]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - arch/x86/kernel/cpu/mtrr/main.c
x86: mtrr cleanup for converting continuous to discrete layout v8 - fix
[mirror_ubuntu-zesty-kernel.git] / arch / x86 / kernel / cpu / mtrr / main.c
CommitLineData
1da177e4
LT
1/* Generic MTRR (Memory Type Range Register) driver.
2
3 Copyright (C) 1997-2000 Richard Gooch
4 Copyright (c) 2002 Patrick Mochel
5
6 This library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Library General Public
8 License as published by the Free Software Foundation; either
9 version 2 of the License, or (at your option) any later version.
10
11 This library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Library General Public License for more details.
15
16 You should have received a copy of the GNU Library General Public
17 License along with this library; if not, write to the Free
18 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19
20 Richard Gooch may be reached by email at rgooch@atnf.csiro.au
21 The postal address is:
22 Richard Gooch, c/o ATNF, P. O. Box 76, Epping, N.S.W., 2121, Australia.
23
24 Source: "Pentium Pro Family Developer's Manual, Volume 3:
25 Operating System Writer's Guide" (Intel document number 242692),
26 section 11.11.7
27
28 This was cleaned and made readable by Patrick Mochel <mochel@osdl.org>
29 on 6-7 March 2002.
30 Source: Intel Architecture Software Developers Manual, Volume 3:
31 System Programming Guide; Section 9.11. (1997 edition - PPro).
32*/
33
34#include <linux/module.h>
35#include <linux/init.h>
36#include <linux/pci.h>
37#include <linux/smp.h>
38#include <linux/cpu.h>
14cc3e2b 39#include <linux/mutex.h>
95ffa243 40#include <linux/sort.h>
1da177e4 41
99fc8d42 42#include <asm/e820.h>
1da177e4 43#include <asm/mtrr.h>
1da177e4
LT
44#include <asm/uaccess.h>
45#include <asm/processor.h>
46#include <asm/msr.h>
4147c874 47#include <asm/kvm_para.h>
1da177e4
LT
48#include "mtrr.h"
49
1da177e4
LT
50u32 num_var_ranges = 0;
51
99fc8d42 52unsigned int mtrr_usage_table[MAX_VAR_RANGES];
14cc3e2b 53static DEFINE_MUTEX(mtrr_mutex);
1da177e4 54
6c5806ca 55u64 size_or_mask, size_and_mask;
1da177e4
LT
56
57static struct mtrr_ops * mtrr_ops[X86_VENDOR_NUM] = {};
58
59struct mtrr_ops * mtrr_if = NULL;
60
61static void set_mtrr(unsigned int reg, unsigned long base,
62 unsigned long size, mtrr_type type);
63
1da177e4
LT
64void set_mtrr_ops(struct mtrr_ops * ops)
65{
66 if (ops->vendor && ops->vendor < X86_VENDOR_NUM)
67 mtrr_ops[ops->vendor] = ops;
68}
69
70/* Returns non-zero if we have the write-combining memory type */
71static int have_wrcomb(void)
72{
73 struct pci_dev *dev;
a6954ba2 74 u8 rev;
1da177e4
LT
75
76 if ((dev = pci_get_class(PCI_CLASS_BRIDGE_HOST << 8, NULL)) != NULL) {
a6954ba2 77 /* ServerWorks LE chipsets < rev 6 have problems with write-combining
1da177e4
LT
78 Don't allow it and leave room for other chipsets to be tagged */
79 if (dev->vendor == PCI_VENDOR_ID_SERVERWORKS &&
80 dev->device == PCI_DEVICE_ID_SERVERWORKS_LE) {
a6954ba2
LR
81 pci_read_config_byte(dev, PCI_CLASS_REVISION, &rev);
82 if (rev <= 5) {
