]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/kernel/cpu/cpufreq/powernow-k8.c
[CPUFREQ] Create a blacklist for processors that should not load the acpi-cpufreq...
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / cpu / cpufreq / powernow-k8.c
CommitLineData
21335d02 1
1da177e4 2/*
1f729e06 3 * (c) 2003-2006 Advanced Micro Devices, Inc.
1da177e4
LT
4 * Your use of this code is subject to the terms and conditions of the
5 * GNU general public license version 2. See "COPYING" or
6 * http://www.gnu.org/licenses/gpl.html
7 *
065b807c 8 * Support : mark.langsdorf@amd.com
1da177e4
LT
9 *
10 * Based on the powernow-k7.c module written by Dave Jones.
f4432c5c 11 * (C) 2003 Dave Jones on behalf of SuSE Labs
1da177e4
LT
12 * (C) 2004 Dominik Brodowski <linux@brodo.de>
13 * (C) 2004 Pavel Machek <pavel@suse.cz>
14 * Licensed under the terms of the GNU GPL License version 2.
15 * Based upon datasheets & sample CPUs kindly provided by AMD.
16 *
17 * Valuable input gratefully received from Dave Jones, Pavel Machek,
1f729e06 18 * Dominik Brodowski, Jacob Shin, and others.
065b807c 19 * Originally developed by Paul Devriendt.
1da177e4
LT
20 * Processor information obtained from Chapter 9 (Power and Thermal Management)
21 * of the "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD
22 * Opteron Processors" available for download from www.amd.com
23 *
2e3f8faa 24 * Tables for specific CPUs can be inferred from
065b807c 25 * http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/30430.pdf
1da177e4
LT
26 */
27
28#include <linux/kernel.h>
29#include <linux/smp.h>
30#include <linux/module.h>
31#include <linux/init.h>
32#include <linux/cpufreq.h>
33#include <linux/slab.h>
34#include <linux/string.h>
065b807c 35#include <linux/cpumask.h>
4e57b681 36#include <linux/sched.h> /* for current / set_cpus_allowed() */
0e64a0c9
DJ
37#include <linux/io.h>
38#include <linux/delay.h>
1da177e4
LT
39
40#include <asm/msr.h>
1da177e4 41
1da177e4 42#include <linux/acpi.h>
14cc3e2b 43#include <linux/mutex.h>
1da177e4 44#include <acpi/processor.h>
1da177e4
LT
45
46#define PFX "powernow-k8: "
c5829cd0 47#define VERSION "version 2.20.00"
1da177e4
LT
48#include "powernow-k8.h"
49
50/* serialize freq changes */
14cc3e2b 51static DEFINE_MUTEX(fidvid_mutex);
1da177e4 52
2c6b8c03 53static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data);
1da177e4 54
1f729e06
DJ
55static int cpu_family = CPU_OPTERON;
56
065b807c 57#ifndef CONFIG_SMP
7ad728f9
RR
58static inline const struct cpumask *cpu_core_mask(int cpu)
59{
60 return cpumask_of(0);
61}
065b807c
DJ
62#endif
63
1da177e4
LT
64/* Return a frequency in MHz, given an input fid */
65static u32 find_freq_from_fid(u32 fid)
66{
67 return 800 + (fid * 100);
68}
69
70/* Return a frequency in KHz, given an input fid */
71static u32 find_khz_freq_from_fid(u32 fid)
72{
73 return 1000 * find_freq_from_fid(fid);
74}
75
0e64a0c9
DJ
76static u32 find_khz_freq_from_pstate(struct cpufreq_frequency_table *data,
77 u32 pstate)
1f729e06 78{
c5829cd0 79 return data[pstate].frequency;
1f729e06
DJ
80}
81
1da177e4
LT
82/* Return the vco fid for an input fid
83 *
84 * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
85 * only from corresponding high fids. This returns "high" fid corresponding to
86 * "low" one.
87 */
88static u32 convert_fid_to_vco_fid(u32 fid)
89{
32ee8c3e 90 if (fid < HI_FID_TABLE_BOTTOM)
1da177e4 91 return 8 + (2 * fid);
32ee8c3e 92 else
1da177e4 93 return fid;
1da177e4
LT
94}
95
96/*
97 * Return 1 if the pending bit is set. Unless we just instructed the processor
98 * to transition to a new state, seeing this bit set is really bad news.
99 */
100static int pending_bit_stuck(void)
101{
102 u32 lo, hi;
103
e7bdd7a5 104 if (cpu_family == CPU_HW_PSTATE)
1f729e06
DJ
105 return 0;
106
1da177e4
LT
107 rdmsr(MSR_FIDVID_STATUS, lo, hi);
108 return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
109}
110
111/*
112 * Update the global current fid / vid values from the status msr.
113 * Returns 1 on error.
114 */
115static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
116{
117 u32 lo, hi;
118 u32 i = 0;
119
e7bdd7a5 120 if (cpu_family == CPU_HW_PSTATE) {
532cfee6
NC
121 rdmsr(MSR_PSTATE_STATUS, lo, hi);
122 i = lo & HW_PSTATE_MASK;
123 data->currpstate = i;
124
125 /*
126 * a workaround for family 11h erratum 311 might cause
127 * an "out-of-range Pstate if the core is in Pstate-0
128 */
129 if ((boot_cpu_data.x86 == 0x11) && (i >= data->numps))
130 data->currpstate = HW_PSTATE_0;
131
1f729e06
DJ
132 return 0;
133 }
7153d961 134 do {
0213df74
DJ
135 if (i++ > 10000) {
136 dprintk("detected change pending stuck\n");
1da177e4
LT
137 return 1;
138 }
139 rdmsr(MSR_FIDVID_STATUS, lo, hi);
7153d961 140 } while (lo & MSR_S_LO_CHANGE_PENDING);
1da177e4
LT
141
142 data->currvid = hi & MSR_S_HI_CURRENT_VID;
143 data->currfid = lo & MSR_S_LO_CURRENT_FID;
144
145 return 0;
146}
147
148/* the isochronous relief time */
149static void count_off_irt(struct powernow_k8_data *data)
150{
151 udelay((1 << data->irt) * 10);
152 return;
153}
154
27b46d76 155/* the voltage stabilization time */
1da177e4
LT
156static void count_off_vst(struct powernow_k8_data *data)
157{
158 udelay(data->vstable * VST_UNITS_20US);
159 return;
160}
161
162/* need to init the control msr to a safe value (for each cpu) */
163static void fidvid_msr_init(void)
164{
165 u32 lo, hi;
166 u8 fid, vid;
167
168 rdmsr(MSR_FIDVID_STATUS, lo, hi);
169 vid = hi & MSR_S_HI_CURRENT_VID;
170 fid = lo & MSR_S_LO_CURRENT_FID;
171 lo = fid | (vid << MSR_C_LO_VID_SHIFT);
172 hi = MSR_C_HI_STP_GNT_BENIGN;
173 dprintk("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
174 wrmsr(MSR_FIDVID_CTL, lo, hi);
175}
176
1da177e4
LT
177/* write the new fid value along with the other control fields to the msr */
178static int write_new_fid(struct powernow_k8_data *data, u32 fid)
179{
180 u32 lo;
181 u32 savevid = data->currvid;
0213df74 182 u32 i = 0;
1da177e4
LT
183
184 if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
185 printk(KERN_ERR PFX "internal error - overflow on fid write\n");
186 return 1;
187 }
188
0e64a0c9
DJ
189 lo = fid;
190 lo |= (data->currvid << MSR_C_LO_VID_SHIFT);
191 lo |= MSR_C_LO_INIT_FID_VID;
