]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/kernel/cpu/common.c
x86/jump_label: Initialize static branching early
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kernel / cpu / common.c
CommitLineData
2458e53f
KS
1/* cpu_feature_enabled() cannot be used this early */
2#define USE_EARLY_PGTABLE_L5
3
f0fc4aff 4#include <linux/bootmem.h>
9766cdbc 5#include <linux/linkage.h>
f0fc4aff 6#include <linux/bitops.h>
9766cdbc 7#include <linux/kernel.h>
186f4360 8#include <linux/export.h>
9766cdbc
JSR
9#include <linux/percpu.h>
10#include <linux/string.h>
ee098e1a 11#include <linux/ctype.h>
1da177e4 12#include <linux/delay.h>
68e21be2 13#include <linux/sched/mm.h>
e6017571 14#include <linux/sched/clock.h>
9164bb4a 15#include <linux/sched/task.h>
9766cdbc 16#include <linux/init.h>
0f46efeb 17#include <linux/kprobes.h>
9766cdbc 18#include <linux/kgdb.h>
1da177e4 19#include <linux/smp.h>
9766cdbc 20#include <linux/io.h>
b51ef52d 21#include <linux/syscore_ops.h>
9766cdbc
JSR
22
23#include <asm/stackprotector.h>
cdd6c482 24#include <asm/perf_event.h>
1da177e4 25#include <asm/mmu_context.h>
49d859d7 26#include <asm/archrandom.h>
9766cdbc
JSR
27#include <asm/hypervisor.h>
28#include <asm/processor.h>
1e02ce4c 29#include <asm/tlbflush.h>
f649e938 30#include <asm/debugreg.h>
9766cdbc 31#include <asm/sections.h>
f40c3300 32#include <asm/vsyscall.h>
8bdbd962
AC
33#include <linux/topology.h>
34#include <linux/cpumask.h>
9766cdbc 35#include <asm/pgtable.h>
60063497 36#include <linux/atomic.h>
9766cdbc
JSR
37#include <asm/proto.h>
38#include <asm/setup.h>
39#include <asm/apic.h>
40#include <asm/desc.h>
78f7f1e5 41#include <asm/fpu/internal.h>
27b07da7 42#include <asm/mtrr.h>
0274f955 43#include <asm/hwcap2.h>
8bdbd962 44#include <linux/numa.h>
9766cdbc 45#include <asm/asm.h>
0f6ff2bc 46#include <asm/bugs.h>
9766cdbc 47#include <asm/cpu.h>
a03a3e28 48#include <asm/mce.h>
9766cdbc 49#include <asm/msr.h>
8d4a4300 50#include <asm/pat.h>
d288e1cf
FY
51#include <asm/microcode.h>
52#include <asm/microcode_intel.h>
fec9434a
DW
53#include <asm/intel-family.h>
54#include <asm/cpu_device_id.h>
e641f5f5
IM
55
56#ifdef CONFIG_X86_LOCAL_APIC
bdbcdd48 57#include <asm/uv/uv.h>
1da177e4
LT
58#endif
59
60#include "cpu.h"
61
0274f955
GA
62u32 elf_hwcap2 __read_mostly;
63
c2d1cec1 64/* all of these masks are initialized in setup_cpu_local_masks() */
c2d1cec1 65cpumask_var_t cpu_initialized_mask;
9766cdbc
JSR
66cpumask_var_t cpu_callout_mask;
67cpumask_var_t cpu_callin_mask;
c2d1cec1
MT
68
69/* representing cpus for which sibling maps can be computed */
70cpumask_var_t cpu_sibling_setup_mask;
71
f8b64d08
BP
72/* Number of siblings per CPU package */
73int smp_num_siblings = 1;
74EXPORT_SYMBOL(smp_num_siblings);
75
76/* Last level cache ID of each logical CPU */
77DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
78
2f2f52ba 79/* correctly size the local cpu masks */
4369f1fb 80void __init setup_cpu_local_masks(void)
2f2f52ba
BG
81{
82 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
83 alloc_bootmem_cpumask_var(&cpu_callin_mask);
84 alloc_bootmem_cpumask_var(&cpu_callout_mask);
85 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
86}
87
148f9bb8 88static void default_init(struct cpuinfo_x86 *c)
e8055139
OZ
89{
90#ifdef CONFIG_X86_64
27c13ece 91 cpu_detect_cache_sizes(c);
e8055139
OZ
92#else
93 /* Not much we can do here... */
94 /* Check if at least it has cpuid */
95 if (c->cpuid_level == -1) {
96 /* No cpuid. It must be an ancient CPU */
97 if (c->x86 == 4)
98 strcpy(c->x86_model_id, "486");
99 else if (c->x86 == 3)
100 strcpy(c->x86_model_id, "386");
101 }
102#endif
103}
104
148f9bb8 105static const struct cpu_dev default_cpu = {
e8055139
OZ
106 .c_init = default_init,
107 .c_vendor = "Unknown",
108 .c_x86_vendor = X86_VENDOR_UNKNOWN,
109};
110
148f9bb8 111static const struct cpu_dev *this_cpu = &default_cpu;
0a488a53 112
06deef89 113DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
950ad7ff 114#ifdef CONFIG_X86_64
06deef89
BG
115 /*
116 * We need valid kernel segments for data and code in long mode too
117 * IRET will check the segment types kkeil 2000/10/28
118 * Also sysret mandates a special GDT layout
119 *
9766cdbc 120 * TLS descriptors are currently at a different place compared to i386.
06deef89
BG
121 * Hopefully nobody expects them at a fixed place (Wine?)
122 */
1e5de182
AM
123 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
124 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
125 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
126 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
127 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
128 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
950ad7ff 129#else
1e5de182
AM
130 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
131 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
132 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
133 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
bf504672
RR
134 /*
135 * Segments used for calling PnP BIOS have byte granularity.
136 * They code segments and data segments have fixed 64k limits,
137 * the transfer segment sizes are set at run time.
138 */
6842ef0e 139 /* 32-bit code */
1e5de182 140 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
6842ef0e 141 /* 16-bit code */
1e5de182 142 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
6842ef0e 143 /* 16-bit data */
1e5de182 144 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
6842ef0e 145 /* 16-bit data */
1e5de182 146 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
6842ef0e 147 /* 16-bit data */
1e5de182 148 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
bf504672
RR
149 /*
150 * The APM segments have byte granularity and their bases
151 * are set at run time. All have 64k limits.
152 */
6842ef0e 153 /* 32-bit code */
1e5de182 154 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
bf504672 155 /* 16-bit code */
1e5de182 156 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
6842ef0e 157 /* data */
72c4d853 158 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
bf504672 159
1e5de182
AM
160 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
161 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
60a5317f 162 GDT_STACK_CANARY_INIT
950ad7ff 163#endif
06deef89 164} };
7a61d35d 165EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
ae1ee11b 166
8c3641e9 167static int __init x86_mpx_setup(char *s)
0c752a93 168{
8c3641e9 169 /* require an exact match without trailing characters */
2cd3949f
DH
170 if (strlen(s))
171 return 0;
0c752a93 172
8c3641e9
DH
173 /* do not emit a message if the feature is not present */
174 if (!boot_cpu_has(X86_FEATURE_MPX))
175 return 1;
6bad06b7 176
8c3641e9
DH
177 setup_clear_cpu_cap(X86_FEATURE_MPX);
178 pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
b6f42a4a
FY
179 return 1;
180}
8c3641e9 181__setup("nompx", x86_mpx_setup);
b6f42a4a 182
0790c9aa 183#ifdef CONFIG_X86_64
c7ad5ad2 184static int __init x86_nopcid_setup(char *s)
0790c9aa 185{
c7ad5ad2
AL
186 /* nopcid doesn't accept parameters */
187 if (s)
188 return -EINVAL;
0790c9aa
AL
189
190 /* do not emit a message if the feature is not present */
191 if (!boot_cpu_has(X86_FEATURE_PCID))
c7ad5ad2 192 return 0;
0790c9aa
AL
193
194 setup_clear_cpu_cap(X86_FEATURE_PCID);
195 pr_info("nopcid: PCID feature disabled\n");
c7ad5ad2 196 return 0;
0790c9aa 197}
c7ad5ad2 198early_param("nopcid", x86_nopcid_setup);
0790c9aa
AL
199#endif
200
d12a72b8
AL
201static int __init x86_noinvpcid_setup(char *s)
202{
203 /* noinvpcid doesn't accept parameters */
204 if (s)
205 return -EINVAL;
206
207 /* do not emit a message if the feature is not present */
208 if (!boot_cpu_has(X86_FEATURE_INVPCID))
209 return 0;
210
211 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
212 pr_info("noinvpcid: INVPCID feature disabled\n");
213 return 0;
214}
215early_param("noinvpcid", x86_noinvpcid_setup);
216
ba51dced 217#ifdef CONFIG_X86_32
148f9bb8
PG
218static int cachesize_override = -1;
219static int disable_x86_serial_nr = 1;
1da177e4 220
0a488a53
YL
221static int __init cachesize_setup(char *str)
222{
223 get_option(&str, &cachesize_override);
224 return 1;
225}
226__setup("cachesize=", cachesize_setup);
227
0a488a53
YL
228static int __init x86_sep_setup(char *s)
229{
230 setup_clear_cpu_cap(X86_FEATURE_SEP);
231 return 1;
232}
233__setup("nosep", x86_sep_setup);
234
235/* Standard macro to see if a specific flag is changeable */
236static inline int flag_is_changeable_p(u32 flag)
237{
238 u32 f1, f2;
239
94f6bac1
KH
240 /*
241 * Cyrix and IDT cpus allow disabling of CPUID
242 * so the code below may return different results
243 * when it is executed before and after enabling
244 * the CPUID. Add "volatile" to not allow gcc to
245 * optimize the subsequent calls to this function.
