]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - arch/x86/kernel/cpu/cpufreq/acpi-cpufreq.c
Merge branch 'tip/x86/ftrace' of git://git.kernel.org/pub/scm/linux/kernel/git/rosted...
[mirror_ubuntu-zesty-kernel.git] / arch / x86 / kernel / cpu / cpufreq / acpi-cpufreq.c
CommitLineData
1da177e4 1/*
fe27cb35 2 * acpi-cpufreq.c - ACPI Processor P-States Driver ($Revision: 1.4 $)
1da177e4
LT
3 *
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
fe27cb35 7 * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com>
1da177e4
LT
8 *
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or (at
14 * your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
22 * with this program; if not, write to the Free Software Foundation, Inc.,
23 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
24 *
25 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26 */
27
1da177e4
LT
28#include <linux/kernel.h>
29#include <linux/module.h>
30#include <linux/init.h>
fe27cb35
VP
31#include <linux/smp.h>
32#include <linux/sched.h>
1da177e4 33#include <linux/cpufreq.h>
d395bf12 34#include <linux/compiler.h>
8adcc0c6 35#include <linux/dmi.h>
12922110 36#include <trace/power.h>
1da177e4
LT
37
38#include <linux/acpi.h>
39#include <acpi/processor.h>
40
fe27cb35 41#include <asm/io.h>
dde9f7ba 42#include <asm/msr.h>
fe27cb35
VP
43#include <asm/processor.h>
44#include <asm/cpufeature.h>
45#include <asm/delay.h>
46#include <asm/uaccess.h>
47
1da177e4
LT
48#define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg)
49
50MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
51MODULE_DESCRIPTION("ACPI Processor P-States Driver");
52MODULE_LICENSE("GPL");
53
dde9f7ba
VP
54enum {
55 UNDEFINED_CAPABLE = 0,
56 SYSTEM_INTEL_MSR_CAPABLE,
57 SYSTEM_IO_CAPABLE,
58};
59
60#define INTEL_MSR_RANGE (0xffff)
dfde5d62 61#define CPUID_6_ECX_APERFMPERF_CAPABILITY (0x1)
dde9f7ba 62
fe27cb35 63struct acpi_cpufreq_data {
64be7eed
VP
64 struct acpi_processor_performance *acpi_data;
65 struct cpufreq_frequency_table *freq_table;
dfde5d62 66 unsigned int max_freq;
64be7eed
VP
67 unsigned int resume;
68 unsigned int cpu_feature;
1da177e4
LT
69};
70
ea348f3e 71static DEFINE_PER_CPU(struct acpi_cpufreq_data *, drv_data);
72
b5f9fd0f
JB
73DEFINE_TRACE(power_mark);
74
50109292
FY
75/* acpi_perf_data is a pointer to percpu data. */
76static struct acpi_processor_performance *acpi_perf_data;
1da177e4
LT
77
78static struct cpufreq_driver acpi_cpufreq_driver;
79
d395bf12
VP
80static unsigned int acpi_pstate_strict;
81
dde9f7ba
VP
82static int check_est_cpu(unsigned int cpuid)
83{
92cb7612 84 struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
dde9f7ba
VP
85
86 if (cpu->x86_vendor != X86_VENDOR_INTEL ||
64be7eed 87 !cpu_has(cpu, X86_FEATURE_EST))
dde9f7ba
VP
88 return 0;
89
90 return 1;
91}
92
dde9f7ba 93static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
fe27cb35 94{
64be7eed
VP
95 struct acpi_processor_performance *perf;
96 int i;
fe27cb35
VP
97
98 perf = data->acpi_data;
99
95dd7227 100 for (i=0; i<perf->state_count; i++) {
fe27cb35
VP
101 if (value == perf->states[i].status)
102 return data->freq_table[i].frequency;
103 }
104 return 0;
105}
106
dde9f7ba
VP
107static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
108{
109 int i;
a6f6e6e6 110 struct acpi_processor_performance *perf;