1da177e4
LT
192
193 dprintk("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
194 fid, lo, data->plllock * PLL_LOCK_CONVERSION);
195
0213df74
DJ
196 do {
197 wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
198 if (i++ > 100) {
0e64a0c9
DJ
199 printk(KERN_ERR PFX
200 "Hardware error - pending bit very stuck - "
201 "no further pstate changes possible\n");
63172cb3 202 return 1;
32ee8c3e 203 }
0213df74 204 } while (query_current_values_with_pending_wait(data));
1da177e4
LT
205
206 count_off_irt(data);
207
208 if (savevid != data->currvid) {
0e64a0c9
DJ
209 printk(KERN_ERR PFX
210 "vid change on fid trans, old 0x%x, new 0x%x\n",
211 savevid, data->currvid);
1da177e4
LT
212 return 1;
213 }
214
215 if (fid != data->currfid) {
0e64a0c9
DJ
216 printk(KERN_ERR PFX
217 "fid trans failed, fid 0x%x, curr 0x%x\n", fid,
218 data->currfid);
1da177e4
LT
219 return 1;
220 }
221
222 return 0;
223}
224
225/* Write a new vid to the hardware */
226static int write_new_vid(struct powernow_k8_data *data, u32 vid)
227{
228 u32 lo;
229 u32 savefid = data->currfid;
0213df74 230 int i = 0;
1da177e4
LT
231
232 if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
233 printk(KERN_ERR PFX "internal error - overflow on vid write\n");
234 return 1;
235 }
236
0e64a0c9
DJ
237 lo = data->currfid;
238 lo |= (vid << MSR_C_LO_VID_SHIFT);
239 lo |= MSR_C_LO_INIT_FID_VID;
1da177e4
LT
240
241 dprintk("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
242 vid, lo, STOP_GRANT_5NS);
243
0213df74
DJ
244 do {
245 wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
6df89006 246 if (i++ > 100) {
0e64a0c9
DJ
247 printk(KERN_ERR PFX "internal error - pending bit "
248 "very stuck - no further pstate "
249 "changes possible\n");
6df89006
DJ
250 return 1;
251 }
0213df74 252 } while (query_current_values_with_pending_wait(data));
1da177e4
LT
253
254 if (savefid != data->currfid) {
0e64a0c9
DJ
255 printk(KERN_ERR PFX "fid changed on vid trans, old "
256 "0x%x new 0x%x\n",
1da177e4
LT
257 savefid, data->currfid);
258 return 1;
259 }
260
261 if (vid != data->currvid) {
0e64a0c9
DJ
262 printk(KERN_ERR PFX "vid trans failed, vid 0x%x, "
263 "curr 0x%x\n",
264 vid, data->currvid);
1da177e4
LT
265 return 1;
266 }
267
268 return 0;
269}
270
271/*
272 * Reduce the vid by the max of step or reqvid.
273 * Decreasing vid codes represent increasing voltages:
841e40b3 274 * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
1da177e4 275 */
0e64a0c9
DJ
276static int decrease_vid_code_by_step(struct powernow_k8_data *data,
277 u32 reqvid, u32 step)
1da177e4
LT
278{
279 if ((data->currvid - reqvid) > step)
280 reqvid = data->currvid - step;
281
282 if (write_new_vid(data, reqvid))
283 return 1;
284
285 count_off_vst(data);
286
287 return 0;
288}
289
1f729e06
DJ
290/* Change hardware pstate by single MSR write */
291static int transition_pstate(struct powernow_k8_data *data, u32 pstate)
292{
293 wrmsr(MSR_PSTATE_CTRL, pstate, 0);
c5829cd0 294 data->currpstate = pstate;
1f729e06
DJ
295 return 0;
296}
297
298/* Change Opteron/Athlon64 fid and vid, by the 3 phases. */
0e64a0c9
DJ
299static int transition_fid_vid(struct powernow_k8_data *data,
300 u32 reqfid, u32 reqvid)
1da177e4 301{
a2e1b4c3 302 if (core_voltage_pre_transition(data, reqvid, reqfid))
1da177e4
LT
303 return 1;
304
305 if (core_frequency_transition(data, reqfid))
306 return 1;
307
308 if (core_voltage_post_transition(data, reqvid))
309 return 1;
310
311 if (query_current_values_with_pending_wait(data))
312 return 1;
313
314 if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
0e64a0c9
DJ
315 printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, "
316 "curr 0x%x 0x%x\n",
1da177e4
LT
317 smp_processor_id(),
318 reqfid, reqvid, data->currfid, data->currvid);
319 return 1;
320 }
321
322 dprintk("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
323 smp_processor_id(), data->currfid, data->currvid);
324
325 return 0;
326}
327
328/* Phase 1 - core voltage transition ... setup voltage */
0e64a0c9 329static int core_voltage_pre_transition(struct powernow_k8_data *data,
a2e1b4c3 330 u32 reqvid, u32 reqfid)
1da177e4
LT
331{
332 u32 rvosteps = data->rvo;
333 u32 savefid = data->currfid;
a2e1b4c3 334 u32 maxvid, lo, rvomult = 1;
1da177e4 335
0e64a0c9
DJ
336 dprintk("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, "
337 "reqvid 0x%x, rvo 0x%x\n",
1da177e4
LT
338 smp_processor_id(),
339 data->currfid, data->currvid, reqvid, data->rvo);
340
a2e1b4c3
ML
341 if ((savefid < LO_FID_TABLE_TOP) && (reqfid < LO_FID_TABLE_TOP))
342 rvomult = 2;
343 rvosteps *= rvomult;
065b807c
DJ
344 rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
345 maxvid = 0x1f & (maxvid >> 16);
346 dprintk("ph1 maxvid=0x%x\n", maxvid);
347 if (reqvid < maxvid) /* lower numbers are higher voltages */
348 reqvid = maxvid;
349
1da177e4
LT
350 while (data->currvid > reqvid) {
351 dprintk("ph1: curr 0x%x, req vid 0x%x\n",
352 data->currvid, reqvid);
353 if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
354 return 1;
355 }
356
a2e1b4c3
ML
357 while ((rvosteps > 0) &&
358 ((rvomult * data->rvo + data->currvid) > reqvid)) {
065b807c 359 if (data->currvid == maxvid) {
1da177e4
LT
360 rvosteps = 0;
361 } else {
362 dprintk("ph1: changing vid for rvo, req 0x%x\n",
363 data->currvid - 1);
0e64a0c9 364 if (decrease_vid_code_by_step(data, data->currvid-1, 1))
1da177e4
LT
365 return 1;
366 rvosteps--;
367 }
368 }
369
370 if (query_current_values_with_pending_wait(data))
371 return 1;
372
373 if (savefid != data->currfid) {
0e64a0c9
DJ
374 printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n",
375 data->currfid);
1da177e4
LT
376 return 1;
377 }
378
379 dprintk("ph1 complete, currfid 0x%x, currvid 0x%x\n",
380 data->currfid, data->currvid);
381
382 return 0;
383}
384
385/* Phase 2 - core frequency transition */
386static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
387{
0e64a0c9
DJ
388 u32 vcoreqfid, vcocurrfid, vcofiddiff;
389 u32 fid_interval, savevid = data->currvid;
1da177e4 390
1da177e4 391 if (data->currfid == reqfid) {
0e64a0c9
DJ
392 printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n",
393 data->currfid);
1da177e4
LT
394 return 0;
395 }