83 printk(KERN_INFO "mtrr: Serverworks LE rev < 6 detected. Write-combining disabled.\n");
84 pci_dev_put(dev);
85 return 0;
86 }
1da177e4 87 }
a6954ba2 88 /* Intel 450NX errata # 23. Non ascending cacheline evictions to
1da177e4
LT
89 write combining memory may resulting in data corruption */
90 if (dev->vendor == PCI_VENDOR_ID_INTEL &&
91 dev->device == PCI_DEVICE_ID_INTEL_82451NX) {
92 printk(KERN_INFO "mtrr: Intel 450NX MMC detected. Write-combining disabled.\n");
93 pci_dev_put(dev);
94 return 0;
95 }
96 pci_dev_put(dev);
97 }
98 return (mtrr_if->have_wrcomb ? mtrr_if->have_wrcomb() : 0);
99}
100
101/* This function returns the number of variable MTRRs */
102static void __init set_num_var_ranges(void)
103{
104 unsigned long config = 0, dummy;
105
106 if (use_intel()) {
107 rdmsr(MTRRcap_MSR, config, dummy);
108 } else if (is_cpu(AMD))
109 config = 2;
110 else if (is_cpu(CYRIX) || is_cpu(CENTAUR))
111 config = 8;
112 num_var_ranges = config & 0xff;
113}
114
115static void __init init_table(void)
116{
117 int i, max;
118
119 max = num_var_ranges;
1da177e4 120 for (i = 0; i < max; i++)
99fc8d42 121 mtrr_usage_table[i] = 1;
1da177e4
LT
122}
123
124struct set_mtrr_data {
125 atomic_t count;
126 atomic_t gate;
127 unsigned long smp_base;
128 unsigned long smp_size;
129 unsigned int smp_reg;
130 mtrr_type smp_type;
131};
132
1da177e4
LT
133static void ipi_handler(void *info)
134/* [SUMMARY] Synchronisation handler. Executed by "other" CPUs.
135 [RETURNS] Nothing.
136*/
137{
4e2947f1 138#ifdef CONFIG_SMP
1da177e4
LT
139 struct set_mtrr_data *data = info;
140 unsigned long flags;
141
142 local_irq_save(flags);
143
144 atomic_dec(&data->count);
145 while(!atomic_read(&data->gate))
146 cpu_relax();
147
148 /* The master has cleared me to execute */
149 if (data->smp_reg != ~0U)
150 mtrr_if->set(data->smp_reg, data->smp_base,
151 data->smp_size, data->smp_type);
152 else
153 mtrr_if->set_all();
154
155 atomic_dec(&data->count);
156 while(atomic_read(&data->gate))
157 cpu_relax();
158
159 atomic_dec(&data->count);
160 local_irq_restore(flags);
1da177e4 161#endif
4e2947f1 162}
1da177e4 163
365bff80
JB
164static inline int types_compatible(mtrr_type type1, mtrr_type type2) {
165 return type1 == MTRR_TYPE_UNCACHABLE ||
166 type2 == MTRR_TYPE_UNCACHABLE ||
167 (type1 == MTRR_TYPE_WRTHROUGH && type2 == MTRR_TYPE_WRBACK) ||
168 (type1 == MTRR_TYPE_WRBACK && type2 == MTRR_TYPE_WRTHROUGH);
169}
170
1da177e4
LT
171/**
172 * set_mtrr - update mtrrs on all processors
173 * @reg: mtrr in question
174 * @base: mtrr base
175 * @size: mtrr size
176 * @type: mtrr type
177 *
178 * This is kinda tricky, but fortunately, Intel spelled it out for us cleanly:
179 *
180 * 1. Send IPI to do the following:
181 * 2. Disable Interrupts
182 * 3. Wait for all procs to do so
183 * 4. Enter no-fill cache mode
184 * 5. Flush caches
185 * 6. Clear PGE bit
186 * 7. Flush all TLBs
187 * 8. Disable all range registers
188 * 9. Update the MTRRs
189 * 10. Enable all range registers
190 * 11. Flush all TLBs and caches again
191 * 12. Enter normal cache mode and reenable caching
192 * 13. Set PGE
193 * 14. Wait for buddies to catch up
194 * 15. Enable interrupts.
