]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/kernel/cpu/common.c
x86/mm/pat: Standardize on memtype_*() prefix for APIs
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kernel / cpu / common.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
2458e53f
KS
2/* cpu_feature_enabled() cannot be used this early */
3#define USE_EARLY_PGTABLE_L5
4
57c8a661 5#include <linux/memblock.h>
9766cdbc 6#include <linux/linkage.h>
f0fc4aff 7#include <linux/bitops.h>
9766cdbc 8#include <linux/kernel.h>
186f4360 9#include <linux/export.h>
9766cdbc
JSR
10#include <linux/percpu.h>
11#include <linux/string.h>
ee098e1a 12#include <linux/ctype.h>
1da177e4 13#include <linux/delay.h>
68e21be2 14#include <linux/sched/mm.h>
e6017571 15#include <linux/sched/clock.h>
9164bb4a 16#include <linux/sched/task.h>
9766cdbc 17#include <linux/init.h>
0f46efeb 18#include <linux/kprobes.h>
9766cdbc 19#include <linux/kgdb.h>
1da177e4 20#include <linux/smp.h>
9766cdbc 21#include <linux/io.h>
b51ef52d 22#include <linux/syscore_ops.h>
9766cdbc
JSR
23
24#include <asm/stackprotector.h>
cdd6c482 25#include <asm/perf_event.h>
1da177e4 26#include <asm/mmu_context.h>
dc4e0021 27#include <asm/doublefault.h>
49d859d7 28#include <asm/archrandom.h>
9766cdbc
JSR
29#include <asm/hypervisor.h>
30#include <asm/processor.h>
1e02ce4c 31#include <asm/tlbflush.h>
f649e938 32#include <asm/debugreg.h>
9766cdbc 33#include <asm/sections.h>
f40c3300 34#include <asm/vsyscall.h>
8bdbd962
AC
35#include <linux/topology.h>
36#include <linux/cpumask.h>
9766cdbc 37#include <asm/pgtable.h>
60063497 38#include <linux/atomic.h>
9766cdbc
JSR
39#include <asm/proto.h>
40#include <asm/setup.h>
41#include <asm/apic.h>
42#include <asm/desc.h>
78f7f1e5 43#include <asm/fpu/internal.h>
27b07da7 44#include <asm/mtrr.h>
0274f955 45#include <asm/hwcap2.h>
8bdbd962 46#include <linux/numa.h>
9766cdbc 47#include <asm/asm.h>
0f6ff2bc 48#include <asm/bugs.h>
9766cdbc 49#include <asm/cpu.h>
a03a3e28 50#include <asm/mce.h>
9766cdbc 51#include <asm/msr.h>
8d4a4300 52#include <asm/pat.h>
d288e1cf
FY
53#include <asm/microcode.h>
54#include <asm/microcode_intel.h>
fec9434a
DW
55#include <asm/intel-family.h>
56#include <asm/cpu_device_id.h>
bdbcdd48 57#include <asm/uv/uv.h>
1da177e4
LT
58
59#include "cpu.h"
60
0274f955
GA
61u32 elf_hwcap2 __read_mostly;
62
c2d1cec1 63/* all of these masks are initialized in setup_cpu_local_masks() */
c2d1cec1 64cpumask_var_t cpu_initialized_mask;
9766cdbc
JSR
65cpumask_var_t cpu_callout_mask;
66cpumask_var_t cpu_callin_mask;
c2d1cec1
MT
67
68/* representing cpus for which sibling maps can be computed */
69cpumask_var_t cpu_sibling_setup_mask;
70
f8b64d08
BP
71/* Number of siblings per CPU package */
72int smp_num_siblings = 1;
73EXPORT_SYMBOL(smp_num_siblings);
74
75/* Last level cache ID of each logical CPU */
76DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
77
2f2f52ba 78/* correctly size the local cpu masks */
4369f1fb 79void __init setup_cpu_local_masks(void)
2f2f52ba
BG
80{
81 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
82 alloc_bootmem_cpumask_var(&cpu_callin_mask);
83 alloc_bootmem_cpumask_var(&cpu_callout_mask);
84 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
85}
86
148f9bb8 87static void default_init(struct cpuinfo_x86 *c)
e8055139
OZ
88{
89#ifdef CONFIG_X86_64
27c13ece 90 cpu_detect_cache_sizes(c);
e8055139
OZ
91#else
92 /* Not much we can do here... */
93 /* Check if at least it has cpuid */
94 if (c->cpuid_level == -1) {
95 /* No cpuid. It must be an ancient CPU */
96 if (c->x86 == 4)
97 strcpy(c->x86_model_id, "486");
98 else if (c->x86 == 3)
99 strcpy(c->x86_model_id, "386");
100 }
101#endif
102}
103
148f9bb8 104static const struct cpu_dev default_cpu = {
e8055139
OZ
105 .c_init = default_init,
106 .c_vendor = "Unknown",
107 .c_x86_vendor = X86_VENDOR_UNKNOWN,
108};
109
148f9bb8 110static const struct cpu_dev *this_cpu = &default_cpu;
0a488a53 111
06deef89 112DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
950ad7ff 113#ifdef CONFIG_X86_64
06deef89
BG
114 /*
115 * We need valid kernel segments for data and code in long mode too
116 * IRET will check the segment types kkeil 2000/10/28
117 * Also sysret mandates a special GDT layout
118 *
9766cdbc 119 * TLS descriptors are currently at a different place compared to i386.
06deef89
BG
120 * Hopefully nobody expects them at a fixed place (Wine?)
121 */
1e5de182
AM
122 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
123 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
124 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
125 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
126 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
127 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
950ad7ff 128#else
1e5de182
AM
129 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
130 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
131 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
132 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
bf504672
RR
133 /*
134 * Segments used for calling PnP BIOS have byte granularity.
135 * They code segments and data segments have fixed 64k limits,
136 * the transfer segment sizes are set at run time.
137 */
6842ef0e 138 /* 32-bit code */
1e5de182 139 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
6842ef0e 140 /* 16-bit code */
1e5de182 141 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
6842ef0e 142 /* 16-bit data */
1e5de182 143 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
6842ef0e 144 /* 16-bit data */
1e5de182 145 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
6842ef0e 146 /* 16-bit data */
1e5de182 147 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
bf504672
RR
148 /*
149 * The APM segments have byte granularity and their bases
150 * are set at run time. All have 64k limits.
151 */
6842ef0e 152 /* 32-bit code */
1e5de182 153 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
bf504672 154 /* 16-bit code */
1e5de182 155 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
6842ef0e 156 /* data */
72c4d853 157 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
bf504672 158
1e5de182
AM
159 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
160 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
60a5317f 161 GDT_STACK_CANARY_INIT
950ad7ff 162#endif
06deef89 163} };
7a61d35d 164EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
ae1ee11b 165
8c3641e9 166static int __init x86_mpx_setup(char *s)
0c752a93 167{
8c3641e9 168 /* require an exact match without trailing characters */
2cd3949f
DH
169 if (strlen(s))
170 return 0;
0c752a93 171
8c3641e9
DH
172 /* do not emit a message if the feature is not present */
173 if (!boot_cpu_has(X86_FEATURE_MPX))
174 return 1;
6bad06b7 175
8c3641e9
DH
176 setup_clear_cpu_cap(X86_FEATURE_MPX);
177 pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
b6f42a4a
FY
178 return 1;
179}
8c3641e9 180__setup("nompx", x86_mpx_setup);
b6f42a4a 181
0790c9aa 182#ifdef CONFIG_X86_64
c7ad5ad2 183static int __init x86_nopcid_setup(char *s)
0790c9aa 184{
c7ad5ad2
AL
185 /* nopcid doesn't accept parameters */
186 if (s)
187 return -EINVAL;
0790c9aa
AL
188
189 /* do not emit a message if the feature is not present */
190 if (!boot_cpu_has(X86_FEATURE_PCID))
c7ad5ad2 191 return 0;
0790c9aa
AL
192
193 setup_clear_cpu_cap(X86_FEATURE_PCID);
194 pr_info("nopcid: PCID feature disabled\n");
c7ad5ad2 195 return 0;
0790c9aa 196}
c7ad5ad2 197early_param("nopcid", x86_nopcid_setup);
0790c9aa
AL
198#endif
199
d12a72b8
AL
200static int __init x86_noinvpcid_setup(char *s)
201{
202 /* noinvpcid doesn't accept parameters */
203 if (s)
204 return -EINVAL;
205
206 /* do not emit a message if the feature is not present */
207 if (!boot_cpu_has(X86_FEATURE_INVPCID))
208 return 0;
209
210 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
211 pr_info("noinvpcid: INVPCID feature disabled\n");
212 return 0;
213}
214early_param("noinvpcid", x86_noinvpcid_setup);
215
ba51dced 216#ifdef CONFIG_X86_32
148f9bb8
PG
217static int cachesize_override = -1;
218static int disable_x86_serial_nr = 1;
1da177e4 219
0a488a53
YL
220static int __init cachesize_setup(char *str)
221{
222 get_option(&str, &cachesize_override);
223 return 1;
224}
225__setup("cachesize=", cachesize_setup);
226
0a488a53
YL
227static int __init x86_sep_setup(char *s)
228{
229 setup_clear_cpu_cap(X86_FEATURE_SEP);
230 return 1;
231}
232__setup("nosep", x86_sep_setup);
233
234/* Standard macro to see if a specific flag is changeable */
235static inline int flag_is_changeable_p(u32 flag)
236{
237 u32 f1, f2;
238
94f6bac1
KH
239 /*
240 * Cyrix and IDT cpus allow disabling of CPUID
241 * so the code below may return different results
242 * when it is executed before and after enabling
243 * the CPUID. Add "volatile" to not allow gcc to
244 * optimize the subsequent calls to this function.