396
0e64a0c9
DJ
397 dprintk("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, "
398 "reqfid 0x%x\n",
1da177e4
LT
399 smp_processor_id(),
400 data->currfid, data->currvid, reqfid);
401
402 vcoreqfid = convert_fid_to_vco_fid(reqfid);
403 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
404 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
405 : vcoreqfid - vcocurrfid;
406
a2e1b4c3
ML
407 if ((reqfid <= LO_FID_TABLE_TOP) && (data->currfid <= LO_FID_TABLE_TOP))
408 vcofiddiff = 0;
409
1da177e4 410 while (vcofiddiff > 2) {
019a61b9
LM
411 (data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2);
412
1da177e4
LT
413 if (reqfid > data->currfid) {
414 if (data->currfid > LO_FID_TABLE_TOP) {
0e64a0c9
DJ
415 if (write_new_fid(data,
416 data->currfid + fid_interval))
1da177e4 417 return 1;
1da177e4
LT
418 } else {
419 if (write_new_fid
0e64a0c9
DJ
420 (data,
421 2 + convert_fid_to_vco_fid(data->currfid)))
1da177e4 422 return 1;
1da177e4
LT
423 }
424 } else {
019a61b9 425 if (write_new_fid(data, data->currfid - fid_interval))
1da177e4
LT
426 return 1;
427 }
428
429 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
430 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
431 : vcoreqfid - vcocurrfid;
432 }
433
434 if (write_new_fid(data, reqfid))
435 return 1;
436
437 if (query_current_values_with_pending_wait(data))
438 return 1;
439
440 if (data->currfid != reqfid) {
441 printk(KERN_ERR PFX
0e64a0c9
DJ
442 "ph2: mismatch, failed fid transition, "
443 "curr 0x%x, req 0x%x\n",
1da177e4
LT
444 data->currfid, reqfid);
445 return 1;
446 }
447
448 if (savevid != data->currvid) {
449 printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n",
450 savevid, data->currvid);
451 return 1;
452 }
453
454 dprintk("ph2 complete, currfid 0x%x, currvid 0x%x\n",
455 data->currfid, data->currvid);
456
457 return 0;
458}
459
460/* Phase 3 - core voltage transition flow ... jump to the final vid. */
0e64a0c9
DJ
461static int core_voltage_post_transition(struct powernow_k8_data *data,
462 u32 reqvid)
1da177e4
LT
463{
464 u32 savefid = data->currfid;
465 u32 savereqvid = reqvid;
466
467 dprintk("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
468 smp_processor_id(),
469 data->currfid, data->currvid);
470
471 if (reqvid != data->currvid) {
472 if (write_new_vid(data, reqvid))
473 return 1;
474
475 if (savefid != data->currfid) {
476 printk(KERN_ERR PFX
477 "ph3: bad fid change, save 0x%x, curr 0x%x\n",
478 savefid, data->currfid);
479 return 1;
480 }
481
482 if (data->currvid != reqvid) {
483 printk(KERN_ERR PFX
0e64a0c9
DJ
484 "ph3: failed vid transition\n, "
485 "req 0x%x, curr 0x%x",
1da177e4
LT
486 reqvid, data->currvid);
487 return 1;
488 }
489 }
490
491 if (query_current_values_with_pending_wait(data))
492 return 1;
493
494 if (savereqvid != data->currvid) {
495 dprintk("ph3 failed, currvid 0x%x\n", data->currvid);
496 return 1;
497 }
498
499 if (savefid != data->currfid) {
500 dprintk("ph3 failed, currfid changed 0x%x\n",
501 data->currfid);
502 return 1;
503 }
504
505 dprintk("ph3 complete, currfid 0x%x, currvid 0x%x\n",
506 data->currfid, data->currvid);
507
508 return 0;
509}
510
1ff6e97f 511static void check_supported_cpu(void *_rc)
1da177e4 512{
1da177e4 513 u32 eax, ebx, ecx, edx;
1ff6e97f 514 int *rc = _rc;
1da177e4 515
1ff6e97f 516 *rc = -ENODEV;
1da177e4
LT
517
518 if (current_cpu_data.x86_vendor != X86_VENDOR_AMD)
1ff6e97f 519 return;
1da177e4
LT
520
521 eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
1f729e06
DJ
522 if (((eax & CPUID_XFAM) != CPUID_XFAM_K8) &&
523 ((eax & CPUID_XFAM) < CPUID_XFAM_10H))
1ff6e97f 524 return;
2c906ae6 525
1f729e06
DJ
526 if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) {
527 if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
99fbe1ac 528 ((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) {
0e64a0c9
DJ
529 printk(KERN_INFO PFX
530 "Processor cpuid %x not supported\n", eax);
1ff6e97f 531 return;
1f729e06 532 }
1da177e4 533
1f729e06
DJ
534 eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
535 if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
536 printk(KERN_INFO PFX
537 "No frequency change capabilities detected\n");
1ff6e97f 538 return;
1f729e06 539 }
1da177e4 540
1f729e06 541 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
0e64a0c9
DJ
542 if ((edx & P_STATE_TRANSITION_CAPABLE)
543 != P_STATE_TRANSITION_CAPABLE) {
544 printk(KERN_INFO PFX
545 "Power state transitions not supported\n");
1ff6e97f 546 return;
1f729e06
DJ
547 }
548 } else { /* must be a HW Pstate capable processor */
549 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
550 if ((edx & USE_HW_PSTATE) == USE_HW_PSTATE)
551 cpu_family = CPU_HW_PSTATE;
552 else
1ff6e97f 553 return;
1da177e4
LT
554 }
555
1ff6e97f 556 *rc = 0;
1da177e4
LT
557}
558
0e64a0c9
DJ
559static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst,
560 u8 maxvid)
1da177e4
LT
561{
562 unsigned int j;
563 u8 lastfid = 0xff;
564
565 for (j = 0; j < data->numps; j++) {
566 if (pst[j].vid > LEAST_VID) {
2fd47094
TR
567 printk(KERN_ERR FW_BUG PFX "vid %d invalid : 0x%x\n",
568 j, pst[j].vid);
1da177e4
LT
569 return -EINVAL;
570 }
0e64a0c9
DJ
571 if (pst[j].vid < data->rvo) {
572 /* vid + rvo >= 0 */
2fd47094
TR
573 printk(KERN_ERR FW_BUG PFX "0 vid exceeded with pstate"
574 " %d\n", j);
1da177e4
LT
575 return -ENODEV;
576 }
0e64a0c9
DJ
577 if (pst[j].vid < maxvid + data->rvo) {
578 /* vid + rvo >= maxvid */
2fd47094
TR
579 printk(KERN_ERR FW_BUG PFX "maxvid exceeded with pstate"
580 " %d\n", j);
1da177e4
LT
581 return -ENODEV;
582 }
8aae8284 583 if (pst[j].fid > MAX_FID) {
2fd47094
TR
584 printk(KERN_ERR FW_BUG PFX "maxfid exceeded with pstate"
585 " %d\n", j);
8aae8284
JS
586 return -ENODEV;
587 }
8aae8284 588 if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) {
1da177e4 589 /* Only first fid is allowed to be in "low" range */
2fd47094
TR
590 printk(KERN_ERR FW_BUG PFX "two low fids - %d : "
591 "0x%x\n", j, pst[j].fid);
1da177e4
LT
592 return -EINVAL;
593 }
594 if (pst[j].fid < lastfid)
595 lastfid = pst[j].fid;
596 }
597 if (lastfid & 1) {
2fd47094 598 printk(KERN_ERR FW_BUG PFX "lastfid invalid\n");
1da177e4
LT
599 return -EINVAL;
600 }