246 */
0f3fa48a
IM
247 asm volatile ("pushfl \n\t"
248 "pushfl \n\t"
249 "popl %0 \n\t"
250 "movl %0, %1 \n\t"
251 "xorl %2, %0 \n\t"
252 "pushl %0 \n\t"
253 "popfl \n\t"
254 "pushfl \n\t"
255 "popl %0 \n\t"
256 "popfl \n\t"
257
94f6bac1
KH
258 : "=&r" (f1), "=&r" (f2)
259 : "ir" (flag));
0a488a53
YL
260
261 return ((f1^f2) & flag) != 0;
262}
263
264/* Probe for the CPUID instruction */
148f9bb8 265int have_cpuid_p(void)
0a488a53
YL
266{
267 return flag_is_changeable_p(X86_EFLAGS_ID);
268}
269
148f9bb8 270static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
0a488a53 271{
0f3fa48a
IM
272 unsigned long lo, hi;
273
274 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
275 return;
276
277 /* Disable processor serial number: */
278
279 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
280 lo |= 0x200000;
281 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
282
1b74dde7 283 pr_notice("CPU serial number disabled.\n");
0f3fa48a
IM
284 clear_cpu_cap(c, X86_FEATURE_PN);
285
286 /* Disabling the serial number may affect the cpuid level */
287 c->cpuid_level = cpuid_eax(0);
0a488a53
YL
288}
289
290static int __init x86_serial_nr_setup(char *s)
291{
292 disable_x86_serial_nr = 0;
293 return 1;
294}
295__setup("serialnumber", x86_serial_nr_setup);
ba51dced 296#else
102bbe3a
YL
297static inline int flag_is_changeable_p(u32 flag)
298{
299 return 1;
300}
102bbe3a
YL
301static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
302{
303}
ba51dced 304#endif
0a488a53 305
de5397ad
FY
306static __init int setup_disable_smep(char *arg)
307{
b2cc2a07 308 setup_clear_cpu_cap(X86_FEATURE_SMEP);
0f6ff2bc
DH
309 /* Check for things that depend on SMEP being enabled: */
310 check_mpx_erratum(&boot_cpu_data);
de5397ad
FY
311 return 1;
312}
313__setup("nosmep", setup_disable_smep);
314
b2cc2a07 315static __always_inline void setup_smep(struct cpuinfo_x86 *c)
de5397ad 316{
b2cc2a07 317 if (cpu_has(c, X86_FEATURE_SMEP))
375074cc 318 cr4_set_bits(X86_CR4_SMEP);
de5397ad
FY
319}
320
52b6179a
PA
321static __init int setup_disable_smap(char *arg)
322{
b2cc2a07 323 setup_clear_cpu_cap(X86_FEATURE_SMAP);
52b6179a
PA
324 return 1;
325}
326__setup("nosmap", setup_disable_smap);
327
b2cc2a07
PA
328static __always_inline void setup_smap(struct cpuinfo_x86 *c)
329{
581b7f15 330 unsigned long eflags = native_save_fl();
b2cc2a07
PA
331
332 /* This should have been cleared long ago */
b2cc2a07
PA
333 BUG_ON(eflags & X86_EFLAGS_AC);
334
03bbd596
PA
335 if (cpu_has(c, X86_FEATURE_SMAP)) {
336#ifdef CONFIG_X86_SMAP
375074cc 337 cr4_set_bits(X86_CR4_SMAP);
03bbd596 338#else
375074cc 339 cr4_clear_bits(X86_CR4_SMAP);
03bbd596
PA
340#endif
341 }
de5397ad
FY
342}
343
aa35f896
RN
344static __always_inline void setup_umip(struct cpuinfo_x86 *c)
345{
346 /* Check the boot processor, plus build option for UMIP. */
347 if (!cpu_feature_enabled(X86_FEATURE_UMIP))
348 goto out;
349
350 /* Check the current processor's cpuid bits. */
351 if (!cpu_has(c, X86_FEATURE_UMIP))
352 goto out;
353
354 cr4_set_bits(X86_CR4_UMIP);
355
770c7755
RN
356 pr_info("x86/cpu: Activated the Intel User Mode Instruction Prevention (UMIP) CPU feature\n");
357
aa35f896
RN
358 return;
359
360out:
361 /*
362 * Make sure UMIP is disabled in case it was enabled in a
363 * previous boot (e.g., via kexec).
364 */
365 cr4_clear_bits(X86_CR4_UMIP);
366}
367
06976945
DH
368/*
369 * Protection Keys are not available in 32-bit mode.
370 */
371static bool pku_disabled;
372
373static __always_inline void setup_pku(struct cpuinfo_x86 *c)
374{
e8df1a95
DH
375 /* check the boot processor, plus compile options for PKU: */
376 if (!cpu_feature_enabled(X86_FEATURE_PKU))
377 return;
378 /* checks the actual processor's cpuid bits: */
06976945
DH
379 if (!cpu_has(c, X86_FEATURE_PKU))
380 return;
381 if (pku_disabled)
382 return;
383
384 cr4_set_bits(X86_CR4_PKE);
385 /*
386 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
387 * cpuid bit to be set. We need to ensure that we
388 * update that bit in this CPU's "cpu_info".
389 */
390 get_cpu_cap(c);
391}
392
393#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
394static __init int setup_disable_pku(char *arg)
395{
396 /*
397 * Do not clear the X86_FEATURE_PKU bit. All of the
398 * runtime checks are against OSPKE so clearing the
399 * bit does nothing.
400 *
401 * This way, we will see "pku" in cpuinfo, but not
402 * "ospke", which is exactly what we want. It shows
403 * that the CPU has PKU, but the OS has not enabled it.
404 * This happens to be exactly how a system would look
405 * if we disabled the config option.
406 */
407 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
408 pku_disabled = true;
409 return 1;
410}
411__setup("nopku", setup_disable_pku);
412#endif /* CONFIG_X86_64 */
413
b38b0665
PA
414/*
415 * Some CPU features depend on higher CPUID levels, which may not always
416 * be available due to CPUID level capping or broken virtualization
417 * software. Add those features to this table to auto-disable them.
418 */
419struct cpuid_dependent_feature {
420 u32 feature;
421 u32 level;
422};
0f3fa48a 423
148f9bb8 424static const struct cpuid_dependent_feature
b38b0665
PA
425cpuid_dependent_features[] = {
426 { X86_FEATURE_MWAIT, 0x00000005 },
427 { X86_FEATURE_DCA, 0x00000009 },
428 { X86_FEATURE_XSAVE, 0x0000000d },
429 { 0, 0 }
430};
431
148f9bb8 432static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
b38b0665
PA
433{
434 const struct cpuid_dependent_feature *df;
9766cdbc 435
b38b0665 436 for (df = cpuid_dependent_features; df->feature; df++) {
0f3fa48a
IM
437
438 if (!cpu_has(c, df->feature))
439 continue;
b38b0665
PA
440 /*
441 * Note: cpuid_level is set to -1 if unavailable, but
442 * extended_extended_level is set to 0 if unavailable
443 * and the legitimate extended levels are all negative
444 * when signed; hence the weird messing around with
445 * signs here...
446 */
0f3fa48a 447 if (!((s32)df->level < 0 ?
f6db44df 448 (u32)df->level > (u32)c->extended_cpuid_level :
0f3fa48a
IM
449 (s32)df->level > (s32)c->cpuid_level))
450 continue;
451
452 clear_cpu_cap(c, df->feature);
453 if (!warn)
454 continue;
455
1b74dde7
CY
456 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
457 x86_cap_flag(df->feature), df->level);
b38b0665 458 }
f6db44df 459}
b38b0665 460
102bbe3a
YL
461/*
462 * Naming convention should be: <Name> [(<Codename>)]
463 * This table only is used unless init_<vendor>() below doesn't set it;
0f3fa48a
IM
464 * in particular, if CPUID levels 0x80000002..4 are supported, this
465 * isn't used
102bbe3a
YL
466 */
467
468/* Look up CPU names by table lookup. */
148f9bb8 469static const char *table_lookup_model(struct cpuinfo_x86 *c)
102bbe3a 470{
09dc68d9
JB
471#ifdef CONFIG_X86_32
472 const struct legacy_cpu_model_info *info;
102bbe3a
YL
473
474 if (c->x86_model >= 16)
475 return NULL; /* Range check */
476
477 if (!this_cpu)
478 return NULL;
479
09dc68d9 480 info = this_cpu->legacy_models;
102bbe3a 481
09dc68d9 482 while (info->family) {
102bbe3a
YL
483 if (info->family == c->x86)
484 return info->model_names[c->x86_model];
485 info++;
486 }
09dc68d9 487#endif
102bbe3a
YL
488 return NULL; /* Not found */
489}
490
6cbd2171
TG
491__u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
492__u32 cpu_caps_set[NCAPINTS + NBUGINTS];
7d851c8d 493
11e3a840
JF
494void load_percpu_segment(int cpu)
495{
496#ifdef CONFIG_X86_32
497 loadsegment(fs, __KERNEL_PERCPU);
498#else
45e876f7 499 __loadsegment_simple(gs, 0);
35060ed6 500 wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
11e3a840 501#endif
60a5317f 502 load_stack_canary_segment();
11e3a840
JF
503}
504
72f5e08d
AL
505#ifdef CONFIG_X86_32
506/* The 32-bit entry code needs to find cpu_entry_area. */
507DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
508#endif
509
40e7f949
AL
510#ifdef CONFIG_X86_64
511/*
512 * Special IST stacks which the CPU switches to when it calls
513 * an IST-marked descriptor entry. Up to 7 stacks (hardware
514 * limit), all of them are 4K, except the debug stack which
515 * is 8K.
