
97 u8 flags;
98 u32 ext;
99} __attribute__((packed));
100
b65233a9
JR
101/*
102 * An AMD IOMMU memory definition structure. It defines things like exclusion
103 * ranges for devices and regions that should be unity mapped.
104 */
f6e2e6b6
JR
105struct ivmd_header {
106 u8 type;
107 u8 flags;
108 u16 length;
109 u16 devid;
110 u16 aux;
111 u64 resv;
112 u64 range_start;
113 u64 range_length;
114} __attribute__((packed));
115
c1cbebee
JR
116static int __initdata amd_iommu_detected;
117
b65233a9
JR
118u16 amd_iommu_last_bdf; /* largest PCI device id we have
119 to handle */
2e22847f 120LIST_HEAD(amd_iommu_unity_map); /* a list of required unity mappings
b65233a9
JR
121 we find in ACPI */
122unsigned amd_iommu_aperture_order = 26; /* size of aperture in power of 2 */
123int amd_iommu_isolate; /* if 1, device isolation is enabled */
928abd25 124
2e22847f 125LIST_HEAD(amd_iommu_list); /* list of all AMD IOMMUs in the
b65233a9
JR
126 system */
127
128/*
129 * Pointer to the device table which is shared by all AMD IOMMUs
130 * it is indexed by the PCI device id or the HT unit id and contains
131 * information about the domain the device belongs to as well as the
132 * page table root pointer.
133 */
928abd25 134struct dev_table_entry *amd_iommu_dev_table;
b65233a9
JR
135
136/*
137 * The alias table is a driver specific data structure which contains the
138 * mappings of the PCI device ids to the actual requestor ids on the IOMMU.
139 * More than one device can share the same requestor id.
140 */
928abd25 141u16 *amd_iommu_alias_table;
b65233a9
JR
142
143/*
144 * The rlookup table is used to find the IOMMU which is responsible
145 * for a specific device. It is also indexed by the PCI device id.
146 */
928abd25 147struct amd_iommu **amd_iommu_rlookup_table;
b65233a9
JR
148
149/*
150 * The pd table (protection domain table) is used to find the protection domain
151 * data structure a device belongs to. Indexed with the PCI device id too.
152 */
928abd25 153struct protection_domain **amd_iommu_pd_table;
b65233a9
JR
154
155/*
156 * AMD IOMMU allows up to 2^16 differend protection domains. This is a bitmap
157 * to know which ones are already in use.
158 */
928abd25
JR
159unsigned long *amd_iommu_pd_alloc_bitmap;
160
b65233a9
JR
161static u32 dev_table_size; /* size of the device table */
162static u32 alias_table_size; /* size of the alias table */
163static u32 rlookup_table_size; /* size if the rlookup table */
164
208ec8c9
JR
165static inline void update_last_devid(u16 devid)
166{
167 if (devid > amd_iommu_last_bdf)
168 amd_iommu_last_bdf = devid;
169}
170
c571484e
JR
171static inline unsigned long tbl_size(int entry_size)
172{
173 unsigned shift = PAGE_SHIFT +
174 get_order(amd_iommu_last_bdf * entry_size);
175
176 return 1UL << shift;
177}
178
b65233a9
JR
179/****************************************************************************
180 *
181 * AMD IOMMU MMIO register space handling functions
182 *
183 * These functions are used to program the IOMMU device registers in
184 * MMIO space required for that driver.