601 if (lastfid > LO_FID_TABLE_TOP)
0e64a0c9
DJ
602 printk(KERN_INFO FW_BUG PFX
603 "first fid not from lo freq table\n");
1da177e4
LT
604
605 return 0;
606}
607
0e64a0c9
DJ
608static void invalidate_entry(struct powernow_k8_data *data, unsigned int entry)
609{
610 data->powernow_table[entry].frequency = CPUFREQ_ENTRY_INVALID;
611}
612
1da177e4
LT
613static void print_basics(struct powernow_k8_data *data)
614{
615 int j;
616 for (j = 0; j < data->numps; j++) {
0e64a0c9
DJ
617 if (data->powernow_table[j].frequency !=
618 CPUFREQ_ENTRY_INVALID) {
e7bdd7a5 619 if (cpu_family == CPU_HW_PSTATE) {
0e64a0c9
DJ
620 printk(KERN_INFO PFX
621 " %d : pstate %d (%d MHz)\n", j,
4ae5c49f 622 data->powernow_table[j].index,
9a60ddbc 623 data->powernow_table[j].frequency/1000);
1f729e06 624 } else {
0e64a0c9
DJ
625 printk(KERN_INFO PFX
626 " %d : fid 0x%x (%d MHz), vid 0x%x\n",
9a60ddbc
DJ
627 j,
628 data->powernow_table[j].index & 0xff,
629 data->powernow_table[j].frequency/1000,
630 data->powernow_table[j].index >> 8);
1f729e06
DJ
631 }
632 }
1da177e4
LT
633 }
634 if (data->batps)
0e64a0c9
DJ
635 printk(KERN_INFO PFX "Only %d pstates on battery\n",
636 data->batps);
1da177e4
LT
637}
638
ca446d06
AH
639static u32 freq_from_fid_did(u32 fid, u32 did)
640{
641 u32 mhz = 0;
642
643 if (boot_cpu_data.x86 == 0x10)
644 mhz = (100 * (fid + 0x10)) >> did;
645 else if (boot_cpu_data.x86 == 0x11)
646 mhz = (100 * (fid + 8)) >> did;
647 else
648 BUG();
649
650 return mhz * 1000;
651}
652
0e64a0c9
DJ
653static int fill_powernow_table(struct powernow_k8_data *data,
654 struct pst_s *pst, u8 maxvid)
1da177e4
LT
655{
656 struct cpufreq_frequency_table *powernow_table;
657 unsigned int j;
658
0e64a0c9
DJ
659 if (data->batps) {
660 /* use ACPI support to get full speed on mains power */
661 printk(KERN_WARNING PFX
662 "Only %d pstates usable (use ACPI driver for full "
663 "range\n", data->batps);
1da177e4
LT
664 data->numps = data->batps;
665 }
666
0e64a0c9 667 for (j = 1; j < data->numps; j++) {
1da177e4
LT
668 if (pst[j-1].fid >= pst[j].fid) {
669 printk(KERN_ERR PFX "PST out of sequence\n");
670 return -EINVAL;
671 }
672 }
673
674 if (data->numps < 2) {
675 printk(KERN_ERR PFX "no p states to transition\n");
676 return -ENODEV;
677 }
678
679 if (check_pst_table(data, pst, maxvid))
680 return -EINVAL;
681
682 powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
683 * (data->numps + 1)), GFP_KERNEL);
684 if (!powernow_table) {
685 printk(KERN_ERR PFX "powernow_table memory alloc failure\n");
686 return -ENOMEM;
687 }
688
689 for (j = 0; j < data->numps; j++) {
0e64a0c9 690 int freq;
1da177e4
LT
691 powernow_table[j].index = pst[j].fid; /* lower 8 bits */
692 powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */
0e64a0c9
DJ
693 freq = find_khz_freq_from_fid(pst[j].fid);
694 powernow_table[j].frequency = freq;
1da177e4
LT
695 }
696 powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
697 powernow_table[data->numps].index = 0;
698
699 if (query_current_values_with_pending_wait(data)) {
700 kfree(powernow_table);
701 return -EIO;
702 }
703
704 dprintk("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
705 data->powernow_table = powernow_table;
7ad728f9 706 if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
2e497620 707 print_basics(data);
1da177e4
LT
708
709 for (j = 0; j < data->numps; j++)
0e64a0c9
DJ
710 if ((pst[j].fid == data->currfid) &&
711 (pst[j].vid == data->currvid))
1da177e4
LT
712 return 0;
713
714 dprintk("currfid/vid do not match PST, ignoring\n");
715 return 0;
716}
717
718/* Find and validate the PSB/PST table in BIOS. */
719static int find_psb_table(struct powernow_k8_data *data)
720{
721 struct psb_s *psb;
722 unsigned int i;
723 u32 mvs;
724 u8 maxvid;
725 u32 cpst = 0;
726 u32 thiscpuid;
727
728 for (i = 0xc0000; i < 0xffff0; i += 0x10) {
729 /* Scan BIOS looking for the signature. */
730 /* It can not be at ffff0 - it is too big. */
731
732 psb = phys_to_virt(i);
733 if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
734 continue;
735
736 dprintk("found PSB header at 0x%p\n", psb);
737
738 dprintk("table vers: 0x%x\n", psb->tableversion);
739 if (psb->tableversion != PSB_VERSION_1_4) {
2fd47094 740 printk(KERN_ERR FW_BUG PFX "PSB table is not v1.4\n");
1da177e4
LT
741 return -ENODEV;
742 }
743
744 dprintk("flags: 0x%x\n", psb->flags1);
745 if (psb->flags1) {
2fd47094 746 printk(KERN_ERR FW_BUG PFX "unknown flags\n");
1da177e4
LT
747 return -ENODEV;
748 }
749
750 data->vstable = psb->vstable;
0e64a0c9
DJ
751 dprintk("voltage stabilization time: %d(*20us)\n",
752 data->vstable);
1da177e4
LT
753
754 dprintk("flags2: 0x%x\n", psb->flags2);
755 data->rvo = psb->flags2 & 3;
756 data->irt = ((psb->flags2) >> 2) & 3;
757 mvs = ((psb->flags2) >> 4) & 3;
758 data->vidmvs = 1 << mvs;
759 data->batps = ((psb->flags2) >> 6) & 3;
760
761 dprintk("ramp voltage offset: %d\n", data->rvo);
762 dprintk("isochronous relief time: %d\n", data->irt);
763 dprintk("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);
764
765 dprintk("numpst: 0x%x\n", psb->num_tables);
766 cpst = psb->num_tables;
0e64a0c9
DJ
767 if ((psb->cpuid == 0x00000fc0) ||
768 (psb->cpuid == 0x00000fe0)) {
1da177e4 769 thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
0e64a0c9
DJ
770 if ((thiscpuid == 0x00000fc0) ||
771 (thiscpuid == 0x00000fe0))
1da177e4 772 cpst = 1;
1da177e4
LT
773 }
774 if (cpst != 1) {
2fd47094 775 printk(KERN_ERR FW_BUG PFX "numpst must be 1\n");
1da177e4
LT
776 return -ENODEV;
777 }
778
779 data->plllock = psb->plllocktime;
780 dprintk("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
781 dprintk("maxfid: 0x%x\n", psb->maxfid);
782 dprintk("maxvid: 0x%x\n", psb->maxvid);
783 maxvid = psb->maxvid;
784
785 data->numps = psb->numps;
786 dprintk("numpstates: 0x%x\n", data->numps);
0e64a0c9
DJ
787 return fill_powernow_table(data,
788 (struct pst_s *)(psb+1), maxvid);
1da177e4
LT
789 }
790 /*
791 * If you see this message, complain to BIOS manufacturer. If
792 * he tells you "we do not support Linux" or some similar
793 * nonsense, remember that Windows 2000 uses the same legacy
794 * mechanism that the old Linux PSB driver uses. Tell them it
795 * is broken with Windows 2000.