516 */
517static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
518 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
519 [DEBUG_STACK - 1] = DEBUG_STKSZ
520};
45fc8757 521#endif
69218e47 522
45fc8757
TG
523/* Load the original GDT from the per-cpu structure */
524void load_direct_gdt(int cpu)
525{
526 struct desc_ptr gdt_descr;
527
528 gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
529 gdt_descr.size = GDT_SIZE - 1;
530 load_gdt(&gdt_descr);
531}
532EXPORT_SYMBOL_GPL(load_direct_gdt);
533
69218e47
TG
534/* Load a fixmap remapping of the per-cpu GDT */
535void load_fixmap_gdt(int cpu)
536{
537 struct desc_ptr gdt_descr;
538
539 gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
540 gdt_descr.size = GDT_SIZE - 1;
541 load_gdt(&gdt_descr);
542}
45fc8757 543EXPORT_SYMBOL_GPL(load_fixmap_gdt);
69218e47 544
0f3fa48a
IM
545/*
546 * Current gdt points %fs at the "master" per-cpu area: after this,
547 * it's on the real one.
548 */
552be871 549void switch_to_new_gdt(int cpu)
9d31d35b 550{
45fc8757
TG
551 /* Load the original GDT */
552 load_direct_gdt(cpu);
2697fbd5 553 /* Reload the per-cpu base */
11e3a840 554 load_percpu_segment(cpu);
9d31d35b
YL
555}
556
148f9bb8 557static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
1da177e4 558
148f9bb8 559static void get_model_name(struct cpuinfo_x86 *c)
1da177e4
LT
560{
561 unsigned int *v;
ee098e1a 562 char *p, *q, *s;
1da177e4 563
3da99c97 564 if (c->extended_cpuid_level < 0x80000004)
1b05d60d 565 return;
1da177e4 566
0f3fa48a 567 v = (unsigned int *)c->x86_model_id;
1da177e4
LT
568 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
569 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
570 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
571 c->x86_model_id[48] = 0;
572
ee098e1a
BP
573 /* Trim whitespace */
574 p = q = s = &c->x86_model_id[0];
575
576 while (*p == ' ')
577 p++;
578
579 while (*p) {
580 /* Note the last non-whitespace index */
581 if (!isspace(*p))
582 s = q;
583
584 *q++ = *p++;
585 }
586
587 *(s + 1) = '\0';
1da177e4
LT
588}
589
9305bd6c 590void detect_num_cpu_cores(struct cpuinfo_x86 *c)
2cc61be6
DW
591{
592 unsigned int eax, ebx, ecx, edx;
593
9305bd6c 594 c->x86_max_cores = 1;
2cc61be6 595 if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
9305bd6c 596 return;
2cc61be6
DW
597
598 cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
599 if (eax & 0x1f)
9305bd6c 600 c->x86_max_cores = (eax >> 26) + 1;
2cc61be6
DW
601}
602
148f9bb8 603void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
1da177e4 604{
9d31d35b 605 unsigned int n, dummy, ebx, ecx, edx, l2size;
1da177e4 606
3da99c97 607 n = c->extended_cpuid_level;
1da177e4
LT
608
609 if (n >= 0x80000005) {
9d31d35b 610 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
9d31d35b 611 c->x86_cache_size = (ecx>>24) + (edx>>24);
140fc727
YL
612#ifdef CONFIG_X86_64
613 /* On K8 L1 TLB is inclusive, so don't count it */
614 c->x86_tlbsize = 0;
615#endif
1da177e4
LT
616 }
617
618 if (n < 0x80000006) /* Some chips just has a large L1. */
619 return;
620
0a488a53 621 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
1da177e4 622 l2size = ecx >> 16;
34048c9e 623
140fc727
YL
624#ifdef CONFIG_X86_64
625 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
626#else
1da177e4 627 /* do processor-specific cache resizing */
09dc68d9
JB
628 if (this_cpu->legacy_cache_size)
629 l2size = this_cpu->legacy_cache_size(c, l2size);
1da177e4
LT
630
631 /* Allow user to override all this if necessary. */
632 if (cachesize_override != -1)
633 l2size = cachesize_override;
634
34048c9e 635 if (l2size == 0)
1da177e4 636 return; /* Again, no L2 cache is possible */
140fc727 637#endif
1da177e4
LT
638
639 c->x86_cache_size = l2size;
1da177e4
LT
640}
641
e0ba94f1
AS
642u16 __read_mostly tlb_lli_4k[NR_INFO];
643u16 __read_mostly tlb_lli_2m[NR_INFO];
644u16 __read_mostly tlb_lli_4m[NR_INFO];
645u16 __read_mostly tlb_lld_4k[NR_INFO];
646u16 __read_mostly tlb_lld_2m[NR_INFO];
647u16 __read_mostly tlb_lld_4m[NR_INFO];
dd360393 648u16 __read_mostly tlb_lld_1g[NR_INFO];
e0ba94f1 649
f94fe119 650static void cpu_detect_tlb(struct cpuinfo_x86 *c)
e0ba94f1
AS
651{
652 if (this_cpu->c_detect_tlb)
653 this_cpu->c_detect_tlb(c);
654
f94fe119 655 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
e0ba94f1 656 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
f94fe119
SH
657 tlb_lli_4m[ENTRIES]);
658
659 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
660 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
661 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
e0ba94f1
AS
662}
663
148f9bb8 664void detect_ht(struct cpuinfo_x86 *c)
1da177e4 665{
c8e56d20 666#ifdef CONFIG_SMP
0a488a53
YL
667 u32 eax, ebx, ecx, edx;
668 int index_msb, core_bits;
2eaad1fd 669 static bool printed;
1da177e4 670
0a488a53 671 if (!cpu_has(c, X86_FEATURE_HT))
9d31d35b 672 return;
1da177e4 673
0a488a53
YL
674 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
675 goto out;
1da177e4 676
1cd78776
YL
677 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
678 return;
1da177e4 679
0a488a53 680 cpuid(1, &eax, &ebx, &ecx, &edx);
1da177e4 681
9d31d35b
YL
682 smp_num_siblings = (ebx & 0xff0000) >> 16;
683
684 if (smp_num_siblings == 1) {
1b74dde7 685 pr_info_once("CPU0: Hyper-Threading is disabled\n");
0f3fa48a
IM
686 goto out;
687 }
9d31d35b 688
0f3fa48a
IM
689 if (smp_num_siblings <= 1)
690 goto out;
9d31d35b 691
0f3fa48a
IM
692 index_msb = get_count_order(smp_num_siblings);
693 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
9d31d35b 694
0f3fa48a 695 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
9d31d35b 696
0f3fa48a 697 index_msb = get_count_order(smp_num_siblings);
9d31d35b 698
0f3fa48a 699 core_bits = get_count_order(c->x86_max_cores);
9d31d35b 700
0f3fa48a
IM
701 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
702 ((1 << core_bits) - 1);
1da177e4 703
0a488a53 704out:
2eaad1fd 705 if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
1b74dde7
CY
706 pr_info("CPU: Physical Processor ID: %d\n",
707 c->phys_proc_id);
708 pr_info("CPU: Processor Core ID: %d\n",
709 c->cpu_core_id);
2eaad1fd 710 printed = 1;
9d31d35b 711 }
9d31d35b 712#endif
97e4db7c 713}
1da177e4 714
148f9bb8 715static void get_cpu_vendor(struct cpuinfo_x86 *c)
1da177e4
LT
716{
717 char *v = c->x86_vendor_id;
0f3fa48a 718 int i;
1da177e4
LT
719
720 for (i = 0; i < X86_VENDOR_NUM; i++) {
10a434fc
YL
721 if (!cpu_devs[i])
722 break;
723
724 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
725 (cpu_devs[i]->c_ident[1] &&
726 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
0f3fa48a 727
10a434fc
YL
728 this_cpu = cpu_devs[i];
729 c->x86_vendor = this_cpu->c_x86_vendor;
730 return;
1da177e4
LT
731 }
732 }
10a434fc 733
1b74dde7
CY
734 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
735 "CPU: Your system may be unstable.\n", v);
10a434fc 736
fe38d855
CE
737 c->x86_vendor = X86_VENDOR_UNKNOWN;
738 this_cpu = &default_cpu;
1da177e4
LT
739}
740
148f9bb8 741void cpu_detect(struct cpuinfo_x86 *c)
1da177e4 742{
1da177e4 743 /* Get vendor name */
4a148513
HH
744 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
745 (unsigned int *)&c->x86_vendor_id[0],
746 (unsigned int *)&c->x86_vendor_id[8],
747 (unsigned int *)&c->x86_vendor_id[4]);
1da177e4 748
1da177e4 749 c->x86 = 4;
9d31d35b 750 /* Intel-defined flags: level 0x00000001 */
1da177e4
LT
751 if (c->cpuid_level >= 0x00000001) {
752 u32 junk, tfms, cap0, misc;
0f3fa48a 753
1da177e4 754 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
99f925ce
BP
755 c->x86 = x86_family(tfms);
756 c->x86_model = x86_model(tfms);
b399151c 757 c->x86_stepping = x86_stepping(tfms);
0f3fa48a 758
d4387bd3 759 if (cap0 & (1<<19)) {
d4387bd3 760 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
9d31d35b 761 c->x86_cache_alignment = c->x86_clflush_size;
d4387bd3 762 }
1da177e4 763 }
1da177e4 764}
3da99c97 765
8bf1ebca
AL
766static void apply_forced_caps(struct cpuinfo_x86 *c)
767{
768 int i;
769
6cbd2171 770 for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
8bf1ebca
AL
771 c->x86_capability[i] &= ~cpu_caps_cleared[i];
772 c->x86_capability[i] |= cpu_caps_set[i];
773 }
774}
775
7fcae111
DW
776static void init_speculation_control(struct cpuinfo_x86 *c)
777{
778 /*
779 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
780 * and they also have a different bit for STIBP support. Also,
781 * a hypervisor might have set the individual AMD bits even on
782 * Intel CPUs, for finer-grained selection of what's available.