245 */
0f3fa48a
IM
246 asm volatile ("pushfl \n\t"
247 "pushfl \n\t"
248 "popl %0 \n\t"
249 "movl %0, %1 \n\t"
250 "xorl %2, %0 \n\t"
251 "pushl %0 \n\t"
252 "popfl \n\t"
253 "pushfl \n\t"
254 "popl %0 \n\t"
255 "popfl \n\t"
256
94f6bac1
KH
257 : "=&r" (f1), "=&r" (f2)
258 : "ir" (flag));
0a488a53
YL
259
260 return ((f1^f2) & flag) != 0;
261}
262
263/* Probe for the CPUID instruction */
148f9bb8 264int have_cpuid_p(void)
0a488a53
YL
265{
266 return flag_is_changeable_p(X86_EFLAGS_ID);
267}
268
148f9bb8 269static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
0a488a53 270{
0f3fa48a
IM
271 unsigned long lo, hi;
272
273 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
274 return;
275
276 /* Disable processor serial number: */
277
278 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
279 lo |= 0x200000;
280 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
281
1b74dde7 282 pr_notice("CPU serial number disabled.\n");
0f3fa48a
IM
283 clear_cpu_cap(c, X86_FEATURE_PN);
284
285 /* Disabling the serial number may affect the cpuid level */
286 c->cpuid_level = cpuid_eax(0);
0a488a53
YL
287}
288
289static int __init x86_serial_nr_setup(char *s)
290{
291 disable_x86_serial_nr = 0;
292 return 1;
293}
294__setup("serialnumber", x86_serial_nr_setup);
ba51dced 295#else
102bbe3a
YL
296static inline int flag_is_changeable_p(u32 flag)
297{
298 return 1;
299}
102bbe3a
YL
300static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
301{
302}
ba51dced 303#endif
0a488a53 304
de5397ad
FY
305static __init int setup_disable_smep(char *arg)
306{
b2cc2a07 307 setup_clear_cpu_cap(X86_FEATURE_SMEP);
0f6ff2bc
DH
308 /* Check for things that depend on SMEP being enabled: */
309 check_mpx_erratum(&boot_cpu_data);
de5397ad
FY
310 return 1;
311}
312__setup("nosmep", setup_disable_smep);
313
b2cc2a07 314static __always_inline void setup_smep(struct cpuinfo_x86 *c)
de5397ad 315{
b2cc2a07 316 if (cpu_has(c, X86_FEATURE_SMEP))
375074cc 317 cr4_set_bits(X86_CR4_SMEP);
de5397ad
FY
318}
319
52b6179a
PA
320static __init int setup_disable_smap(char *arg)
321{
b2cc2a07 322 setup_clear_cpu_cap(X86_FEATURE_SMAP);
52b6179a
PA
323 return 1;
324}
325__setup("nosmap", setup_disable_smap);
326
b2cc2a07
PA
327static __always_inline void setup_smap(struct cpuinfo_x86 *c)
328{
581b7f15 329 unsigned long eflags = native_save_fl();
b2cc2a07
PA
330
331 /* This should have been cleared long ago */
b2cc2a07
PA
332 BUG_ON(eflags & X86_EFLAGS_AC);
333
03bbd596
PA
334 if (cpu_has(c, X86_FEATURE_SMAP)) {
335#ifdef CONFIG_X86_SMAP
375074cc 336 cr4_set_bits(X86_CR4_SMAP);
03bbd596 337#else
375074cc 338 cr4_clear_bits(X86_CR4_SMAP);
03bbd596
PA
339#endif
340 }
de5397ad
FY
341}
342
aa35f896
RN
343static __always_inline void setup_umip(struct cpuinfo_x86 *c)
344{
345 /* Check the boot processor, plus build option for UMIP. */
346 if (!cpu_feature_enabled(X86_FEATURE_UMIP))
347 goto out;
348
349 /* Check the current processor's cpuid bits. */
350 if (!cpu_has(c, X86_FEATURE_UMIP))
351 goto out;
352
353 cr4_set_bits(X86_CR4_UMIP);
354
438cbf88 355 pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
770c7755 356
aa35f896
RN
357 return;
358
359out:
360 /*
361 * Make sure UMIP is disabled in case it was enabled in a
362 * previous boot (e.g., via kexec).
363 */
364 cr4_clear_bits(X86_CR4_UMIP);
365}
366
7652ac92
TG
367static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
368static unsigned long cr4_pinned_bits __ro_after_init;
369
370void native_write_cr0(unsigned long val)
371{
372 unsigned long bits_missing = 0;
373
374set_register:
375 asm volatile("mov %0,%%cr0": "+r" (val), "+m" (__force_order));
376
377 if (static_branch_likely(&cr_pinning)) {
378 if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
379 bits_missing = X86_CR0_WP;
380 val |= bits_missing;
381 goto set_register;
382 }
383 /* Warn after we've set the missing bits. */
384 WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
385 }
386}
387EXPORT_SYMBOL(native_write_cr0);
388
389void native_write_cr4(unsigned long val)
390{
391 unsigned long bits_missing = 0;
392
393set_register:
394 asm volatile("mov %0,%%cr4": "+r" (val), "+m" (cr4_pinned_bits));
395
396 if (static_branch_likely(&cr_pinning)) {
397 if (unlikely((val & cr4_pinned_bits) != cr4_pinned_bits)) {
398 bits_missing = ~val & cr4_pinned_bits;
399 val |= bits_missing;
400 goto set_register;
401 }
402 /* Warn after we've set the missing bits. */
403 WARN_ONCE(bits_missing, "CR4 bits went missing: %lx!?\n",
404 bits_missing);
405 }
406}
407EXPORT_SYMBOL(native_write_cr4);
408
409void cr4_init(void)
410{
411 unsigned long cr4 = __read_cr4();
412
413 if (boot_cpu_has(X86_FEATURE_PCID))
414 cr4 |= X86_CR4_PCIDE;
415 if (static_branch_likely(&cr_pinning))
416 cr4 |= cr4_pinned_bits;
417
418 __write_cr4(cr4);
419
420 /* Initialize cr4 shadow for this CPU. */
421 this_cpu_write(cpu_tlbstate.cr4, cr4);
422}
873d50d5
KC
423
424/*
425 * Once CPU feature detection is finished (and boot params have been
426 * parsed), record any of the sensitive CR bits that are set, and
427 * enable CR pinning.
428 */
429static void __init setup_cr_pinning(void)
430{
431 unsigned long mask;
432
433 mask = (X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP);
434 cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & mask;
435 static_key_enable(&cr_pinning.key);
436}
437
06976945
DH
438/*
439 * Protection Keys are not available in 32-bit mode.
440 */
441static bool pku_disabled;
442
443static __always_inline void setup_pku(struct cpuinfo_x86 *c)
444{
a5eff725
SAS
445 struct pkru_state *pk;
446
e8df1a95
DH
447 /* check the boot processor, plus compile options for PKU: */
448 if (!cpu_feature_enabled(X86_FEATURE_PKU))
449 return;
450 /* checks the actual processor's cpuid bits: */
06976945
DH
451 if (!cpu_has(c, X86_FEATURE_PKU))
452 return;
453 if (pku_disabled)
454 return;
455
456 cr4_set_bits(X86_CR4_PKE);
a5eff725
SAS
457 pk = get_xsave_addr(&init_fpstate.xsave, XFEATURE_PKRU);
458 if (pk)
459 pk->pkru = init_pkru_value;
06976945
DH
460 /*
461 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
462 * cpuid bit to be set. We need to ensure that we
463 * update that bit in this CPU's "cpu_info".
464 */
465 get_cpu_cap(c);
466}
467
468#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
469static __init int setup_disable_pku(char *arg)
470{
471 /*
472 * Do not clear the X86_FEATURE_PKU bit. All of the
473 * runtime checks are against OSPKE so clearing the
474 * bit does nothing.
475 *
476 * This way, we will see "pku" in cpuinfo, but not
477 * "ospke", which is exactly what we want. It shows
478 * that the CPU has PKU, but the OS has not enabled it.
479 * This happens to be exactly how a system would look
480 * if we disabled the config option.
481 */
482 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
483 pku_disabled = true;
484 return 1;
485}
486__setup("nopku", setup_disable_pku);
487#endif /* CONFIG_X86_64 */
488
b38b0665
PA
489/*
490 * Some CPU features depend on higher CPUID levels, which may not always
491 * be available due to CPUID level capping or broken virtualization
492 * software. Add those features to this table to auto-disable them.
493 */
494struct cpuid_dependent_feature {
495 u32 feature;
496 u32 level;
497};
0f3fa48a 498
148f9bb8 499static const struct cpuid_dependent_feature
b38b0665
PA
500cpuid_dependent_features[] = {
501 { X86_FEATURE_MWAIT, 0x00000005 },
502 { X86_FEATURE_DCA, 0x00000009 },
503 { X86_FEATURE_XSAVE, 0x0000000d },
504 { 0, 0 }
505};
506
148f9bb8 507static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
b38b0665
PA
508{
509 const struct cpuid_dependent_feature *df;
9766cdbc 510
b38b0665 511 for (df = cpuid_dependent_features; df->feature; df++) {
0f3fa48a
IM
512
513 if (!cpu_has(c, df->feature))
514 continue;
b38b0665
PA
515 /*
516 * Note: cpuid_level is set to -1 if unavailable, but
517 * extended_extended_level is set to 0 if unavailable
518 * and the legitimate extended levels are all negative
519 * when signed; hence the weird messing around with
520 * signs here...