195 *
196 * What does that mean for us? Well, first we set data.count to the number
197 * of CPUs. As each CPU disables interrupts, it'll decrement it once. We wait
198 * until it hits 0 and proceed. We set the data.gate flag and reset data.count.
199 * Meanwhile, they are waiting for that flag to be set. Once it's set, each
200 * CPU goes through the transition of updating MTRRs. The CPU vendors may each do it
201 * differently, so we call mtrr_if->set() callback and let them take care of it.
202 * When they're done, they again decrement data->count and wait for data.gate to
203 * be reset.
204 * When we finish, we wait for data.count to hit 0 and toggle the data.gate flag.
205 * Everyone then enables interrupts and we all continue on.
206 *
207 * Note that the mechanism is the same for UP systems, too; all the SMP stuff
208 * becomes nops.
209 */
210static void set_mtrr(unsigned int reg, unsigned long base,
211 unsigned long size, mtrr_type type)
212{
213 struct set_mtrr_data data;
214 unsigned long flags;
215
216 data.smp_reg = reg;
217 data.smp_base = base;
218 data.smp_size = size;
219 data.smp_type = type;
220 atomic_set(&data.count, num_booting_cpus() - 1);
d25c1ba2
LP
221 /* make sure data.count is visible before unleashing other CPUs */
222 smp_wmb();
1da177e4
LT
223 atomic_set(&data.gate,0);
224
225 /* Start the ball rolling on other CPUs */
226 if (smp_call_function(ipi_handler, &data, 1, 0) != 0)
227 panic("mtrr: timed out waiting for other CPUs\n");
228
229 local_irq_save(flags);
230
231 while(atomic_read(&data.count))
232 cpu_relax();
233
234 /* ok, reset count and toggle gate */
235 atomic_set(&data.count, num_booting_cpus() - 1);
d25c1ba2 236 smp_wmb();
1da177e4
LT
237 atomic_set(&data.gate,1);
238
239 /* do our MTRR business */
240
241 /* HACK!
242 * We use this same function to initialize the mtrrs on boot.
243 * The state of the boot cpu's mtrrs has been saved, and we want
244 * to replicate across all the APs.
245 * If we're doing that @reg is set to something special...
246 */
247 if (reg != ~0U)
248 mtrr_if->set(reg,base,size,type);
249
250 /* wait for the others */
251 while(atomic_read(&data.count))
252 cpu_relax();
253
254 atomic_set(&data.count, num_booting_cpus() - 1);
d25c1ba2 255 smp_wmb();
1da177e4
LT
256 atomic_set(&data.gate,0);
257
258 /*
259 * Wait here for everyone to have seen the gate change
260 * So we're the last ones to touch 'data'
261 */
262 while(atomic_read(&data.count))
263 cpu_relax();
264
265 local_irq_restore(flags);
266}
267
268/**
269 * mtrr_add_page - Add a memory type region
9b483417
AM
270 * @base: Physical base address of region in pages (in units of 4 kB!)
271 * @size: Physical size of region in pages (4 kB)
1da177e4
LT
272 * @type: Type of MTRR desired
273 * @increment: If this is true do usage counting on the region
274 *
275 * Memory type region registers control the caching on newer Intel and
276 * non Intel processors. This function allows drivers to request an
277 * MTRR is added. The details and hardware specifics of each processor's
278 * implementation are hidden from the caller, but nevertheless the
279 * caller should expect to need to provide a power of two size on an
280 * equivalent power of two boundary.
281 *
282 * If the region cannot be added either because all regions are in use
283 * or the CPU cannot support it a negative value is returned. On success
284 * the register number for this entry is returned, but should be treated
285 * as a cookie only.
286 *
287 * On a multiprocessor machine the changes are made to all processors.
288 * This is required on x86 by the Intel processors.