185 *
186 ****************************************************************************/
3e8064ba 187
b65233a9
JR
188/*
189 * This function set the exclusion range in the IOMMU. DMA accesses to the
190 * exclusion range are passed through untranslated
191 */
b2026aa2
JR
192static void __init iommu_set_exclusion_range(struct amd_iommu *iommu)
193{
194 u64 start = iommu->exclusion_start & PAGE_MASK;
195 u64 limit = (start + iommu->exclusion_length) & PAGE_MASK;
196 u64 entry;
197
198 if (!iommu->exclusion_start)
199 return;
200
201 entry = start | MMIO_EXCL_ENABLE_MASK;
202 memcpy_toio(iommu->mmio_base + MMIO_EXCL_BASE_OFFSET,
203 &entry, sizeof(entry));
204
205 entry = limit;
206 memcpy_toio(iommu->mmio_base + MMIO_EXCL_LIMIT_OFFSET,
207 &entry, sizeof(entry));
208}
209
b65233a9 210/* Programs the physical address of the device table into the IOMMU hardware */
b2026aa2
JR
211static void __init iommu_set_device_table(struct amd_iommu *iommu)
212{
213 u32 entry;
214
215 BUG_ON(iommu->mmio_base == NULL);
216
217 entry = virt_to_phys(amd_iommu_dev_table);
218 entry |= (dev_table_size >> 12) - 1;
219 memcpy_toio(iommu->mmio_base + MMIO_DEV_TABLE_OFFSET,
220 &entry, sizeof(entry));
221}
222
b65233a9 223/* Generic functions to enable/disable certain features of the IOMMU. */
b2026aa2
JR
224static void __init iommu_feature_enable(struct amd_iommu *iommu, u8 bit)
225{
226 u32 ctrl;
227
228 ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
229 ctrl |= (1 << bit);
230 writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
231}
232
233static void __init iommu_feature_disable(struct amd_iommu *iommu, u8 bit)
234{
235 u32 ctrl;
236
237 ctrl = (u64)readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
238 ctrl &= ~(1 << bit);
239 writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
240}
241
b65233a9 242/* Function to enable the hardware */
b2026aa2
JR
243void __init iommu_enable(struct amd_iommu *iommu)
244{
b2026aa2
JR
245 printk(KERN_INFO "AMD IOMMU: Enabling IOMMU at ");
246 print_devid(iommu->devid, 0);
247 printk(" cap 0x%hx\n", iommu->cap_ptr);
248
249 iommu_feature_enable(iommu, CONTROL_IOMMU_EN);
b2026aa2
JR
250}
251
b65233a9
JR
252/*
253 * mapping and unmapping functions for the IOMMU MMIO space. Each AMD IOMMU in
254 * the system has one.
255 */
6c56747b
JR
256static u8 * __init iommu_map_mmio_space(u64 address)
257{
258 u8 *ret;
259
260 if (!request_mem_region(address, MMIO_REGION_LENGTH, "amd_iommu"))
261 return NULL;
262
263 ret = ioremap_nocache(address, MMIO_REGION_LENGTH);
264 if (ret != NULL)
265 return ret;
266
267 release_mem_region(address, MMIO_REGION_LENGTH);
268
269 return NULL;
270}
271
272static void __init iommu_unmap_mmio_space(struct amd_iommu *iommu)
273{
274 if (iommu->mmio_base)
275 iounmap(iommu->mmio_base);
276 release_mem_region(iommu->mmio_phys, MMIO_REGION_LENGTH);
277}
278
b65233a9
JR
279/****************************************************************************
280 *
281 * The functions below belong to the first pass of AMD IOMMU ACPI table
282 * parsing. In this pass we try to find out the highest device id this
283 * code has to handle. Upon this information the size of the shared data
284 * structures is determined later.
285 *
286 ****************************************************************************/
287
288/*
289 * This function reads the last device id the IOMMU has to handle from the PCI
290 * capability header for this IOMMU
291 */
3e8064ba
JR
292static int __init find_last_devid_on_pci(int bus, int dev, int fn, int cap_ptr)
293{
294 u32 cap;
295
296 cap = read_pci_config(bus, dev, fn, cap_ptr+MMIO_RANGE_OFFSET);
d591b0a3 297 update_last_devid(calc_devid(MMIO_GET_BUS(cap), MMIO_GET_LD(cap)));
3e8064ba
JR
298
299 return 0;
300}
301
b65233a9
JR
302/*
303 * After reading the highest device id from the IOMMU PCI capability header
304 * this function looks if there is a higher device id defined in the ACPI table
305 */
3e8064ba
JR
306static int __init find_last_devid_from_ivhd(struct ivhd_header *h)
307{
308 u8 *p = (void *)h, *end = (void *)h;
309 struct ivhd_entry *dev;
310
311 p += sizeof(*h);
312 end += h->length;
313
314 find_last_devid_on_pci(PCI_BUS(h->devid),
315 PCI_SLOT(h->devid),
316 PCI_FUNC(h->devid),
317 h->cap_ptr);
318
319 while (p < end) {
320 dev = (struct ivhd_entry *)p;
321 switch (dev->type) {
322 case IVHD_DEV_SELECT:
323 case IVHD_DEV_RANGE_END:
324 case IVHD_DEV_ALIAS:
325 case IVHD_DEV_EXT_SELECT:
b65233a9 326 /* all the above subfield types refer to device ids */
208ec8c9 327 update_last_devid(dev->devid);
3e8064ba
JR
328 break;
329 default:
330 break;
331 }
332 p += 0x04 << (*p >> 6);
333 }
334
335 WARN_ON(p != end);
336
337 return 0;
338}
339
b65233a9
JR
340/*
341 * Iterate over all IVHD entries in the ACPI table and find the highest device
342 * id which we need to handle. This is the first of three functions which parse
343 * the ACPI table. So we check the checksum here.
