]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/kernel/cpu/common.c
Merge tag 'v5.2-rc5' into x86/asm, to refresh the branch
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kernel / cpu / common.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
2458e53f
KS
2/* cpu_feature_enabled() cannot be used this early */
3#define USE_EARLY_PGTABLE_L5
4
57c8a661 5#include <linux/memblock.h>
9766cdbc 6#include <linux/linkage.h>
f0fc4aff 7#include <linux/bitops.h>
9766cdbc 8#include <linux/kernel.h>
186f4360 9#include <linux/export.h>
9766cdbc
JSR
10#include <linux/percpu.h>
11#include <linux/string.h>
ee098e1a 12#include <linux/ctype.h>
1da177e4 13#include <linux/delay.h>
68e21be2 14#include <linux/sched/mm.h>
e6017571 15#include <linux/sched/clock.h>
9164bb4a 16#include <linux/sched/task.h>
9766cdbc 17#include <linux/init.h>
0f46efeb 18#include <linux/kprobes.h>
9766cdbc 19#include <linux/kgdb.h>
1da177e4 20#include <linux/smp.h>
9766cdbc 21#include <linux/io.h>
b51ef52d 22#include <linux/syscore_ops.h>
9766cdbc
JSR
23
24#include <asm/stackprotector.h>
cdd6c482 25#include <asm/perf_event.h>
1da177e4 26#include <asm/mmu_context.h>
49d859d7 27#include <asm/archrandom.h>
9766cdbc
JSR
28#include <asm/hypervisor.h>
29#include <asm/processor.h>
1e02ce4c 30#include <asm/tlbflush.h>
f649e938 31#include <asm/debugreg.h>
9766cdbc 32#include <asm/sections.h>
f40c3300 33#include <asm/vsyscall.h>
8bdbd962
AC
34#include <linux/topology.h>
35#include <linux/cpumask.h>
9766cdbc 36#include <asm/pgtable.h>
60063497 37#include <linux/atomic.h>
9766cdbc
JSR
38#include <asm/proto.h>
39#include <asm/setup.h>
40#include <asm/apic.h>
41#include <asm/desc.h>
78f7f1e5 42#include <asm/fpu/internal.h>
27b07da7 43#include <asm/mtrr.h>
0274f955 44#include <asm/hwcap2.h>
8bdbd962 45#include <linux/numa.h>
9766cdbc 46#include <asm/asm.h>
0f6ff2bc 47#include <asm/bugs.h>
9766cdbc 48#include <asm/cpu.h>
a03a3e28 49#include <asm/mce.h>
9766cdbc 50#include <asm/msr.h>
8d4a4300 51#include <asm/pat.h>
d288e1cf
FY
52#include <asm/microcode.h>
53#include <asm/microcode_intel.h>
fec9434a
DW
54#include <asm/intel-family.h>
55#include <asm/cpu_device_id.h>
e641f5f5
IM
56
57#ifdef CONFIG_X86_LOCAL_APIC
bdbcdd48 58#include <asm/uv/uv.h>
1da177e4
LT
59#endif
60
61#include "cpu.h"
62
0274f955
GA
63u32 elf_hwcap2 __read_mostly;
64
c2d1cec1 65/* all of these masks are initialized in setup_cpu_local_masks() */
c2d1cec1 66cpumask_var_t cpu_initialized_mask;
9766cdbc
JSR
67cpumask_var_t cpu_callout_mask;
68cpumask_var_t cpu_callin_mask;
c2d1cec1
MT
69
70/* representing cpus for which sibling maps can be computed */
71cpumask_var_t cpu_sibling_setup_mask;
72
f8b64d08
BP
73/* Number of siblings per CPU package */
74int smp_num_siblings = 1;
75EXPORT_SYMBOL(smp_num_siblings);
76
77/* Last level cache ID of each logical CPU */
78DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
79
2f2f52ba 80/* correctly size the local cpu masks */
4369f1fb 81void __init setup_cpu_local_masks(void)
2f2f52ba
BG
82{
83 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
84 alloc_bootmem_cpumask_var(&cpu_callin_mask);
85 alloc_bootmem_cpumask_var(&cpu_callout_mask);
86 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
87}
88
148f9bb8 89static void default_init(struct cpuinfo_x86 *c)
e8055139
OZ
90{
91#ifdef CONFIG_X86_64
27c13ece 92 cpu_detect_cache_sizes(c);
e8055139
OZ
93#else
94 /* Not much we can do here... */
95 /* Check if at least it has cpuid */
96 if (c->cpuid_level == -1) {
97 /* No cpuid. It must be an ancient CPU */
98 if (c->x86 == 4)
99 strcpy(c->x86_model_id, "486");
100 else if (c->x86 == 3)
101 strcpy(c->x86_model_id, "386");
102 }
103#endif
104}
105
148f9bb8 106static const struct cpu_dev default_cpu = {
e8055139
OZ
107 .c_init = default_init,
108 .c_vendor = "Unknown",
109 .c_x86_vendor = X86_VENDOR_UNKNOWN,
110};
111
148f9bb8 112static const struct cpu_dev *this_cpu = &default_cpu;
0a488a53 113
06deef89 114DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
950ad7ff 115#ifdef CONFIG_X86_64
06deef89
BG
116 /*
117 * We need valid kernel segments for data and code in long mode too
118 * IRET will check the segment types kkeil 2000/10/28
119 * Also sysret mandates a special GDT layout
120 *
9766cdbc 121 * TLS descriptors are currently at a different place compared to i386.
06deef89
BG
122 * Hopefully nobody expects them at a fixed place (Wine?)
123 */
1e5de182
AM
124 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
125 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
126 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
127 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
128 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
129 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
950ad7ff 130#else
1e5de182
AM
131 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
132 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
133 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
134 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
bf504672
RR
135 /*
136 * Segments used for calling PnP BIOS have byte granularity.
137 * They code segments and data segments have fixed 64k limits,
138 * the transfer segment sizes are set at run time.
139 */
6842ef0e 140 /* 32-bit code */
1e5de182 141 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
6842ef0e 142 /* 16-bit code */
1e5de182 143 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
6842ef0e 144 /* 16-bit data */
1e5de182 145 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
6842ef0e 146 /* 16-bit data */
1e5de182 147 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
6842ef0e 148 /* 16-bit data */
1e5de182 149 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
bf504672
RR
150 /*
151 * The APM segments have byte granularity and their bases
152 * are set at run time. All have 64k limits.
153 */
6842ef0e 154 /* 32-bit code */
1e5de182 155 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
bf504672 156 /* 16-bit code */
1e5de182 157 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
6842ef0e 158 /* data */
72c4d853 159 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
bf504672 160
1e5de182
AM
161 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
162 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
60a5317f 163 GDT_STACK_CANARY_INIT
950ad7ff 164#endif
06deef89 165} };
7a61d35d 166EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
ae1ee11b 167
8c3641e9 168static int __init x86_mpx_setup(char *s)
0c752a93 169{
8c3641e9 170 /* require an exact match without trailing characters */
2cd3949f
DH
171 if (strlen(s))
172 return 0;
0c752a93 173
8c3641e9
DH
174 /* do not emit a message if the feature is not present */
175 if (!boot_cpu_has(X86_FEATURE_MPX))
176 return 1;
6bad06b7 177
8c3641e9
DH
178 setup_clear_cpu_cap(X86_FEATURE_MPX);
179 pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
b6f42a4a
FY
180 return 1;
181}
8c3641e9 182__setup("nompx", x86_mpx_setup);
b6f42a4a 183
0790c9aa 184#ifdef CONFIG_X86_64
c7ad5ad2 185static int __init x86_nopcid_setup(char *s)
0790c9aa 186{
c7ad5ad2
AL
187 /* nopcid doesn't accept parameters */
188 if (s)
189 return -EINVAL;
0790c9aa
AL
190
191 /* do not emit a message if the feature is not present */
192 if (!boot_cpu_has(X86_FEATURE_PCID))
c7ad5ad2 193 return 0;
0790c9aa
AL
194
195 setup_clear_cpu_cap(X86_FEATURE_PCID);
196 pr_info("nopcid: PCID feature disabled\n");
c7ad5ad2 197 return 0;
0790c9aa 198}
c7ad5ad2 199early_param("nopcid", x86_nopcid_setup);
0790c9aa
AL
200#endif
201
d12a72b8
AL
202static int __init x86_noinvpcid_setup(char *s)
203{
204 /* noinvpcid doesn't accept parameters */
205 if (s)
206 return -EINVAL;
207
208 /* do not emit a message if the feature is not present */
209 if (!boot_cpu_has(X86_FEATURE_INVPCID))
210 return 0;
211
212 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
213 pr_info("noinvpcid: INVPCID feature disabled\n");
214 return 0;
215}
216early_param("noinvpcid", x86_noinvpcid_setup);
217
ba51dced 218#ifdef CONFIG_X86_32
148f9bb8
PG
219static int cachesize_override = -1;
220static int disable_x86_serial_nr = 1;
1da177e4 221
0a488a53
YL
222static int __init cachesize_setup(char *str)
223{
224 get_option(&str, &cachesize_override);
225 return 1;
226}
227__setup("cachesize=", cachesize_setup);
228
0a488a53
YL
229static int __init x86_sep_setup(char *s)
230{
231 setup_clear_cpu_cap(X86_FEATURE_SEP);
232 return 1;
233}
234__setup("nosep", x86_sep_setup);
235
236/* Standard macro to see if a specific flag is changeable */
237static inline int flag_is_changeable_p(u32 flag)
238{
239 u32 f1, f2;
240
94f6bac1
KH
241 /*
242 * Cyrix and IDT cpus allow disabling of CPUID
243 * so the code below may return different results
244 * when it is executed before and after enabling
245 * the CPUID. Add "volatile" to not allow gcc to
246 * optimize the subsequent calls to this function.