7fcae111
DW
783 */
784 if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
785 set_cpu_cap(c, X86_FEATURE_IBRS);
786 set_cpu_cap(c, X86_FEATURE_IBPB);
7eb8956a 787 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
7fcae111 788 }
e7c587da 789
7fcae111
DW
790 if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
791 set_cpu_cap(c, X86_FEATURE_STIBP);
e7c587da 792
bc226f07
TL
793 if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
794 cpu_has(c, X86_FEATURE_VIRT_SSBD))
52817587
TG
795 set_cpu_cap(c, X86_FEATURE_SSBD);
796
7eb8956a 797 if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
e7c587da 798 set_cpu_cap(c, X86_FEATURE_IBRS);
7eb8956a
TG
799 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
800 }
e7c587da
BP
801
802 if (cpu_has(c, X86_FEATURE_AMD_IBPB))
803 set_cpu_cap(c, X86_FEATURE_IBPB);
804
7eb8956a 805 if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
e7c587da 806 set_cpu_cap(c, X86_FEATURE_STIBP);
7eb8956a
TG
807 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
808 }
6ac2f49e
KRW
809
810 if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
811 set_cpu_cap(c, X86_FEATURE_SSBD);
812 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
813 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
814 }
7fcae111
DW
815}
816
148f9bb8 817void get_cpu_cap(struct cpuinfo_x86 *c)
093af8d7 818{
39c06df4 819 u32 eax, ebx, ecx, edx;
093af8d7 820
3da99c97
YL
821 /* Intel-defined flags: level 0x00000001 */
822 if (c->cpuid_level >= 0x00000001) {
39c06df4 823 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
0f3fa48a 824
39c06df4
BP
825 c->x86_capability[CPUID_1_ECX] = ecx;
826 c->x86_capability[CPUID_1_EDX] = edx;
3da99c97 827 }
093af8d7 828
3df8d920
AL
829 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
830 if (c->cpuid_level >= 0x00000006)
831 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
832
bdc802dc
PA
833 /* Additional Intel-defined flags: level 0x00000007 */
834 if (c->cpuid_level >= 0x00000007) {
bdc802dc 835 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
39c06df4 836 c->x86_capability[CPUID_7_0_EBX] = ebx;
dfb4a70f 837 c->x86_capability[CPUID_7_ECX] = ecx;
95ca0ee8 838 c->x86_capability[CPUID_7_EDX] = edx;
bdc802dc
PA
839 }
840
6229ad27
FY
841 /* Extended state features: level 0x0000000d */
842 if (c->cpuid_level >= 0x0000000d) {
6229ad27
FY
843 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
844
39c06df4 845 c->x86_capability[CPUID_D_1_EAX] = eax;
6229ad27
FY
846 }
847
cbc82b17
PWJ
848 /* Additional Intel-defined flags: level 0x0000000F */
849 if (c->cpuid_level >= 0x0000000F) {
cbc82b17
PWJ
850
851 /* QoS sub-leaf, EAX=0Fh, ECX=0 */
852 cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
39c06df4
BP
853 c->x86_capability[CPUID_F_0_EDX] = edx;
854
cbc82b17
PWJ
855 if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
856 /* will be overridden if occupancy monitoring exists */
857 c->x86_cache_max_rmid = ebx;
858
859 /* QoS sub-leaf, EAX=0Fh, ECX=1 */
860 cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
39c06df4
BP
861 c->x86_capability[CPUID_F_1_EDX] = edx;
862
33c3cc7a
VS
863 if ((cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) ||
864 ((cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL)) ||
865 (cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)))) {
cbc82b17
PWJ
866 c->x86_cache_max_rmid = ecx;
867 c->x86_cache_occ_scale = ebx;
868 }
869 } else {
870 c->x86_cache_max_rmid = -1;
871 c->x86_cache_occ_scale = -1;
872 }
873 }
874
3da99c97 875 /* AMD-defined flags: level 0x80000001 */
39c06df4
BP
876 eax = cpuid_eax(0x80000000);
877 c->extended_cpuid_level = eax;
878
879 if ((eax & 0xffff0000) == 0x80000000) {
880 if (eax >= 0x80000001) {
881 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
0f3fa48a 882
39c06df4
BP
883 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
884 c->x86_capability[CPUID_8000_0001_EDX] = edx;
093af8d7 885 }
093af8d7 886 }
093af8d7 887
71faad43
YG
888 if (c->extended_cpuid_level >= 0x80000007) {
889 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
890
891 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
892 c->x86_power = edx;
893 }
894
c65732e4
TG
895 if (c->extended_cpuid_level >= 0x80000008) {
896 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
897 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
898 }
899
2ccd71f1 900 if (c->extended_cpuid_level >= 0x8000000a)
39c06df4 901 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
093af8d7 902
1dedefd1 903 init_scattered_cpuid_features(c);
7fcae111 904 init_speculation_control(c);
60d34501
AL
905
906 /*
907 * Clear/Set all flags overridden by options, after probe.
908 * This needs to happen each time we re-probe, which may happen
909 * several times during CPU initialization.
910 */
911 apply_forced_caps(c);
093af8d7 912}
1da177e4 913
d94a155c
KS
914static void get_cpu_address_sizes(struct cpuinfo_x86 *c)
915{
916 u32 eax, ebx, ecx, edx;
917
918 if (c->extended_cpuid_level >= 0x80000008) {
919 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
920
921 c->x86_virt_bits = (eax >> 8) & 0xff;
922 c->x86_phys_bits = eax & 0xff;
d94a155c
KS
923 }
924#ifdef CONFIG_X86_32
925 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
926 c->x86_phys_bits = 36;
927#endif
928}
929
148f9bb8 930static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
aef93c8b
YL
931{
932#ifdef CONFIG_X86_32
933 int i;
934
935 /*
936 * First of all, decide if this is a 486 or higher
937 * It's a 486 if we can modify the AC flag
938 */
939 if (flag_is_changeable_p(X86_EFLAGS_AC))
940 c->x86 = 4;
941 else
942 c->x86 = 3;
943
944 for (i = 0; i < X86_VENDOR_NUM; i++)
945 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
946 c->x86_vendor_id[0] = 0;
947 cpu_devs[i]->c_identify(c);
948 if (c->x86_vendor_id[0]) {
949 get_cpu_vendor(c);
950 break;
951 }
952 }
953#endif
954}
955
4bf5d56d 956static const __initconst struct x86_cpu_id cpu_no_speculation[] = {
fec9434a
DW
957 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_CEDARVIEW, X86_FEATURE_ANY },
958 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_CLOVERVIEW, X86_FEATURE_ANY },
959 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_LINCROFT, X86_FEATURE_ANY },
960 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_PENWELL, X86_FEATURE_ANY },
961 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_PINEVIEW, X86_FEATURE_ANY },
962 { X86_VENDOR_CENTAUR, 5 },
963 { X86_VENDOR_INTEL, 5 },
964 { X86_VENDOR_NSC, 5 },
965 { X86_VENDOR_ANY, 4 },
966 {}
967};
968
4bf5d56d 969static const __initconst struct x86_cpu_id cpu_no_meltdown[] = {
fec9434a
DW
970 { X86_VENDOR_AMD },
971 {}
972};
973
8ecc4979 974/* Only list CPUs which speculate but are non susceptible to SSB */
c456442c 975static const __initconst struct x86_cpu_id cpu_no_spec_store_bypass[] = {
c456442c
KRW
976 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_SILVERMONT1 },
977 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_AIRMONT },
978 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_SILVERMONT2 },
979 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_MERRIFIELD },
980 { X86_VENDOR_INTEL, 6, INTEL_FAM6_CORE_YONAH },
981 { X86_VENDOR_INTEL, 6, INTEL_FAM6_XEON_PHI_KNL },
982 { X86_VENDOR_INTEL, 6, INTEL_FAM6_XEON_PHI_KNM },
764f3c21
KRW
983 { X86_VENDOR_AMD, 0x12, },
984 { X86_VENDOR_AMD, 0x11, },
985 { X86_VENDOR_AMD, 0x10, },
986 { X86_VENDOR_AMD, 0xf, },
c456442c
KRW
987 {}
988};
989
4a28bfe3 990static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
fec9434a
DW
991{
992 u64 ia32_cap = 0;
993
8ecc4979
DB
994 if (x86_match_cpu(cpu_no_speculation))
995 return;
996
997 setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
998 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
999
77243971
KRW
1000 if (cpu_has(c, X86_FEATURE_ARCH_CAPABILITIES))
1001 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1002
1003 if (!x86_match_cpu(cpu_no_spec_store_bypass) &&
24809860
KRW
1004 !(ia32_cap & ARCH_CAP_SSB_NO) &&
1005 !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
c456442c
KRW
1006 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1007
fec9434a 1008 if (x86_match_cpu(cpu_no_meltdown))
4a28bfe3 1009 return;
fec9434a 1010
fec9434a
DW
1011 /* Rogue Data Cache Load? No! */
1012 if (ia32_cap & ARCH_CAP_RDCL_NO)
4a28bfe3 1013 return;
fec9434a 1014
4a28bfe3 1015 setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
fec9434a
DW
1016}
1017
8990cac6
PT
1018/*
1019 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1020 * unfortunately, that's not true in practice because of early VIA
1021 * chips and (more importantly) broken virtualizers that are not easy
1022 * to detect. In the latter case it doesn't even *fail* reliably, so
1023 * probing for it doesn't even work. Disable it completely on 32-bit
1024 * unless we can find a reliable way to detect all the broken cases.