796 *
797 * The reference to the AMD documentation is chapter 9 in the
798 * BIOS and Kernel Developer's Guide, which is available on
799 * www.amd.com
800 */
79cc56af 801 printk(KERN_ERR FW_BUG PFX "No PSB or ACPI _PSS objects\n");
1da177e4
LT
802 return -ENODEV;
803}
804
0e64a0c9
DJ
805static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data,
806 unsigned int index)
1da177e4 807{
0e64a0c9
DJ
808 acpi_integer control;
809
f607e3a0 810 if (!data->acpi_data.state_count || (cpu_family == CPU_HW_PSTATE))
1da177e4
LT
811 return;
812
21335d02
LH
813 control = data->acpi_data.states[index].control;
814 data->irt = (control >> IRT_SHIFT) & IRT_MASK;
815 data->rvo = (control >> RVO_SHIFT) & RVO_MASK;
816 data->exttype = (control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
817 data->plllock = (control >> PLL_L_SHIFT) & PLL_L_MASK;
818 data->vidmvs = 1 << ((control >> MVS_SHIFT) & MVS_MASK);
819 data->vstable = (control >> VST_SHIFT) & VST_MASK;
820}
1da177e4
LT
821
822static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
823{
1da177e4 824 struct cpufreq_frequency_table *powernow_table;
2fdf66b4 825 int ret_val = -ENODEV;
2c701b10 826 acpi_integer control, status;
1da177e4 827
f607e3a0 828 if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
065b807c 829 dprintk("register performance failed: bad ACPI data\n");
1da177e4
LT
830 return -EIO;
831 }
832
833 /* verify the data contained in the ACPI structures */
f607e3a0 834 if (data->acpi_data.state_count <= 1) {
1da177e4
LT
835 dprintk("No ACPI P-States\n");
836 goto err_out;
837 }
838
2c701b10
DJ
839 control = data->acpi_data.control_register.space_id;
840 status = data->acpi_data.status_register.space_id;
841
842 if ((control != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
843 (status != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
1da177e4 844 dprintk("Invalid control/status registers (%x - %x)\n",
2c701b10 845 control, status);
1da177e4
LT
846 goto err_out;
847 }
848
849 /* fill in data->powernow_table */
850 powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
f607e3a0 851 * (data->acpi_data.state_count + 1)), GFP_KERNEL);
1da177e4
LT
852 if (!powernow_table) {
853 dprintk("powernow_table memory alloc failure\n");
854 goto err_out;
855 }
856
db39d552
ML
857 /* fill in data */
858 data->numps = data->acpi_data.state_count;
859 powernow_k8_acpi_pst_values(data, 0);
860
e7bdd7a5 861 if (cpu_family == CPU_HW_PSTATE)
1f729e06
DJ
862 ret_val = fill_powernow_table_pstate(data, powernow_table);
863 else
864 ret_val = fill_powernow_table_fidvid(data, powernow_table);
865 if (ret_val)
866 goto err_out_mem;
867
0e64a0c9
DJ
868 powernow_table[data->acpi_data.state_count].frequency =
869 CPUFREQ_TABLE_END;
f607e3a0 870 powernow_table[data->acpi_data.state_count].index = 0;
1f729e06
DJ
871 data->powernow_table = powernow_table;
872
7ad728f9 873 if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
2e497620 874 print_basics(data);
1f729e06
DJ
875
876 /* notify BIOS that we exist */
877 acpi_processor_notify_smm(THIS_MODULE);
878
eaa95840 879 if (!zalloc_cpumask_var(&data->acpi_data.shared_cpu_map, GFP_KERNEL)) {
2fdf66b4
RR
880 printk(KERN_ERR PFX
881 "unable to alloc powernow_k8_data cpumask\n");
882 ret_val = -ENOMEM;
883 goto err_out_mem;
884 }
885
1f729e06
DJ
886 return 0;
887
888err_out_mem:
889 kfree(powernow_table);
890
891err_out:
f607e3a0 892 acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
1f729e06 893
0e64a0c9
DJ
894 /* data->acpi_data.state_count informs us at ->exit()
895 * whether ACPI was used */
f607e3a0 896 data->acpi_data.state_count = 0;
1f729e06 897
2fdf66b4 898 return ret_val;
1f729e06
DJ
899}
900
0e64a0c9
DJ
901static int fill_powernow_table_pstate(struct powernow_k8_data *data,
902 struct cpufreq_frequency_table *powernow_table)
1f729e06
DJ
903{
904 int i;
c5829cd0
ML
905 u32 hi = 0, lo = 0;
906 rdmsr(MSR_PSTATE_CUR_LIMIT, hi, lo);
907 data->max_hw_pstate = (hi & HW_PSTATE_MAX_MASK) >> HW_PSTATE_MAX_SHIFT;
1f729e06 908
f607e3a0 909 for (i = 0; i < data->acpi_data.state_count; i++) {
1f729e06 910 u32 index;
1f729e06 911
f607e3a0 912 index = data->acpi_data.states[i].control & HW_PSTATE_MASK;
c5829cd0 913 if (index > data->max_hw_pstate) {
0e64a0c9
DJ
914 printk(KERN_ERR PFX "invalid pstate %d - "
915 "bad value %d.\n", i, index);
916 printk(KERN_ERR PFX "Please report to BIOS "
917 "manufacturer\n");
918 invalidate_entry(data, i);
c5829cd0 919 continue;
1f729e06
DJ
920 }
921 rdmsr(MSR_PSTATE_DEF_BASE + index, lo, hi);
922 if (!(hi & HW_PSTATE_VALID_MASK)) {
923 dprintk("invalid pstate %d, ignoring\n", index);
0e64a0c9 924 invalidate_entry(data, i);
1f729e06
DJ
925 continue;
926 }
927
c5829cd0 928 powernow_table[i].index = index;
1f729e06 929
ca446d06
AH
930 /* Frequency may be rounded for these */
931 if (boot_cpu_data.x86 == 0x10 || boot_cpu_data.x86 == 0x11) {
932 powernow_table[i].frequency =
933 freq_from_fid_did(lo & 0x3f, (lo >> 6) & 7);
934 } else
935 powernow_table[i].frequency =
936 data->acpi_data.states[i].core_frequency * 1000;
1f729e06
DJ
937 }
938 return 0;
939}
940
0e64a0c9
DJ
941static int fill_powernow_table_fidvid(struct powernow_k8_data *data,
942 struct cpufreq_frequency_table *powernow_table)
1f729e06
DJ
943{
944 int i;
0e64a0c9 945
f607e3a0 946 for (i = 0; i < data->acpi_data.state_count; i++) {
094ce7fd
DJ
947 u32 fid;
948 u32 vid;
0e64a0c9