247 */
0f3fa48a
IM
248 asm volatile ("pushfl \n\t"
249 "pushfl \n\t"
250 "popl %0 \n\t"
251 "movl %0, %1 \n\t"
252 "xorl %2, %0 \n\t"
253 "pushl %0 \n\t"
254 "popfl \n\t"
255 "pushfl \n\t"
256 "popl %0 \n\t"
257 "popfl \n\t"
258
94f6bac1
KH
259 : "=&r" (f1), "=&r" (f2)
260 : "ir" (flag));
0a488a53
YL
261
262 return ((f1^f2) & flag) != 0;
263}
264
265/* Probe for the CPUID instruction */
148f9bb8 266int have_cpuid_p(void)
0a488a53
YL
267{
268 return flag_is_changeable_p(X86_EFLAGS_ID);
269}
270
148f9bb8 271static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
0a488a53 272{
0f3fa48a
IM
273 unsigned long lo, hi;
274
275 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
276 return;
277
278 /* Disable processor serial number: */
279
280 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
281 lo |= 0x200000;
282 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
283
1b74dde7 284 pr_notice("CPU serial number disabled.\n");
0f3fa48a
IM
285 clear_cpu_cap(c, X86_FEATURE_PN);
286
287 /* Disabling the serial number may affect the cpuid level */
288 c->cpuid_level = cpuid_eax(0);
0a488a53
YL
289}
290
291static int __init x86_serial_nr_setup(char *s)
292{
293 disable_x86_serial_nr = 0;
294 return 1;
295}
296__setup("serialnumber", x86_serial_nr_setup);
ba51dced 297#else
102bbe3a
YL
298static inline int flag_is_changeable_p(u32 flag)
299{
300 return 1;
301}
102bbe3a
YL
302static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
303{
304}
ba51dced 305#endif
0a488a53 306
de5397ad
FY
307static __init int setup_disable_smep(char *arg)
308{
b2cc2a07 309 setup_clear_cpu_cap(X86_FEATURE_SMEP);
0f6ff2bc
DH
310 /* Check for things that depend on SMEP being enabled: */
311 check_mpx_erratum(&boot_cpu_data);
de5397ad
FY
312 return 1;
313}
314__setup("nosmep", setup_disable_smep);
315
b2cc2a07 316static __always_inline void setup_smep(struct cpuinfo_x86 *c)
de5397ad 317{
b2cc2a07 318 if (cpu_has(c, X86_FEATURE_SMEP))
375074cc 319 cr4_set_bits(X86_CR4_SMEP);
de5397ad
FY
320}
321
52b6179a
PA
322static __init int setup_disable_smap(char *arg)
323{
b2cc2a07 324 setup_clear_cpu_cap(X86_FEATURE_SMAP);
52b6179a
PA
325 return 1;
326}
327__setup("nosmap", setup_disable_smap);
328
b2cc2a07
PA
329static __always_inline void setup_smap(struct cpuinfo_x86 *c)
330{
581b7f15 331 unsigned long eflags = native_save_fl();
b2cc2a07
PA
332
333 /* This should have been cleared long ago */
b2cc2a07
PA
334 BUG_ON(eflags & X86_EFLAGS_AC);
335
03bbd596
PA
336 if (cpu_has(c, X86_FEATURE_SMAP)) {
337#ifdef CONFIG_X86_SMAP
375074cc 338 cr4_set_bits(X86_CR4_SMAP);
03bbd596 339#else
375074cc 340 cr4_clear_bits(X86_CR4_SMAP);
03bbd596
PA
341#endif
342 }
de5397ad
FY
343}
344
aa35f896
RN
345static __always_inline void setup_umip(struct cpuinfo_x86 *c)
346{
347 /* Check the boot processor, plus build option for UMIP. */
348 if (!cpu_feature_enabled(X86_FEATURE_UMIP))
349 goto out;
350
351 /* Check the current processor's cpuid bits. */
352 if (!cpu_has(c, X86_FEATURE_UMIP))
353 goto out;
354
355 cr4_set_bits(X86_CR4_UMIP);
356
438cbf88 357 pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
770c7755 358
aa35f896
RN
359 return;
360
361out:
362 /*
363 * Make sure UMIP is disabled in case it was enabled in a
364 * previous boot (e.g., via kexec).
365 */
366 cr4_clear_bits(X86_CR4_UMIP);
367}
368
06976945
DH
369/*
370 * Protection Keys are not available in 32-bit mode.
371 */
372static bool pku_disabled;
373
374static __always_inline void setup_pku(struct cpuinfo_x86 *c)
375{
a5eff725
SAS
376 struct pkru_state *pk;
377
e8df1a95
DH
378 /* check the boot processor, plus compile options for PKU: */
379 if (!cpu_feature_enabled(X86_FEATURE_PKU))
380 return;
381 /* checks the actual processor's cpuid bits: */
06976945
DH
382 if (!cpu_has(c, X86_FEATURE_PKU))
383 return;
384 if (pku_disabled)
385 return;
386
387 cr4_set_bits(X86_CR4_PKE);
a5eff725
SAS
388 pk = get_xsave_addr(&init_fpstate.xsave, XFEATURE_PKRU);
389 if (pk)
390 pk->pkru = init_pkru_value;
06976945
DH
391 /*
392 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
393 * cpuid bit to be set. We need to ensure that we
394 * update that bit in this CPU's "cpu_info".
395 */
396 get_cpu_cap(c);
397}
398
399#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
400static __init int setup_disable_pku(char *arg)
401{
402 /*
403 * Do not clear the X86_FEATURE_PKU bit. All of the
404 * runtime checks are against OSPKE so clearing the
405 * bit does nothing.
406 *
407 * This way, we will see "pku" in cpuinfo, but not
408 * "ospke", which is exactly what we want. It shows
409 * that the CPU has PKU, but the OS has not enabled it.
410 * This happens to be exactly how a system would look
411 * if we disabled the config option.
412 */
413 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
414 pku_disabled = true;
415 return 1;
416}
417__setup("nopku", setup_disable_pku);
418#endif /* CONFIG_X86_64 */
419
b38b0665
PA
420/*
421 * Some CPU features depend on higher CPUID levels, which may not always
422 * be available due to CPUID level capping or broken virtualization
423 * software. Add those features to this table to auto-disable them.
424 */
425struct cpuid_dependent_feature {
426 u32 feature;
427 u32 level;
428};
0f3fa48a 429
148f9bb8 430static const struct cpuid_dependent_feature
b38b0665
PA
431cpuid_dependent_features[] = {
432 { X86_FEATURE_MWAIT, 0x00000005 },
433 { X86_FEATURE_DCA, 0x00000009 },
434 { X86_FEATURE_XSAVE, 0x0000000d },
435 { 0, 0 }
436};
437
148f9bb8 438static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
b38b0665
PA
439{
440 const struct cpuid_dependent_feature *df;
9766cdbc 441
b38b0665 442 for (df = cpuid_dependent_features; df->feature; df++) {
0f3fa48a
IM
443
444 if (!cpu_has(c, df->feature))
445 continue;
b38b0665
PA
446 /*
447 * Note: cpuid_level is set to -1 if unavailable, but
448 * extended_extended_level is set to 0 if unavailable
449 * and the legitimate extended levels are all negative
450 * when signed; hence the weird messing around with
451 * signs here...
452 */
0f3fa48a 453 if (!((s32)df->level < 0 ?