289 *
290 * The available types are
291 *
292 * %MTRR_TYPE_UNCACHABLE - No caching
293 *
294 * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
295 *
296 * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
297 *
298 * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
299 *
300 * BUGS: Needs a quiet flag for the cases where drivers do not mind
301 * failures and do not wish system log messages to be sent.
302 */
303
304int mtrr_add_page(unsigned long base, unsigned long size,
2d2ee8de 305 unsigned int type, bool increment)
1da177e4 306{
365bff80 307 int i, replace, error;
1da177e4 308 mtrr_type ltype;
365bff80 309 unsigned long lbase, lsize;
1da177e4
LT
310
311 if (!mtrr_if)
312 return -ENXIO;
313
314 if ((error = mtrr_if->validate_add_page(base,size,type)))
315 return error;
316
317 if (type >= MTRR_NUM_TYPES) {
318 printk(KERN_WARNING "mtrr: type: %u invalid\n", type);
319 return -EINVAL;
320 }
321
322 /* If the type is WC, check that this processor supports it */
323 if ((type == MTRR_TYPE_WRCOMB) && !have_wrcomb()) {
324 printk(KERN_WARNING
325 "mtrr: your processor doesn't support write-combining\n");
326 return -ENOSYS;
327 }
328
365bff80
JB
329 if (!size) {
330 printk(KERN_WARNING "mtrr: zero sized request\n");
331 return -EINVAL;
332 }
333
1da177e4
LT
334 if (base & size_or_mask || size & size_or_mask) {
335 printk(KERN_WARNING "mtrr: base or size exceeds the MTRR width\n");
336 return -EINVAL;
337 }
338
339 error = -EINVAL;
365bff80 340 replace = -1;
1da177e4 341
3b520b23 342 /* No CPU hotplug when we change MTRR entries */
86ef5c9a 343 get_online_cpus();
1da177e4 344 /* Search for existing MTRR */
14cc3e2b 345 mutex_lock(&mtrr_mutex);
1da177e4
LT
346 for (i = 0; i < num_var_ranges; ++i) {
347 mtrr_if->get(i, &lbase, &lsize, &ltype);
365bff80 348 if (!lsize || base > lbase + lsize - 1 || base + size - 1 < lbase)
1da177e4
LT
349 continue;
350 /* At this point we know there is some kind of overlap/enclosure */
365bff80
JB
351 if (base < lbase || base + size - 1 > lbase + lsize - 1) {
352 if (base <= lbase && base + size - 1 >= lbase + lsize - 1) {
353 /* New region encloses an existing region */
354 if (type == ltype) {
355 replace = replace == -1 ? i : -2;
356 continue;
357 }
358 else if (types_compatible(type, ltype))
359 continue;
360 }
1da177e4
LT
361 printk(KERN_WARNING
362 "mtrr: 0x%lx000,0x%lx000 overlaps existing"
365bff80 363 " 0x%lx000,0x%lx000\n", base, size, lbase,
1da177e4
LT
364 lsize);
365 goto out;
366 }
367 /* New region is enclosed by an existing region */
368 if (ltype != type) {
365bff80 369 if (types_compatible(type, ltype))
1da177e4
LT
370 continue;
371 printk (KERN_WARNING "mtrr: type mismatch for %lx000,%lx000 old: %s new: %s\n",
372 base, size, mtrr_attrib_to_str(ltype),
373 mtrr_attrib_to_str(type));
374 goto out;
375 }
376 if (increment)
99fc8d42 377 ++mtrr_usage_table[i];
1da177e4
LT
378 error = i;
379 goto out;
380 }
381 /* Search for an empty MTRR */
365bff80 382 i = mtrr_if->get_free_region(base, size, replace);
1da177e4
LT
383 if (i >= 0) {
384 set_mtrr(i, base, size, type);
99fc8d42
JB
385 if (likely(replace < 0)) {