DJ
949 u32 freq, index;
950 acpi_integer status, control;
094ce7fd
DJ
951
952 if (data->exttype) {
0e64a0c9
DJ
953 status = data->acpi_data.states[i].status;
954 fid = status & EXT_FID_MASK;
955 vid = (status >> VID_SHIFT) & EXT_VID_MASK;
841e40b3 956 } else {
0e64a0c9
DJ
957 control = data->acpi_data.states[i].control;
958 fid = control & FID_MASK;
959 vid = (control >> VID_SHIFT) & VID_MASK;
841e40b3 960 }
1da177e4
LT
961
962 dprintk(" %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
963
0e64a0c9
DJ
964 index = fid | (vid<<8);
965 powernow_table[i].index = index;
966
967 freq = find_khz_freq_from_fid(fid);
968 powernow_table[i].frequency = freq;
1da177e4
LT
969
970 /* verify frequency is OK */
0e64a0c9
DJ
971 if ((freq > (MAX_FREQ * 1000)) || (freq < (MIN_FREQ * 1000))) {
972 dprintk("invalid freq %u kHz, ignoring\n", freq);
973 invalidate_entry(data, i);
1da177e4
LT
974 continue;
975 }
976
0e64a0c9
DJ
977 /* verify voltage is OK -
978 * BIOSs are using "off" to indicate invalid */
841e40b3 979 if (vid == VID_OFF) {
1da177e4 980 dprintk("invalid vid %u, ignoring\n", vid);
0e64a0c9 981 invalidate_entry(data, i);
1da177e4
LT
982 continue;
983 }
984
0e64a0c9
DJ
985 if (freq != (data->acpi_data.states[i].core_frequency * 1000)) {
986 printk(KERN_INFO PFX "invalid freq entries "
987 "%u kHz vs. %u kHz\n", freq,
988 (unsigned int)
989 (data->acpi_data.states[i].core_frequency
990 * 1000));
991 invalidate_entry(data, i);
1da177e4
LT
992 continue;
993 }
994 }
1da177e4 995 return 0;
1da177e4
LT
996}
997
998static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
999{
f607e3a0 1000 if (data->acpi_data.state_count)
0e64a0c9
DJ
1001 acpi_processor_unregister_performance(&data->acpi_data,
1002 data->cpu);
2fdf66b4 1003 free_cpumask_var(data->acpi_data.shared_cpu_map);
1da177e4
LT
1004}
1005
732553e5
ML
1006static int get_transition_latency(struct powernow_k8_data *data)
1007{
1008 int max_latency = 0;
1009 int i;
1010 for (i = 0; i < data->acpi_data.state_count; i++) {
1011 int cur_latency = data->acpi_data.states[i].transition_latency
1012 + data->acpi_data.states[i].bus_master_latency;
1013 if (cur_latency > max_latency)
1014 max_latency = cur_latency;
1015 }
86e13684
TR
1016 if (max_latency == 0) {
1017 /*
1018 * Fam 11h always returns 0 as transition latency.
1019 * This is intended and means "very fast". While cpufreq core
1020 * and governors currently can handle that gracefully, better
1021 * set it to 1 to avoid problems in the future.
1022 * For all others it's a BIOS bug.
1023 */
1024 if (!boot_cpu_data.x86 == 0x11)
1025 printk(KERN_ERR FW_WARN PFX "Invalid zero transition "
1026 "latency\n");
1027 max_latency = 1;
1028 }
732553e5
ML
1029 /* value in usecs, needs to be in nanoseconds */
1030 return 1000 * max_latency;
1031}
1032
1da177e4 1033/* Take a frequency, and issue the fid/vid transition command */
0e64a0c9
DJ
1034static int transition_frequency_fidvid(struct powernow_k8_data *data,
1035 unsigned int index)
1da177e4 1036{
1f729e06
DJ
1037 u32 fid = 0;
1038 u32 vid = 0;
065b807c 1039 int res, i;
1da177e4
LT
1040 struct cpufreq_freqs freqs;
1041
1042 dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
1043
1f729e06 1044 /* fid/vid correctness check for k8 */
1da177e4 1045 /* fid are the lower 8 bits of the index we stored into
1f729e06
DJ
1046 * the cpufreq frequency table in find_psb_table, vid
1047 * are the upper 8 bits.
1da177e4 1048 */
1da177e4
LT
1049 fid = data->powernow_table[index].index & 0xFF;
1050 vid = (data->powernow_table[index].index & 0xFF00) >> 8;
1051
1052 dprintk("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);
1053
1054 if (query_current_values_with_pending_wait(data))
1055 return 1;
1056
1057 if ((data->currvid == vid) && (data->currfid == fid)) {
1058 dprintk("target matches current values (fid 0x%x, vid 0x%x)\n",
1059 fid, vid);
1060 return 0;
1061 }
1062
1da177e4
LT
1063 dprintk("cpu %d, changing to fid 0x%x, vid 0x%x\n",
1064 smp_processor_id(), fid, vid);
1da177e4
LT
1065 freqs.old = find_khz_freq_from_fid(data->currfid);
1066 freqs.new = find_khz_freq_from_fid(fid);
1f729e06 1067
8e7c2597 1068 for_each_cpu(i, data->available_cores) {
065b807c
DJ
1069 freqs.cpu = i;
1070 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1071 }
1da177e4 1072
1da177e4 1073 res = transition_fid_vid(data, fid, vid);
1da177e4 1074 freqs.new = find_khz_freq_from_fid(data->currfid);
1f729e06 1075
8e7c2597 1076 for_each_cpu(i, data->available_cores) {
1f729e06
DJ
1077 freqs.cpu = i;
1078 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1079 }
1080 return res;
1081}
1082
1083/* Take a frequency, and issue the hardware pstate transition command */
0e64a0c9
DJ
1084static int transition_frequency_pstate(struct powernow_k8_data *data,
1085 unsigned int index)
1f729e06 1086{
1f729e06
DJ
1087 u32 pstate = 0;
1088 int res, i;
1089 struct cpufreq_freqs freqs;
1090
1091 dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
1092
c5829cd0 1093 /* get MSR index for hardware pstate transition */
1f729e06 1094 pstate = index & HW_PSTATE_MASK;
c5829cd0 1095 if (pstate > data->max_hw_pstate)
1f729e06 1096 return 0;
0e64a0c9
DJ
1097 freqs.old = find_khz_freq_from_pstate(data->powernow_table,
1098 data->currpstate);
c5829cd0 1099 freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1f729e06 1100
8e7c2597 1101 for_each_cpu(i, data->available_cores) {