344 */
3e8064ba
JR
345static int __init find_last_devid_acpi(struct acpi_table_header *table)
346{
347 int i;
348 u8 checksum = 0, *p = (u8 *)table, *end = (u8 *)table;
349 struct ivhd_header *h;
350
351 /*
352 * Validate checksum here so we don't need to do it when
353 * we actually parse the table
354 */
355 for (i = 0; i < table->length; ++i)
356 checksum += p[i];
357 if (checksum != 0)
358 /* ACPI table corrupt */
359 return -ENODEV;
360
361 p += IVRS_HEADER_LENGTH;
362
363 end += table->length;
364 while (p < end) {
365 h = (struct ivhd_header *)p;
366 switch (h->type) {
367 case ACPI_IVHD_TYPE:
368 find_last_devid_from_ivhd(h);
369 break;
370 default:
371 break;
372 }
373 p += h->length;
374 }
375 WARN_ON(p != end);
376
377 return 0;
378}
379
b65233a9
JR
380/****************************************************************************
381 *
382 * The following functions belong the the code path which parses the ACPI table
383 * the second time. In this ACPI parsing iteration we allocate IOMMU specific
384 * data structures, initialize the device/alias/rlookup table and also
385 * basically initialize the hardware.
386 *
387 ****************************************************************************/
388
389/*
390 * Allocates the command buffer. This buffer is per AMD IOMMU. We can
391 * write commands to that buffer later and the IOMMU will execute them
392 * asynchronously
393 */
b36ca91e
JR
394static u8 * __init alloc_command_buffer(struct amd_iommu *iommu)
395{
d0312b21 396 u8 *cmd_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
b36ca91e 397 get_order(CMD_BUFFER_SIZE));
d0312b21 398 u64 entry;
b36ca91e
JR
399
400 if (cmd_buf == NULL)
401 return NULL;
402
403 iommu->cmd_buf_size = CMD_BUFFER_SIZE;
404
b36ca91e
JR
405 entry = (u64)virt_to_phys(cmd_buf);
406 entry |= MMIO_CMD_SIZE_512;
407 memcpy_toio(iommu->mmio_base + MMIO_CMD_BUF_OFFSET,
408 &entry, sizeof(entry));
409
410 iommu_feature_enable(iommu, CONTROL_CMDBUF_EN);
411
412 return cmd_buf;
413}
414
415static void __init free_command_buffer(struct amd_iommu *iommu)
416{
9a836de0 417 free_pages((unsigned long)iommu->cmd_buf, get_order(CMD_BUFFER_SIZE));
b36ca91e
JR
418}
419
b65233a9 420/* sets a specific bit in the device table entry. */
3566b778
JR
421static void set_dev_entry_bit(u16 devid, u8 bit)
422{
423 int i = (bit >> 5) & 0x07;
424 int _bit = bit & 0x1f;
425
426 amd_iommu_dev_table[devid].data[i] |= (1 << _bit);
427}
428
b65233a9
JR
429/*
430 * This function takes the device specific flags read from the ACPI
431 * table and sets up the device table entry with that information
432 */
3566b778
JR
433static void __init set_dev_entry_from_acpi(u16 devid, u32 flags, u32 ext_flags)
434{
435 if (flags & ACPI_DEVFLAG_INITPASS)
436 set_dev_entry_bit(devid, DEV_ENTRY_INIT_PASS);
437 if (flags & ACPI_DEVFLAG_EXTINT)
438 set_dev_entry_bit(devid, DEV_ENTRY_EINT_PASS);
439 if (flags & ACPI_DEVFLAG_NMI)
440 set_dev_entry_bit(devid, DEV_ENTRY_NMI_PASS);
441 if (flags & ACPI_DEVFLAG_SYSMGT1)
442 set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1);