386 mtrr_usage_table[i] = 1;
387 } else {
388 mtrr_usage_table[i] = mtrr_usage_table[replace];
2d2ee8de 389 if (increment)
99fc8d42 390 mtrr_usage_table[i]++;
365bff80
JB
391 if (unlikely(replace != i)) {
392 set_mtrr(replace, 0, 0, 0);
99fc8d42 393 mtrr_usage_table[replace] = 0;
365bff80
JB
394 }
395 }
1da177e4
LT
396 } else
397 printk(KERN_INFO "mtrr: no more MTRRs available\n");
398 error = i;
399 out:
14cc3e2b 400 mutex_unlock(&mtrr_mutex);
86ef5c9a 401 put_online_cpus();
1da177e4
LT
402 return error;
403}
404
c92c6ffd
AM
405static int mtrr_check(unsigned long base, unsigned long size)
406{
407 if ((base & (PAGE_SIZE - 1)) || (size & (PAGE_SIZE - 1))) {
408 printk(KERN_WARNING
409 "mtrr: size and base must be multiples of 4 kiB\n");
410 printk(KERN_DEBUG
411 "mtrr: size: 0x%lx base: 0x%lx\n", size, base);
412 dump_stack();
413 return -1;
414 }
415 return 0;
416}
417
1da177e4
LT
418/**
419 * mtrr_add - Add a memory type region
420 * @base: Physical base address of region
421 * @size: Physical size of region
422 * @type: Type of MTRR desired
423 * @increment: If this is true do usage counting on the region
424 *
425 * Memory type region registers control the caching on newer Intel and
426 * non Intel processors. This function allows drivers to request an
427 * MTRR is added. The details and hardware specifics of each processor's
428 * implementation are hidden from the caller, but nevertheless the
429 * caller should expect to need to provide a power of two size on an
430 * equivalent power of two boundary.
431 *
432 * If the region cannot be added either because all regions are in use
433 * or the CPU cannot support it a negative value is returned. On success
434 * the register number for this entry is returned, but should be treated
435 * as a cookie only.
436 *
437 * On a multiprocessor machine the changes are made to all processors.
438 * This is required on x86 by the Intel processors.
439 *
440 * The available types are
441 *
442 * %MTRR_TYPE_UNCACHABLE - No caching
443 *
444 * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
445 *
446 * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
447 *
448 * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
449 *
450 * BUGS: Needs a quiet flag for the cases where drivers do not mind
451 * failures and do not wish system log messages to be sent.
452 */
453
454int
455mtrr_add(unsigned long base, unsigned long size, unsigned int type,
2d2ee8de 456 bool increment)
1da177e4 457{
c92c6ffd 458 if (mtrr_check(base, size))
1da177e4 459 return -EINVAL;
1da177e4
LT
460 return mtrr_add_page(base >> PAGE_SHIFT, size >> PAGE_SHIFT, type,
461 increment);
462}
463
464/**
465 * mtrr_del_page - delete a memory type region
466 * @reg: Register returned by mtrr_add
467 * @base: Physical base address
468 * @size: Size of region
469 *
470 * If register is supplied then base and size are ignored. This is
471 * how drivers should call it.
472 *
473 * Releases an MTRR region. If the usage count drops to zero the
474 * register is freed and the region returns to default state.
475 * On success the register is returned, on failure a negative error
476 * code.