1f729e06
DJ
1102 freqs.cpu = i;
1103 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1104 }
1105
1106 res = transition_pstate(data, pstate);
c5829cd0 1107 freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1f729e06 1108
8e7c2597 1109 for_each_cpu(i, data->available_cores) {
065b807c
DJ
1110 freqs.cpu = i;
1111 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
2e3f8faa 1112 }
1da177e4
LT
1113 return res;
1114}
1115
1116/* Driver entry point to switch to the target frequency */
0e64a0c9
DJ
1117static int powernowk8_target(struct cpufreq_policy *pol,
1118 unsigned targfreq, unsigned relation)
1da177e4 1119{
fc0e4748 1120 cpumask_t oldmask;
2c6b8c03 1121 struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
9180053c
AB
1122 u32 checkfid;
1123 u32 checkvid;
1da177e4
LT
1124 unsigned int newstate;
1125 int ret = -EIO;
1126
4211a303
JS
1127 if (!data)
1128 return -EINVAL;
1129
9180053c
AB
1130 checkfid = data->currfid;
1131 checkvid = data->currvid;
1132
1da177e4
LT
1133 /* only run on specific CPU from here on */
1134 oldmask = current->cpus_allowed;
0bc3cc03 1135 set_cpus_allowed_ptr(current, &cpumask_of_cpu(pol->cpu));
1da177e4
LT
1136
1137 if (smp_processor_id() != pol->cpu) {
8aae8284 1138 printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu);
1da177e4
LT
1139 goto err_out;
1140 }
1141
1142 if (pending_bit_stuck()) {
1143 printk(KERN_ERR PFX "failing targ, change pending bit set\n");
1144 goto err_out;
1145 }
1146
1147 dprintk("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
1148 pol->cpu, targfreq, pol->min, pol->max, relation);
1149
83844510 1150 if (query_current_values_with_pending_wait(data))
1da177e4 1151 goto err_out;
1da177e4 1152
c5829cd0 1153 if (cpu_family != CPU_HW_PSTATE) {
1f729e06 1154 dprintk("targ: curr fid 0x%x, vid 0x%x\n",
1da177e4
LT
1155 data->currfid, data->currvid);
1156
0e64a0c9
DJ
1157 if ((checkvid != data->currvid) ||
1158 (checkfid != data->currfid)) {
1f729e06 1159 printk(KERN_INFO PFX
0e64a0c9
DJ
1160 "error - out of sync, fix 0x%x 0x%x, "
1161 "vid 0x%x 0x%x\n",
1162 checkfid, data->currfid,
1163 checkvid, data->currvid);
1f729e06 1164 }
1da177e4
LT
1165 }
1166
0e64a0c9
DJ
1167 if (cpufreq_frequency_table_target(pol, data->powernow_table,
1168 targfreq, relation, &newstate))
1da177e4
LT
1169 goto err_out;
1170
14cc3e2b 1171 mutex_lock(&fidvid_mutex);
065b807c 1172
1da177e4
LT
1173 powernow_k8_acpi_pst_values(data, newstate);
1174
e7bdd7a5 1175 if (cpu_family == CPU_HW_PSTATE)
1f729e06
DJ
1176 ret = transition_frequency_pstate(data, newstate);
1177 else
1178 ret = transition_frequency_fidvid(data, newstate);
1179 if (ret) {
1da177e4
LT
1180 printk(KERN_ERR PFX "transition frequency failed\n");
1181 ret = 1;
14cc3e2b 1182 mutex_unlock(&fidvid_mutex);
1da177e4
LT
1183 goto err_out;
1184 }
14cc3e2b 1185 mutex_unlock(&fidvid_mutex);
065b807c 1186
e7bdd7a5 1187 if (cpu_family == CPU_HW_PSTATE)
0e64a0c9
DJ
1188 pol->cur = find_khz_freq_from_pstate(data->powernow_table,
1189 newstate);
1f729e06
DJ
1190 else
1191 pol->cur = find_khz_freq_from_fid(data->currfid);
1da177e4
LT
1192 ret = 0;
1193
1194err_out:
fc0e4748 1195 set_cpus_allowed_ptr(current, &oldmask);
1da177e4
LT
1196 return ret;
1197}
1198
1199/* Driver entry point to verify the policy and range of frequencies */
1200static int powernowk8_verify(struct cpufreq_policy *pol)
1201{
2c6b8c03 1202 struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1da177e4 1203
4211a303
JS
1204 if (!data)
1205 return -EINVAL;
1206
1da177e4
LT
1207 return cpufreq_frequency_table_verify(pol, data->powernow_table);
1208}
1209
1ff6e97f
RR
1210struct init_on_cpu {
1211 struct powernow_k8_data *data;
1212 int rc;
1213};
1214
1215static void __cpuinit powernowk8_cpu_init_on_cpu(void *_init_on_cpu)
1216{
1217 struct init_on_cpu *init_on_cpu = _init_on_cpu;
1218
1219 if (pending_bit_stuck()) {
1220 printk(KERN_ERR PFX "failing init, change pending bit set\n");
1221 init_on_cpu->rc = -ENODEV;
1222 return;
1223 }
1224
1225 if (query_current_values_with_pending_wait(init_on_cpu->data)) {
1226 init_on_cpu->rc = -ENODEV;
1227 return;
1228 }
1229
1230 if (cpu_family == CPU_OPTERON)
1231 fidvid_msr_init();
1232
1233 init_on_cpu->rc = 0;
1234}
1235
1da177e4 1236/* per CPU init entry point to the driver */
aa41eb99 1237static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol)
1da177e4 1238{
b394f1df
AM
1239 static const char ACPI_PSS_BIOS_BUG_MSG[] =
1240 KERN_ERR FW_BUG PFX "No compatible ACPI _PSS objects found.\n"
ad361c98 1241 FW_BUG PFX "Try again with latest BIOS.\n";
1da177e4 1242 struct powernow_k8_data *data;
1ff6e97f 1243 struct init_on_cpu init_on_cpu;
d7fa706c 1244 int rc;
1da177e4 1245
8aae8284
JS
1246 if (!cpu_online(pol->cpu))
1247 return -ENODEV;
1248
1ff6e97f
RR
1249 smp_call_function_single(pol->cpu, check_supported_cpu, &rc, 1);
1250 if (rc)
1da177e4
LT
1251 return -ENODEV;
1252
bfdc708d 1253 data = kzalloc(sizeof(struct powernow_k8_data), GFP_KERNEL);
1da177e4
LT
1254 if (!data) {
1255 printk(KERN_ERR PFX "unable to alloc powernow_k8_data");
1256 return -ENOMEM;
1257 }
1da177e4
LT
1258
1259 data->cpu = pol->cpu;
a266d9f1 1260 data->currpstate = HW_PSTATE_INVALID;
1da177e4 1261
a0abd520 1262 if (powernow_k8_cpu_init_acpi(data)) {
1da177e4
LT
1263 /*
1264 * Use the PSB BIOS structure. This is only availabe on
1265 * an UP version, and is deprecated by AMD.