443 if (flags & ACPI_DEVFLAG_SYSMGT2)
444 set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2);
445 if (flags & ACPI_DEVFLAG_LINT0)
446 set_dev_entry_bit(devid, DEV_ENTRY_LINT0_PASS);
447 if (flags & ACPI_DEVFLAG_LINT1)
448 set_dev_entry_bit(devid, DEV_ENTRY_LINT1_PASS);
449}
450
b65233a9 451/* Writes the specific IOMMU for a device into the rlookup table */
3566b778
JR
452static void __init set_iommu_for_device(struct amd_iommu *iommu, u16 devid)
453{
454 amd_iommu_rlookup_table[devid] = iommu;
455}
456
b65233a9
JR
457/*
458 * Reads the device exclusion range from ACPI and initialize IOMMU with
459 * it
460 */
3566b778
JR
461static void __init set_device_exclusion_range(u16 devid, struct ivmd_header *m)
462{
463 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
464
465 if (!(m->flags & IVMD_FLAG_EXCL_RANGE))
466 return;
467
468 if (iommu) {
b65233a9
JR
469 /*
470 * We only can configure exclusion ranges per IOMMU, not
471 * per device. But we can enable the exclusion range per
472 * device. This is done here
473 */
3566b778
JR
474 set_dev_entry_bit(m->devid, DEV_ENTRY_EX);
475 iommu->exclusion_start = m->range_start;
476 iommu->exclusion_length = m->range_length;
477 }
478}
479
b65233a9
JR
480/*
481 * This function reads some important data from the IOMMU PCI space and
482 * initializes the driver data structure with it. It reads the hardware
483 * capabilities and the first/last device entries
484 */
5d0c8e49
JR
485static void __init init_iommu_from_pci(struct amd_iommu *iommu)
486{
487 int bus = PCI_BUS(iommu->devid);
488 int dev = PCI_SLOT(iommu->devid);
489 int fn = PCI_FUNC(iommu->devid);
490 int cap_ptr = iommu->cap_ptr;
491 u32 range;
492
493 iommu->cap = read_pci_config(bus, dev, fn, cap_ptr+MMIO_CAP_HDR_OFFSET);
494
495 range = read_pci_config(bus, dev, fn, cap_ptr+MMIO_RANGE_OFFSET);
d591b0a3
JR
496 iommu->first_device = calc_devid(MMIO_GET_BUS(range),
497 MMIO_GET_FD(range));
498 iommu->last_device = calc_devid(MMIO_GET_BUS(range),
499 MMIO_GET_LD(range));
5d0c8e49
JR
500}
501
b65233a9
JR
502/*
503 * Takes a pointer to an AMD IOMMU entry in the ACPI table and
504 * initializes the hardware and our data structures with it.
505 */
5d0c8e49
JR
506static void __init init_iommu_from_acpi(struct amd_iommu *iommu,
507 struct ivhd_header *h)
508{
509 u8 *p = (u8 *)h;
510 u8 *end = p, flags = 0;
511 u16 dev_i, devid = 0, devid_start = 0, devid_to = 0;
512 u32 ext_flags = 0;
58a3bee5 513 bool alias = false;
5d0c8e49
JR
514 struct ivhd_entry *e;
515
516 /*
517 * First set the recommended feature enable bits from ACPI
518 * into the IOMMU control registers
519 */
520 h->flags & IVHD_FLAG_HT_TUN_EN ?
521 iommu_feature_enable(iommu, CONTROL_HT_TUN_EN) :
522 iommu_feature_disable(iommu, CONTROL_HT_TUN_EN);
523
524 h->flags & IVHD_FLAG_PASSPW_EN ?
525 iommu_feature_enable(iommu, CONTROL_PASSPW_EN) :
526 iommu_feature_disable(iommu, CONTROL_PASSPW_EN);
527
528 h->flags & IVHD_FLAG_RESPASSPW_EN ?
529 iommu_feature_enable(iommu, CONTROL_RESPASSPW_EN) :
530 iommu_feature_disable(iommu, CONTROL_RESPASSPW_EN);
531
532 h->flags & IVHD_FLAG_ISOC_EN ?