1025 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1026 */
1027static void detect_nopl(struct cpuinfo_x86 *c)
1028{
1029#ifdef CONFIG_X86_32
1030 clear_cpu_cap(c, X86_FEATURE_NOPL);
1031#else
1032 set_cpu_cap(c, X86_FEATURE_NOPL);
1033#endif
1034}
1035
34048c9e
PC
1036/*
1037 * Do minimum CPU detection early.
1038 * Fields really needed: vendor, cpuid_level, family, model, mask,
1039 * cache alignment.
1040 * The others are not touched to avoid unwanted side effects.
1041 *
a1652bb8
JD
1042 * WARNING: this function is only called on the boot CPU. Don't add code
1043 * here that is supposed to run on all CPUs.
34048c9e 1044 */
3da99c97 1045static void __init early_identify_cpu(struct cpuinfo_x86 *c)
d7cd5611 1046{
6627d242
YL
1047#ifdef CONFIG_X86_64
1048 c->x86_clflush_size = 64;
13c6c532
JB
1049 c->x86_phys_bits = 36;
1050 c->x86_virt_bits = 48;
6627d242 1051#else
d4387bd3 1052 c->x86_clflush_size = 32;
13c6c532
JB
1053 c->x86_phys_bits = 32;
1054 c->x86_virt_bits = 32;
6627d242 1055#endif
0a488a53 1056 c->x86_cache_alignment = c->x86_clflush_size;
d7cd5611 1057
3da99c97 1058 memset(&c->x86_capability, 0, sizeof c->x86_capability);
0a488a53 1059 c->extended_cpuid_level = 0;
d7cd5611 1060
aef93c8b 1061 /* cyrix could have cpuid enabled via c_identify()*/
05fb3c19
AL
1062 if (have_cpuid_p()) {
1063 cpu_detect(c);
1064 get_cpu_vendor(c);
1065 get_cpu_cap(c);
d94a155c 1066 get_cpu_address_sizes(c);
78d1b296 1067 setup_force_cpu_cap(X86_FEATURE_CPUID);
d7cd5611 1068
05fb3c19
AL
1069 if (this_cpu->c_early_init)
1070 this_cpu->c_early_init(c);
12cf105c 1071
05fb3c19
AL
1072 c->cpu_index = 0;
1073 filter_cpuid_features(c, false);
093af8d7 1074
05fb3c19
AL
1075 if (this_cpu->c_bsp_init)
1076 this_cpu->c_bsp_init(c);
78d1b296
BP
1077 } else {
1078 identify_cpu_without_cpuid(c);
1079 setup_clear_cpu_cap(X86_FEATURE_CPUID);
05fb3c19 1080 }
c3b83598
BP
1081
1082 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
a89f040f 1083
4a28bfe3 1084 cpu_set_bug_bits(c);
99c6fa25 1085
db52ef74 1086 fpu__init_system(c);
b8b7abae
AL
1087
1088#ifdef CONFIG_X86_32
1089 /*
1090 * Regardless of whether PCID is enumerated, the SDM says
1091 * that it can't be enabled in 32-bit mode.
1092 */
1093 setup_clear_cpu_cap(X86_FEATURE_PCID);
1094#endif
372fddf7
KS
1095
1096 /*
1097 * Later in the boot process pgtable_l5_enabled() relies on
1098 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1099 * enabled by this point we need to clear the feature bit to avoid
1100 * false-positives at the later stage.
1101 *
1102 * pgtable_l5_enabled() can be false here for several reasons:
1103 * - 5-level paging is disabled compile-time;
1104 * - it's 32-bit kernel;
1105 * - machine doesn't support 5-level paging;
1106 * - user specified 'no5lvl' in kernel command line.
1107 */
1108 if (!pgtable_l5_enabled())
1109 setup_clear_cpu_cap(X86_FEATURE_LA57);
8990cac6
PT
1110
1111 detect_nopl(c);
d7cd5611
RR
1112}
1113
9d31d35b
YL
1114void __init early_cpu_init(void)
1115{
02dde8b4 1116 const struct cpu_dev *const *cdev;
10a434fc
YL
1117 int count = 0;
1118
ac23f253 1119#ifdef CONFIG_PROCESSOR_SELECT
1b74dde7 1120 pr_info("KERNEL supported cpus:\n");
31c997ca
IM
1121#endif
1122
10a434fc 1123 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
02dde8b4 1124 const struct cpu_dev *cpudev = *cdev;
9d31d35b 1125
10a434fc
YL
1126 if (count >= X86_VENDOR_NUM)
1127 break;
1128 cpu_devs[count] = cpudev;
1129 count++;
1130
ac23f253 1131#ifdef CONFIG_PROCESSOR_SELECT
31c997ca
IM
1132 {
1133 unsigned int j;
1134
1135 for (j = 0; j < 2; j++) {
1136 if (!cpudev->c_ident[j])
1137 continue;
1b74dde7 1138 pr_info(" %s %s\n", cpudev->c_vendor,
31c997ca
IM
1139 cpudev->c_ident[j]);
1140 }
10a434fc 1141 }
0388423d 1142#endif
10a434fc 1143 }
9d31d35b 1144 early_identify_cpu(&boot_cpu_data);
d7cd5611 1145}
093af8d7 1146
7a5d6704
AL
1147static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1148{
1149#ifdef CONFIG_X86_64
58a5aac5 1150 /*
7a5d6704
AL
1151 * Empirically, writing zero to a segment selector on AMD does
1152 * not clear the base, whereas writing zero to a segment
1153 * selector on Intel does clear the base. Intel's behavior
1154 * allows slightly faster context switches in the common case
1155 * where GS is unused by the prev and next threads.
58a5aac5 1156 *
7a5d6704
AL
1157 * Since neither vendor documents this anywhere that I can see,
1158 * detect it directly instead of hardcoding the choice by
1159 * vendor.
1160 *
1161 * I've designated AMD's behavior as the "bug" because it's
1162 * counterintuitive and less friendly.