f6db44df 454 (u32)df->level > (u32)c->extended_cpuid_level :
0f3fa48a
IM
455 (s32)df->level > (s32)c->cpuid_level))
456 continue;
457
458 clear_cpu_cap(c, df->feature);
459 if (!warn)
460 continue;
461
1b74dde7
CY
462 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
463 x86_cap_flag(df->feature), df->level);
b38b0665 464 }
f6db44df 465}
b38b0665 466
102bbe3a
YL
467/*
468 * Naming convention should be: <Name> [(<Codename>)]
469 * This table only is used unless init_<vendor>() below doesn't set it;
0f3fa48a
IM
470 * in particular, if CPUID levels 0x80000002..4 are supported, this
471 * isn't used
102bbe3a
YL
472 */
473
474/* Look up CPU names by table lookup. */
148f9bb8 475static const char *table_lookup_model(struct cpuinfo_x86 *c)
102bbe3a 476{
09dc68d9
JB
477#ifdef CONFIG_X86_32
478 const struct legacy_cpu_model_info *info;
102bbe3a
YL
479
480 if (c->x86_model >= 16)
481 return NULL; /* Range check */
482
483 if (!this_cpu)
484 return NULL;
485
09dc68d9 486 info = this_cpu->legacy_models;
102bbe3a 487
09dc68d9 488 while (info->family) {
102bbe3a
YL
489 if (info->family == c->x86)
490 return info->model_names[c->x86_model];
491 info++;
492 }
09dc68d9 493#endif
102bbe3a
YL
494 return NULL; /* Not found */
495}
496
6cbd2171
TG
497__u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
498__u32 cpu_caps_set[NCAPINTS + NBUGINTS];
7d851c8d 499
11e3a840
JF
500void load_percpu_segment(int cpu)
501{
502#ifdef CONFIG_X86_32
503 loadsegment(fs, __KERNEL_PERCPU);
504#else
45e876f7 505 __loadsegment_simple(gs, 0);
35060ed6 506 wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
11e3a840 507#endif
60a5317f 508 load_stack_canary_segment();
11e3a840
JF
509}
510
72f5e08d
AL
511#ifdef CONFIG_X86_32
512/* The 32-bit entry code needs to find cpu_entry_area. */
513DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
514#endif
515
45fc8757
TG
516/* Load the original GDT from the per-cpu structure */
517void load_direct_gdt(int cpu)
518{
519 struct desc_ptr gdt_descr;
520
521 gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
522 gdt_descr.size = GDT_SIZE - 1;
523 load_gdt(&gdt_descr);
524}
525EXPORT_SYMBOL_GPL(load_direct_gdt);
526
69218e47
TG
527/* Load a fixmap remapping of the per-cpu GDT */
528void load_fixmap_gdt(int cpu)
529{
530 struct desc_ptr gdt_descr;
531
532 gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
533 gdt_descr.size = GDT_SIZE - 1;
534 load_gdt(&gdt_descr);
535}
45fc8757 536EXPORT_SYMBOL_GPL(load_fixmap_gdt);
69218e47 537
0f3fa48a
IM
538/*
539 * Current gdt points %fs at the "master" per-cpu area: after this,
540 * it's on the real one.
541 */
552be871 542void switch_to_new_gdt(int cpu)
9d31d35b 543{
45fc8757
TG
544 /* Load the original GDT */
545 load_direct_gdt(cpu);
2697fbd5 546 /* Reload the per-cpu base */
11e3a840 547 load_percpu_segment(cpu);
9d31d35b
YL
548}
549
148f9bb8 550static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
1da177e4 551
148f9bb8 552static void get_model_name(struct cpuinfo_x86 *c)
1da177e4
LT
553{
554 unsigned int *v;
ee098e1a 555 char *p, *q, *s;
1da177e4 556
3da99c97 557 if (c->extended_cpuid_level < 0x80000004)
1b05d60d 558 return;
1da177e4 559
0f3fa48a 560 v = (unsigned int *)c->x86_model_id;
1da177e4
LT
561 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
562 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
563 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
564 c->x86_model_id[48] = 0;
565
ee098e1a
BP
566 /* Trim whitespace */
567 p = q = s = &c->x86_model_id[0];
568
569 while (*p == ' ')
570 p++;
571
572 while (*p) {
573 /* Note the last non-whitespace index */
574 if (!isspace(*p))
575 s = q;
576
577 *q++ = *p++;
578 }
579
580 *(s + 1) = '\0';
1da177e4
LT
581}
582
9305bd6c 583void detect_num_cpu_cores(struct cpuinfo_x86 *c)
2cc61be6
DW
584{
585 unsigned int eax, ebx, ecx, edx;
586
9305bd6c 587 c->x86_max_cores = 1;
2cc61be6 588 if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
9305bd6c 589 return;
2cc61be6
DW
590
591 cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
592 if (eax & 0x1f)
9305bd6c 593 c->x86_max_cores = (eax >> 26) + 1;
2cc61be6
DW
594}
595
148f9bb8 596void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
1da177e4 597{
9d31d35b 598 unsigned int n, dummy, ebx, ecx, edx, l2size;
1da177e4 599
3da99c97 600 n = c->extended_cpuid_level;
1da177e4
LT
601
602 if (n >= 0x80000005) {
9d31d35b 603 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
9d31d35b 604 c->x86_cache_size = (ecx>>24) + (edx>>24);
140fc727
YL
605#ifdef CONFIG_X86_64
606 /* On K8 L1 TLB is inclusive, so don't count it */
607 c->x86_tlbsize = 0;
608#endif
1da177e4
LT
609 }
610
611 if (n < 0x80000006) /* Some chips just has a large L1. */
612 return;
613
0a488a53 614 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
1da177e4 615 l2size = ecx >> 16;
34048c9e 616
140fc727
YL
617#ifdef CONFIG_X86_64
618 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
619#else
1da177e4 620 /* do processor-specific cache resizing */
09dc68d9
JB
621 if (this_cpu->legacy_cache_size)
622 l2size = this_cpu->legacy_cache_size(c, l2size);
1da177e4
LT
623
624 /* Allow user to override all this if necessary. */
625 if (cachesize_override != -1)
626 l2size = cachesize_override;
627
34048c9e 628 if (l2size == 0)
1da177e4 629 return; /* Again, no L2 cache is possible */
140fc727 630#endif
1da177e4
LT
631
632 c->x86_cache_size = l2size;
1da177e4
LT
633}
634
e0ba94f1
AS
635u16 __read_mostly tlb_lli_4k[NR_INFO];
636u16 __read_mostly tlb_lli_2m[NR_INFO];
637u16 __read_mostly tlb_lli_4m[NR_INFO];
638u16 __read_mostly tlb_lld_4k[NR_INFO];
639u16 __read_mostly tlb_lld_2m[NR_INFO];
640u16 __read_mostly tlb_lld_4m[NR_INFO];
dd360393 641u16 __read_mostly tlb_lld_1g[NR_INFO];
e0ba94f1 642
f94fe119 643static void cpu_detect_tlb(struct cpuinfo_x86 *c)
e0ba94f1
AS
644{
645 if (this_cpu->c_detect_tlb)
646 this_cpu->c_detect_tlb(c);
647
f94fe119 648 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
e0ba94f1 649 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
f94fe119
SH
650 tlb_lli_4m[ENTRIES]);
651
652 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
653 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
654 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
e0ba94f1
AS
655}
656
545401f4 657int detect_ht_early(struct cpuinfo_x86 *c)
1da177e4 658{
c8e56d20 659#ifdef CONFIG_SMP
0a488a53 660 u32 eax, ebx, ecx, edx;
1da177e4 661
0a488a53 662 if (!cpu_has(c, X86_FEATURE_HT))
545401f4 663 return -1;
1da177e4 664
0a488a53 665 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
545401f4 666 return -1;
1da177e4 667
1cd78776 668 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
545401f4 669 return -1;
1da177e4 670
0a488a53 671 cpuid(1, &eax, &ebx, &ecx, &edx);
1da177e4 672
9d31d35b 673 smp_num_siblings = (ebx & 0xff0000) >> 16;
545401f4 674 if (smp_num_siblings == 1)
1b74dde7 675 pr_info_once("CPU0: Hyper-Threading is disabled\n");
545401f4
TG
676#endif
677 return 0;
678}
9d31d35b 679
545401f4
TG
680void detect_ht(struct cpuinfo_x86 *c)
681{
682#ifdef CONFIG_SMP
683 int index_msb, core_bits;
55e6d279 684
545401f4 685 if (detect_ht_early(c) < 0)
55e6d279 686 return;
9d31d35b 687
0f3fa48a
IM
688 index_msb = get_count_order(smp_num_siblings);
689 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
9d31d35b 690
0f3fa48a 691 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
9d31d35b 692
0f3fa48a 693 index_msb = get_count_order(smp_num_siblings);
9d31d35b 694
0f3fa48a 695 core_bits = get_count_order(c->x86_max_cores);
9d31d35b 696
0f3fa48a
IM
697 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
698 ((1 << core_bits) - 1);
9d31d35b 699#endif
97e4db7c 700}
1da177e4 701
148f9bb8 702static void get_cpu_vendor(struct cpuinfo_x86 *c)
1da177e4
LT
703{
704 char *v = c->x86_vendor_id;
0f3fa48a 705 int i;
1da177e4
LT
706
707 for (i = 0; i < X86_VENDOR_NUM; i++) {
10a434fc
YL
708 if (!cpu_devs[i])
709 break;
710
711 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
712 (cpu_devs[i]->c_ident[1] &&
713 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
0f3fa48a 714
10a434fc
YL
715 this_cpu = cpu_devs[i];
716 c->x86_vendor = this_cpu->c_x86_vendor;
717 return;
1da177e4
LT
718 }
719 }
10a434fc 720
1b74dde7
CY
721 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
722 "CPU: Your system may be unstable.\n", v);
10a434fc 723
fe38d855
CE
724 c->x86_vendor = X86_VENDOR_UNKNOWN;
725 this_cpu = &default_cpu;
1da177e4
LT
726}
727
148f9bb8 728void cpu_detect(struct cpuinfo_x86 *c)
1da177e4 729{
1da177e4 730 /* Get vendor name */
4a148513
HH
731 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
732 (unsigned int *)&c->x86_vendor_id[0],
733 (unsigned int *)&c->x86_vendor_id[8],
734 (unsigned int *)&c->x86_vendor_id[4]);
1da177e4 735
1da177e4 736 c->x86 = 4;
9d31d35b 737 /* Intel-defined flags: level 0x00000001 */
1da177e4
LT
738 if (c->cpuid_level >= 0x00000001) {
739 u32 junk, tfms, cap0, misc;
0f3fa48a 740
1da177e4 741 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
99f925ce
BP
742 c->x86 = x86_family(tfms);
743 c->x86_model = x86_model(tfms);
b399151c 744 c->x86_stepping = x86_stepping(tfms);
0f3fa48a 745
d4387bd3 746 if (cap0 & (1<<19)) {
d4387bd3 747 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
9d31d35b 748 c->x86_cache_alignment = c->x86_clflush_size;
d4387bd3 749 }
1da177e4 750 }
1da177e4 751}
3da99c97 752
8bf1ebca
AL
753static void apply_forced_caps(struct cpuinfo_x86 *c)
754{
755 int i;
756
6cbd2171 757 for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
8bf1ebca
AL
758 c->x86_capability[i] &= ~cpu_caps_cleared[i];
759 c->x86_capability[i] |= cpu_caps_set[i];
760 }
761}
762
7fcae111
DW
763static void init_speculation_control(struct cpuinfo_x86 *c)
764{
765 /*
766 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
767 * and they also have a different bit for STIBP support. Also,
768 * a hypervisor might have set the individual AMD bits even on
769 * Intel CPUs, for finer-grained selection of what's available.