533 iommu_feature_enable(iommu, CONTROL_ISOC_EN) :
534 iommu_feature_disable(iommu, CONTROL_ISOC_EN);
535
536 /*
537 * make IOMMU memory accesses cache coherent
538 */
539 iommu_feature_enable(iommu, CONTROL_COHERENT_EN);
540
541 /*
542 * Done. Now parse the device entries
543 */
544 p += sizeof(struct ivhd_header);
545 end += h->length;
546
547 while (p < end) {
548 e = (struct ivhd_entry *)p;
549 switch (e->type) {
550 case IVHD_DEV_ALL:
551 for (dev_i = iommu->first_device;
552 dev_i <= iommu->last_device; ++dev_i)
553 set_dev_entry_from_acpi(dev_i, e->flags, 0);
554 break;
555 case IVHD_DEV_SELECT:
556 devid = e->devid;
557 set_dev_entry_from_acpi(devid, e->flags, 0);
558 break;
559 case IVHD_DEV_SELECT_RANGE_START:
560 devid_start = e->devid;
561 flags = e->flags;
562 ext_flags = 0;
58a3bee5 563 alias = false;
5d0c8e49
JR
564 break;
565 case IVHD_DEV_ALIAS:
566 devid = e->devid;
567 devid_to = e->ext >> 8;
568 set_dev_entry_from_acpi(devid, e->flags, 0);
569 amd_iommu_alias_table[devid] = devid_to;
570 break;
571 case IVHD_DEV_ALIAS_RANGE:
572 devid_start = e->devid;
573 flags = e->flags;
574 devid_to = e->ext >> 8;
575 ext_flags = 0;
58a3bee5 576 alias = true;
5d0c8e49
JR
577 break;
578 case IVHD_DEV_EXT_SELECT:
579 devid = e->devid;
580 set_dev_entry_from_acpi(devid, e->flags, e->ext);
581 break;
582 case IVHD_DEV_EXT_SELECT_RANGE:
583 devid_start = e->devid;
584 flags = e->flags;
585 ext_flags = e->ext;
58a3bee5 586 alias = false;
5d0c8e49
JR
587 break;
588 case IVHD_DEV_RANGE_END:
589 devid = e->devid;
590 for (dev_i = devid_start; dev_i <= devid; ++dev_i) {
591 if (alias)
592 amd_iommu_alias_table[dev_i] = devid_to;
593 set_dev_entry_from_acpi(
594 amd_iommu_alias_table[dev_i],
595 flags, ext_flags);
596 }
597 break;
598 default:
599 break;
600 }
601
602 p += 0x04 << (e->type >> 6);
603 }
604}
605
b65233a9 606/* Initializes the device->iommu mapping for the driver */
5d0c8e49
JR
607static int __init init_iommu_devices(struct amd_iommu *iommu)
608{
609 u16 i;
610
611 for (i = iommu->first_device; i <= iommu->last_device; ++i)
612 set_iommu_for_device(iommu, i);
613
614 return 0;
615}
616
e47d402d
JR
617static void __init free_iommu_one(struct amd_iommu *iommu)
618{
619 free_command_buffer(iommu);
620 iommu_unmap_mmio_space(iommu);
621}
622
623static void __init free_iommu_all(void)
624{
625 struct amd_iommu *iommu, *next;
626
627 list_for_each_entry_safe(iommu, next, &amd_iommu_list, list) {
628 list_del(&iommu->list);
629 free_iommu_one(iommu);
630 kfree(iommu);
631 }
632}
633
b65233a9
JR
634/*
635 * This function clues the initialization function for one IOMMU
636 * together and also allocates the command buffer and programs the
637 * hardware. It does NOT enable the IOMMU. This is done afterwards.
638 */
e47d402d
JR
639static int __init init_iommu_one(struct amd_iommu *iommu, struct ivhd_header *h)
640{
641 spin_lock_init(&iommu->lock);
642 list_add_tail(&iommu->list, &amd_iommu_list);
643
644 /*
645 * Copy data from ACPI table entry to the iommu struct
646 */
647 iommu->devid = h->devid;
648 iommu->cap_ptr = h->cap_ptr;
649 iommu->mmio_phys = h->mmio_phys;
650 iommu->mmio_base = iommu_map_mmio_space(h->mmio_phys);
651 if (!iommu->mmio_base)
652 return -ENOMEM;
653
654 iommu_set_device_table(iommu);
655 iommu->cmd_buf = alloc_command_buffer(iommu);
656 if (!iommu->cmd_buf)
657 return -ENOMEM;
658
659 init_iommu_from_pci(iommu);
660 init_iommu_from_acpi(iommu, h);
661 init_iommu_devices(iommu);
662
663 return 0;
664}
665
b65233a9
JR
666/*
667 * Iterates over all IOMMU entries in the ACPI table, allocates the
668 * IOMMU structure and initializes it with init_iommu_one()
669 */
e47d402d
JR
670static int __init init_iommu_all(struct acpi_table_header *table)
671{
672 u8 *p = (u8 *)table, *end = (u8 *)table;
673 struct ivhd_header *h;
674 struct amd_iommu *iommu;
675 int ret;
676
e47d402d
JR
677 end += table->length;
678 p += IVRS_HEADER_LENGTH;
679
680 while (p < end) {
681 h = (struct ivhd_header *)p;
682 switch (*p) {
683 case ACPI_IVHD_TYPE:
684 iommu = kzalloc(sizeof(struct amd_iommu), GFP_KERNEL);
685 if (iommu == NULL)
686 return -ENOMEM;
687 ret = init_iommu_one(iommu, h);
688 if (ret)
689 return ret;
690 break;
691 default:
692 break;
693 }
694 p += h->length;
695
696 }
697 WARN_ON(p != end);
698
699 return 0;
700}
701
b65233a9
JR
702/****************************************************************************
703 *
704 * The next functions belong to the third pass of parsing the ACPI
705 * table. In this last pass the memory mapping requirements are
706 * gathered (like exclusion and unity mapping reanges).