dde9f7ba
VP
111
112 msr &= INTEL_MSR_RANGE;
a6f6e6e6
VP
113 perf = data->acpi_data;
114
95dd7227 115 for (i=0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
a6f6e6e6 116 if (msr == perf->states[data->freq_table[i].index].status)
dde9f7ba
VP
117 return data->freq_table[i].frequency;
118 }
119 return data->freq_table[0].frequency;
120}
121
dde9f7ba
VP
122static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
123{
124 switch (data->cpu_feature) {
64be7eed 125 case SYSTEM_INTEL_MSR_CAPABLE:
dde9f7ba 126 return extract_msr(val, data);
64be7eed 127 case SYSTEM_IO_CAPABLE:
dde9f7ba 128 return extract_io(val, data);
64be7eed 129 default:
dde9f7ba
VP
130 return 0;
131 }
132}
133
dde9f7ba
VP
134struct msr_addr {
135 u32 reg;
136};
137
fe27cb35
VP
138struct io_addr {
139 u16 port;
140 u8 bit_width;
141};
142
dde9f7ba
VP
143typedef union {
144 struct msr_addr msr;
145 struct io_addr io;
146} drv_addr_union;
147
fe27cb35 148struct drv_cmd {
dde9f7ba 149 unsigned int type;
bfa318ad 150 const struct cpumask *mask;
dde9f7ba 151 drv_addr_union addr;
fe27cb35
VP
152 u32 val;
153};
154
72859081 155static long do_drv_read(void *_cmd)
1da177e4 156{
72859081 157 struct drv_cmd *cmd = _cmd;
dde9f7ba
VP
158 u32 h;
159
160 switch (cmd->type) {
64be7eed 161 case SYSTEM_INTEL_MSR_CAPABLE:
dde9f7ba
VP
162 rdmsr(cmd->addr.msr.reg, cmd->val, h);
163 break;
64be7eed 164 case SYSTEM_IO_CAPABLE:
4e581ff1
VP
165 acpi_os_read_port((acpi_io_address)cmd->addr.io.port,
166 &cmd->val,
167 (u32)cmd->addr.io.bit_width);
dde9f7ba 168 break;
64be7eed 169 default:
dde9f7ba
VP
170 break;
171 }
72859081 172 return 0;
fe27cb35 173}
1da177e4 174
72859081 175static long do_drv_write(void *_cmd)
fe27cb35 176{
72859081 177 struct drv_cmd *cmd = _cmd;
13424f65 178 u32 lo, hi;
dde9f7ba
VP
179
180 switch (cmd->type) {
64be7eed 181 case SYSTEM_INTEL_MSR_CAPABLE:
13424f65
VP
182 rdmsr(cmd->addr.msr.reg, lo, hi);
183 lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE);
184 wrmsr(cmd->addr.msr.reg, lo, hi);
dde9f7ba 185 break;
64be7eed 186 case SYSTEM_IO_CAPABLE:
4e581ff1
VP
187 acpi_os_write_port((acpi_io_address)cmd->addr.io.port,
188 cmd->val,
189 (u32)cmd->addr.io.bit_width);
dde9f7ba 190 break;
64be7eed 191 default:
dde9f7ba
VP
192 break;
193 }
72859081 194 return 0;
fe27cb35 195}
1da177e4 196
95dd7227 197static void drv_read(struct drv_cmd *cmd)
fe27cb35 198{
fe27cb35
VP
199 cmd->val = 0;
200
72859081 201 work_on_cpu(cpumask_any(cmd->mask), do_drv_read, cmd);
fe27cb35
VP
202}
203
204static void drv_write(struct drv_cmd *cmd)
205{
64be7eed 206 unsigned int i;
fe27cb35 207
4d8bb537 208 for_each_cpu(i, cmd->mask) {
72859081 209 work_on_cpu(i, do_drv_write, cmd);
1da177e4 210 }
fe27cb35 211}
1da177e4 212
4d8bb537 213static u32 get_cur_val(const struct cpumask *mask)
fe27cb35 214{
64be7eed
VP
215 struct acpi_processor_performance *perf;
216 struct drv_cmd cmd;
1da177e4 217
4d8bb537 218 if (unlikely(cpumask_empty(mask)))
fe27cb35 219 return 0;
1da177e4 220
4d8bb537 221 switch (per_cpu(drv_data, cpumask_first(mask))->cpu_feature) {
dde9f7ba
VP
222 case SYSTEM_INTEL_MSR_CAPABLE:
223 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
224 cmd.addr.msr.reg = MSR_IA32_PERF_STATUS;
225 break;
226 case SYSTEM_IO_CAPABLE:
227 cmd.type = SYSTEM_IO_CAPABLE;