7fcae111
DW
770 */
771 if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
772 set_cpu_cap(c, X86_FEATURE_IBRS);
773 set_cpu_cap(c, X86_FEATURE_IBPB);
7eb8956a 774 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
7fcae111 775 }
e7c587da 776
7fcae111
DW
777 if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
778 set_cpu_cap(c, X86_FEATURE_STIBP);
e7c587da 779
bc226f07
TL
780 if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
781 cpu_has(c, X86_FEATURE_VIRT_SSBD))
52817587
TG
782 set_cpu_cap(c, X86_FEATURE_SSBD);
783
7eb8956a 784 if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
e7c587da 785 set_cpu_cap(c, X86_FEATURE_IBRS);
7eb8956a
TG
786 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
787 }
e7c587da
BP
788
789 if (cpu_has(c, X86_FEATURE_AMD_IBPB))
790 set_cpu_cap(c, X86_FEATURE_IBPB);
791
7eb8956a 792 if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
e7c587da 793 set_cpu_cap(c, X86_FEATURE_STIBP);
7eb8956a
TG
794 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
795 }
6ac2f49e
KRW
796
797 if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
798 set_cpu_cap(c, X86_FEATURE_SSBD);
799 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
800 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
801 }
7fcae111
DW
802}
803
148f9bb8 804void get_cpu_cap(struct cpuinfo_x86 *c)
093af8d7 805{
39c06df4 806 u32 eax, ebx, ecx, edx;
093af8d7 807
3da99c97
YL
808 /* Intel-defined flags: level 0x00000001 */
809 if (c->cpuid_level >= 0x00000001) {
39c06df4 810 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
0f3fa48a 811
39c06df4
BP
812 c->x86_capability[CPUID_1_ECX] = ecx;
813 c->x86_capability[CPUID_1_EDX] = edx;
3da99c97 814 }
093af8d7 815
3df8d920
AL
816 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
817 if (c->cpuid_level >= 0x00000006)
818 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
819
bdc802dc
PA
820 /* Additional Intel-defined flags: level 0x00000007 */
821 if (c->cpuid_level >= 0x00000007) {
bdc802dc 822 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
39c06df4 823 c->x86_capability[CPUID_7_0_EBX] = ebx;
dfb4a70f 824 c->x86_capability[CPUID_7_ECX] = ecx;
95ca0ee8 825 c->x86_capability[CPUID_7_EDX] = edx;
bdc802dc
PA
826 }
827
6229ad27
FY
828 /* Extended state features: level 0x0000000d */
829 if (c->cpuid_level >= 0x0000000d) {
6229ad27
FY
830 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
831
39c06df4 832 c->x86_capability[CPUID_D_1_EAX] = eax;
6229ad27
FY
833 }
834
cbc82b17
PWJ
835 /* Additional Intel-defined flags: level 0x0000000F */
836 if (c->cpuid_level >= 0x0000000F) {
cbc82b17
PWJ
837
838 /* QoS sub-leaf, EAX=0Fh, ECX=0 */
839 cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
39c06df4
BP
840 c->x86_capability[CPUID_F_0_EDX] = edx;
841
cbc82b17
PWJ
842 if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
843 /* will be overridden if occupancy monitoring exists */
844 c->x86_cache_max_rmid = ebx;
845
846 /* QoS sub-leaf, EAX=0Fh, ECX=1 */
847 cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
39c06df4
BP
848 c->x86_capability[CPUID_F_1_EDX] = edx;
849
33c3cc7a
VS
850 if ((cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) ||
851 ((cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL)) ||
852 (cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)))) {
cbc82b17
PWJ
853 c->x86_cache_max_rmid = ecx;
854 c->x86_cache_occ_scale = ebx;
855 }
856 } else {
857 c->x86_cache_max_rmid = -1;
858 c->x86_cache_occ_scale = -1;
859 }
860 }
861
3da99c97 862 /* AMD-defined flags: level 0x80000001 */
39c06df4
BP
863 eax = cpuid_eax(0x80000000);
864 c->extended_cpuid_level = eax;
865
866 if ((eax & 0xffff0000) == 0x80000000) {
867 if (eax >= 0x80000001) {
868 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
0f3fa48a 869
39c06df4
BP
870 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
871 c->x86_capability[CPUID_8000_0001_EDX] = edx;
093af8d7 872 }
093af8d7 873 }
093af8d7 874
71faad43
YG
875 if (c->extended_cpuid_level >= 0x80000007) {
876 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
877
878 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
879 c->x86_power = edx;
880 }
881
c65732e4
TG
882 if (c->extended_cpuid_level >= 0x80000008) {
883 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
884 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
885 }
886
2ccd71f1 887 if (c->extended_cpuid_level >= 0x8000000a)
39c06df4 888 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
093af8d7 889
1dedefd1 890 init_scattered_cpuid_features(c);
7fcae111 891 init_speculation_control(c);
60d34501
AL
892
893 /*
894 * Clear/Set all flags overridden by options, after probe.
895 * This needs to happen each time we re-probe, which may happen
896 * several times during CPU initialization.
897 */
898 apply_forced_caps(c);
093af8d7 899}
1da177e4 900
405c018a 901void get_cpu_address_sizes(struct cpuinfo_x86 *c)
d94a155c
KS
902{
903 u32 eax, ebx, ecx, edx;
904
905 if (c->extended_cpuid_level >= 0x80000008) {
906 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
907
908 c->x86_virt_bits = (eax >> 8) & 0xff;
909 c->x86_phys_bits = eax & 0xff;
d94a155c
KS
910 }
911#ifdef CONFIG_X86_32
912 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
913 c->x86_phys_bits = 36;
914#endif
cc51e542 915 c->x86_cache_bits = c->x86_phys_bits;
d94a155c
KS
916}
917
148f9bb8 918static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
aef93c8b
YL
919{
920#ifdef CONFIG_X86_32
921 int i;
922
923 /*
924 * First of all, decide if this is a 486 or higher
925 * It's a 486 if we can modify the AC flag
926 */
927 if (flag_is_changeable_p(X86_EFLAGS_AC))
928 c->x86 = 4;
929 else
930 c->x86 = 3;
931
932 for (i = 0; i < X86_VENDOR_NUM; i++)
933 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
934 c->x86_vendor_id[0] = 0;
935 cpu_devs[i]->c_identify(c);
936 if (c->x86_vendor_id[0]) {
937 get_cpu_vendor(c);
938 break;
939 }
940 }
941#endif
942}
943
36ad3513
TG
944#define NO_SPECULATION BIT(0)
945#define NO_MELTDOWN BIT(1)
946#define NO_SSB BIT(2)
947#define NO_L1TF BIT(3)
ed5194c2 948#define NO_MDS BIT(4)
e261f209 949#define MSBDS_ONLY BIT(5)
36ad3513
TG
950
951#define VULNWL(_vendor, _family, _model, _whitelist) \
952 { X86_VENDOR_##_vendor, _family, _model, X86_FEATURE_ANY, _whitelist }
953
954#define VULNWL_INTEL(model, whitelist) \
955 VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
956
957#define VULNWL_AMD(family, whitelist) \
958 VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
959
960#define VULNWL_HYGON(family, whitelist) \
961 VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
962
963static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
964 VULNWL(ANY, 4, X86_MODEL_ANY, NO_SPECULATION),
965 VULNWL(CENTAUR, 5, X86_MODEL_ANY, NO_SPECULATION),
966 VULNWL(INTEL, 5, X86_MODEL_ANY, NO_SPECULATION),
967 VULNWL(NSC, 5, X86_MODEL_ANY, NO_SPECULATION),
968
ed5194c2 969 /* Intel Family 6 */
36ad3513
TG
970 VULNWL_INTEL(ATOM_SALTWELL, NO_SPECULATION),
971 VULNWL_INTEL(ATOM_SALTWELL_TABLET, NO_SPECULATION),
972 VULNWL_INTEL(ATOM_SALTWELL_MID, NO_SPECULATION),
973 VULNWL_INTEL(ATOM_BONNELL, NO_SPECULATION),
974 VULNWL_INTEL(ATOM_BONNELL_MID, NO_SPECULATION),
975
e261f209
TG
976 VULNWL_INTEL(ATOM_SILVERMONT, NO_SSB | NO_L1TF | MSBDS_ONLY),
977 VULNWL_INTEL(ATOM_SILVERMONT_X, NO_SSB | NO_L1TF | MSBDS_ONLY),
978 VULNWL_INTEL(ATOM_SILVERMONT_MID, NO_SSB | NO_L1TF | MSBDS_ONLY),
979 VULNWL_INTEL(ATOM_AIRMONT, NO_SSB | NO_L1TF | MSBDS_ONLY),
980 VULNWL_INTEL(XEON_PHI_KNL, NO_SSB | NO_L1TF | MSBDS_ONLY),