58a5aac5 1163 */
7a5d6704
AL
1164
1165 unsigned long old_base, tmp;
1166 rdmsrl(MSR_FS_BASE, old_base);
1167 wrmsrl(MSR_FS_BASE, 1);
1168 loadsegment(fs, 0);
1169 rdmsrl(MSR_FS_BASE, tmp);
1170 if (tmp != 0)
1171 set_cpu_bug(c, X86_BUG_NULL_SEG);
1172 wrmsrl(MSR_FS_BASE, old_base);
366d4a43 1173#endif
d7cd5611
RR
1174}
1175
148f9bb8 1176static void generic_identify(struct cpuinfo_x86 *c)
1da177e4 1177{
aef93c8b 1178 c->extended_cpuid_level = 0;
1da177e4 1179
3da99c97 1180 if (!have_cpuid_p())
aef93c8b 1181 identify_cpu_without_cpuid(c);
1d67953f 1182
aef93c8b 1183 /* cyrix could have cpuid enabled via c_identify()*/
a9853dd6 1184 if (!have_cpuid_p())
aef93c8b 1185 return;
1da177e4 1186
3da99c97 1187 cpu_detect(c);
1da177e4 1188
3da99c97 1189 get_cpu_vendor(c);
1da177e4 1190
3da99c97 1191 get_cpu_cap(c);
1da177e4 1192
d94a155c
KS
1193 get_cpu_address_sizes(c);
1194
3da99c97
YL
1195 if (c->cpuid_level >= 0x00000001) {
1196 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
b89d3b3e 1197#ifdef CONFIG_X86_32
c8e56d20 1198# ifdef CONFIG_SMP
cb8cc442 1199 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
b89d3b3e 1200# else
3da99c97 1201 c->apicid = c->initial_apicid;
b89d3b3e
YL
1202# endif
1203#endif
b89d3b3e 1204 c->phys_proc_id = c->initial_apicid;
3da99c97 1205 }
1da177e4 1206
1b05d60d 1207 get_model_name(c); /* Default name */
1da177e4 1208
3da99c97 1209 detect_nopl(c);
7a5d6704
AL
1210
1211 detect_null_seg_behavior(c);
0230bb03
AL
1212
1213 /*
1214 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
1215 * systems that run Linux at CPL > 0 may or may not have the
1216 * issue, but, even if they have the issue, there's absolutely
1217 * nothing we can do about it because we can't use the real IRET
1218 * instruction.
1219 *
1220 * NB: For the time being, only 32-bit kernels support
1221 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
1222 * whether to apply espfix using paravirt hooks. If any
1223 * non-paravirt system ever shows up that does *not* have the
1224 * ESPFIX issue, we can change this.
1225 */
1226#ifdef CONFIG_X86_32
1227# ifdef CONFIG_PARAVIRT
1228 do {
1229 extern void native_iret(void);
1230 if (pv_cpu_ops.iret == native_iret)
1231 set_cpu_bug(c, X86_BUG_ESPFIX);
1232 } while (0);
1233# else
1234 set_cpu_bug(c, X86_BUG_ESPFIX);
1235# endif
1236#endif
1da177e4 1237}
1da177e4 1238
cbc82b17
PWJ
1239static void x86_init_cache_qos(struct cpuinfo_x86 *c)
1240{
1241 /*
1242 * The heavy lifting of max_rmid and cache_occ_scale are handled
1243 * in get_cpu_cap(). Here we just set the max_rmid for the boot_cpu
1244 * in case CQM bits really aren't there in this CPU.
1245 */
1246 if (c != &boot_cpu_data) {
1247 boot_cpu_data.x86_cache_max_rmid =
1248 min(boot_cpu_data.x86_cache_max_rmid,
1249 c->x86_cache_max_rmid);
1250 }
1251}
1252
d49597fd 1253/*
9d85eb91
TG
1254 * Validate that ACPI/mptables have the same information about the
1255 * effective APIC id and update the package map.
d49597fd 1256 */
9d85eb91 1257static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
d49597fd
TG
1258{
1259#ifdef CONFIG_SMP
9d85eb91 1260 unsigned int apicid, cpu = smp_processor_id();
d49597fd
TG
1261
1262 apicid = apic->cpu_present_to_apicid(cpu);
d49597fd 1263
9d85eb91
TG
1264 if (apicid != c->apicid) {
1265 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
d49597fd 1266 cpu, apicid, c->initial_apicid);
d49597fd 1267 }
9d85eb91 1268 BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
d49597fd
TG
1269#else
1270 c->logical_proc_id = 0;
1271#endif
1272}
1273
1da177e4
LT
1274/*
1275 * This does the hard work of actually picking apart the CPU stuff...
1276 */
148f9bb8 1277static void identify_cpu(struct cpuinfo_x86 *c)
1da177e4
LT
1278{
1279 int i;
1280
1281 c->loops_per_jiffy = loops_per_jiffy;
24dbc600 1282 c->x86_cache_size = 0;
1da177e4 1283 c->x86_vendor = X86_VENDOR_UNKNOWN;
b399151c 1284 c->x86_model = c->x86_stepping = 0; /* So far unknown... */
1da177e4
LT
1285 c->x86_vendor_id[0] = '\0'; /* Unset */
1286 c->x86_model_id[0] = '\0'; /* Unset */
94605eff 1287 c->x86_max_cores = 1;
102bbe3a 1288 c->x86_coreid_bits = 0;
79a8b9aa 1289 c->cu_id = 0xff;
11fdd252 1290#ifdef CONFIG_X86_64
102bbe3a 1291 c->x86_clflush_size = 64;
13c6c532
JB
1292 c->x86_phys_bits = 36;
1293 c->x86_virt_bits = 48;
102bbe3a
YL
1294#else
1295 c->cpuid_level = -1; /* CPUID not detected */
770d132f 1296 c->x86_clflush_size = 32;
13c6c532
JB
1297 c->x86_phys_bits = 32;
1298 c->x86_virt_bits = 32;
102bbe3a
YL
1299#endif
1300 c->x86_cache_alignment = c->x86_clflush_size;
1da177e4
LT
1301 memset(&c->x86_capability, 0, sizeof c->x86_capability);
1302
1da177e4
LT
1303 generic_identify(c);
1304
3898534d 1305 if (this_cpu->c_identify)
1da177e4
LT
1306 this_cpu->c_identify(c);
1307
6a6256f9 1308 /* Clear/Set all flags overridden by options, after probe */
8bf1ebca 1309 apply_forced_caps(c);
2759c328 1310
102bbe3a 1311#ifdef CONFIG_X86_64
cb8cc442 1312 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
102bbe3a
YL
1313#endif
1314
1da177e4
LT
1315 /*
1316 * Vendor-specific initialization. In this section we
1317 * canonicalize the feature flags, meaning if there are
1318 * features a certain CPU supports which CPUID doesn't
1319 * tell us, CPUID claiming incorrect flags, or other bugs,
1320 * we handle them here.
1321 *
1322 * At the end of this section, c->x86_capability better
1323 * indicate the features this CPU genuinely supports!
1324 */
1325 if (this_cpu->c_init)
1326 this_cpu->c_init(c);
1327
1328 /* Disable the PN if appropriate */
1329 squash_the_stupid_serial_number(c);
1330
aa35f896 1331 /* Set up SMEP/SMAP/UMIP */
b2cc2a07
PA
1332 setup_smep(c);
1333 setup_smap(c);
aa35f896 1334 setup_umip(c);
b2cc2a07 1335
1da177e4 1336 /*
0f3fa48a
IM
1337 * The vendor-specific functions might have changed features.
1338 * Now we do "generic changes."
1da177e4
LT
1339 */
1340
b38b0665
PA
1341 /* Filter out anything that depends on CPUID levels we don't have */
1342 filter_cpuid_features(c, true);
1343
1da177e4 1344 /* If the model name is still unset, do table lookup. */
34048c9e 1345 if (!c->x86_model_id[0]) {
02dde8b4 1346 const char *p;
1da177e4 1347 p = table_lookup_model(c);
34048c9e 1348 if (p)
1da177e4
LT
1349 strcpy(c->x86_model_id, p);
1350 else
1351 /* Last resort... */
1352 sprintf(c->x86_model_id, "%02x/%02x",
54a20f8c 1353 c->x86, c->x86_model);
1da177e4
LT
1354 }
1355
102bbe3a
YL
1356#ifdef CONFIG_X86_64
1357 detect_ht(c);
1358#endif
1359
49d859d7 1360 x86_init_rdrand(c);
cbc82b17 1361 x86_init_cache_qos(c);
06976945 1362 setup_pku(c);
3e0c3737
YL
1363
1364 /*
6a6256f9 1365 * Clear/Set all flags overridden by options, need do it
3e0c3737
YL
1366 * before following smp all cpus cap AND.
1367 */
8bf1ebca 1368 apply_forced_caps(c);
3e0c3737 1369
1da177e4
LT
1370 /*
1371 * On SMP, boot_cpu_data holds the common feature set between
1372 * all CPUs; so make sure that we indicate which features are
1373 * common between the CPUs. The first time this routine gets
1374 * executed, c == &boot_cpu_data.
1375 */
34048c9e 1376 if (c != &boot_cpu_data) {
1da177e4 1377 /* AND the already accumulated flags with these */
9d31d35b 1378 for (i = 0; i < NCAPINTS; i++)
1da177e4 1379 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
65fc985b
BP
1380
1381 /* OR, i.e. replicate the bug flags */
1382 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1383 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1da177e4
LT
1384 }
1385
1386 /* Init Machine Check Exception if available. */
5e09954a 1387 mcheck_cpu_init(c);
30d432df
AK
1388
1389 select_idle_routine(c);
102bbe3a 1390
de2d9445 1391#ifdef CONFIG_NUMA
102bbe3a
YL
1392 numa_add_cpu(smp_processor_id());
1393#endif
a6c4e076 1394}
31ab269a 1395
8b6c0ab1
IM
1396/*
1397 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1398 * on 32-bit kernels:
1399 */
cfda7bb9
AL
1400#ifdef CONFIG_X86_32
1401void enable_sep_cpu(void)
1402{
8b6c0ab1
IM
1403 struct tss_struct *tss;
1404 int cpu;
cfda7bb9 1405
b3edfda4
BP
1406 if (!boot_cpu_has(X86_FEATURE_SEP))
1407 return;
1408
8b6c0ab1 1409 cpu = get_cpu();
c482feef 1410 tss = &per_cpu(cpu_tss_rw, cpu);
8b6c0ab1 1411
8b6c0ab1 1412 /*
cf9328cc
AL
1413 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1414 * see the big comment in struct x86_hw_tss's definition.