4d8bb537 228 perf = per_cpu(drv_data, cpumask_first(mask))->acpi_data;
dde9f7ba
VP
229 cmd.addr.io.port = perf->control_register.address;
230 cmd.addr.io.bit_width = perf->control_register.bit_width;
231 break;
232 default:
233 return 0;
234 }
235
bfa318ad 236 cmd.mask = mask;
fe27cb35 237 drv_read(&cmd);
1da177e4 238
fe27cb35
VP
239 dprintk("get_cur_val = %u\n", cmd.val);
240
241 return cmd.val;
242}
1da177e4 243
e39ad415
MT
244struct perf_cur {
245 union {
246 struct {
247 u32 lo;
248 u32 hi;
249 } split;
250 u64 whole;
251 } aperf_cur, mperf_cur;
252};
253
254
255static long read_measured_perf_ctrs(void *_cur)
256{
257 struct perf_cur *cur = _cur;
258
259 rdmsr(MSR_IA32_APERF, cur->aperf_cur.split.lo, cur->aperf_cur.split.hi);
260 rdmsr(MSR_IA32_MPERF, cur->mperf_cur.split.lo, cur->mperf_cur.split.hi);
261
262 wrmsr(MSR_IA32_APERF, 0, 0);
263 wrmsr(MSR_IA32_MPERF, 0, 0);
264
265 return 0;
266}
267
dfde5d62
VP
268/*
269 * Return the measured active (C0) frequency on this CPU since last call
270 * to this function.
271 * Input: cpu number
272 * Return: Average CPU frequency in terms of max frequency (zero on error)
273 *
274 * We use IA32_MPERF and IA32_APERF MSRs to get the measured performance
275 * over a period of time, while CPU is in C0 state.
276 * IA32_MPERF counts at the rate of max advertised frequency
277 * IA32_APERF counts at the rate of actual CPU frequency
278 * Only IA32_APERF/IA32_MPERF ratio is architecturally defined and
279 * no meaning should be associated with absolute values of these MSRs.
280 */
bf0b90e3 281static unsigned int get_measured_perf(struct cpufreq_policy *policy,
282 unsigned int cpu)
dfde5d62 283{
e39ad415 284 struct perf_cur cur;
dfde5d62
VP
285 unsigned int perf_percent;
286 unsigned int retval;
287
e39ad415 288 if (!work_on_cpu(cpu, read_measured_perf_ctrs, &cur))
dfde5d62 289 return 0;
dfde5d62
VP
290
291#ifdef __i386__
292 /*
293 * We dont want to do 64 bit divide with 32 bit kernel
294 * Get an approximate value. Return failure in case we cannot get
295 * an approximate value.
296 */
e39ad415 297 if (unlikely(cur.aperf_cur.split.hi || cur.mperf_cur.split.hi)) {
dfde5d62
VP
298 int shift_count;
299 u32 h;
300
e39ad415 301 h = max_t(u32, cur.aperf_cur.split.hi, cur.mperf_cur.split.hi);
dfde5d62
VP
302 shift_count = fls(h);
303
e39ad415
MT
304 cur.aperf_cur.whole >>= shift_count;
305 cur.mperf_cur.whole >>= shift_count;
dfde5d62
VP
306 }
307
e39ad415 308 if (((unsigned long)(-1) / 100) < cur.aperf_cur.split.lo) {
dfde5d62 309 int shift_count = 7;
e39ad415
MT
310 cur.aperf_cur.split.lo >>= shift_count;
311 cur.mperf_cur.split.lo >>= shift_count;
dfde5d62
VP
312 }
313
e39ad415
MT
314 if (cur.aperf_cur.split.lo && cur.mperf_cur.split.lo)
315 perf_percent = (cur.aperf_cur.split.lo * 100) /
316 cur.mperf_cur.split.lo;
95dd7227 317 else
dfde5d62 318 perf_percent = 0;
dfde5d62
VP
319
320#else
e39ad415 321 if (unlikely(((unsigned long)(-1) / 100) < cur.aperf_cur.whole)) {
dfde5d62 322 int shift_count = 7;
e39ad415
MT
323 cur.aperf_cur.whole >>= shift_count;
324 cur.mperf_cur.whole >>= shift_count;
dfde5d62
VP
325 }
326
e39ad415
MT
327 if (cur.aperf_cur.whole && cur.mperf_cur.whole)
328 perf_percent = (cur.aperf_cur.whole * 100) /
329 cur.mperf_cur.whole;
95dd7227 330 else
dfde5d62 331 perf_percent = 0;
dfde5d62
VP
332
333#endif
334