521 */
0f3fa48a 522 if (!((s32)df->level < 0 ?
f6db44df 523 (u32)df->level > (u32)c->extended_cpuid_level :
0f3fa48a
IM
524 (s32)df->level > (s32)c->cpuid_level))
525 continue;
526
527 clear_cpu_cap(c, df->feature);
528 if (!warn)
529 continue;
530
1b74dde7
CY
531 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
532 x86_cap_flag(df->feature), df->level);
b38b0665 533 }
f6db44df 534}
b38b0665 535
102bbe3a
YL
536/*
537 * Naming convention should be: <Name> [(<Codename>)]
538 * This table only is used unless init_<vendor>() below doesn't set it;
0f3fa48a
IM
539 * in particular, if CPUID levels 0x80000002..4 are supported, this
540 * isn't used
102bbe3a
YL
541 */
542
543/* Look up CPU names by table lookup. */
148f9bb8 544static const char *table_lookup_model(struct cpuinfo_x86 *c)
102bbe3a 545{
09dc68d9
JB
546#ifdef CONFIG_X86_32
547 const struct legacy_cpu_model_info *info;
102bbe3a
YL
548
549 if (c->x86_model >= 16)
550 return NULL; /* Range check */
551
552 if (!this_cpu)
553 return NULL;
554
09dc68d9 555 info = this_cpu->legacy_models;
102bbe3a 556
09dc68d9 557 while (info->family) {
102bbe3a
YL
558 if (info->family == c->x86)
559 return info->model_names[c->x86_model];
560 info++;
561 }
09dc68d9 562#endif
102bbe3a
YL
563 return NULL; /* Not found */
564}
565
f6a892dd
FY
566/* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
567__u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
568__u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
7d851c8d 569
11e3a840
JF
570void load_percpu_segment(int cpu)
571{
572#ifdef CONFIG_X86_32
573 loadsegment(fs, __KERNEL_PERCPU);
574#else
45e876f7 575 __loadsegment_simple(gs, 0);
35060ed6 576 wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
11e3a840 577#endif
60a5317f 578 load_stack_canary_segment();
11e3a840
JF
579}
580
72f5e08d
AL
581#ifdef CONFIG_X86_32
582/* The 32-bit entry code needs to find cpu_entry_area. */
583DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
584#endif
585
45fc8757
TG
586/* Load the original GDT from the per-cpu structure */
587void load_direct_gdt(int cpu)
588{
589 struct desc_ptr gdt_descr;
590
591 gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
592 gdt_descr.size = GDT_SIZE - 1;
593 load_gdt(&gdt_descr);
594}
595EXPORT_SYMBOL_GPL(load_direct_gdt);
596
69218e47
TG
597/* Load a fixmap remapping of the per-cpu GDT */
598void load_fixmap_gdt(int cpu)
599{
600 struct desc_ptr gdt_descr;
601
602 gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
603 gdt_descr.size = GDT_SIZE - 1;
604 load_gdt(&gdt_descr);
605}
45fc8757 606EXPORT_SYMBOL_GPL(load_fixmap_gdt);
69218e47 607
0f3fa48a
IM
608/*
609 * Current gdt points %fs at the "master" per-cpu area: after this,
610 * it's on the real one.
611 */
552be871 612void switch_to_new_gdt(int cpu)
9d31d35b 613{
45fc8757
TG
614 /* Load the original GDT */
615 load_direct_gdt(cpu);
2697fbd5 616 /* Reload the per-cpu base */
11e3a840 617 load_percpu_segment(cpu);
9d31d35b
YL
618}
619
148f9bb8 620static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
1da177e4 621
148f9bb8 622static void get_model_name(struct cpuinfo_x86 *c)
1da177e4
LT
623{
624 unsigned int *v;
ee098e1a 625 char *p, *q, *s;
1da177e4 626
3da99c97 627 if (c->extended_cpuid_level < 0x80000004)
1b05d60d 628 return;
1da177e4 629
0f3fa48a 630 v = (unsigned int *)c->x86_model_id;
1da177e4
LT
631 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
632 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
633 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
634 c->x86_model_id[48] = 0;
635
ee098e1a
BP
636 /* Trim whitespace */
637 p = q = s = &c->x86_model_id[0];
638
639 while (*p == ' ')
640 p++;
641
642 while (*p) {
643 /* Note the last non-whitespace index */
644 if (!isspace(*p))
645 s = q;
646
647 *q++ = *p++;
648 }
649
650 *(s + 1) = '\0';
1da177e4
LT
651}
652
9305bd6c 653void detect_num_cpu_cores(struct cpuinfo_x86 *c)
2cc61be6
DW
654{
655 unsigned int eax, ebx, ecx, edx;
656
9305bd6c 657 c->x86_max_cores = 1;
2cc61be6 658 if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
9305bd6c 659 return;
2cc61be6
DW
660
661 cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
662 if (eax & 0x1f)
9305bd6c 663 c->x86_max_cores = (eax >> 26) + 1;
2cc61be6
DW
664}
665
148f9bb8 666void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
1da177e4 667{
9d31d35b 668 unsigned int n, dummy, ebx, ecx, edx, l2size;
1da177e4 669
3da99c97 670 n = c->extended_cpuid_level;
1da177e4
LT
671
672 if (n >= 0x80000005) {
9d31d35b 673 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
9d31d35b 674 c->x86_cache_size = (ecx>>24) + (edx>>24);
140fc727
YL
675#ifdef CONFIG_X86_64
676 /* On K8 L1 TLB is inclusive, so don't count it */
677 c->x86_tlbsize = 0;
678#endif
1da177e4
LT
679 }
680
681 if (n < 0x80000006) /* Some chips just has a large L1. */
682 return;
683
0a488a53 684 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
1da177e4 685 l2size = ecx >> 16;
34048c9e 686
140fc727
YL
687#ifdef CONFIG_X86_64
688 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
689#else
1da177e4 690 /* do processor-specific cache resizing */
09dc68d9
JB
691 if (this_cpu->legacy_cache_size)
692 l2size = this_cpu->legacy_cache_size(c, l2size);
1da177e4
LT
693
694 /* Allow user to override all this if necessary. */
695 if (cachesize_override != -1)
696 l2size = cachesize_override;
697
34048c9e 698 if (l2size == 0)
1da177e4 699 return; /* Again, no L2 cache is possible */
140fc727 700#endif
1da177e4
LT
701
702 c->x86_cache_size = l2size;
1da177e4
LT
703}
704
e0ba94f1
AS
705u16 __read_mostly tlb_lli_4k[NR_INFO];
706u16 __read_mostly tlb_lli_2m[NR_INFO];
707u16 __read_mostly tlb_lli_4m[NR_INFO];
708u16 __read_mostly tlb_lld_4k[NR_INFO];
709u16 __read_mostly tlb_lld_2m[NR_INFO];
710u16 __read_mostly tlb_lld_4m[NR_INFO];
dd360393 711u16 __read_mostly tlb_lld_1g[NR_INFO];
e0ba94f1 712
f94fe119 713static void cpu_detect_tlb(struct cpuinfo_x86 *c)
e0ba94f1
AS
714{
715 if (this_cpu->c_detect_tlb)
716 this_cpu->c_detect_tlb(c);
717
f94fe119 718 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
e0ba94f1 719 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
f94fe119
SH
720 tlb_lli_4m[ENTRIES]);
721
722 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
723 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
724 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
e0ba94f1
AS
725}
726
545401f4 727int detect_ht_early(struct cpuinfo_x86 *c)
1da177e4 728{
c8e56d20 729#ifdef CONFIG_SMP
0a488a53 730 u32 eax, ebx, ecx, edx;
1da177e4 731
0a488a53 732 if (!cpu_has(c, X86_FEATURE_HT))
545401f4 733 return -1;
1da177e4 734
0a488a53 735 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
545401f4 736 return -1;
1da177e4 737
1cd78776 738 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
545401f4 739 return -1;
1da177e4 740
0a488a53 741 cpuid(1, &eax, &ebx, &ecx, &edx);
1da177e4 742
9d31d35b 743 smp_num_siblings = (ebx & 0xff0000) >> 16;
545401f4 744 if (smp_num_siblings == 1)
1b74dde7 745 pr_info_once("CPU0: Hyper-Threading is disabled\n");
545401f4
TG
746#endif
747 return 0;
748}
9d31d35b 749
545401f4
TG
750void detect_ht(struct cpuinfo_x86 *c)
751{
752#ifdef CONFIG_SMP
753 int index_msb, core_bits;
55e6d279 754
545401f4 755 if (detect_ht_early(c) < 0)
55e6d279 756 return;
9d31d35b 757
0f3fa48a
IM
758 index_msb = get_count_order(smp_num_siblings);
759 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
9d31d35b 760
0f3fa48a 761 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
9d31d35b 762
0f3fa48a 763 index_msb = get_count_order(smp_num_siblings);
9d31d35b 764
0f3fa48a 765 core_bits = get_count_order(c->x86_max_cores);
9d31d35b 766
0f3fa48a
IM
767 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
768 ((1 << core_bits) - 1);
9d31d35b 769#endif
97e4db7c 770}
1da177e4 771
148f9bb8 772static void get_cpu_vendor(struct cpuinfo_x86 *c)
1da177e4
LT
773{
774 char *v = c->x86_vendor_id;
0f3fa48a 775 int i;
1da177e4
LT
776
777 for (i = 0; i < X86_VENDOR_NUM; i++) {
10a434fc
YL
778 if (!cpu_devs[i])
779 break;
780
781 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
782 (cpu_devs[i]->c_ident[1] &&
783 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
0f3fa48a 784
10a434fc
YL
785 this_cpu = cpu_devs[i];
786 c->x86_vendor = this_cpu->c_x86_vendor;
787 return;
1da177e4
LT
788 }
789 }
10a434fc 790
1b74dde7
CY
791 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
792 "CPU: Your system may be unstable.\n", v);
10a434fc 793
fe38d855
CE
794 c->x86_vendor = X86_VENDOR_UNKNOWN;
795 this_cpu = &default_cpu;
1da177e4
LT
796}
797
148f9bb8 798void cpu_detect(struct cpuinfo_x86 *c)
1da177e4 799{
1da177e4 800 /* Get vendor name */
4a148513
HH
801 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
802 (unsigned int *)&c->x86_vendor_id[0],
803 (unsigned int *)&c->x86_vendor_id[8],
804 (unsigned int *)&c->x86_vendor_id[4]);
1da177e4 805
1da177e4 806 c->x86 = 4;
9d31d35b 807 /* Intel-defined flags: level 0x00000001 */
1da177e4
LT
808 if (c->cpuid_level >= 0x00000001) {
809 u32 junk, tfms, cap0, misc;
0f3fa48a 810
1da177e4 811 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
99f925ce
BP
812 c->x86 = x86_family(tfms);
813 c->x86_model = x86_model(tfms);
b399151c 814 c->x86_stepping = x86_stepping(tfms);
0f3fa48a 815
d4387bd3 816 if (cap0 & (1<<19)) {
d4387bd3 817 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
9d31d35b 818 c->x86_cache_alignment = c->x86_clflush_size;
d4387bd3 819 }
1da177e4 820 }
1da177e4 821}
3da99c97 822
8bf1ebca
AL
823static void apply_forced_caps(struct cpuinfo_x86 *c)
824{
825 int i;
826
6cbd2171 827 for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
8bf1ebca
AL
828 c->x86_capability[i] &= ~cpu_caps_cleared[i];
829 c->x86_capability[i] |= cpu_caps_set[i];
830 }
831}
832
7fcae111
DW
833static void init_speculation_control(struct cpuinfo_x86 *c)
834{
835 /*
836 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
837 * and they also have a different bit for STIBP support. Also,
838 * a hypervisor might have set the individual AMD bits even on
839 * Intel CPUs, for finer-grained selection of what's available.