981 VULNWL_INTEL(XEON_PHI_KNM, NO_SSB | NO_L1TF | MSBDS_ONLY),
36ad3513
TG
982
983 VULNWL_INTEL(CORE_YONAH, NO_SSB),
984
e261f209 985 VULNWL_INTEL(ATOM_AIRMONT_MID, NO_L1TF | MSBDS_ONLY),
36ad3513 986
ed5194c2
AK
987 VULNWL_INTEL(ATOM_GOLDMONT, NO_MDS | NO_L1TF),
988 VULNWL_INTEL(ATOM_GOLDMONT_X, NO_MDS | NO_L1TF),
989 VULNWL_INTEL(ATOM_GOLDMONT_PLUS, NO_MDS | NO_L1TF),
990
991 /* AMD Family 0xf - 0x12 */
992 VULNWL_AMD(0x0f, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS),
993 VULNWL_AMD(0x10, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS),
994 VULNWL_AMD(0x11, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS),
995 VULNWL_AMD(0x12, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS),
36ad3513
TG
996
997 /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
ed5194c2
AK
998 VULNWL_AMD(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS),
999 VULNWL_HYGON(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS),
fec9434a
DW
1000 {}
1001};
1002
36ad3513
TG
1003static bool __init cpu_matches(unsigned long which)
1004{
1005 const struct x86_cpu_id *m = x86_match_cpu(cpu_vuln_whitelist);
c456442c 1006
36ad3513
TG
1007 return m && !!(m->driver_data & which);
1008}
17dbca11 1009
4a28bfe3 1010static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
fec9434a
DW
1011{
1012 u64 ia32_cap = 0;
1013
36ad3513 1014 if (cpu_matches(NO_SPECULATION))
8ecc4979
DB
1015 return;
1016
1017 setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1018 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1019
77243971
KRW
1020 if (cpu_has(c, X86_FEATURE_ARCH_CAPABILITIES))
1021 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1022
36ad3513 1023 if (!cpu_matches(NO_SSB) && !(ia32_cap & ARCH_CAP_SSB_NO) &&
24809860 1024 !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
c456442c
KRW
1025 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1026
706d5168
SP
1027 if (ia32_cap & ARCH_CAP_IBRS_ALL)
1028 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1029
e261f209 1030 if (!cpu_matches(NO_MDS) && !(ia32_cap & ARCH_CAP_MDS_NO)) {
ed5194c2 1031 setup_force_cpu_bug(X86_BUG_MDS);
e261f209
TG
1032 if (cpu_matches(MSBDS_ONLY))
1033 setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1034 }
ed5194c2 1035
36ad3513 1036 if (cpu_matches(NO_MELTDOWN))
4a28bfe3 1037 return;
fec9434a 1038
fec9434a
DW
1039 /* Rogue Data Cache Load? No! */
1040 if (ia32_cap & ARCH_CAP_RDCL_NO)
4a28bfe3 1041 return;
fec9434a 1042
4a28bfe3 1043 setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
17dbca11 1044
36ad3513 1045 if (cpu_matches(NO_L1TF))
17dbca11
AK
1046 return;
1047
1048 setup_force_cpu_bug(X86_BUG_L1TF);
fec9434a
DW
1049}
1050
8990cac6
PT
1051/*
1052 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1053 * unfortunately, that's not true in practice because of early VIA
1054 * chips and (more importantly) broken virtualizers that are not easy
1055 * to detect. In the latter case it doesn't even *fail* reliably, so
1056 * probing for it doesn't even work. Disable it completely on 32-bit
1057 * unless we can find a reliable way to detect all the broken cases.
1058 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1059 */
9b3661cd 1060static void detect_nopl(void)
8990cac6
PT
1061{
1062#ifdef CONFIG_X86_32
9b3661cd 1063 setup_clear_cpu_cap(X86_FEATURE_NOPL);
8990cac6 1064#else
9b3661cd 1065 setup_force_cpu_cap(X86_FEATURE_NOPL);
8990cac6
PT
1066#endif
1067}
1068
34048c9e
PC
1069/*
1070 * Do minimum CPU detection early.
1071 * Fields really needed: vendor, cpuid_level, family, model, mask,
1072 * cache alignment.
1073 * The others are not touched to avoid unwanted side effects.
1074 *
a1652bb8
JD
1075 * WARNING: this function is only called on the boot CPU. Don't add code
1076 * here that is supposed to run on all CPUs.
34048c9e 1077 */
3da99c97 1078static void __init early_identify_cpu(struct cpuinfo_x86 *c)
d7cd5611 1079{
6627d242
YL
1080#ifdef CONFIG_X86_64
1081 c->x86_clflush_size = 64;
13c6c532
JB
1082 c->x86_phys_bits = 36;
1083 c->x86_virt_bits = 48;
6627d242 1084#else
d4387bd3 1085 c->x86_clflush_size = 32;
13c6c532
JB
1086 c->x86_phys_bits = 32;
1087 c->x86_virt_bits = 32;
6627d242 1088#endif
0a488a53 1089 c->x86_cache_alignment = c->x86_clflush_size;
d7cd5611 1090
0e96f31e 1091 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
0a488a53 1092 c->extended_cpuid_level = 0;
d7cd5611 1093
2893cc8f
MW
1094 if (!have_cpuid_p())
1095 identify_cpu_without_cpuid(c);
1096
aef93c8b 1097 /* cyrix could have cpuid enabled via c_identify()*/
05fb3c19
AL
1098 if (have_cpuid_p()) {
1099 cpu_detect(c);
1100 get_cpu_vendor(c);
1101 get_cpu_cap(c);
d94a155c 1102 get_cpu_address_sizes(c);
78d1b296 1103 setup_force_cpu_cap(X86_FEATURE_CPUID);
d7cd5611 1104
05fb3c19
AL
1105 if (this_cpu->c_early_init)
1106 this_cpu->c_early_init(c);
12cf105c 1107
05fb3c19
AL
1108 c->cpu_index = 0;
1109 filter_cpuid_features(c, false);
093af8d7 1110
05fb3c19
AL
1111 if (this_cpu->c_bsp_init)
1112 this_cpu->c_bsp_init(c);
78d1b296 1113 } else {
78d1b296 1114 setup_clear_cpu_cap(X86_FEATURE_CPUID);
05fb3c19 1115 }
c3b83598
BP
1116
1117 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
a89f040f 1118
4a28bfe3 1119 cpu_set_bug_bits(c);
99c6fa25 1120
db52ef74 1121 fpu__init_system(c);
b8b7abae
AL
1122
1123#ifdef CONFIG_X86_32
1124 /*
1125 * Regardless of whether PCID is enumerated, the SDM says
1126 * that it can't be enabled in 32-bit mode.
1127 */
1128 setup_clear_cpu_cap(X86_FEATURE_PCID);
1129#endif
372fddf7
KS
1130
1131 /*
1132 * Later in the boot process pgtable_l5_enabled() relies on
1133 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1134 * enabled by this point we need to clear the feature bit to avoid
1135 * false-positives at the later stage.
1136 *
1137 * pgtable_l5_enabled() can be false here for several reasons:
1138 * - 5-level paging is disabled compile-time;
1139 * - it's 32-bit kernel;
1140 * - machine doesn't support 5-level paging;
1141 * - user specified 'no5lvl' in kernel command line.
1142 */
1143 if (!pgtable_l5_enabled())
1144 setup_clear_cpu_cap(X86_FEATURE_LA57);
8990cac6 1145
9b3661cd 1146 detect_nopl();
d7cd5611
RR
1147}
1148
9d31d35b
YL
1149void __init early_cpu_init(void)
1150{
02dde8b4 1151 const struct cpu_dev *const *cdev;
10a434fc
YL
1152 int count = 0;
1153
ac23f253 1154#ifdef CONFIG_PROCESSOR_SELECT
1b74dde7 1155 pr_info("KERNEL supported cpus:\n");
31c997ca
IM
1156#endif
1157
10a434fc 1158 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
02dde8b4 1159 const struct cpu_dev *cpudev = *cdev;
9d31d35b 1160
10a434fc
YL
1161 if (count >= X86_VENDOR_NUM)
1162 break;
1163 cpu_devs[count] = cpudev;
1164 count++;
1165
ac23f253 1166#ifdef CONFIG_PROCESSOR_SELECT
31c997ca
IM
1167 {
1168 unsigned int j;
1169
1170 for (j = 0; j < 2; j++) {
1171 if (!cpudev->c_ident[j])
1172 continue;
1b74dde7 1173 pr_info(" %s %s\n", cpudev->c_vendor,
31c997ca
IM
1174 cpudev->c_ident[j]);
1175 }
10a434fc 1176 }
0388423d 1177#endif
10a434fc 1178 }
9d31d35b 1179 early_identify_cpu(&boot_cpu_data);
d7cd5611 1180}
093af8d7 1181
7a5d6704
AL
1182static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1183{
1184#ifdef CONFIG_X86_64
58a5aac5 1185 /*
7a5d6704
AL
1186 * Empirically, writing zero to a segment selector on AMD does
1187 * not clear the base, whereas writing zero to a segment
1188 * selector on Intel does clear the base. Intel's behavior
1189 * allows slightly faster context switches in the common case
1190 * where GS is unused by the prev and next threads.