707 *
708 ****************************************************************************/
709
be2a022c
JR
710static void __init free_unity_maps(void)
711{
712 struct unity_map_entry *entry, *next;
713
714 list_for_each_entry_safe(entry, next, &amd_iommu_unity_map, list) {
715 list_del(&entry->list);
716 kfree(entry);
717 }
718}
719
b65233a9 720/* called when we find an exclusion range definition in ACPI */
be2a022c
JR
721static int __init init_exclusion_range(struct ivmd_header *m)
722{
723 int i;
724
725 switch (m->type) {
726 case ACPI_IVMD_TYPE:
727 set_device_exclusion_range(m->devid, m);
728 break;
729 case ACPI_IVMD_TYPE_ALL:
730 for (i = 0; i < amd_iommu_last_bdf; ++i)
731 set_device_exclusion_range(i, m);
732 break;
733 case ACPI_IVMD_TYPE_RANGE:
734 for (i = m->devid; i <= m->aux; ++i)
735 set_device_exclusion_range(i, m);
736 break;
737 default:
738 break;
739 }
740
741 return 0;
742}
743
b65233a9 744/* called for unity map ACPI definition */
be2a022c
JR
745static int __init init_unity_map_range(struct ivmd_header *m)
746{
747 struct unity_map_entry *e = 0;
748
749 e = kzalloc(sizeof(*e), GFP_KERNEL);
750 if (e == NULL)
751 return -ENOMEM;
752
753 switch (m->type) {
754 default:
755 case ACPI_IVMD_TYPE:
756 e->devid_start = e->devid_end = m->devid;
757 break;
758 case ACPI_IVMD_TYPE_ALL:
759 e->devid_start = 0;
760 e->devid_end = amd_iommu_last_bdf;
761 break;
762 case ACPI_IVMD_TYPE_RANGE:
763 e->devid_start = m->devid;
764 e->devid_end = m->aux;
765 break;
766 }
767 e->address_start = PAGE_ALIGN(m->range_start);
768 e->address_end = e->address_start + PAGE_ALIGN(m->range_length);
769 e->prot = m->flags >> 1;
770
771 list_add_tail(&e->list, &amd_iommu_unity_map);
772
773 return 0;
774}
775
b65233a9 776/* iterates over all memory definitions we find in the ACPI table */
be2a022c
JR
777static int __init init_memory_definitions(struct acpi_table_header *table)
778{
779 u8 *p = (u8 *)table, *end = (u8 *)table;
780 struct ivmd_header *m;
781
be2a022c
JR
782 end += table->length;
783 p += IVRS_HEADER_LENGTH;
784
785 while (p < end) {
786 m = (struct ivmd_header *)p;
787 if (m->flags & IVMD_FLAG_EXCL_RANGE)
788 init_exclusion_range(m);
789 else if (m->flags & IVMD_FLAG_UNITY_MAP)
790 init_unity_map_range(m);
791
792 p += m->length;
793 }
794
795 return 0;
796}
797
b65233a9
JR
798/*
799 * This function finally enables all IOMMUs found in the system after
800 * they have been initialized
801 */
8736197b
JR
802static void __init enable_iommus(void)
803{
804 struct amd_iommu *iommu;
805
806 list_for_each_entry(iommu, &amd_iommu_list, list) {
807 iommu_set_exclusion_range(iommu);
808 iommu_enable(iommu);
809 }
810}
811
7441e9cb
JR
812/*
813 * Suspend/Resume support
814 * disable suspend until real resume implemented
815 */
816
817static int amd_iommu_resume(struct sys_device *dev)
818{
819 return 0;
820}
821
822static int amd_iommu_suspend(struct sys_device *dev, pm_message_t state)
823{
824 return -EINVAL;
825}
826
827static struct sysdev_class amd_iommu_sysdev_class = {
828 .name = "amd_iommu",
829 .suspend = amd_iommu_suspend,
830 .resume = amd_iommu_resume,
831};
832
833static struct sys_device device_amd_iommu = {
834 .id = 0,
835 .cls = &amd_iommu_sysdev_class,
836};
837
b65233a9
JR
838/*
839 * This is the core init function for AMD IOMMU hardware in the system.