bf0b90e3 335 retval = per_cpu(drv_data, policy->cpu)->max_freq * perf_percent / 100;
dfde5d62 336
dfde5d62
VP
337 return retval;
338}
339
fe27cb35
VP
340static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
341{
ea348f3e 342 struct acpi_cpufreq_data *data = per_cpu(drv_data, cpu);
64be7eed 343 unsigned int freq;
e56a727b 344 unsigned int cached_freq;
fe27cb35
VP
345
346 dprintk("get_cur_freq_on_cpu (%d)\n", cpu);
347
348 if (unlikely(data == NULL ||
64be7eed 349 data->acpi_data == NULL || data->freq_table == NULL)) {
fe27cb35 350 return 0;
1da177e4
LT
351 }
352
e56a727b 353 cached_freq = data->freq_table[data->acpi_data->state].frequency;
e39ad415 354 freq = extract_freq(get_cur_val(cpumask_of(cpu)), data);
e56a727b
VP
355 if (freq != cached_freq) {
356 /*
357 * The dreaded BIOS frequency change behind our back.
358 * Force set the frequency on next target call.
359 */
360 data->resume = 1;
361 }
362
fe27cb35 363 dprintk("cur freq = %u\n", freq);
1da177e4 364
fe27cb35 365 return freq;
1da177e4
LT
366}
367
72859081 368static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq,
64be7eed 369 struct acpi_cpufreq_data *data)
fe27cb35 370{
64be7eed
VP
371 unsigned int cur_freq;
372 unsigned int i;
1da177e4 373
95dd7227 374 for (i=0; i<100; i++) {
fe27cb35
VP
375 cur_freq = extract_freq(get_cur_val(mask), data);
376 if (cur_freq == freq)
377 return 1;
378 udelay(10);
379 }
380 return 0;
381}
382
383static int acpi_cpufreq_target(struct cpufreq_policy *policy,
64be7eed 384 unsigned int target_freq, unsigned int relation)
1da177e4 385{
ea348f3e 386 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
64be7eed
VP
387 struct acpi_processor_performance *perf;
388 struct cpufreq_freqs freqs;
64be7eed 389 struct drv_cmd cmd;
8edc59d9
VP
390 unsigned int next_state = 0; /* Index into freq_table */
391 unsigned int next_perf_state = 0; /* Index into perf table */
64be7eed
VP
392 unsigned int i;
393 int result = 0;
f3f47a67 394 struct power_trace it;
fe27cb35
VP
395
396 dprintk("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
397
398 if (unlikely(data == NULL ||
95dd7227 399 data->acpi_data == NULL || data->freq_table == NULL)) {
fe27cb35
VP
400 return -ENODEV;
401 }
1da177e4 402
fe27cb35 403 perf = data->acpi_data;
1da177e4 404 result = cpufreq_frequency_table_target(policy,
64be7eed
VP
405 data->freq_table,
406 target_freq,
407 relation, &next_state);
4d8bb537
MT
408 if (unlikely(result)) {
409 result = -ENODEV;
410 goto out;
411 }
1da177e4 412
fe27cb35 413 next_perf_state = data->freq_table[next_state].index;
7650b281 414 if (perf->state == next_perf_state) {
fe27cb35 415 if (unlikely(data->resume)) {
64be7eed
VP
416 dprintk("Called after resume, resetting to P%d\n",
417 next_perf_state);
fe27cb35
VP
418 data->resume = 0;
419 } else {
64be7eed
VP
420 dprintk("Already at target state (P%d)\n",
421 next_perf_state);
4d8bb537 422 goto out;
fe27cb35 423 }
09b4d1ee
VP
424 }
425
f3f47a67
AV
426 trace_power_mark(&it, POWER_PSTATE, next_perf_state);
427
64be7eed
VP
428 switch (data->cpu_feature) {
429 case SYSTEM_INTEL_MSR_CAPABLE:
430 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
431 cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
13424f65 432 cmd.val = (u32) perf->states[next_perf_state].control;
64be7eed
VP
433 break;