7fcae111
DW
840 */
841 if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
842 set_cpu_cap(c, X86_FEATURE_IBRS);
843 set_cpu_cap(c, X86_FEATURE_IBPB);
7eb8956a 844 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
7fcae111 845 }
e7c587da 846
7fcae111
DW
847 if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
848 set_cpu_cap(c, X86_FEATURE_STIBP);
e7c587da 849
bc226f07
TL
850 if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
851 cpu_has(c, X86_FEATURE_VIRT_SSBD))
52817587
TG
852 set_cpu_cap(c, X86_FEATURE_SSBD);
853
7eb8956a 854 if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
e7c587da 855 set_cpu_cap(c, X86_FEATURE_IBRS);
7eb8956a
TG
856 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
857 }
e7c587da
BP
858
859 if (cpu_has(c, X86_FEATURE_AMD_IBPB))
860 set_cpu_cap(c, X86_FEATURE_IBPB);
861
7eb8956a 862 if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
e7c587da 863 set_cpu_cap(c, X86_FEATURE_STIBP);
7eb8956a
TG
864 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
865 }
6ac2f49e
KRW
866
867 if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
868 set_cpu_cap(c, X86_FEATURE_SSBD);
869 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
870 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
871 }
7fcae111
DW
872}
873
45fc56e6
BP
874static void init_cqm(struct cpuinfo_x86 *c)
875{
acec0ce0
FY
876 if (!cpu_has(c, X86_FEATURE_CQM_LLC)) {
877 c->x86_cache_max_rmid = -1;
878 c->x86_cache_occ_scale = -1;
879 return;
880 }
45fc56e6 881
acec0ce0
FY
882 /* will be overridden if occupancy monitoring exists */
883 c->x86_cache_max_rmid = cpuid_ebx(0xf);
884
885 if (cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC) ||
886 cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL) ||
887 cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)) {
888 u32 eax, ebx, ecx, edx;
889
890 /* QoS sub-leaf, EAX=0Fh, ECX=1 */
891 cpuid_count(0xf, 1, &eax, &ebx, &ecx, &edx);
892
893 c->x86_cache_max_rmid = ecx;
894 c->x86_cache_occ_scale = ebx;
45fc56e6
BP
895 }
896}
897
148f9bb8 898void get_cpu_cap(struct cpuinfo_x86 *c)
093af8d7 899{
39c06df4 900 u32 eax, ebx, ecx, edx;
093af8d7 901
3da99c97
YL
902 /* Intel-defined flags: level 0x00000001 */
903 if (c->cpuid_level >= 0x00000001) {
39c06df4 904 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
0f3fa48a 905
39c06df4
BP
906 c->x86_capability[CPUID_1_ECX] = ecx;
907 c->x86_capability[CPUID_1_EDX] = edx;
3da99c97 908 }
093af8d7 909
3df8d920
AL
910 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
911 if (c->cpuid_level >= 0x00000006)
912 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
913
bdc802dc
PA
914 /* Additional Intel-defined flags: level 0x00000007 */
915 if (c->cpuid_level >= 0x00000007) {
bdc802dc 916 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
39c06df4 917 c->x86_capability[CPUID_7_0_EBX] = ebx;
dfb4a70f 918 c->x86_capability[CPUID_7_ECX] = ecx;
95ca0ee8 919 c->x86_capability[CPUID_7_EDX] = edx;
b302e4b1
FY
920
921 /* Check valid sub-leaf index before accessing it */
922 if (eax >= 1) {
923 cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
924 c->x86_capability[CPUID_7_1_EAX] = eax;
925 }
bdc802dc
PA
926 }
927
6229ad27
FY
928 /* Extended state features: level 0x0000000d */
929 if (c->cpuid_level >= 0x0000000d) {
6229ad27
FY
930 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
931
39c06df4 932 c->x86_capability[CPUID_D_1_EAX] = eax;
6229ad27
FY
933 }
934
3da99c97 935 /* AMD-defined flags: level 0x80000001 */
39c06df4
BP
936 eax = cpuid_eax(0x80000000);
937 c->extended_cpuid_level = eax;
938
939 if ((eax & 0xffff0000) == 0x80000000) {
940 if (eax >= 0x80000001) {
941 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
0f3fa48a 942
39c06df4
BP
943 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
944 c->x86_capability[CPUID_8000_0001_EDX] = edx;
093af8d7 945 }
093af8d7 946 }
093af8d7 947
71faad43
YG
948 if (c->extended_cpuid_level >= 0x80000007) {
949 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
950
951 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
952 c->x86_power = edx;
953 }
954
c65732e4
TG
955 if (c->extended_cpuid_level >= 0x80000008) {
956 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
957 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
958 }
959
2ccd71f1 960 if (c->extended_cpuid_level >= 0x8000000a)
39c06df4 961 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
093af8d7 962
1dedefd1 963 init_scattered_cpuid_features(c);
7fcae111 964 init_speculation_control(c);
45fc56e6 965 init_cqm(c);
60d34501
AL
966
967 /*
968 * Clear/Set all flags overridden by options, after probe.
969 * This needs to happen each time we re-probe, which may happen
970 * several times during CPU initialization.