477 */
478
479int mtrr_del_page(int reg, unsigned long base, unsigned long size)
480{
481 int i, max;
482 mtrr_type ltype;
365bff80 483 unsigned long lbase, lsize;
1da177e4
LT
484 int error = -EINVAL;
485
486 if (!mtrr_if)
487 return -ENXIO;
488
489 max = num_var_ranges;
3b520b23 490 /* No CPU hotplug when we change MTRR entries */
86ef5c9a 491 get_online_cpus();
14cc3e2b 492 mutex_lock(&mtrr_mutex);
1da177e4
LT
493 if (reg < 0) {
494 /* Search for existing MTRR */
495 for (i = 0; i < max; ++i) {
496 mtrr_if->get(i, &lbase, &lsize, &ltype);
497 if (lbase == base && lsize == size) {
498 reg = i;
499 break;
500 }
501 }
502 if (reg < 0) {
503 printk(KERN_DEBUG "mtrr: no MTRR for %lx000,%lx000 found\n", base,
504 size);
505 goto out;
506 }
507 }
508 if (reg >= max) {
509 printk(KERN_WARNING "mtrr: register: %d too big\n", reg);
510 goto out;
511 }
1da177e4
LT
512 mtrr_if->get(reg, &lbase, &lsize, &ltype);
513 if (lsize < 1) {
514 printk(KERN_WARNING "mtrr: MTRR %d not used\n", reg);
515 goto out;
516 }
99fc8d42 517 if (mtrr_usage_table[reg] < 1) {
1da177e4
LT
518 printk(KERN_WARNING "mtrr: reg: %d has count=0\n", reg);
519 goto out;
520 }
99fc8d42 521 if (--mtrr_usage_table[reg] < 1)
1da177e4
LT
522 set_mtrr(reg, 0, 0, 0);
523 error = reg;
524 out:
14cc3e2b 525 mutex_unlock(&mtrr_mutex);
86ef5c9a 526 put_online_cpus();
1da177e4
LT
527 return error;
528}
529/**
530 * mtrr_del - delete a memory type region
531 * @reg: Register returned by mtrr_add
532 * @base: Physical base address
533 * @size: Size of region
534 *
535 * If register is supplied then base and size are ignored. This is
536 * how drivers should call it.
537 *
538 * Releases an MTRR region. If the usage count drops to zero the
539 * register is freed and the region returns to default state.
540 * On success the register is returned, on failure a negative error
541 * code.
542 */
543
544int
545mtrr_del(int reg, unsigned long base, unsigned long size)
546{
c92c6ffd 547 if (mtrr_check(base, size))
1da177e4 548 return -EINVAL;
1da177e4
LT
549 return mtrr_del_page(reg, base >> PAGE_SHIFT, size >> PAGE_SHIFT);
550}
551
552EXPORT_SYMBOL(mtrr_add);
553EXPORT_SYMBOL(mtrr_del);
554
555/* HACK ALERT!
556 * These should be called implicitly, but we can't yet until all the initcall
557 * stuff is done...
558 */
1da177e4
LT
559static void __init init_ifs(void)
560{
475850c8 561#ifndef CONFIG_X86_64
1da177e4
LT
562 amd_init_mtrr();
563 cyrix_init_mtrr();
564 centaur_init_mtrr();
475850c8 565#endif
1da177e4
LT
566}
567
3b520b23
SL
568/* The suspend/resume methods are only for CPU without MTRR. CPU using generic
569 * MTRR driver doesn't require this
570 */
1da177e4
LT
571struct mtrr_value {
572 mtrr_type ltype;
573 unsigned long lbase;
365bff80 574 unsigned long lsize;
1da177e4
LT
575};
576
99fc8d42 577static struct mtrr_value mtrr_state[MAX_VAR_RANGES];
1da177e4 578
829ca9a3 579static int mtrr_save(struct sys_device * sysdev, pm_message_t state)
1da177e4
LT
580{
581 int i;
1da177e4
LT
582
583 for (i = 0; i < num_var_ranges; i++) {
584 mtrr_if->get(i,
585 &mtrr_state[i].lbase,
586 &mtrr_state[i].lsize,
587 &mtrr_state[i].ltype);
588 }
589 return 0;
590}
591
592static int mtrr_restore(struct sys_device * sysdev)
593{
594 int i;
595
596 for (i = 0; i < num_var_ranges; i++) {
597 if (mtrr_state[i].lsize)
598 set_mtrr(i,
599 mtrr_state[i].lbase,