434 case SYSTEM_IO_CAPABLE:
435 cmd.type = SYSTEM_IO_CAPABLE;
436 cmd.addr.io.port = perf->control_register.address;
437 cmd.addr.io.bit_width = perf->control_register.bit_width;
438 cmd.val = (u32) perf->states[next_perf_state].control;
439 break;
440 default:
4d8bb537
MT
441 result = -ENODEV;
442 goto out;
64be7eed 443 }
09b4d1ee 444
4d8bb537 445 /* cpufreq holds the hotplug lock, so we are safe from here on */
fe27cb35 446 if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
bfa318ad 447 cmd.mask = policy->cpus;
fe27cb35 448 else
bfa318ad 449 cmd.mask = cpumask_of(policy->cpu);
09b4d1ee 450
8edc59d9
VP
451 freqs.old = perf->states[perf->state].core_frequency * 1000;
452 freqs.new = data->freq_table[next_state].frequency;
4d8bb537 453 for_each_cpu(i, cmd.mask) {
fe27cb35
VP
454 freqs.cpu = i;
455 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
09b4d1ee 456 }
1da177e4 457
fe27cb35 458 drv_write(&cmd);
09b4d1ee 459
fe27cb35 460 if (acpi_pstate_strict) {
4d8bb537 461 if (!check_freqs(cmd.mask, freqs.new, data)) {
fe27cb35 462 dprintk("acpi_cpufreq_target failed (%d)\n",
64be7eed 463 policy->cpu);
4d8bb537
MT
464 result = -EAGAIN;
465 goto out;
09b4d1ee
VP
466 }
467 }
468
4d8bb537 469 for_each_cpu(i, cmd.mask) {
fe27cb35
VP
470 freqs.cpu = i;
471 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
472 }
473 perf->state = next_perf_state;
474
4d8bb537 475out:
fe27cb35 476 return result;
1da177e4
LT
477}
478
64be7eed 479static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
1da177e4 480{
ea348f3e 481 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
1da177e4
LT
482
483 dprintk("acpi_cpufreq_verify\n");
484
fe27cb35 485 return cpufreq_frequency_table_verify(policy, data->freq_table);
1da177e4
LT
486}
487
1da177e4 488static unsigned long
64be7eed 489acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
1da177e4 490{
64be7eed 491 struct acpi_processor_performance *perf = data->acpi_data;
09b4d1ee 492
1da177e4
LT
493 if (cpu_khz) {
494 /* search the closest match to cpu_khz */
495 unsigned int i;
496 unsigned long freq;
09b4d1ee 497 unsigned long freqn = perf->states[0].core_frequency * 1000;
1da177e4 498
95dd7227 499 for (i=0; i<(perf->state_count-1); i++) {
1da177e4 500 freq = freqn;
95dd7227 501 freqn = perf->states[i+1].core_frequency * 1000;
1da177e4 502 if ((2 * cpu_khz) > (freqn + freq)) {
09b4d1ee 503 perf->state = i;
64be7eed 504 return freq;
1da177e4
LT
505 }
506 }
95dd7227 507 perf->state = perf->state_count-1;
64be7eed 508 return freqn;
09b4d1ee 509 } else {
1da177e4 510 /* assume CPU is at P0... */
09b4d1ee
VP
511 perf->state = 0;
512 return perf->states[0].core_frequency * 1000;
513 }
1da177e4
LT
514}
515
2fdf66b4
RR
516static void free_acpi_perf_data(void)
517{
518 unsigned int i;
519
520 /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
521 for_each_possible_cpu(i)
522 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
523 ->shared_cpu_map);
524 free_percpu(acpi_perf_data);
525}
526
09b4d1ee
VP
527/*
528 * acpi_cpufreq_early_init - initialize ACPI P-States library
529 *
530 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
531 * in order to determine correct frequency and voltage pairings. We can
532 * do _PDC and _PSD and find out the processor dependency for the
533 * actual init that will happen later...