58a5aac5 1191 *
7a5d6704
AL
1192 * Since neither vendor documents this anywhere that I can see,
1193 * detect it directly instead of hardcoding the choice by
1194 * vendor.
1195 *
1196 * I've designated AMD's behavior as the "bug" because it's
1197 * counterintuitive and less friendly.
58a5aac5 1198 */
7a5d6704
AL
1199
1200 unsigned long old_base, tmp;
1201 rdmsrl(MSR_FS_BASE, old_base);
1202 wrmsrl(MSR_FS_BASE, 1);
1203 loadsegment(fs, 0);
1204 rdmsrl(MSR_FS_BASE, tmp);
1205 if (tmp != 0)
1206 set_cpu_bug(c, X86_BUG_NULL_SEG);
1207 wrmsrl(MSR_FS_BASE, old_base);
366d4a43 1208#endif
d7cd5611
RR
1209}
1210
148f9bb8 1211static void generic_identify(struct cpuinfo_x86 *c)
1da177e4 1212{
aef93c8b 1213 c->extended_cpuid_level = 0;
1da177e4 1214
3da99c97 1215 if (!have_cpuid_p())
aef93c8b 1216 identify_cpu_without_cpuid(c);
1d67953f 1217
aef93c8b 1218 /* cyrix could have cpuid enabled via c_identify()*/
a9853dd6 1219 if (!have_cpuid_p())
aef93c8b 1220 return;
1da177e4 1221
3da99c97 1222 cpu_detect(c);
1da177e4 1223
3da99c97 1224 get_cpu_vendor(c);
1da177e4 1225
3da99c97 1226 get_cpu_cap(c);
1da177e4 1227
d94a155c
KS
1228 get_cpu_address_sizes(c);
1229
3da99c97
YL
1230 if (c->cpuid_level >= 0x00000001) {
1231 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
b89d3b3e 1232#ifdef CONFIG_X86_32
c8e56d20 1233# ifdef CONFIG_SMP
cb8cc442 1234 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
b89d3b3e 1235# else
3da99c97 1236 c->apicid = c->initial_apicid;
b89d3b3e
YL
1237# endif
1238#endif
b89d3b3e 1239 c->phys_proc_id = c->initial_apicid;
3da99c97 1240 }
1da177e4 1241
1b05d60d 1242 get_model_name(c); /* Default name */
1da177e4 1243
7a5d6704 1244 detect_null_seg_behavior(c);
0230bb03
AL
1245
1246 /*
1247 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
1248 * systems that run Linux at CPL > 0 may or may not have the
1249 * issue, but, even if they have the issue, there's absolutely
1250 * nothing we can do about it because we can't use the real IRET
1251 * instruction.
1252 *
1253 * NB: For the time being, only 32-bit kernels support
1254 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
1255 * whether to apply espfix using paravirt hooks. If any
1256 * non-paravirt system ever shows up that does *not* have the
1257 * ESPFIX issue, we can change this.
1258 */
1259#ifdef CONFIG_X86_32
9bad5658 1260# ifdef CONFIG_PARAVIRT_XXL
0230bb03
AL
1261 do {
1262 extern void native_iret(void);
5c83511b 1263 if (pv_ops.cpu.iret == native_iret)
0230bb03
AL
1264 set_cpu_bug(c, X86_BUG_ESPFIX);
1265 } while (0);
1266# else
1267 set_cpu_bug(c, X86_BUG_ESPFIX);
1268# endif
1269#endif
1da177e4 1270}
1da177e4 1271
cbc82b17
PWJ
1272static void x86_init_cache_qos(struct cpuinfo_x86 *c)
1273{
1274 /*
1275 * The heavy lifting of max_rmid and cache_occ_scale are handled
1276 * in get_cpu_cap(). Here we just set the max_rmid for the boot_cpu
1277 * in case CQM bits really aren't there in this CPU.
1278 */
1279 if (c != &boot_cpu_data) {
1280 boot_cpu_data.x86_cache_max_rmid =
1281 min(boot_cpu_data.x86_cache_max_rmid,
1282 c->x86_cache_max_rmid);
1283 }
1284}
1285
d49597fd 1286/*
9d85eb91
TG
1287 * Validate that ACPI/mptables have the same information about the
1288 * effective APIC id and update the package map.
d49597fd 1289 */
9d85eb91 1290static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
d49597fd
TG
1291{
1292#ifdef CONFIG_SMP
9d85eb91 1293 unsigned int apicid, cpu = smp_processor_id();
d49597fd
TG
1294
1295 apicid = apic->cpu_present_to_apicid(cpu);
d49597fd 1296
9d85eb91
TG
1297 if (apicid != c->apicid) {
1298 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
d49597fd 1299 cpu, apicid, c->initial_apicid);
d49597fd 1300 }
9d85eb91 1301 BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
d49597fd
TG
1302#else
1303 c->logical_proc_id = 0;
1304#endif
1305}
1306
1da177e4
LT
1307/*
1308 * This does the hard work of actually picking apart the CPU stuff...
1309 */
148f9bb8 1310static void identify_cpu(struct cpuinfo_x86 *c)
1da177e4
LT
1311{
1312 int i;
1313
1314 c->loops_per_jiffy = loops_per_jiffy;
24dbc600 1315 c->x86_cache_size = 0;
1da177e4 1316 c->x86_vendor = X86_VENDOR_UNKNOWN;
b399151c 1317 c->x86_model = c->x86_stepping = 0; /* So far unknown... */
1da177e4
LT
1318 c->x86_vendor_id[0] = '\0'; /* Unset */
1319 c->x86_model_id[0] = '\0'; /* Unset */
94605eff 1320 c->x86_max_cores = 1;
102bbe3a 1321 c->x86_coreid_bits = 0;
79a8b9aa 1322 c->cu_id = 0xff;
11fdd252 1323#ifdef CONFIG_X86_64
102bbe3a 1324 c->x86_clflush_size = 64;
13c6c532
JB
1325 c->x86_phys_bits = 36;
1326 c->x86_virt_bits = 48;
102bbe3a
YL
1327#else
1328 c->cpuid_level = -1; /* CPUID not detected */
770d132f 1329 c->x86_clflush_size = 32;
13c6c532
JB
1330 c->x86_phys_bits = 32;
1331 c->x86_virt_bits = 32;
102bbe3a
YL
1332#endif
1333 c->x86_cache_alignment = c->x86_clflush_size;
0e96f31e 1334 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1da177e4 1335
1da177e4
LT
1336 generic_identify(c);
1337
3898534d 1338 if (this_cpu->c_identify)
1da177e4
LT
1339 this_cpu->c_identify(c);
1340
6a6256f9 1341 /* Clear/Set all flags overridden by options, after probe */
8bf1ebca 1342 apply_forced_caps(c);
2759c328 1343
102bbe3a 1344#ifdef CONFIG_X86_64
cb8cc442 1345 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
102bbe3a
YL
1346#endif
1347
1da177e4
LT
1348 /*
1349 * Vendor-specific initialization. In this section we
1350 * canonicalize the feature flags, meaning if there are
1351 * features a certain CPU supports which CPUID doesn't
1352 * tell us, CPUID claiming incorrect flags, or other bugs,
1353 * we handle them here.
1354 *
1355 * At the end of this section, c->x86_capability better
1356 * indicate the features this CPU genuinely supports!
1357 */
1358 if (this_cpu->c_init)
1359 this_cpu->c_init(c);
1360
1361 /* Disable the PN if appropriate */
1362 squash_the_stupid_serial_number(c);
1363
aa35f896 1364 /* Set up SMEP/SMAP/UMIP */
b2cc2a07
PA
1365 setup_smep(c);
1366 setup_smap(c);
aa35f896 1367 setup_umip(c);
b2cc2a07 1368
1da177e4 1369 /*
0f3fa48a
IM
1370 * The vendor-specific functions might have changed features.
1371 * Now we do "generic changes."
1da177e4
LT
1372 */
1373
b38b0665
PA
1374 /* Filter out anything that depends on CPUID levels we don't have */
1375 filter_cpuid_features(c, true);
1376
1da177e4 1377 /* If the model name is still unset, do table lookup. */
34048c9e 1378 if (!c->x86_model_id[0]) {
02dde8b4 1379 const char *p;
1da177e4 1380 p = table_lookup_model(c);
34048c9e 1381 if (p)
1da177e4
LT
1382 strcpy(c->x86_model_id, p);
1383 else
1384 /* Last resort... */
1385 sprintf(c->x86_model_id, "%02x/%02x",
54a20f8c 1386 c->x86, c->x86_model);
1da177e4
LT
1387 }
1388
102bbe3a
YL
1389#ifdef CONFIG_X86_64
1390 detect_ht(c);
1391#endif
1392
49d859d7 1393 x86_init_rdrand(c);
cbc82b17 1394 x86_init_cache_qos(c);
06976945 1395 setup_pku(c);
3e0c3737
YL
1396
1397 /*
6a6256f9 1398 * Clear/Set all flags overridden by options, need do it
3e0c3737
YL
1399 * before following smp all cpus cap AND.