971 */
972 apply_forced_caps(c);
093af8d7 973}
1da177e4 974
405c018a 975void get_cpu_address_sizes(struct cpuinfo_x86 *c)
d94a155c
KS
976{
977 u32 eax, ebx, ecx, edx;
978
979 if (c->extended_cpuid_level >= 0x80000008) {
980 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
981
982 c->x86_virt_bits = (eax >> 8) & 0xff;
983 c->x86_phys_bits = eax & 0xff;
d94a155c
KS
984 }
985#ifdef CONFIG_X86_32
986 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
987 c->x86_phys_bits = 36;
988#endif
cc51e542 989 c->x86_cache_bits = c->x86_phys_bits;
d94a155c
KS
990}
991
148f9bb8 992static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
aef93c8b
YL
993{
994#ifdef CONFIG_X86_32
995 int i;
996
997 /*
998 * First of all, decide if this is a 486 or higher
999 * It's a 486 if we can modify the AC flag
1000 */
1001 if (flag_is_changeable_p(X86_EFLAGS_AC))
1002 c->x86 = 4;
1003 else
1004 c->x86 = 3;
1005
1006 for (i = 0; i < X86_VENDOR_NUM; i++)
1007 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1008 c->x86_vendor_id[0] = 0;
1009 cpu_devs[i]->c_identify(c);
1010 if (c->x86_vendor_id[0]) {
1011 get_cpu_vendor(c);
1012 break;
1013 }
1014 }
1015#endif
1016}
1017
db4d30fb
VT
1018#define NO_SPECULATION BIT(0)
1019#define NO_MELTDOWN BIT(1)
1020#define NO_SSB BIT(2)
1021#define NO_L1TF BIT(3)
1022#define NO_MDS BIT(4)
1023#define MSBDS_ONLY BIT(5)
1024#define NO_SWAPGS BIT(6)
1025#define NO_ITLB_MULTIHIT BIT(7)
36ad3513
TG
1026
1027#define VULNWL(_vendor, _family, _model, _whitelist) \
1028 { X86_VENDOR_##_vendor, _family, _model, X86_FEATURE_ANY, _whitelist }
1029
1030#define VULNWL_INTEL(model, whitelist) \
1031 VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1032
1033#define VULNWL_AMD(family, whitelist) \
1034 VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1035
1036#define VULNWL_HYGON(family, whitelist) \
1037 VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1038
1039static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1040 VULNWL(ANY, 4, X86_MODEL_ANY, NO_SPECULATION),
1041 VULNWL(CENTAUR, 5, X86_MODEL_ANY, NO_SPECULATION),
1042 VULNWL(INTEL, 5, X86_MODEL_ANY, NO_SPECULATION),
1043 VULNWL(NSC, 5, X86_MODEL_ANY, NO_SPECULATION),
1044
ed5194c2 1045 /* Intel Family 6 */
db4d30fb
VT
1046 VULNWL_INTEL(ATOM_SALTWELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1047 VULNWL_INTEL(ATOM_SALTWELL_TABLET, NO_SPECULATION | NO_ITLB_MULTIHIT),
1048 VULNWL_INTEL(ATOM_SALTWELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1049 VULNWL_INTEL(ATOM_BONNELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1050 VULNWL_INTEL(ATOM_BONNELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1051
1052 VULNWL_INTEL(ATOM_SILVERMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1053 VULNWL_INTEL(ATOM_SILVERMONT_D, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1054 VULNWL_INTEL(ATOM_SILVERMONT_MID, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1055 VULNWL_INTEL(ATOM_AIRMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1056 VULNWL_INTEL(XEON_PHI_KNL, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1057 VULNWL_INTEL(XEON_PHI_KNM, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
36ad3513
TG
1058
1059 VULNWL_INTEL(CORE_YONAH, NO_SSB),
1060
db4d30fb
VT
1061 VULNWL_INTEL(ATOM_AIRMONT_MID, NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1062 VULNWL_INTEL(ATOM_AIRMONT_NP, NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
36ad3513 1063
db4d30fb
VT
1064 VULNWL_INTEL(ATOM_GOLDMONT, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1065 VULNWL_INTEL(ATOM_GOLDMONT_D, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1066 VULNWL_INTEL(ATOM_GOLDMONT_PLUS, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
f36cf386
TG
1067
1068 /*
1069 * Technically, swapgs isn't serializing on AMD (despite it previously
1070 * being documented as such in the APM). But according to AMD, %gs is
1071 * updated non-speculatively, and the issuing of %gs-relative memory
1072 * operands will be blocked until the %gs update completes, which is
1073 * good enough for our purposes.
1074 */
ed5194c2 1075
cad14885
PG
1076 VULNWL_INTEL(ATOM_TREMONT_D, NO_ITLB_MULTIHIT),
1077
ed5194c2 1078 /* AMD Family 0xf - 0x12 */
db4d30fb
VT
1079 VULNWL_AMD(0x0f, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1080 VULNWL_AMD(0x10, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1081 VULNWL_AMD(0x11, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1082 VULNWL_AMD(0x12, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
36ad3513
TG
1083
1084 /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
db4d30fb
VT
1085 VULNWL_AMD(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1086 VULNWL_HYGON(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
fec9434a
DW
1087 {}
1088};
1089
36ad3513
TG
1090static bool __init cpu_matches(unsigned long which)
1091{
1092 const struct x86_cpu_id *m = x86_match_cpu(cpu_vuln_whitelist);
c456442c 1093
36ad3513
TG
1094 return m && !!(m->driver_data & which);
1095}
17dbca11 1096
286836a7 1097u64 x86_read_arch_cap_msr(void)
fec9434a
DW
1098{
1099 u64 ia32_cap = 0;
1100
286836a7
PG
1101 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1102 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1103
1104 return ia32_cap;
1105}
1106
1107static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1108{
1109 u64 ia32_cap = x86_read_arch_cap_msr();
1110
db4d30fb
VT
1111 /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1112 if (!cpu_matches(NO_ITLB_MULTIHIT) && !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1113 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1114
36ad3513 1115 if (cpu_matches(NO_SPECULATION))
8ecc4979
DB
1116 return;
1117
1118 setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1119 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1120
36ad3513 1121 if (!cpu_matches(NO_SSB) && !(ia32_cap & ARCH_CAP_SSB_NO) &&
24809860 1122 !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
c456442c
KRW
1123 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1124
706d5168
SP
1125 if (ia32_cap & ARCH_CAP_IBRS_ALL)
1126 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1127
e261f209 1128 if (!cpu_matches(NO_MDS) && !(ia32_cap & ARCH_CAP_MDS_NO)) {
ed5194c2 1129 setup_force_cpu_bug(X86_BUG_MDS);
e261f209
TG
1130 if (cpu_matches(MSBDS_ONLY))
1131 setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1132 }
ed5194c2 1133
f36cf386
TG
1134 if (!cpu_matches(NO_SWAPGS))
1135 setup_force_cpu_bug(X86_BUG_SWAPGS);
1136
1b42f017
PG
1137 /*
1138 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1139 * - TSX is supported or
1140 * - TSX_CTRL is present
1141 *
1142 * TSX_CTRL check is needed for cases when TSX could be disabled before
1143 * the kernel boot e.g. kexec.
1144 * TSX_CTRL check alone is not sufficient for cases when the microcode
1145 * update is not present or running as guest that don't get TSX_CTRL.
1146 */
1147 if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1148 (cpu_has(c, X86_FEATURE_RTM) ||
1149 (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1150 setup_force_cpu_bug(X86_BUG_TAA);
1151
36ad3513 1152 if (cpu_matches(NO_MELTDOWN))
4a28bfe3 1153 return;
fec9434a 1154
fec9434a
DW
1155 /* Rogue Data Cache Load? No! */
1156 if (ia32_cap & ARCH_CAP_RDCL_NO)
4a28bfe3 1157 return;
fec9434a 1158
4a28bfe3 1159 setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
17dbca11 1160
36ad3513 1161 if (cpu_matches(NO_L1TF))
17dbca11
AK
1162 return;
1163
1164 setup_force_cpu_bug(X86_BUG_L1TF);
fec9434a
DW
1165}
1166
8990cac6
PT
1167/*
1168 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1169 * unfortunately, that's not true in practice because of early VIA
1170 * chips and (more importantly) broken virtualizers that are not easy
1171 * to detect. In the latter case it doesn't even *fail* reliably, so
1172 * probing for it doesn't even work. Disable it completely on 32-bit
1173 * unless we can find a reliable way to detect all the broken cases.
1174 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1175 */
9b3661cd 1176static void detect_nopl(void)
8990cac6
PT
1177{
1178#ifdef CONFIG_X86_32
9b3661cd 1179 setup_clear_cpu_cap(X86_FEATURE_NOPL);
8990cac6 1180#else
9b3661cd 1181 setup_force_cpu_cap(X86_FEATURE_NOPL);
8990cac6
PT
1182#endif
1183}
1184
34048c9e
PC
1185/*
1186 * Do minimum CPU detection early.
1187 * Fields really needed: vendor, cpuid_level, family, model, mask,
1188 * cache alignment.
1189 * The others are not touched to avoid unwanted side effects.
1190 *
a1652bb8
JD
1191 * WARNING: this function is only called on the boot CPU. Don't add code
1192 * here that is supposed to run on all CPUs.
34048c9e 1193 */
3da99c97 1194static void __init early_identify_cpu(struct cpuinfo_x86 *c)
d7cd5611 1195{
6627d242
YL
1196#ifdef CONFIG_X86_64
1197 c->x86_clflush_size = 64;
13c6c532
JB
1198 c->x86_phys_bits = 36;
1199 c->x86_virt_bits = 48;
6627d242 1200#else
d4387bd3 1201 c->x86_clflush_size = 32;
13c6c532
JB
1202 c->x86_phys_bits = 32;
1203 c->x86_virt_bits = 32;
6627d242 1204#endif
0a488a53 1205 c->x86_cache_alignment = c->x86_clflush_size;
d7cd5611 1206
0e96f31e 1207 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
0a488a53 1208 c->extended_cpuid_level = 0;
d7cd5611 1209
2893cc8f
MW
1210 if (!have_cpuid_p())
1211 identify_cpu_without_cpuid(c);
1212
aef93c8b 1213 /* cyrix could have cpuid enabled via c_identify()*/
05fb3c19
AL
1214 if (have_cpuid_p()) {
1215 cpu_detect(c);
1216 get_cpu_vendor(c);
1217 get_cpu_cap(c);
d94a155c 1218 get_cpu_address_sizes(c);
78d1b296 1219 setup_force_cpu_cap(X86_FEATURE_CPUID);
d7cd5611 1220
05fb3c19
AL
1221 if (this_cpu->c_early_init)
1222 this_cpu->c_early_init(c);
12cf105c 1223
05fb3c19
AL
1224 c->cpu_index = 0;
1225 filter_cpuid_features(c, false);
093af8d7 1226
05fb3c19
AL
1227 if (this_cpu->c_bsp_init)
1228 this_cpu->c_bsp_init(c);
78d1b296 1229 } else {
78d1b296 1230 setup_clear_cpu_cap(X86_FEATURE_CPUID);
05fb3c19 1231 }
c3b83598
BP
1232
1233 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
a89f040f 1234
4a28bfe3 1235 cpu_set_bug_bits(c);
99c6fa25 1236
db52ef74 1237 fpu__init_system(c);
b8b7abae
AL
1238
1239#ifdef CONFIG_X86_32
1240 /*
1241 * Regardless of whether PCID is enumerated, the SDM says
1242 * that it can't be enabled in 32-bit mode.