534 */
50109292 535static int __init acpi_cpufreq_early_init(void)
09b4d1ee 536{
2fdf66b4 537 unsigned int i;
09b4d1ee
VP
538 dprintk("acpi_cpufreq_early_init\n");
539
50109292
FY
540 acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
541 if (!acpi_perf_data) {
542 dprintk("Memory allocation error for acpi_perf_data.\n");
543 return -ENOMEM;
09b4d1ee 544 }
2fdf66b4 545 for_each_possible_cpu(i) {
80855f73
MT
546 if (!alloc_cpumask_var_node(
547 &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
548 GFP_KERNEL, cpu_to_node(i))) {
2fdf66b4
RR
549
550 /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
551 free_acpi_perf_data();
552 return -ENOMEM;
553 }
554 }
09b4d1ee
VP
555
556 /* Do initialization in ACPI core */
fe27cb35
VP
557 acpi_processor_preregister_performance(acpi_perf_data);
558 return 0;
09b4d1ee
VP
559}
560
95625b8f 561#ifdef CONFIG_SMP
8adcc0c6
VP
562/*
563 * Some BIOSes do SW_ANY coordination internally, either set it up in hw
564 * or do it in BIOS firmware and won't inform about it to OS. If not
565 * detected, this has a side effect of making CPU run at a different speed
566 * than OS intended it to run at. Detect it and handle it cleanly.
567 */
568static int bios_with_sw_any_bug;
569
1855256c 570static int sw_any_bug_found(const struct dmi_system_id *d)
8adcc0c6
VP
571{
572 bios_with_sw_any_bug = 1;
573 return 0;
574}
575
1855256c 576static const struct dmi_system_id sw_any_bug_dmi_table[] = {
8adcc0c6
VP
577 {
578 .callback = sw_any_bug_found,
579 .ident = "Supermicro Server X6DLP",
580 .matches = {
581 DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
582 DMI_MATCH(DMI_BIOS_VERSION, "080010"),
583 DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
584 },
585 },
586 { }
587};
95625b8f 588#endif
8adcc0c6 589
64be7eed 590static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
1da177e4 591{
64be7eed
VP
592 unsigned int i;
593 unsigned int valid_states = 0;
594 unsigned int cpu = policy->cpu;
595 struct acpi_cpufreq_data *data;
64be7eed 596 unsigned int result = 0;
92cb7612 597 struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
64be7eed 598 struct acpi_processor_performance *perf;
1da177e4 599
1da177e4 600 dprintk("acpi_cpufreq_cpu_init\n");
1da177e4 601
fe27cb35 602 data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
1da177e4 603 if (!data)
64be7eed 604 return -ENOMEM;
1da177e4 605
50109292 606 data->acpi_data = percpu_ptr(acpi_perf_data, cpu);
ea348f3e 607 per_cpu(drv_data, cpu) = data;
1da177e4 608
95dd7227 609 if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
fe27cb35 610 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
1da177e4 611
fe27cb35 612 result = acpi_processor_register_performance(data->acpi_data, cpu);
1da177e4
LT
613 if (result)
614 goto err_free;
615
09b4d1ee 616 perf = data->acpi_data;
09b4d1ee 617 policy->shared_type = perf->shared_type;
95dd7227 618
46f18e3a 619 /*
95dd7227 620 * Will let policy->cpus know about dependency only when software
46f18e3a
VP
621 * coordination is required.