840 * This function is called from the generic x86 DMA layer initialization
841 * code.
842 *
843 * This function basically parses the ACPI table for AMD IOMMU (IVRS)
844 * three times:
845 *
846 * 1 pass) Find the highest PCI device id the driver has to handle.
847 * Upon this information the size of the data structures is
848 * determined that needs to be allocated.
849 *
850 * 2 pass) Initialize the data structures just allocated with the
851 * information in the ACPI table about available AMD IOMMUs
852 * in the system. It also maps the PCI devices in the
853 * system to specific IOMMUs
854 *
855 * 3 pass) After the basic data structures are allocated and
856 * initialized we update them with information about memory
857 * remapping requirements parsed out of the ACPI table in
858 * this last pass.
859 *
860 * After that the hardware is initialized and ready to go. In the last
861 * step we do some Linux specific things like registering the driver in
862 * the dma_ops interface and initializing the suspend/resume support
863 * functions. Finally it prints some information about AMD IOMMUs and
864 * the driver state and enables the hardware.
865 */
fe74c9cf
JR
866int __init amd_iommu_init(void)
867{
868 int i, ret = 0;
869
870
8b14518f 871 if (no_iommu) {
fe74c9cf
JR
872 printk(KERN_INFO "AMD IOMMU disabled by kernel command line\n");
873 return 0;
874 }
875
c1cbebee
JR
876 if (!amd_iommu_detected)
877 return -ENODEV;
878
fe74c9cf
JR
879 /*
880 * First parse ACPI tables to find the largest Bus/Dev/Func
881 * we need to handle. Upon this information the shared data
882 * structures for the IOMMUs in the system will be allocated
883 */
884 if (acpi_table_parse("IVRS", find_last_devid_acpi) != 0)
885 return -ENODEV;
886
c571484e
JR
887 dev_table_size = tbl_size(DEV_TABLE_ENTRY_SIZE);
888 alias_table_size = tbl_size(ALIAS_TABLE_ENTRY_SIZE);
889 rlookup_table_size = tbl_size(RLOOKUP_TABLE_ENTRY_SIZE);
fe74c9cf
JR
890
891 ret = -ENOMEM;
892
893 /* Device table - directly used by all IOMMUs */
5dc8bff0 894 amd_iommu_dev_table = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
fe74c9cf
JR
895 get_order(dev_table_size));
896 if (amd_iommu_dev_table == NULL)
897 goto out;
898
899 /*
900 * Alias table - map PCI Bus/Dev/Func to Bus/Dev/Func the
901 * IOMMU see for that device
902 */
903 amd_iommu_alias_table = (void *)__get_free_pages(GFP_KERNEL,
904 get_order(alias_table_size));
905 if (amd_iommu_alias_table == NULL)
906 goto free;
907
908 /* IOMMU rlookup table - find the IOMMU for a specific device */
909 amd_iommu_rlookup_table = (void *)__get_free_pages(GFP_KERNEL,
910 get_order(rlookup_table_size));
911 if (amd_iommu_rlookup_table == NULL)
912 goto free;
913
914 /*
915 * Protection Domain table - maps devices to protection domains
916 * This table has the same size as the rlookup_table
917 */
5dc8bff0 918 amd_iommu_pd_table = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
fe74c9cf
JR
919 get_order(rlookup_table_size));
920 if (amd_iommu_pd_table == NULL)
921 goto free;
922
5dc8bff0
JR
923 amd_iommu_pd_alloc_bitmap = (void *)__get_free_pages(
924 GFP_KERNEL | __GFP_ZERO,
fe74c9cf
JR
925 get_order(MAX_DOMAIN_ID/8));
926 if (amd_iommu_pd_alloc_bitmap == NULL)
927 goto free;
928
929 /*
5dc8bff0 930 * let all alias entries point to itself
fe74c9cf 931 */
fe74c9cf
JR
932 for (i = 0; i < amd_iommu_last_bdf; ++i)
933 amd_iommu_alias_table[i] = i;
934
fe74c9cf
JR
935 /*