600 mtrr_state[i].lsize,
601 mtrr_state[i].ltype);
602 }
1da177e4
LT
603 return 0;
604}
605
606
607
608static struct sysdev_driver mtrr_sysdev_driver = {
609 .suspend = mtrr_save,
610 .resume = mtrr_restore,
611};
612
95ffa243 613#ifdef CONFIG_MTRR_SANITIZER
f5098d62 614static int enable_mtrr_cleanup __initdata = CONFIG_MTRR_SANITIZER_ENABLE_DEFAULT;
95ffa243 615#else
95ffa243 616static int enable_mtrr_cleanup __initdata = -1;
95ffa243
YL
617#endif
618
619static int __init disable_mtrr_cleanup_setup(char *str)
620{
621 if (enable_mtrr_cleanup != -1)
622 enable_mtrr_cleanup = 0;
623 return 0;
624}
625early_param("disable_mtrr_cleanup", disable_mtrr_cleanup_setup);
626
627static int __init enable_mtrr_cleanup_setup(char *str)
628{
629 if (enable_mtrr_cleanup != -1)
630 enable_mtrr_cleanup = 1;
631 return 0;
632}
633early_param("enble_mtrr_cleanup", enable_mtrr_cleanup_setup);
634
f5098d62 635/* should be related to MTRR_VAR_RANGES nums */
95ffa243
YL
636#define RANGE_NUM 256
637
638struct res_range {
639 unsigned long start;
640 unsigned long end;
641};
642
f5098d62
YL
643static int __init
644add_range(struct res_range *range, int nr_range, unsigned long start,
645 unsigned long end)
95ffa243 646{
f5098d62
YL
647 /* out of slots */
648 if (nr_range >= RANGE_NUM)
649 return nr_range;
95ffa243 650
f5098d62
YL
651 range[nr_range].start = start;
652 range[nr_range].end = end;
653
654 nr_range++;
655
656 return nr_range;
657}
658
659static int __init
660add_range_with_merge(struct res_range *range, int nr_range, unsigned long start,
661 unsigned long end)
662{
663 int i;
95ffa243
YL
664
665 /* try to merge it with old one */
666 for (i = 0; i < nr_range; i++) {
667 unsigned long final_start, final_end;
668 unsigned long common_start, common_end;
669
670 if (!range[i].end)
671 continue;
672
673 common_start = max(range[i].start, start);
674 common_end = min(range[i].end, end);
675 if (common_start > common_end + 1)
676 continue;
677
678 final_start = min(range[i].start, start);
679 final_end = max(range[i].end, end);
680
681 range[i].start = final_start;
682 range[i].end = final_end;
683 return nr_range;
684 }
685
95ffa243 686 /* need to add that */
f5098d62 687 return add_range(range, nr_range, start, end);
95ffa243 688}
f5098d62
YL
689
690static void __init
691subtract_range(struct res_range *range, unsigned long start, unsigned long end)
95ffa243 692{
f5098d62 693 int i, j;
95ffa243
YL
694
695 for (j = 0; j < RANGE_NUM; j++) {
696 if (!range[j].end)
697 continue;
698
699 if (start <= range[j].start && end >= range[j].end) {
700 range[j].start = 0;
701 range[j].end = 0;
702 continue;
703 }
704
705 if (start <= range[j].start && end < range[j].end && range[j].start < end + 1) {
706 range[j].start = end + 1;
707 continue;
708 }
709
710
711 if (start > range[j].start && end >= range[j].end && range[j].end > start - 1) {
712 range[j].end = start - 1;
713 continue;
714 }
715
716 if (start > range[j].start && end < range[j].end) {
717 /* find the new spare */
718 for (i = 0; i < RANGE_NUM; i++) {
719 if (range[i].end == 0)
720 break;
721 }
722 if (i < RANGE_NUM) {
723 range[i].end = range[j].end;
724 range[i].start = end + 1;
725 } else {
726 printk(KERN_ERR "run of slot in ranges\n");
727 }
728 range[j].end = start - 1;
729 continue;
730 }
731 }
732}
733
734static int __init cmp_range(const void *x1, const void *x2)