622 */
623 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
8adcc0c6 624 policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
835481d9 625 cpumask_copy(policy->cpus, perf->shared_cpu_map);
8adcc0c6 626 }
835481d9 627 cpumask_copy(policy->related_cpus, perf->shared_cpu_map);
8adcc0c6
VP
628
629#ifdef CONFIG_SMP
630 dmi_check_system(sw_any_bug_dmi_table);
835481d9 631 if (bios_with_sw_any_bug && cpumask_weight(policy->cpus) == 1) {
8adcc0c6 632 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
835481d9 633 cpumask_copy(policy->cpus, cpu_core_mask(cpu));
8adcc0c6
VP
634 }
635#endif
09b4d1ee 636
1da177e4 637 /* capability check */
09b4d1ee 638 if (perf->state_count <= 1) {
1da177e4
LT
639 dprintk("No P-States\n");
640 result = -ENODEV;
641 goto err_unreg;
642 }
09b4d1ee 643
fe27cb35
VP
644 if (perf->control_register.space_id != perf->status_register.space_id) {
645 result = -ENODEV;
646 goto err_unreg;
647 }
648
649 switch (perf->control_register.space_id) {
64be7eed 650 case ACPI_ADR_SPACE_SYSTEM_IO:
fe27cb35 651 dprintk("SYSTEM IO addr space\n");
dde9f7ba
VP
652 data->cpu_feature = SYSTEM_IO_CAPABLE;
653 break;
64be7eed 654 case ACPI_ADR_SPACE_FIXED_HARDWARE:
dde9f7ba
VP
655 dprintk("HARDWARE addr space\n");
656 if (!check_est_cpu(cpu)) {
657 result = -ENODEV;
658 goto err_unreg;
659 }
660 data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
fe27cb35 661 break;
64be7eed 662 default:
fe27cb35 663 dprintk("Unknown addr space %d\n",
64be7eed 664 (u32) (perf->control_register.space_id));
1da177e4
LT
665 result = -ENODEV;
666 goto err_unreg;
667 }
668
95dd7227
DJ
669 data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
670 (perf->state_count+1), GFP_KERNEL);
1da177e4
LT
671 if (!data->freq_table) {
672 result = -ENOMEM;
673 goto err_unreg;
674 }
675
676 /* detect transition latency */
677 policy->cpuinfo.transition_latency = 0;
95dd7227 678 for (i=0; i<perf->state_count; i++) {
64be7eed
VP
679 if ((perf->states[i].transition_latency * 1000) >
680 policy->cpuinfo.transition_latency)
681 policy->cpuinfo.transition_latency =
682 perf->states[i].transition_latency * 1000;
1da177e4 683 }
1da177e4 684
dfde5d62 685 data->max_freq = perf->states[0].core_frequency * 1000;
1da177e4 686 /* table init */
95dd7227 687 for (i=0; i<perf->state_count; i++) {
3cdf552b
ZR
688 if (i>0 && perf->states[i].core_frequency >=
689 data->freq_table[valid_states-1].frequency / 1000)
fe27cb35
VP
690 continue;
691
692 data->freq_table[valid_states].index = i;
693 data->freq_table[valid_states].frequency =
64be7eed 694 perf->states[i].core_frequency * 1000;
fe27cb35 695 valid_states++;
1da177e4 696 }
3d4a7ef3 697 data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
8edc59d9 698 perf->state = 0;
1da177e4
LT
699
700 result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
95dd7227 701 if (result)
1da177e4 702 goto err_freqfree;
1da177e4 703
a507ac4b 704 switch (perf->control_register.space_id) {
64be7eed 705 case ACPI_ADR_SPACE_SYSTEM_IO:
dde9f7ba
VP
706 /* Current speed is unknown and not detectable by IO port */
707 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
708 break;
64be7eed 709 case ACPI_ADR_SPACE_FIXED_HARDWARE:
7650b281 710 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
a507ac4b 711 policy->cur = get_cur_freq_on_cpu(cpu);
dde9f7ba 712 break;
64be7eed 713 default:
dde9f7ba
VP
714 break;
715 }
716
1da177e4
LT
717 /* notify BIOS that we exist */
718 acpi_processor_notify_smm(THIS_MODULE);
719
dfde5d62
VP
720 /* Check for APERF/MPERF support in hardware */
721 if (c->x86_vendor == X86_VENDOR_INTEL && c->cpuid_level >= 6) {
722 unsigned int ecx;
723 ecx = cpuid_ecx(6);
95dd7227 724 if (ecx & CPUID_6_ECX_APERFMPERF_CAPABILITY)
dfde5d62 725 acpi_cpufreq_driver.getavg = get_measured_perf;
dfde5d62
VP
726 }
727
fe27cb35 728 dprintk("CPU%u - ACPI performance management activated.\n", cpu);
09b4d1ee 729 for (i = 0; i < perf->state_count; i++)
1da177e4 730 dprintk(" %cP%d: %d MHz, %d mW, %d uS\n",
64be7eed 731 (i == perf->state ? '*' : ' '), i,
09b4d1ee
VP
732 (u32) perf->states[i].core_frequency,
733 (u32) perf->states[i].power,
734 (u32) perf->states[i].transition_latency);
1da177e4
LT
735
736 cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
64be7eed 737
4b31e774
DB
738 /*
739 * the first call to ->target() should result in us actually
740 * writing something to the appropriate registers.