1243 */
1244 setup_clear_cpu_cap(X86_FEATURE_PCID);
1245#endif
372fddf7
KS
1246
1247 /*
1248 * Later in the boot process pgtable_l5_enabled() relies on
1249 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1250 * enabled by this point we need to clear the feature bit to avoid
1251 * false-positives at the later stage.
1252 *
1253 * pgtable_l5_enabled() can be false here for several reasons:
1254 * - 5-level paging is disabled compile-time;
1255 * - it's 32-bit kernel;
1256 * - machine doesn't support 5-level paging;
1257 * - user specified 'no5lvl' in kernel command line.
1258 */
1259 if (!pgtable_l5_enabled())
1260 setup_clear_cpu_cap(X86_FEATURE_LA57);
8990cac6 1261
9b3661cd 1262 detect_nopl();
d7cd5611
RR
1263}
1264
9d31d35b
YL
1265void __init early_cpu_init(void)
1266{
02dde8b4 1267 const struct cpu_dev *const *cdev;
10a434fc
YL
1268 int count = 0;
1269
ac23f253 1270#ifdef CONFIG_PROCESSOR_SELECT
1b74dde7 1271 pr_info("KERNEL supported cpus:\n");
31c997ca
IM
1272#endif
1273
10a434fc 1274 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
02dde8b4 1275 const struct cpu_dev *cpudev = *cdev;
9d31d35b 1276
10a434fc
YL
1277 if (count >= X86_VENDOR_NUM)
1278 break;
1279 cpu_devs[count] = cpudev;
1280 count++;
1281
ac23f253 1282#ifdef CONFIG_PROCESSOR_SELECT
31c997ca
IM
1283 {
1284 unsigned int j;
1285
1286 for (j = 0; j < 2; j++) {
1287 if (!cpudev->c_ident[j])
1288 continue;
1b74dde7 1289 pr_info(" %s %s\n", cpudev->c_vendor,
31c997ca
IM
1290 cpudev->c_ident[j]);
1291 }
10a434fc 1292 }
0388423d 1293#endif
10a434fc 1294 }
9d31d35b 1295 early_identify_cpu(&boot_cpu_data);
d7cd5611 1296}
093af8d7 1297
7a5d6704
AL
1298static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1299{
1300#ifdef CONFIG_X86_64
58a5aac5 1301 /*
7a5d6704
AL
1302 * Empirically, writing zero to a segment selector on AMD does
1303 * not clear the base, whereas writing zero to a segment
1304 * selector on Intel does clear the base. Intel's behavior
1305 * allows slightly faster context switches in the common case
1306 * where GS is unused by the prev and next threads.
58a5aac5 1307 *
7a5d6704
AL
1308 * Since neither vendor documents this anywhere that I can see,
1309 * detect it directly instead of hardcoding the choice by
1310 * vendor.
1311 *
1312 * I've designated AMD's behavior as the "bug" because it's
1313 * counterintuitive and less friendly.
58a5aac5 1314 */
7a5d6704
AL
1315
1316 unsigned long old_base, tmp;
1317 rdmsrl(MSR_FS_BASE, old_base);
1318 wrmsrl(MSR_FS_BASE, 1);
1319 loadsegment(fs, 0);
1320 rdmsrl(MSR_FS_BASE, tmp);
1321 if (tmp != 0)
1322 set_cpu_bug(c, X86_BUG_NULL_SEG);
1323 wrmsrl(MSR_FS_BASE, old_base);
366d4a43 1324#endif
d7cd5611
RR
1325}
1326
148f9bb8 1327static void generic_identify(struct cpuinfo_x86 *c)
1da177e4 1328{
aef93c8b 1329 c->extended_cpuid_level = 0;
1da177e4 1330
3da99c97 1331 if (!have_cpuid_p())
aef93c8b 1332 identify_cpu_without_cpuid(c);
1d67953f 1333
aef93c8b 1334 /* cyrix could have cpuid enabled via c_identify()*/
a9853dd6 1335 if (!have_cpuid_p())
aef93c8b 1336 return;
1da177e4 1337
3da99c97 1338 cpu_detect(c);
1da177e4 1339
3da99c97 1340 get_cpu_vendor(c);
1da177e4 1341
3da99c97 1342 get_cpu_cap(c);
1da177e4 1343
d94a155c
KS
1344 get_cpu_address_sizes(c);
1345
3da99c97
YL
1346 if (c->cpuid_level >= 0x00000001) {
1347 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
b89d3b3e 1348#ifdef CONFIG_X86_32
c8e56d20 1349# ifdef CONFIG_SMP
cb8cc442 1350 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
b89d3b3e 1351# else
3da99c97 1352 c->apicid = c->initial_apicid;
b89d3b3e
YL
1353# endif
1354#endif
b89d3b3e 1355 c->phys_proc_id = c->initial_apicid;
3da99c97 1356 }
1da177e4 1357
1b05d60d 1358 get_model_name(c); /* Default name */
1da177e4 1359
7a5d6704 1360 detect_null_seg_behavior(c);
0230bb03
AL
1361
1362 /*
1363 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
1364 * systems that run Linux at CPL > 0 may or may not have the
1365 * issue, but, even if they have the issue, there's absolutely
1366 * nothing we can do about it because we can't use the real IRET
1367 * instruction.
1368 *
1369 * NB: For the time being, only 32-bit kernels support
1370 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
1371 * whether to apply espfix using paravirt hooks. If any
1372 * non-paravirt system ever shows up that does *not* have the
1373 * ESPFIX issue, we can change this.
1374 */
1375#ifdef CONFIG_X86_32
9bad5658 1376# ifdef CONFIG_PARAVIRT_XXL
0230bb03
AL
1377 do {
1378 extern void native_iret(void);
5c83511b 1379 if (pv_ops.cpu.iret == native_iret)
0230bb03
AL
1380 set_cpu_bug(c, X86_BUG_ESPFIX);
1381 } while (0);
1382# else
1383 set_cpu_bug(c, X86_BUG_ESPFIX);
1384# endif
1385#endif
1da177e4 1386}
1da177e4 1387
cbc82b17
PWJ
1388static void x86_init_cache_qos(struct cpuinfo_x86 *c)
1389{
1390 /*
1391 * The heavy lifting of max_rmid and cache_occ_scale are handled
1392 * in get_cpu_cap(). Here we just set the max_rmid for the boot_cpu
1393 * in case CQM bits really aren't there in this CPU.
1394 */
1395 if (c != &boot_cpu_data) {
1396 boot_cpu_data.x86_cache_max_rmid =
1397 min(boot_cpu_data.x86_cache_max_rmid,
1398 c->x86_cache_max_rmid);
1399 }
1400}
1401
d49597fd 1402/*
9d85eb91
TG
1403 * Validate that ACPI/mptables have the same information about the
1404 * effective APIC id and update the package map.
d49597fd 1405 */
9d85eb91 1406static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
d49597fd
TG
1407{
1408#ifdef CONFIG_SMP
9d85eb91 1409 unsigned int apicid, cpu = smp_processor_id();
d49597fd
TG
1410
1411 apicid = apic->cpu_present_to_apicid(cpu);
d49597fd 1412
9d85eb91
TG
1413 if (apicid != c->apicid) {
1414 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
d49597fd 1415 cpu, apicid, c->initial_apicid);
d49597fd 1416 }
9d85eb91 1417 BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
212bf4fd 1418 BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
d49597fd
TG
1419#else
1420 c->logical_proc_id = 0;
1421#endif
1422}
1423
1da177e4
LT
1424/*
1425 * This does the hard work of actually picking apart the CPU stuff...
1426 */
148f9bb8 1427static void identify_cpu(struct cpuinfo_x86 *c)
1da177e4
LT
1428{
1429 int i;
1430
1431 c->loops_per_jiffy = loops_per_jiffy;
24dbc600 1432 c->x86_cache_size = 0;
1da177e4 1433 c->x86_vendor = X86_VENDOR_UNKNOWN;
b399151c 1434 c->x86_model = c->x86_stepping = 0; /* So far unknown... */
1da177e4
LT
1435 c->x86_vendor_id[0] = '\0'; /* Unset */
1436 c->x86_model_id[0] = '\0'; /* Unset */
94605eff 1437 c->x86_max_cores = 1;
102bbe3a 1438 c->x86_coreid_bits = 0;
79a8b9aa 1439 c->cu_id = 0xff;
11fdd252 1440#ifdef CONFIG_X86_64
102bbe3a 1441 c->x86_clflush_size = 64;
13c6c532
JB
1442 c->x86_phys_bits = 36;
1443 c->x86_virt_bits = 48;
102bbe3a
YL
1444#else
1445 c->cpuid_level = -1; /* CPUID not detected */
770d132f 1446 c->x86_clflush_size = 32;
13c6c532
JB
1447 c->x86_phys_bits = 32;
1448 c->x86_virt_bits = 32;
102bbe3a
YL
1449#endif
1450 c->x86_cache_alignment = c->x86_clflush_size;
0e96f31e 1451 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1da177e4 1452
1da177e4
LT
1453 generic_identify(c);
1454
3898534d 1455 if (this_cpu->c_identify)
1da177e4
LT
1456 this_cpu->c_identify(c);
1457
6a6256f9 1458 /* Clear/Set all flags overridden by options, after probe */
8bf1ebca 1459 apply_forced_caps(c);
2759c328 1460
102bbe3a 1461#ifdef CONFIG_X86_64
cb8cc442 1462 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
102bbe3a
YL
1463#endif
1464
1da177e4
LT
1465 /*
1466 * Vendor-specific initialization. In this section we
1467 * canonicalize the feature flags, meaning if there are
1468 * features a certain CPU supports which CPUID doesn't
1469 * tell us, CPUID claiming incorrect flags, or other bugs,
1470 * we handle them here.