1266 */
9ed059e1 1267 if (num_online_cpus() != 1) {
df182977 1268 printk_once(ACPI_PSS_BIOS_BUG_MSG);
0cb8bc25 1269 goto err_out;
1da177e4
LT
1270 }
1271 if (pol->cpu != 0) {
2fd47094
TR
1272 printk(KERN_ERR FW_BUG PFX "No ACPI _PSS objects for "
1273 "CPU other than CPU0. Complain to your BIOS "
1274 "vendor.\n");
0cb8bc25 1275 goto err_out;
1da177e4
LT
1276 }
1277 rc = find_psb_table(data);
0cb8bc25
DJ
1278 if (rc)
1279 goto err_out;
1280
732553e5
ML
1281 /* Take a crude guess here.
1282 * That guess was in microseconds, so multiply with 1000 */
1283 pol->cpuinfo.transition_latency = (
1284 ((data->rvo + 8) * data->vstable * VST_UNITS_20US) +
1285 ((1 << data->irt) * 30)) * 1000;
1286 } else /* ACPI _PSS objects available */
1287 pol->cpuinfo.transition_latency = get_transition_latency(data);
1da177e4
LT
1288
1289 /* only run on specific CPU from here on */
1ff6e97f
RR
1290 init_on_cpu.data = data;
1291 smp_call_function_single(data->cpu, powernowk8_cpu_init_on_cpu,
1292 &init_on_cpu, 1);
1293 rc = init_on_cpu.rc;
1294 if (rc != 0)
1295 goto err_out_exit_acpi;
1da177e4 1296
f607e3a0 1297 if (cpu_family == CPU_HW_PSTATE)
835481d9 1298 cpumask_copy(pol->cpus, cpumask_of(pol->cpu));
f607e3a0 1299 else
7ad728f9 1300 cpumask_copy(pol->cpus, cpu_core_mask(pol->cpu));
835481d9 1301 data->available_cores = pol->cpus;
1da177e4 1302
e7bdd7a5 1303 if (cpu_family == CPU_HW_PSTATE)
0e64a0c9
DJ
1304 pol->cur = find_khz_freq_from_pstate(data->powernow_table,
1305 data->currpstate);
1f729e06
DJ
1306 else
1307 pol->cur = find_khz_freq_from_fid(data->currfid);
1da177e4
LT
1308 dprintk("policy current frequency %d kHz\n", pol->cur);
1309
1310 /* min/max the cpu is capable of */
1311 if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) {
2fd47094 1312 printk(KERN_ERR FW_BUG PFX "invalid powernow_table\n");
1da177e4
LT
1313 powernow_k8_cpu_exit_acpi(data);
1314 kfree(data->powernow_table);
1315 kfree(data);
1316 return -EINVAL;
1317 }
1318
1319 cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu);
1320
e7bdd7a5 1321 if (cpu_family == CPU_HW_PSTATE)
0e64a0c9
DJ
1322 dprintk("cpu_init done, current pstate 0x%x\n",
1323 data->currpstate);
1f729e06
DJ
1324 else
1325 dprintk("cpu_init done, current fid 0x%x, vid 0x%x\n",
1326 data->currfid, data->currvid);
1da177e4 1327
2c6b8c03 1328 per_cpu(powernow_data, pol->cpu) = data;
1da177e4
LT
1329
1330 return 0;
1331
1ff6e97f 1332err_out_exit_acpi:
1da177e4
LT
1333 powernow_k8_cpu_exit_acpi(data);
1334
0cb8bc25 1335err_out:
1da177e4
LT
1336 kfree(data);
1337 return -ENODEV;
1338}
1339
0e64a0c9 1340static int __devexit powernowk8_cpu_exit(struct cpufreq_policy *pol)
1da177e4 1341{
2c6b8c03 1342 struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1da177e4
LT
1343
1344 if (!data)
1345 return -EINVAL;
1346
1347 powernow_k8_cpu_exit_acpi(data);
1348
1349 cpufreq_frequency_table_put_attr(pol->cpu);
1350
1351 kfree(data->powernow_table);
1352 kfree(data);
1353
1354 return 0;
1355}
1356
1ff6e97f
RR
1357static void query_values_on_cpu(void *_err)
1358{
1359 int *err = _err;
1360 struct powernow_k8_data *data = __get_cpu_var(powernow_data);
1361
1362 *err = query_current_values_with_pending_wait(data);
1363}
1364
0e64a0c9 1365static unsigned int powernowk8_get(unsigned int cpu)
1da177e4 1366{
e15bc455 1367 struct powernow_k8_data *data = per_cpu(powernow_data, cpu);
1da177e4 1368 unsigned int khz = 0;
1ff6e97f 1369 int err;
eef5167e
JS
1370
1371 if (!data)
1372 return -EINVAL;
1373
1ff6e97f
RR
1374 smp_call_function_single(cpu, query_values_on_cpu, &err, true);
1375 if (err)
1da177e4
LT
1376 goto out;
1377
58389a86 1378 if (cpu_family == CPU_HW_PSTATE)
fc0e4748
MT
1379 khz = find_khz_freq_from_pstate(data->powernow_table,
1380 data->currpstate);
58389a86
JD
1381 else
1382 khz = find_khz_freq_from_fid(data->currfid);
1383
1da177e4 1384
b9111b7b 1385out:
1da177e4
LT
1386 return khz;
1387}
1388
0e64a0c9 1389static struct freq_attr *powernow_k8_attr[] = {
1da177e4
LT
1390 &cpufreq_freq_attr_scaling_available_freqs,
1391 NULL,
1392};
1393
221dee28 1394static struct cpufreq_driver cpufreq_amd64_driver = {
1da177e4
LT
1395 .verify = powernowk8_verify,
1396 .target = powernowk8_target,
1397 .init = powernowk8_cpu_init,
1398 .exit = __devexit_p(powernowk8_cpu_exit),
1399 .get = powernowk8_get,
1400 .name = "powernow-k8",
1401 .owner = THIS_MODULE,
1402 .attr = powernow_k8_attr,
1403};
1404
1405/* driver entry point for init */
aa41eb99 1406static int __cpuinit powernowk8_init(void)
1da177e4
LT
1407{
1408 unsigned int i, supported_cpus = 0;
1409
a7201156 1410 for_each_online_cpu(i) {
1ff6e97f
RR
1411 int rc;
1412 smp_call_function_single(i, check_supported_cpu, &rc, 1);
1413 if (rc == 0)
1da177e4
LT
1414 supported_cpus++;
1415 }
1416
1417 if (supported_cpus == num_online_cpus()) {
1f729e06 1418 printk(KERN_INFO PFX "Found %d %s "
904f7a3f 1419 "processors (%d cpu cores) (" VERSION ")\n",
c925401b 1420 num_online_nodes(),
904f7a3f 1421 boot_cpu_data.x86_model_id, supported_cpus);
1da177e4
LT
1422 return cpufreq_register_driver(&cpufreq_amd64_driver);
1423 }
1424
1425 return -ENODEV;
1426}
1427
1428/* driver entry point for term */
1429static void __exit powernowk8_exit(void)
1430{
1431 dprintk("exit\n");
1432
1433 cpufreq_unregister_driver(&cpufreq_amd64_driver);
1434}
1435
0e64a0c9
DJ
1436MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and "
1437 "Mark Langsdorf <mark.langsdorf@amd.com>");
1da177e4
LT
1438MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
1439MODULE_LICENSE("GPL");
1440
1441late_initcall(powernowk8_init);
1442module_exit(powernowk8_exit);