936 * never allocate domain 0 because its used as the non-allocated and
937 * error value placeholder
938 */
939 amd_iommu_pd_alloc_bitmap[0] = 1;
940
941 /*
942 * now the data structures are allocated and basically initialized
943 * start the real acpi table scan
944 */
945 ret = -ENODEV;
946 if (acpi_table_parse("IVRS", init_iommu_all) != 0)
947 goto free;
948
949 if (acpi_table_parse("IVRS", init_memory_definitions) != 0)
950 goto free;
951
8736197b
JR
952 ret = amd_iommu_init_dma_ops();
953 if (ret)
954 goto free;
955
7441e9cb
JR
956 ret = sysdev_class_register(&amd_iommu_sysdev_class);
957 if (ret)
958 goto free;
959
960 ret = sysdev_register(&device_amd_iommu);
961 if (ret)
962 goto free;
963
8736197b
JR
964 enable_iommus();
965
fe74c9cf
JR
966 printk(KERN_INFO "AMD IOMMU: aperture size is %d MB\n",
967 (1 << (amd_iommu_aperture_order-20)));
968
969 printk(KERN_INFO "AMD IOMMU: device isolation ");
970 if (amd_iommu_isolate)
971 printk("enabled\n");
972 else
973 printk("disabled\n");
974
975out:
976 return ret;
977
978free:
9a836de0 979 free_pages((unsigned long)amd_iommu_pd_alloc_bitmap, 1);
fe74c9cf 980
9a836de0
JR
981 free_pages((unsigned long)amd_iommu_pd_table,
982 get_order(rlookup_table_size));
fe74c9cf 983
9a836de0
JR
984 free_pages((unsigned long)amd_iommu_rlookup_table,
985 get_order(rlookup_table_size));
fe74c9cf 986
9a836de0
JR
987 free_pages((unsigned long)amd_iommu_alias_table,
988 get_order(alias_table_size));
fe74c9cf 989
9a836de0
JR
990 free_pages((unsigned long)amd_iommu_dev_table,
991 get_order(dev_table_size));
fe74c9cf
JR
992
993 free_iommu_all();
994
995 free_unity_maps();
996
997 goto out;
998}
999
b65233a9
JR
1000/****************************************************************************
1001 *
1002 * Early detect code. This code runs at IOMMU detection time in the DMA
1003 * layer. It just looks if there is an IVRS ACPI table to detect AMD
1004 * IOMMUs
1005 *
1006 ****************************************************************************/
ae7877de
JR
1007static int __init early_amd_iommu_detect(struct acpi_table_header *table)
1008{
1009 return 0;
1010}
1011
1012void __init amd_iommu_detect(void)
1013{
299a140d 1014 if (swiotlb || no_iommu || (iommu_detected && !gart_iommu_aperture))
ae7877de
JR
1015 return;
1016
ae7877de
JR
1017 if (acpi_table_parse("IVRS", early_amd_iommu_detect) == 0) {
1018 iommu_detected = 1;
c1cbebee 1019 amd_iommu_detected = 1;
92af4e29 1020#ifdef CONFIG_GART_IOMMU
ae7877de
JR
1021 gart_iommu_aperture_disabled = 1;
1022 gart_iommu_aperture = 0;
92af4e29 1023#endif
ae7877de
JR
1024 }
1025}
1026
b65233a9
JR
1027/****************************************************************************
1028 *
1029 * Parsing functions for the AMD IOMMU specific kernel command line
1030 * options.
1031 *
1032 ****************************************************************************/
1033
918ad6c5
JR
1034static int __init parse_amd_iommu_options(char *str)
1035{
1036 for (; *str; ++str) {
918ad6c5
JR
1037 if (strcmp(str, "isolate") == 0)
1038 amd_iommu_isolate = 1;
1039 }
1040
1041 return 1;
1042}
1043
1044static int __init parse_amd_iommu_size_options(char *str)
1045{
0906372e
JR
1046 unsigned order = PAGE_SHIFT + get_order(memparse(str, &str));
1047
1048 if ((order > 24) && (order < 31))
1049 amd_iommu_aperture_order = order;
918ad6c5
JR
1050
1051 return 1;
1052}
1053
1054__setup("amd_iommu=", parse_amd_iommu_options);
1055__setup("amd_iommu_size=", parse_amd_iommu_size_options);