1471 *
1472 * At the end of this section, c->x86_capability better
1473 * indicate the features this CPU genuinely supports!
1474 */
1475 if (this_cpu->c_init)
1476 this_cpu->c_init(c);
1477
1478 /* Disable the PN if appropriate */
1479 squash_the_stupid_serial_number(c);
1480
aa35f896 1481 /* Set up SMEP/SMAP/UMIP */
b2cc2a07
PA
1482 setup_smep(c);
1483 setup_smap(c);
aa35f896 1484 setup_umip(c);
b2cc2a07 1485
1da177e4 1486 /*
0f3fa48a
IM
1487 * The vendor-specific functions might have changed features.
1488 * Now we do "generic changes."
1da177e4
LT
1489 */
1490
b38b0665
PA
1491 /* Filter out anything that depends on CPUID levels we don't have */
1492 filter_cpuid_features(c, true);
1493
1da177e4 1494 /* If the model name is still unset, do table lookup. */
34048c9e 1495 if (!c->x86_model_id[0]) {
02dde8b4 1496 const char *p;
1da177e4 1497 p = table_lookup_model(c);
34048c9e 1498 if (p)
1da177e4
LT
1499 strcpy(c->x86_model_id, p);
1500 else
1501 /* Last resort... */
1502 sprintf(c->x86_model_id, "%02x/%02x",
54a20f8c 1503 c->x86, c->x86_model);
1da177e4
LT
1504 }
1505
102bbe3a
YL
1506#ifdef CONFIG_X86_64
1507 detect_ht(c);
1508#endif
1509
49d859d7 1510 x86_init_rdrand(c);
cbc82b17 1511 x86_init_cache_qos(c);
06976945 1512 setup_pku(c);
3e0c3737
YL
1513
1514 /*
6a6256f9 1515 * Clear/Set all flags overridden by options, need do it
3e0c3737
YL
1516 * before following smp all cpus cap AND.
1517 */
8bf1ebca 1518 apply_forced_caps(c);
3e0c3737 1519
1da177e4
LT
1520 /*
1521 * On SMP, boot_cpu_data holds the common feature set between
1522 * all CPUs; so make sure that we indicate which features are
1523 * common between the CPUs. The first time this routine gets
1524 * executed, c == &boot_cpu_data.
1525 */
34048c9e 1526 if (c != &boot_cpu_data) {
1da177e4 1527 /* AND the already accumulated flags with these */
9d31d35b 1528 for (i = 0; i < NCAPINTS; i++)
1da177e4 1529 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
65fc985b
BP
1530
1531 /* OR, i.e. replicate the bug flags */
1532 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1533 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1da177e4
LT
1534 }
1535
1536 /* Init Machine Check Exception if available. */
5e09954a 1537 mcheck_cpu_init(c);
30d432df
AK
1538
1539 select_idle_routine(c);
102bbe3a 1540
de2d9445 1541#ifdef CONFIG_NUMA
102bbe3a
YL
1542 numa_add_cpu(smp_processor_id());
1543#endif
a6c4e076 1544}
31ab269a 1545
8b6c0ab1
IM
1546/*
1547 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1548 * on 32-bit kernels:
1549 */
cfda7bb9
AL
1550#ifdef CONFIG_X86_32
1551void enable_sep_cpu(void)
1552{
8b6c0ab1
IM
1553 struct tss_struct *tss;
1554 int cpu;
cfda7bb9 1555
b3edfda4
BP
1556 if (!boot_cpu_has(X86_FEATURE_SEP))
1557 return;
1558
8b6c0ab1 1559 cpu = get_cpu();
c482feef 1560 tss = &per_cpu(cpu_tss_rw, cpu);
8b6c0ab1 1561
8b6c0ab1 1562 /*
cf9328cc
AL
1563 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1564 * see the big comment in struct x86_hw_tss's definition.
8b6c0ab1 1565 */
cfda7bb9
AL
1566
1567 tss->x86_tss.ss1 = __KERNEL_CS;
8b6c0ab1 1568 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
4fe2d8b1 1569 wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
4c8cd0c5 1570 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
8b6c0ab1 1571
cfda7bb9
AL
1572 put_cpu();
1573}
e04d645f
GC
1574#endif
1575
a6c4e076
JF
1576void __init identify_boot_cpu(void)
1577{
1578 identify_cpu(&boot_cpu_data);
102bbe3a 1579#ifdef CONFIG_X86_32
a6c4e076 1580 sysenter_setup();
6fe940d6 1581 enable_sep_cpu();
102bbe3a 1582#endif
5b556332 1583 cpu_detect_tlb(&boot_cpu_data);
873d50d5 1584 setup_cr_pinning();
95c5824f
PG
1585
1586 tsx_init();
a6c4e076 1587}
3b520b23 1588
148f9bb8 1589void identify_secondary_cpu(struct cpuinfo_x86 *c)
a6c4e076
JF
1590{
1591 BUG_ON(c == &boot_cpu_data);
1592 identify_cpu(c);
102bbe3a 1593#ifdef CONFIG_X86_32
a6c4e076 1594 enable_sep_cpu();
102bbe3a 1595#endif
a6c4e076 1596 mtrr_ap_init();
9d85eb91 1597 validate_apic_and_package_id(c);
77243971 1598 x86_spec_ctrl_setup_ap();
1da177e4
LT
1599}
1600
191679fd
AK
1601static __init int setup_noclflush(char *arg)
1602{
840d2830 1603 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
da4aaa7d 1604 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
191679fd
AK
1605 return 1;
1606}
1607__setup("noclflush", setup_noclflush);
1608
148f9bb8 1609void print_cpu_info(struct cpuinfo_x86 *c)
1da177e4 1610{
02dde8b4 1611 const char *vendor = NULL;
1da177e4 1612
0f3fa48a 1613 if (c->x86_vendor < X86_VENDOR_NUM) {
1da177e4 1614 vendor = this_cpu->c_vendor;
0f3fa48a
IM
1615 } else {
1616 if (c->cpuid_level >= 0)
1617 vendor = c->x86_vendor_id;
1618 }
1da177e4 1619
bd32a8cf 1620 if (vendor && !strstr(c->x86_model_id, vendor))
1b74dde7 1621 pr_cont("%s ", vendor);
1da177e4 1622
9d31d35b 1623 if (c->x86_model_id[0])
1b74dde7 1624 pr_cont("%s", c->x86_model_id);
1da177e4 1625 else
1b74dde7 1626 pr_cont("%d86", c->x86);
1da177e4 1627
1b74dde7 1628 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
924e101a 1629
b399151c
JZ
1630 if (c->x86_stepping || c->cpuid_level >= 0)
1631 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1da177e4 1632 else
1b74dde7 1633 pr_cont(")\n");
1da177e4
LT
1634}
1635
0c2a3913
AK
1636/*
1637 * clearcpuid= was already parsed in fpu__init_parse_early_param.
1638 * But we need to keep a dummy __setup around otherwise it would
1639 * show up as an environment variable for init.
1640 */
1641static __init int setup_clearcpuid(char *arg)
ac72e788 1642{
ac72e788
AK
1643 return 1;
1644}
0c2a3913 1645__setup("clearcpuid=", setup_clearcpuid);
ac72e788 1646
d5494d4f 1647#ifdef CONFIG_X86_64
e6401c13
AL
1648DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
1649 fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
1650EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
0f3fa48a 1651
bdf977b3 1652/*
a7fcf28d
AL
1653 * The following percpu variables are hot. Align current_task to
1654 * cacheline size such that they fall in the same cacheline.
bdf977b3
TH
1655 */
1656DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1657 &init_task;
1658EXPORT_PER_CPU_SYMBOL(current_task);
d5494d4f 1659
e6401c13 1660DEFINE_PER_CPU(struct irq_stack *, hardirq_stack_ptr);
277d5b40 1661DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
d5494d4f 1662
c2daa3be
PZ
1663DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1664EXPORT_PER_CPU_SYMBOL(__preempt_count);
1665
d5494d4f
YL
1666/* May not be marked __init: used by software suspend */
1667void syscall_init(void)
1da177e4 1668{
31ac34ca 1669 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
bf904d27 1670 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
d56fe4bf
IM
1671
1672#ifdef CONFIG_IA32_EMULATION
47edb651 1673 wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
a76c7f46 1674 /*
487d1edb
DV
1675 * This only works on Intel CPUs.