8b6c0ab1 1415 */
cfda7bb9
AL
1416
1417 tss->x86_tss.ss1 = __KERNEL_CS;
8b6c0ab1 1418 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
4fe2d8b1 1419 wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
4c8cd0c5 1420 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
8b6c0ab1 1421
cfda7bb9
AL
1422 put_cpu();
1423}
e04d645f
GC
1424#endif
1425
a6c4e076
JF
1426void __init identify_boot_cpu(void)
1427{
1428 identify_cpu(&boot_cpu_data);
102bbe3a 1429#ifdef CONFIG_X86_32
a6c4e076 1430 sysenter_setup();
6fe940d6 1431 enable_sep_cpu();
102bbe3a 1432#endif
5b556332 1433 cpu_detect_tlb(&boot_cpu_data);
a6c4e076 1434}
3b520b23 1435
148f9bb8 1436void identify_secondary_cpu(struct cpuinfo_x86 *c)
a6c4e076
JF
1437{
1438 BUG_ON(c == &boot_cpu_data);
1439 identify_cpu(c);
102bbe3a 1440#ifdef CONFIG_X86_32
a6c4e076 1441 enable_sep_cpu();
102bbe3a 1442#endif
a6c4e076 1443 mtrr_ap_init();
9d85eb91 1444 validate_apic_and_package_id(c);
77243971 1445 x86_spec_ctrl_setup_ap();
1da177e4
LT
1446}
1447
191679fd
AK
1448static __init int setup_noclflush(char *arg)
1449{
840d2830 1450 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
da4aaa7d 1451 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
191679fd
AK
1452 return 1;
1453}
1454__setup("noclflush", setup_noclflush);
1455
148f9bb8 1456void print_cpu_info(struct cpuinfo_x86 *c)
1da177e4 1457{
02dde8b4 1458 const char *vendor = NULL;
1da177e4 1459
0f3fa48a 1460 if (c->x86_vendor < X86_VENDOR_NUM) {
1da177e4 1461 vendor = this_cpu->c_vendor;
0f3fa48a
IM
1462 } else {
1463 if (c->cpuid_level >= 0)
1464 vendor = c->x86_vendor_id;
1465 }
1da177e4 1466
bd32a8cf 1467 if (vendor && !strstr(c->x86_model_id, vendor))
1b74dde7 1468 pr_cont("%s ", vendor);
1da177e4 1469
9d31d35b 1470 if (c->x86_model_id[0])
1b74dde7 1471 pr_cont("%s", c->x86_model_id);
1da177e4 1472 else
1b74dde7 1473 pr_cont("%d86", c->x86);
1da177e4 1474
1b74dde7 1475 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
924e101a 1476
b399151c
JZ
1477 if (c->x86_stepping || c->cpuid_level >= 0)
1478 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1da177e4 1479 else
1b74dde7 1480 pr_cont(")\n");
1da177e4
LT
1481}
1482
0c2a3913
AK
1483/*
1484 * clearcpuid= was already parsed in fpu__init_parse_early_param.
1485 * But we need to keep a dummy __setup around otherwise it would
1486 * show up as an environment variable for init.
1487 */
1488static __init int setup_clearcpuid(char *arg)
ac72e788 1489{
ac72e788
AK
1490 return 1;
1491}
0c2a3913 1492__setup("clearcpuid=", setup_clearcpuid);
ac72e788 1493
d5494d4f 1494#ifdef CONFIG_X86_64
947e76cd 1495DEFINE_PER_CPU_FIRST(union irq_stack_union,
277d5b40 1496 irq_stack_union) __aligned(PAGE_SIZE) __visible;
35060ed6 1497EXPORT_PER_CPU_SYMBOL_GPL(irq_stack_union);
0f3fa48a 1498
bdf977b3 1499/*
a7fcf28d
AL
1500 * The following percpu variables are hot. Align current_task to
1501 * cacheline size such that they fall in the same cacheline.
bdf977b3
TH
1502 */
1503DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1504 &init_task;
1505EXPORT_PER_CPU_SYMBOL(current_task);
d5494d4f 1506
bdf977b3 1507DEFINE_PER_CPU(char *, irq_stack_ptr) =
4950d6d4 1508 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE;
bdf977b3 1509
277d5b40 1510DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
d5494d4f 1511
c2daa3be
PZ
1512DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1513EXPORT_PER_CPU_SYMBOL(__preempt_count);
1514
d5494d4f
YL
1515/* May not be marked __init: used by software suspend */
1516void syscall_init(void)
1da177e4 1517{
3386bc8a
AL
1518 extern char _entry_trampoline[];
1519 extern char entry_SYSCALL_64_trampoline[];
1520
72f5e08d 1521 int cpu = smp_processor_id();
3386bc8a
AL
1522 unsigned long SYSCALL64_entry_trampoline =
1523 (unsigned long)get_cpu_entry_area(cpu)->entry_trampoline +
1524 (entry_SYSCALL_64_trampoline - _entry_trampoline);
72f5e08d 1525
31ac34ca 1526 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
8d4b0678
TG
1527 if (static_cpu_has(X86_FEATURE_PTI))
1528 wrmsrl(MSR_LSTAR, SYSCALL64_entry_trampoline);
1529 else
1530 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
d56fe4bf
IM
1531
1532#ifdef CONFIG_IA32_EMULATION
47edb651 1533 wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
a76c7f46 1534 /*
487d1edb
DV
1535 * This only works on Intel CPUs.
1536 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1537 * This does not cause SYSENTER to jump to the wrong location, because
1538 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
a76c7f46
DV
1539 */
1540 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
4fe2d8b1 1541 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1));
4c8cd0c5 1542 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
d56fe4bf 1543#else
47edb651 1544 wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
6b51311c 1545 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
d56fe4bf
IM
1546 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1547 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
d5494d4f 1548#endif
03ae5768 1549
d5494d4f
YL
1550 /* Flags to clear on syscall */
1551 wrmsrl(MSR_SYSCALL_MASK,
63bcff2a 1552 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
8c7aa698 1553 X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1da177e4 1554}
62111195 1555
d5494d4f
YL
1556/*
1557 * Copies of the original ist values from the tss are only accessed during
1558 * debugging, no special alignment required.
1559 */
1560DEFINE_PER_CPU(struct orig_ist, orig_ist);
1561
228bdaa9 1562static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
42181186 1563DEFINE_PER_CPU(int, debug_stack_usage);
228bdaa9
SR
1564
1565int is_debug_stack(unsigned long addr)
1566{
89cbc767
CL
1567 return __this_cpu_read(debug_stack_usage) ||
1568 (addr <= __this_cpu_read(debug_stack_addr) &&
1569 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
228bdaa9 1570}
0f46efeb 1571NOKPROBE_SYMBOL(is_debug_stack);
228bdaa9 1572
629f4f9d 1573DEFINE_PER_CPU(u32, debug_idt_ctr);
f8988175 1574
228bdaa9
SR
1575void debug_stack_set_zero(void)
1576{
629f4f9d
SA
1577 this_cpu_inc(debug_idt_ctr);
1578 load_current_idt();
228bdaa9 1579}
0f46efeb 1580NOKPROBE_SYMBOL(debug_stack_set_zero);
228bdaa9
SR
1581
1582void debug_stack_reset(void)
1583{
629f4f9d 1584 if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
f8988175 1585 return;
629f4f9d
SA
1586 if (this_cpu_dec_return(debug_idt_ctr) == 0)
1587 load_current_idt();
228bdaa9 1588}
0f46efeb 1589NOKPROBE_SYMBOL(debug_stack_reset);
228bdaa9 1590
0f3fa48a 1591#else /* CONFIG_X86_64 */
d5494d4f 1592
bdf977b3
TH
1593DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1594EXPORT_PER_CPU_SYMBOL(current_task);
c2daa3be
PZ
1595DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1596EXPORT_PER_CPU_SYMBOL(__preempt_count);
bdf977b3 1597
a7fcf28d
AL
1598/*
1599 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1600 * the top of the kernel stack. Use an extra percpu variable to track the
1601 * top of the kernel stack directly.
1602 */
1603DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1604 (unsigned long)&init_thread_union + THREAD_SIZE;
1605EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1606
050e9baa 1607#ifdef CONFIG_STACKPROTECTOR
53f82452 1608DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
60a5317f 1609#endif
d5494d4f 1610
0f3fa48a 1611#endif /* CONFIG_X86_64 */
c5413fbe 1612
9766cdbc
JSR
1613/*
1614 * Clear all 6 debug registers:
1615 */
1616static void clear_all_debug_regs(void)
1617{
1618 int i;
1619
1620 for (i = 0; i < 8; i++) {
1621 /* Ignore db4, db5 */
1622 if ((i == 4) || (i == 5))
1623 continue;
1624
1625 set_debugreg(0, i);
1626 }
1627}
c5413fbe 1628
0bb9fef9
JW
1629#ifdef CONFIG_KGDB
1630/*
1631 * Restore debug regs if using kgdbwait and you have a kernel debugger
1632 * connection established.