1400 */
8bf1ebca 1401 apply_forced_caps(c);
3e0c3737 1402
1da177e4
LT
1403 /*
1404 * On SMP, boot_cpu_data holds the common feature set between
1405 * all CPUs; so make sure that we indicate which features are
1406 * common between the CPUs. The first time this routine gets
1407 * executed, c == &boot_cpu_data.
1408 */
34048c9e 1409 if (c != &boot_cpu_data) {
1da177e4 1410 /* AND the already accumulated flags with these */
9d31d35b 1411 for (i = 0; i < NCAPINTS; i++)
1da177e4 1412 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
65fc985b
BP
1413
1414 /* OR, i.e. replicate the bug flags */
1415 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1416 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1da177e4
LT
1417 }
1418
1419 /* Init Machine Check Exception if available. */
5e09954a 1420 mcheck_cpu_init(c);
30d432df
AK
1421
1422 select_idle_routine(c);
102bbe3a 1423
de2d9445 1424#ifdef CONFIG_NUMA
102bbe3a
YL
1425 numa_add_cpu(smp_processor_id());
1426#endif
a6c4e076 1427}
31ab269a 1428
8b6c0ab1
IM
1429/*
1430 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1431 * on 32-bit kernels:
1432 */
cfda7bb9
AL
1433#ifdef CONFIG_X86_32
1434void enable_sep_cpu(void)
1435{
8b6c0ab1
IM
1436 struct tss_struct *tss;
1437 int cpu;
cfda7bb9 1438
b3edfda4
BP
1439 if (!boot_cpu_has(X86_FEATURE_SEP))
1440 return;
1441
8b6c0ab1 1442 cpu = get_cpu();
c482feef 1443 tss = &per_cpu(cpu_tss_rw, cpu);
8b6c0ab1 1444
8b6c0ab1 1445 /*
cf9328cc
AL
1446 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1447 * see the big comment in struct x86_hw_tss's definition.
8b6c0ab1 1448 */
cfda7bb9
AL
1449
1450 tss->x86_tss.ss1 = __KERNEL_CS;
8b6c0ab1 1451 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
4fe2d8b1 1452 wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
4c8cd0c5 1453 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
8b6c0ab1 1454
cfda7bb9
AL
1455 put_cpu();
1456}
e04d645f
GC
1457#endif
1458
a6c4e076
JF
1459void __init identify_boot_cpu(void)
1460{
1461 identify_cpu(&boot_cpu_data);
102bbe3a 1462#ifdef CONFIG_X86_32
a6c4e076 1463 sysenter_setup();
6fe940d6 1464 enable_sep_cpu();
102bbe3a 1465#endif
5b556332 1466 cpu_detect_tlb(&boot_cpu_data);
a6c4e076 1467}
3b520b23 1468
148f9bb8 1469void identify_secondary_cpu(struct cpuinfo_x86 *c)
a6c4e076
JF
1470{
1471 BUG_ON(c == &boot_cpu_data);
1472 identify_cpu(c);
102bbe3a 1473#ifdef CONFIG_X86_32
a6c4e076 1474 enable_sep_cpu();
102bbe3a 1475#endif
a6c4e076 1476 mtrr_ap_init();
9d85eb91 1477 validate_apic_and_package_id(c);
77243971 1478 x86_spec_ctrl_setup_ap();
1da177e4
LT
1479}
1480
191679fd
AK
1481static __init int setup_noclflush(char *arg)
1482{
840d2830 1483 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
da4aaa7d 1484 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
191679fd
AK
1485 return 1;
1486}
1487__setup("noclflush", setup_noclflush);
1488
148f9bb8 1489void print_cpu_info(struct cpuinfo_x86 *c)
1da177e4 1490{
02dde8b4 1491 const char *vendor = NULL;
1da177e4 1492
0f3fa48a 1493 if (c->x86_vendor < X86_VENDOR_NUM) {
1da177e4 1494 vendor = this_cpu->c_vendor;
0f3fa48a
IM
1495 } else {
1496 if (c->cpuid_level >= 0)
1497 vendor = c->x86_vendor_id;
1498 }
1da177e4 1499
bd32a8cf 1500 if (vendor && !strstr(c->x86_model_id, vendor))
1b74dde7 1501 pr_cont("%s ", vendor);
1da177e4 1502
9d31d35b 1503 if (c->x86_model_id[0])
1b74dde7 1504 pr_cont("%s", c->x86_model_id);
1da177e4 1505 else
1b74dde7 1506 pr_cont("%d86", c->x86);
1da177e4 1507
1b74dde7 1508 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
924e101a 1509
b399151c
JZ
1510 if (c->x86_stepping || c->cpuid_level >= 0)
1511 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1da177e4 1512 else
1b74dde7 1513 pr_cont(")\n");
1da177e4
LT
1514}
1515
0c2a3913
AK
1516/*
1517 * clearcpuid= was already parsed in fpu__init_parse_early_param.
1518 * But we need to keep a dummy __setup around otherwise it would
1519 * show up as an environment variable for init.
1520 */
1521static __init int setup_clearcpuid(char *arg)
ac72e788 1522{
ac72e788
AK
1523 return 1;
1524}
0c2a3913 1525__setup("clearcpuid=", setup_clearcpuid);
ac72e788 1526
d5494d4f 1527#ifdef CONFIG_X86_64
e6401c13
AL
1528DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
1529 fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
1530EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
0f3fa48a 1531
bdf977b3 1532/*
a7fcf28d
AL
1533 * The following percpu variables are hot. Align current_task to
1534 * cacheline size such that they fall in the same cacheline.
bdf977b3
TH
1535 */
1536DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1537 &init_task;
1538EXPORT_PER_CPU_SYMBOL(current_task);
d5494d4f 1539
e6401c13 1540DEFINE_PER_CPU(struct irq_stack *, hardirq_stack_ptr);
277d5b40 1541DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
d5494d4f 1542
c2daa3be
PZ
1543DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1544EXPORT_PER_CPU_SYMBOL(__preempt_count);
1545
d5494d4f
YL
1546/* May not be marked __init: used by software suspend */
1547void syscall_init(void)
1da177e4 1548{
31ac34ca 1549 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
bf904d27 1550 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
d56fe4bf
IM
1551
1552#ifdef CONFIG_IA32_EMULATION
47edb651 1553 wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
a76c7f46 1554 /*
487d1edb
DV
1555 * This only works on Intel CPUs.
1556 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1557 * This does not cause SYSENTER to jump to the wrong location, because
1558 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
a76c7f46
DV
1559 */
1560 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
8e6b65a1 1561 wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
1562 (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
4c8cd0c5 1563 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
d56fe4bf 1564#else
47edb651 1565 wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
6b51311c 1566 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
d56fe4bf
IM
1567 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1568 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
d5494d4f 1569#endif
03ae5768 1570
d5494d4f
YL
1571 /* Flags to clear on syscall */
1572 wrmsrl(MSR_SYSCALL_MASK,
63bcff2a 1573 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
8c7aa698 1574 X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1da177e4 1575}
62111195 1576
42181186 1577DEFINE_PER_CPU(int, debug_stack_usage);
629f4f9d 1578DEFINE_PER_CPU(u32, debug_idt_ctr);
f8988175 1579
228bdaa9
SR
1580void debug_stack_set_zero(void)
1581{
629f4f9d
SA
1582 this_cpu_inc(debug_idt_ctr);
1583 load_current_idt();
228bdaa9 1584}
0f46efeb 1585NOKPROBE_SYMBOL(debug_stack_set_zero);
228bdaa9
SR
1586
1587void debug_stack_reset(void)
1588{
629f4f9d 1589 if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
f8988175 1590 return;
629f4f9d
SA
1591 if (this_cpu_dec_return(debug_idt_ctr) == 0)
1592 load_current_idt();
228bdaa9 1593}
0f46efeb 1594NOKPROBE_SYMBOL(debug_stack_reset);
228bdaa9 1595
0f3fa48a 1596#else /* CONFIG_X86_64 */
d5494d4f 1597
bdf977b3
TH
1598DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1599EXPORT_PER_CPU_SYMBOL(current_task);
c2daa3be
PZ
1600DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1601EXPORT_PER_CPU_SYMBOL(__preempt_count);
bdf977b3 1602
a7fcf28d
AL
1603/*
1604 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1605 * the top of the kernel stack. Use an extra percpu variable to track the
1606 * top of the kernel stack directly.
1607 */
1608DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1609 (unsigned long)&init_thread_union + THREAD_SIZE;
1610EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1611
050e9baa 1612#ifdef CONFIG_STACKPROTECTOR
53f82452 1613DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
60a5317f 1614#endif
d5494d4f 1615
0f3fa48a 1616#endif /* CONFIG_X86_64 */
c5413fbe 1617
9766cdbc
JSR
1618/*
1619 * Clear all 6 debug registers:
1620 */
1621static void clear_all_debug_regs(void)
1622{
1623 int i;
1624
1625 for (i = 0; i < 8; i++) {
1626 /* Ignore db4, db5 */
1627 if ((i == 4) || (i == 5))
1628 continue;
1629
1630 set_debugreg(0, i);
1631 }
1632}
c5413fbe 1633
0bb9fef9
JW
1634#ifdef CONFIG_KGDB
1635/*
1636 * Restore debug regs if using kgdbwait and you have a kernel debugger
1637 * connection established.