1676 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1677 * This does not cause SYSENTER to jump to the wrong location, because
1678 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
a76c7f46
DV
1679 */
1680 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
8e6b65a1 1681 wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
1682 (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
4c8cd0c5 1683 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
d56fe4bf 1684#else
47edb651 1685 wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
6b51311c 1686 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
d56fe4bf
IM
1687 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1688 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
d5494d4f 1689#endif
03ae5768 1690
d5494d4f
YL
1691 /* Flags to clear on syscall */
1692 wrmsrl(MSR_SYSCALL_MASK,
63bcff2a 1693 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
8c7aa698 1694 X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1da177e4 1695}
62111195 1696
42181186 1697DEFINE_PER_CPU(int, debug_stack_usage);
629f4f9d 1698DEFINE_PER_CPU(u32, debug_idt_ctr);
f8988175 1699
228bdaa9
SR
1700void debug_stack_set_zero(void)
1701{
629f4f9d
SA
1702 this_cpu_inc(debug_idt_ctr);
1703 load_current_idt();
228bdaa9 1704}
0f46efeb 1705NOKPROBE_SYMBOL(debug_stack_set_zero);
228bdaa9
SR
1706
1707void debug_stack_reset(void)
1708{
629f4f9d 1709 if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
f8988175 1710 return;
629f4f9d
SA
1711 if (this_cpu_dec_return(debug_idt_ctr) == 0)
1712 load_current_idt();
228bdaa9 1713}
0f46efeb 1714NOKPROBE_SYMBOL(debug_stack_reset);
228bdaa9 1715
0f3fa48a 1716#else /* CONFIG_X86_64 */
d5494d4f 1717
bdf977b3
TH
1718DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1719EXPORT_PER_CPU_SYMBOL(current_task);
c2daa3be
PZ
1720DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1721EXPORT_PER_CPU_SYMBOL(__preempt_count);
bdf977b3 1722
a7fcf28d
AL
1723/*
1724 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1725 * the top of the kernel stack. Use an extra percpu variable to track the
1726 * top of the kernel stack directly.
1727 */
1728DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1729 (unsigned long)&init_thread_union + THREAD_SIZE;
1730EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1731
050e9baa 1732#ifdef CONFIG_STACKPROTECTOR
53f82452 1733DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
60a5317f 1734#endif
d5494d4f 1735
0f3fa48a 1736#endif /* CONFIG_X86_64 */
c5413fbe 1737
9766cdbc
JSR
1738/*
1739 * Clear all 6 debug registers:
1740 */
1741static void clear_all_debug_regs(void)
1742{
1743 int i;
1744
1745 for (i = 0; i < 8; i++) {
1746 /* Ignore db4, db5 */
1747 if ((i == 4) || (i == 5))
1748 continue;
1749
1750 set_debugreg(0, i);
1751 }
1752}
c5413fbe 1753
0bb9fef9
JW
1754#ifdef CONFIG_KGDB
1755/*
1756 * Restore debug regs if using kgdbwait and you have a kernel debugger
1757 * connection established.
1758 */
1759static void dbg_restore_debug_regs(void)
1760{
1761 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1762 arch_kgdb_ops.correct_hw_break();
1763}
1764#else /* ! CONFIG_KGDB */
1765#define dbg_restore_debug_regs()
1766#endif /* ! CONFIG_KGDB */
1767
ce4b1b16
IM
1768static void wait_for_master_cpu(int cpu)
1769{
1770#ifdef CONFIG_SMP
1771 /*
1772 * wait for ACK from master CPU before continuing
1773 * with AP initialization
1774 */
1775 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1776 while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1777 cpu_relax();
1778#endif
1779}
1780
b2e2ba57 1781#ifdef CONFIG_X86_64
505b7899 1782static inline void setup_getcpu(int cpu)
b2e2ba57 1783{
22245bdf 1784 unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
b2e2ba57
CB
1785 struct desc_struct d = { };
1786
67e87d43 1787 if (boot_cpu_has(X86_FEATURE_RDTSCP))
b2e2ba57
CB
1788 write_rdtscp_aux(cpudata);
1789
1790 /* Store CPU and node number in limit. */
1791 d.limit0 = cpudata;
1792 d.limit1 = cpudata >> 16;
1793
1794 d.type = 5; /* RO data, expand down, accessed */
1795 d.dpl = 3; /* Visible to user code */
1796 d.s = 1; /* Not a system segment */
1797 d.p = 1; /* Present */
1798 d.d = 1; /* 32-bit */
1799
22245bdf 1800 write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
b2e2ba57 1801}
505b7899
TG
1802
1803static inline void ucode_cpu_init(int cpu)
1804{
1805 if (cpu)
1806 load_ucode_ap();
1807}
1808
1809static inline void tss_setup_ist(struct tss_struct *tss)
1810{
1811 /* Set up the per-CPU TSS IST stacks */
1812 tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
1813 tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
1814 tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
1815 tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
1816}
1817
505b7899
TG
1818#else /* CONFIG_X86_64 */
1819
1820static inline void setup_getcpu(int cpu) { }
1821
1822static inline void ucode_cpu_init(int cpu)
1823{
1824 show_ucode_info_early();
1825}
1826
1827static inline void tss_setup_ist(struct tss_struct *tss) { }
1828
505b7899 1829#endif /* !CONFIG_X86_64 */
b2e2ba57 1830
111e7b15
TG
1831static inline void tss_setup_io_bitmap(struct tss_struct *tss)
1832{
1833 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
1834
1835#ifdef CONFIG_X86_IOPL_IOPERM
1836 tss->io_bitmap.prev_max = 0;
1837 tss->io_bitmap.prev_sequence = 0;
1838 memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
1839 /*
1840 * Invalidate the extra array entry past the end of the all
1841 * permission bitmap as required by the hardware.
1842 */
1843 tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
b2e2ba57 1844#endif
111e7b15 1845}
b2e2ba57 1846
d2cbcc49
RR
1847/*
1848 * cpu_init() initializes state that is per-CPU. Some data is already
1849 * initialized (naturally) in the bootstrap process, such as the GDT
1850 * and IDT. We reload them nevertheless, this function acts as a
1851 * 'CPU state barrier', nothing should get across.
1852 */
148f9bb8 1853void cpu_init(void)
1ba76586 1854{
505b7899
TG
1855 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
1856 struct task_struct *cur = current;
f6ef7322 1857 int cpu = raw_smp_processor_id();
1ba76586 1858
ce4b1b16
IM
1859 wait_for_master_cpu(cpu);
1860
505b7899 1861 ucode_cpu_init(cpu);
0f3fa48a 1862
e7a22c1e 1863#ifdef CONFIG_NUMA
27fd185f 1864 if (this_cpu_read(numa_node) == 0 &&
e534c7c5
LS
1865 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1866 set_numa_node(early_cpu_to_node(cpu));
e7a22c1e 1867#endif
b2e2ba57 1868 setup_getcpu(cpu);
1ba76586 1869
2eaad1fd 1870 pr_debug("Initializing CPU#%d\n", cpu);
1ba76586 1871
505b7899
TG
1872 if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
1873 boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
1874 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1ba76586
YL
1875
1876 /*
1877 * Initialize the per-CPU GDT with the boot GDT,
1878 * and set up the GDT descriptor:
1879 */
552be871 1880 switch_to_new_gdt(cpu);
cf910e83 1881 load_current_idt();
1ba76586 1882
505b7899
TG
1883 if (IS_ENABLED(CONFIG_X86_64)) {
1884 loadsegment(fs, 0);
1885 memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1886 syscall_init();
1ba76586 1887
505b7899
TG
1888 wrmsrl(MSR_FS_BASE, 0);
1889 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1890 barrier();
1ba76586 1891
505b7899 1892 x2apic_setup();
1ba76586
YL
1893 }
1894
f1f10076 1895 mmgrab(&init_mm);
505b7899
TG
1896 cur->active_mm = &init_mm;
1897 BUG_ON(cur->mm);
72c0098d 1898 initialize_tlbstate_and_flush();
505b7899 1899 enter_lazy_tlb(&init_mm, cur);
1ba76586 1900
505b7899
TG
1901 /* Initialize the TSS. */
1902 tss_setup_ist(tss);
111e7b15 1903 tss_setup_io_bitmap(tss);
72f5e08d 1904 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
505b7899 1905
1ba76586 1906 load_TR_desc();
505b7899
TG
1907 /*
1908 * sp0 points to the entry trampoline stack regardless of what task
1909 * is running.
1910 */
4fe2d8b1 1911 load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
20bb8344 1912
37868fe1 1913 load_mm_ldt(&init_mm);
1ba76586 1914
0bb9fef9
JW
1915 clear_all_debug_regs();
1916 dbg_restore_debug_regs();
1ba76586 1917
dc4e0021 1918 doublefault_init_cpu_tss();
505b7899 1919
21c4cd10 1920 fpu__init_cpu();
1ba76586 1921
1ba76586
YL
1922 if (is_uv_system())
1923 uv_cpu_init();
69218e47 1924
69218e47 1925 load_fixmap_gdt(cpu);
1ba76586
YL
1926}
1927
1008c52c
BP
1928/*
1929 * The microcode loader calls this upon late microcode load to recheck features,
1930 * only when microcode has been updated. Caller holds microcode_mutex and CPU
1931 * hotplug lock.
1932 */
1933void microcode_check(void)
1934{
42ca8082
BP
1935 struct cpuinfo_x86 info;
1936
1008c52c 1937 perf_check_microcode();
42ca8082
BP
1938
1939 /* Reload CPUID max function as it might've changed. */
1940 info.cpuid_level = cpuid_eax(0);
1941
1942 /*
1943 * Copy all capability leafs to pick up the synthetic ones so that
1944 * memcmp() below doesn't fail on that. The ones coming from CPUID will
1945 * get overwritten in get_cpu_cap().
1946 */
1947 memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
1948
1949 get_cpu_cap(&info);
1950
1951 if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
1952 return;
1953
1954 pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
1955 pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
1008c52c 1956}
9c92374b
TG
1957
1958/*
1959 * Invoked from core CPU hotplug code after hotplug operations
1960 */
1961void arch_smt_update(void)
1962{
1963 /* Handle the speculative execution misfeatures */
1964 cpu_bugs_smt_update();
6a1cb5f5
TG
1965 /* Check whether IPI broadcasting can be enabled */
1966 apic_smt_update();
9c92374b 1967}