741 */
742 data->resume = 1;
64be7eed 743
fe27cb35 744 return result;
1da177e4 745
95dd7227 746err_freqfree:
1da177e4 747 kfree(data->freq_table);
95dd7227 748err_unreg:
09b4d1ee 749 acpi_processor_unregister_performance(perf, cpu);
95dd7227 750err_free:
1da177e4 751 kfree(data);
ea348f3e 752 per_cpu(drv_data, cpu) = NULL;
1da177e4 753
64be7eed 754 return result;
1da177e4
LT
755}
756
64be7eed 757static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
1da177e4 758{
ea348f3e 759 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
1da177e4 760
1da177e4
LT
761 dprintk("acpi_cpufreq_cpu_exit\n");
762
763 if (data) {
764 cpufreq_frequency_table_put_attr(policy->cpu);
ea348f3e 765 per_cpu(drv_data, policy->cpu) = NULL;
64be7eed
VP
766 acpi_processor_unregister_performance(data->acpi_data,
767 policy->cpu);
1da177e4
LT
768 kfree(data);
769 }
770
64be7eed 771 return 0;
1da177e4
LT
772}
773
64be7eed 774static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
1da177e4 775{
ea348f3e 776 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
1da177e4 777
1da177e4
LT
778 dprintk("acpi_cpufreq_resume\n");
779
780 data->resume = 1;
781
64be7eed 782 return 0;
1da177e4
LT
783}
784
64be7eed 785static struct freq_attr *acpi_cpufreq_attr[] = {
1da177e4
LT
786 &cpufreq_freq_attr_scaling_available_freqs,
787 NULL,
788};
789
790static struct cpufreq_driver acpi_cpufreq_driver = {
64be7eed
VP
791 .verify = acpi_cpufreq_verify,
792 .target = acpi_cpufreq_target,
64be7eed
VP
793 .init = acpi_cpufreq_cpu_init,
794 .exit = acpi_cpufreq_cpu_exit,
795 .resume = acpi_cpufreq_resume,
796 .name = "acpi-cpufreq",
797 .owner = THIS_MODULE,
798 .attr = acpi_cpufreq_attr,
1da177e4
LT
799};
800
64be7eed 801static int __init acpi_cpufreq_init(void)
1da177e4 802{
50109292
FY
803 int ret;
804
ee297533
YL
805 if (acpi_disabled)
806 return 0;
807
1da177e4
LT
808 dprintk("acpi_cpufreq_init\n");
809
50109292
FY
810 ret = acpi_cpufreq_early_init();
811 if (ret)
812 return ret;
09b4d1ee 813
847aef6f
AM
814 ret = cpufreq_register_driver(&acpi_cpufreq_driver);
815 if (ret)
2fdf66b4 816 free_acpi_perf_data();
847aef6f
AM
817
818 return ret;
1da177e4
LT
819}
820
64be7eed 821static void __exit acpi_cpufreq_exit(void)
1da177e4
LT
822{
823 dprintk("acpi_cpufreq_exit\n");
824
825 cpufreq_unregister_driver(&acpi_cpufreq_driver);
826
50109292 827 free_percpu(acpi_perf_data);
1da177e4
LT
828}
829
d395bf12 830module_param(acpi_pstate_strict, uint, 0644);
64be7eed 831MODULE_PARM_DESC(acpi_pstate_strict,
95dd7227
DJ
832 "value 0 or non-zero. non-zero -> strict ACPI checks are "
833 "performed during frequency changes.");
1da177e4
LT
834
835late_initcall(acpi_cpufreq_init);
836module_exit(acpi_cpufreq_exit);
837
838MODULE_ALIAS("acpi");