1638 */
1639static void dbg_restore_debug_regs(void)
1640{
1641 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1642 arch_kgdb_ops.correct_hw_break();
1643}
1644#else /* ! CONFIG_KGDB */
1645#define dbg_restore_debug_regs()
1646#endif /* ! CONFIG_KGDB */
1647
ce4b1b16
IM
1648static void wait_for_master_cpu(int cpu)
1649{
1650#ifdef CONFIG_SMP
1651 /*
1652 * wait for ACK from master CPU before continuing
1653 * with AP initialization
1654 */
1655 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1656 while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1657 cpu_relax();
1658#endif
1659}
1660
b2e2ba57
CB
1661#ifdef CONFIG_X86_64
1662static void setup_getcpu(int cpu)
1663{
22245bdf 1664 unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
b2e2ba57
CB
1665 struct desc_struct d = { };
1666
67e87d43 1667 if (boot_cpu_has(X86_FEATURE_RDTSCP))
b2e2ba57
CB
1668 write_rdtscp_aux(cpudata);
1669
1670 /* Store CPU and node number in limit. */
1671 d.limit0 = cpudata;
1672 d.limit1 = cpudata >> 16;
1673
1674 d.type = 5; /* RO data, expand down, accessed */
1675 d.dpl = 3; /* Visible to user code */
1676 d.s = 1; /* Not a system segment */
1677 d.p = 1; /* Present */
1678 d.d = 1; /* 32-bit */
1679
22245bdf 1680 write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
b2e2ba57
CB
1681}
1682#endif
1683
d2cbcc49
RR
1684/*
1685 * cpu_init() initializes state that is per-CPU. Some data is already
1686 * initialized (naturally) in the bootstrap process, such as the GDT
1687 * and IDT. We reload them nevertheless, this function acts as a
1688 * 'CPU state barrier', nothing should get across.
1689 */
1ba76586 1690#ifdef CONFIG_X86_64
0f3fa48a 1691
148f9bb8 1692void cpu_init(void)
1ba76586 1693{
f6ef7322 1694 int cpu = raw_smp_processor_id();
1ba76586 1695 struct task_struct *me;
0f3fa48a 1696 struct tss_struct *t;
1ba76586
YL
1697 int i;
1698
ce4b1b16
IM
1699 wait_for_master_cpu(cpu);
1700
1e02ce4c
AL
1701 /*
1702 * Initialize the CR4 shadow before doing anything that could
1703 * try to read it.
1704 */
1705 cr4_init_shadow();
1706
777284b6
BP
1707 if (cpu)
1708 load_ucode_ap();
e6ebf5de 1709
c482feef 1710 t = &per_cpu(cpu_tss_rw, cpu);
0f3fa48a 1711
e7a22c1e 1712#ifdef CONFIG_NUMA
27fd185f 1713 if (this_cpu_read(numa_node) == 0 &&
e534c7c5
LS
1714 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1715 set_numa_node(early_cpu_to_node(cpu));
e7a22c1e 1716#endif
b2e2ba57 1717 setup_getcpu(cpu);
1ba76586
YL
1718
1719 me = current;
1720
2eaad1fd 1721 pr_debug("Initializing CPU#%d\n", cpu);
1ba76586 1722
375074cc 1723 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1ba76586
YL
1724
1725 /*
1726 * Initialize the per-CPU GDT with the boot GDT,
1727 * and set up the GDT descriptor:
1728 */
1729
552be871 1730 switch_to_new_gdt(cpu);
2697fbd5
BG
1731 loadsegment(fs, 0);
1732
cf910e83 1733 load_current_idt();
1ba76586
YL
1734
1735 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1736 syscall_init();
1737
1738 wrmsrl(MSR_FS_BASE, 0);
1739 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1740 barrier();
1741
4763ed4d 1742 x86_configure_nx();
659006bf 1743 x2apic_setup();
1ba76586
YL
1744
1745 /*
1746 * set up and load the per-CPU TSS
1747 */
f6ef7322 1748 if (!t->x86_tss.ist[0]) {
32074269
TG
1749 t->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
1750 t->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
1751 t->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
1752 t->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
1ba76586
YL
1753 }
1754
7fb983b4 1755 t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
0f3fa48a 1756
1ba76586
YL
1757 /*
1758 * <= is required because the CPU will access up to
1759 * 8 bits beyond the end of the IO permission bitmap.
1760 */
1761 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1762 t->io_bitmap[i] = ~0UL;
1763
f1f10076 1764 mmgrab(&init_mm);
1ba76586 1765 me->active_mm = &init_mm;
8c5dfd25 1766 BUG_ON(me->mm);
72c0098d 1767 initialize_tlbstate_and_flush();
1ba76586
YL
1768 enter_lazy_tlb(&init_mm, me);
1769
20bb8344 1770 /*
7f2590a1
AL
1771 * Initialize the TSS. sp0 points to the entry trampoline stack
1772 * regardless of what task is running.
20bb8344 1773 */
72f5e08d 1774 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1ba76586 1775 load_TR_desc();
4fe2d8b1 1776 load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
20bb8344 1777
37868fe1 1778 load_mm_ldt(&init_mm);
1ba76586 1779
0bb9fef9
JW
1780 clear_all_debug_regs();
1781 dbg_restore_debug_regs();
1ba76586 1782
21c4cd10 1783 fpu__init_cpu();
1ba76586 1784
1ba76586
YL
1785 if (is_uv_system())
1786 uv_cpu_init();
69218e47 1787
69218e47 1788 load_fixmap_gdt(cpu);
1ba76586
YL
1789}
1790
1791#else
1792
148f9bb8 1793void cpu_init(void)
9ee79a3d 1794{
d2cbcc49
RR
1795 int cpu = smp_processor_id();
1796 struct task_struct *curr = current;
c482feef 1797 struct tss_struct *t = &per_cpu(cpu_tss_rw, cpu);
62111195 1798
ce4b1b16 1799 wait_for_master_cpu(cpu);
e6ebf5de 1800
5b2bdbc8
SR
1801 /*
1802 * Initialize the CR4 shadow before doing anything that could
1803 * try to read it.
1804 */
1805 cr4_init_shadow();
1806
ce4b1b16 1807 show_ucode_info_early();
62111195 1808
1b74dde7 1809 pr_info("Initializing CPU#%d\n", cpu);
62111195 1810
362f924b 1811 if (cpu_feature_enabled(X86_FEATURE_VME) ||
59e21e3d 1812 boot_cpu_has(X86_FEATURE_TSC) ||
362f924b 1813 boot_cpu_has(X86_FEATURE_DE))
375074cc 1814 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
62111195 1815
cf910e83 1816 load_current_idt();
552be871 1817 switch_to_new_gdt(cpu);
1da177e4 1818
1da177e4
LT
1819 /*
1820 * Set up and load the per-CPU TSS and LDT
1821 */
f1f10076 1822 mmgrab(&init_mm);
62111195 1823 curr->active_mm = &init_mm;
8c5dfd25 1824 BUG_ON(curr->mm);
72c0098d 1825 initialize_tlbstate_and_flush();
62111195 1826 enter_lazy_tlb(&init_mm, curr);
1da177e4 1827
20bb8344 1828 /*
45d7b255
JR
1829 * Initialize the TSS. sp0 points to the entry trampoline stack
1830 * regardless of what task is running.
20bb8344 1831 */
72f5e08d 1832 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1da177e4 1833 load_TR_desc();
45d7b255 1834 load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
20bb8344 1835
37868fe1 1836 load_mm_ldt(&init_mm);
1da177e4 1837
7fb983b4 1838 t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
f9a196b8 1839
22c4e308 1840#ifdef CONFIG_DOUBLEFAULT
1da177e4
LT
1841 /* Set up doublefault TSS pointer in the GDT */
1842 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
22c4e308 1843#endif
1da177e4 1844
9766cdbc 1845 clear_all_debug_regs();
0bb9fef9 1846 dbg_restore_debug_regs();
1da177e4 1847
21c4cd10 1848 fpu__init_cpu();
69218e47 1849
69218e47 1850 load_fixmap_gdt(cpu);
1da177e4 1851}
1ba76586 1852#endif
5700f743 1853
1008c52c
BP
1854/*
1855 * The microcode loader calls this upon late microcode load to recheck features,
1856 * only when microcode has been updated. Caller holds microcode_mutex and CPU
1857 * hotplug lock.
1858 */
1859void microcode_check(void)
1860{
42ca8082
BP
1861 struct cpuinfo_x86 info;
1862
1008c52c 1863 perf_check_microcode();
42ca8082
BP
1864
1865 /* Reload CPUID max function as it might've changed. */
1866 info.cpuid_level = cpuid_eax(0);
1867
1868 /*
1869 * Copy all capability leafs to pick up the synthetic ones so that
1870 * memcmp() below doesn't fail on that. The ones coming from CPUID will
1871 * get overwritten in get_cpu_cap().
1872 */
1873 memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
1874
1875 get_cpu_cap(&info);
1876
1877 if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
1878 return;
1879
1880 pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
1881 pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
1008c52c 1882}