1633 */
1634static void dbg_restore_debug_regs(void)
1635{
1636 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1637 arch_kgdb_ops.correct_hw_break();
1638}
1639#else /* ! CONFIG_KGDB */
1640#define dbg_restore_debug_regs()
1641#endif /* ! CONFIG_KGDB */
1642
ce4b1b16
IM
1643static void wait_for_master_cpu(int cpu)
1644{
1645#ifdef CONFIG_SMP
1646 /*
1647 * wait for ACK from master CPU before continuing
1648 * with AP initialization
1649 */
1650 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1651 while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1652 cpu_relax();
1653#endif
1654}
1655
d2cbcc49
RR
1656/*
1657 * cpu_init() initializes state that is per-CPU. Some data is already
1658 * initialized (naturally) in the bootstrap process, such as the GDT
1659 * and IDT. We reload them nevertheless, this function acts as a
1660 * 'CPU state barrier', nothing should get across.
1ba76586 1661 * A lot of state is already set up in PDA init for 64 bit
d2cbcc49 1662 */
1ba76586 1663#ifdef CONFIG_X86_64
0f3fa48a 1664
148f9bb8 1665void cpu_init(void)
1ba76586 1666{
0fe1e009 1667 struct orig_ist *oist;
1ba76586 1668 struct task_struct *me;
0f3fa48a
IM
1669 struct tss_struct *t;
1670 unsigned long v;
fb59831b 1671 int cpu = raw_smp_processor_id();
1ba76586
YL
1672 int i;
1673
ce4b1b16
IM
1674 wait_for_master_cpu(cpu);
1675
1e02ce4c
AL
1676 /*
1677 * Initialize the CR4 shadow before doing anything that could
1678 * try to read it.
1679 */
1680 cr4_init_shadow();
1681
777284b6
BP
1682 if (cpu)
1683 load_ucode_ap();
e6ebf5de 1684
c482feef 1685 t = &per_cpu(cpu_tss_rw, cpu);
0fe1e009 1686 oist = &per_cpu(orig_ist, cpu);
0f3fa48a 1687
e7a22c1e 1688#ifdef CONFIG_NUMA
27fd185f 1689 if (this_cpu_read(numa_node) == 0 &&
e534c7c5
LS
1690 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1691 set_numa_node(early_cpu_to_node(cpu));
e7a22c1e 1692#endif
1ba76586
YL
1693
1694 me = current;
1695
2eaad1fd 1696 pr_debug("Initializing CPU#%d\n", cpu);
1ba76586 1697
375074cc 1698 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1ba76586
YL
1699
1700 /*
1701 * Initialize the per-CPU GDT with the boot GDT,
1702 * and set up the GDT descriptor:
1703 */
1704
552be871 1705 switch_to_new_gdt(cpu);
2697fbd5
BG
1706 loadsegment(fs, 0);
1707
cf910e83 1708 load_current_idt();
1ba76586
YL
1709
1710 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1711 syscall_init();
1712
1713 wrmsrl(MSR_FS_BASE, 0);
1714 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1715 barrier();
1716
4763ed4d 1717 x86_configure_nx();
659006bf 1718 x2apic_setup();
1ba76586
YL
1719
1720 /*
1721 * set up and load the per-CPU TSS
1722 */
0fe1e009 1723 if (!oist->ist[0]) {
40e7f949 1724 char *estacks = get_cpu_entry_area(cpu)->exception_stacks;
0f3fa48a 1725
1ba76586 1726 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
0f3fa48a 1727 estacks += exception_stack_sizes[v];
0fe1e009 1728 oist->ist[v] = t->x86_tss.ist[v] =
1ba76586 1729 (unsigned long)estacks;
228bdaa9
SR
1730 if (v == DEBUG_STACK-1)
1731 per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1ba76586
YL
1732 }
1733 }
1734
7fb983b4 1735 t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
0f3fa48a 1736
1ba76586
YL
1737 /*
1738 * <= is required because the CPU will access up to
1739 * 8 bits beyond the end of the IO permission bitmap.
1740 */
1741 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1742 t->io_bitmap[i] = ~0UL;
1743
f1f10076 1744 mmgrab(&init_mm);
1ba76586 1745 me->active_mm = &init_mm;
8c5dfd25 1746 BUG_ON(me->mm);
72c0098d 1747 initialize_tlbstate_and_flush();
1ba76586
YL
1748 enter_lazy_tlb(&init_mm, me);
1749
20bb8344 1750 /*
7f2590a1
AL
1751 * Initialize the TSS. sp0 points to the entry trampoline stack
1752 * regardless of what task is running.
20bb8344 1753 */
72f5e08d 1754 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1ba76586 1755 load_TR_desc();
4fe2d8b1 1756 load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
20bb8344 1757
37868fe1 1758 load_mm_ldt(&init_mm);
1ba76586 1759
0bb9fef9
JW
1760 clear_all_debug_regs();
1761 dbg_restore_debug_regs();
1ba76586 1762
21c4cd10 1763 fpu__init_cpu();
1ba76586 1764
1ba76586
YL
1765 if (is_uv_system())
1766 uv_cpu_init();
69218e47 1767
69218e47 1768 load_fixmap_gdt(cpu);
1ba76586
YL
1769}
1770
1771#else
1772
148f9bb8 1773void cpu_init(void)
9ee79a3d 1774{
d2cbcc49
RR
1775 int cpu = smp_processor_id();
1776 struct task_struct *curr = current;
c482feef 1777 struct tss_struct *t = &per_cpu(cpu_tss_rw, cpu);
62111195 1778
ce4b1b16 1779 wait_for_master_cpu(cpu);
e6ebf5de 1780
5b2bdbc8
SR
1781 /*
1782 * Initialize the CR4 shadow before doing anything that could
1783 * try to read it.
1784 */
1785 cr4_init_shadow();
1786
ce4b1b16 1787 show_ucode_info_early();
62111195 1788
1b74dde7 1789 pr_info("Initializing CPU#%d\n", cpu);
62111195 1790
362f924b 1791 if (cpu_feature_enabled(X86_FEATURE_VME) ||
59e21e3d 1792 boot_cpu_has(X86_FEATURE_TSC) ||
362f924b 1793 boot_cpu_has(X86_FEATURE_DE))
375074cc 1794 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
62111195 1795
cf910e83 1796 load_current_idt();
552be871 1797 switch_to_new_gdt(cpu);
1da177e4 1798
1da177e4
LT
1799 /*
1800 * Set up and load the per-CPU TSS and LDT
1801 */
f1f10076 1802 mmgrab(&init_mm);
62111195 1803 curr->active_mm = &init_mm;
8c5dfd25 1804 BUG_ON(curr->mm);
72c0098d 1805 initialize_tlbstate_and_flush();
62111195 1806 enter_lazy_tlb(&init_mm, curr);
1da177e4 1807
20bb8344
AL
1808 /*
1809 * Initialize the TSS. Don't bother initializing sp0, as the initial
1810 * task never enters user mode.
1811 */
72f5e08d 1812 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1da177e4 1813 load_TR_desc();
20bb8344 1814
37868fe1 1815 load_mm_ldt(&init_mm);
1da177e4 1816
7fb983b4 1817 t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
f9a196b8 1818
22c4e308 1819#ifdef CONFIG_DOUBLEFAULT
1da177e4
LT
1820 /* Set up doublefault TSS pointer in the GDT */
1821 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
22c4e308 1822#endif
1da177e4 1823
9766cdbc 1824 clear_all_debug_regs();
0bb9fef9 1825 dbg_restore_debug_regs();
1da177e4 1826
21c4cd10 1827 fpu__init_cpu();
69218e47 1828
69218e47 1829 load_fixmap_gdt(cpu);
1da177e4 1830}
1ba76586 1831#endif
5700f743 1832
b51ef52d
LA
1833static void bsp_resume(void)
1834{
1835 if (this_cpu->c_bsp_resume)
1836 this_cpu->c_bsp_resume(&boot_cpu_data);
1837}
1838
1839static struct syscore_ops cpu_syscore_ops = {
1840 .resume = bsp_resume,
1841};
1842
1843static int __init init_cpu_syscore(void)
1844{
1845 register_syscore_ops(&cpu_syscore_ops);
1846 return 0;
1847}
1848core_initcall(init_cpu_syscore);
1008c52c
BP
1849
1850/*
1851 * The microcode loader calls this upon late microcode load to recheck features,
1852 * only when microcode has been updated. Caller holds microcode_mutex and CPU
1853 * hotplug lock.
1854 */
1855void microcode_check(void)
1856{
42ca8082
BP
1857 struct cpuinfo_x86 info;
1858
1008c52c 1859 perf_check_microcode();
42ca8082
BP
1860
1861 /* Reload CPUID max function as it might've changed. */
1862 info.cpuid_level = cpuid_eax(0);
1863
1864 /*
1865 * Copy all capability leafs to pick up the synthetic ones so that
1866 * memcmp() below doesn't fail on that. The ones coming from CPUID will
1867 * get overwritten in get_cpu_cap().
1868 */
1869 memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
1870
1871 get_cpu_cap(&info);
1872
1873 if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
1874 return;
1875
1876 pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
1877 pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
1008c52c 1878}