735{
736 const struct res_range *r1 = x1;
737 const struct res_range *r2 = x2;
738 long start1, start2;
739
740 start1 = r1->start;
741 start2 = r2->start;
742
743 return start1 - start2;
744}
745
746struct var_mtrr_state {
f5098d62
YL
747 unsigned long range_startk;
748 unsigned long range_sizek;
749 unsigned long chunk_sizek;
750 unsigned long gran_sizek;
751 unsigned int reg;
752 unsigned int address_bits;
95ffa243
YL
753};
754
f5098d62
YL
755static void __init
756set_var_mtrr(unsigned int reg, unsigned long basek, unsigned long sizek,
757 unsigned char type, unsigned address_bits)
95ffa243
YL
758{
759 u32 base_lo, base_hi, mask_lo, mask_hi;
f5098d62 760 u64 base, mask;
95ffa243
YL
761
762 if (!sizek) {
763 fill_mtrr_var_range(reg, 0, 0, 0, 0);
764 return;
765 }
766
f5098d62
YL
767 mask = (1ULL << address_bits) - 1;
768 mask &= ~((((u64)sizek) << 10) - 1);
95ffa243 769
f5098d62 770 base = ((u64)basek) << 10;
95ffa243 771
f5098d62
YL
772 base |= type;
773 mask |= 0x800;
774
775 base_lo = base & ((1ULL<<32) - 1);
776 base_hi = base >> 32;
777
778 mask_lo = mask & ((1ULL<<32) - 1);
779 mask_hi = mask >> 32;
95ffa243 780
95ffa243
YL
781 fill_mtrr_var_range(reg, base_lo, base_hi, mask_lo, mask_hi);
782}
783
f5098d62
YL
784static unsigned int __init
785range_to_mtrr(unsigned int reg, unsigned long range_startk,
786 unsigned long range_sizek, unsigned char type,
787 unsigned address_bits)
95ffa243
YL
788{
789 if (!range_sizek || (reg >= num_var_ranges))
790 return reg;
791
792 while (range_sizek) {
793 unsigned long max_align, align;
794 unsigned long sizek;
f5098d62 795
95ffa243
YL
796 /* Compute the maximum size I can make a range */
797 if (range_startk)
798 max_align = ffs(range_startk) - 1;
799 else
800 max_align = 32;
801 align = fls(range_sizek) - 1;
802 if (align > max_align)
803 align = max_align;
804
805 sizek = 1 << align;
806 printk(KERN_INFO "Setting variable MTRR %d, base: %ldMB, range: %ldMB, type %s\n",
807 reg, range_startk >> 10, sizek >> 10,
808 (type == MTRR_TYPE_UNCACHABLE)?"UC":
809 ((type == MTRR_TYPE_WRBACK)?"WB":"Other")
810 );
811 set_var_mtrr(reg++, range_startk, sizek, type, address_bits);
812 range_startk += sizek;
813 range_sizek -= sizek;
814 if (reg >= num_var_ranges)
815 break;
816 }
817 return reg;
818}
819
f5098d62
YL
820static void __init
821range_to_mtrr_with_hole(struct var_mtrr_state *state, unsigned long basek)
95ffa243
YL
822{
823 unsigned long hole_basek, hole_sizek;
824 unsigned long range0_basek, range0_sizek;
825 unsigned long range_basek, range_sizek;
826 unsigned long chunk_sizek;
827 unsigned long gran_sizek;
828
829 hole_basek = 0;
830 hole_sizek = 0;
831 chunk_sizek = state->chunk_sizek;
832 gran_sizek = state->gran_sizek;
833
834 /* align with gran size, prevent small block used up MTRRs */
835 range_basek = ALIGN(state->range_startk, gran_sizek);
836 if ((range_basek > basek) && basek)
837 return;
838 range_sizek = ALIGN(state->range_sizek - (range_basek - state->range_startk), gran_sizek);
839
840 while (range_basek + range_sizek > (state->range_startk + state->range_sizek)) {
841 range_sizek -= gran_sizek;
842 if (!range_sizek)
843 return;
844 }
845 state->range_startk = range_basek;
846 state->range_sizek = range_sizek;
847
848 /* try to append some small hole */
849 range0_basek = state->range_startk;
850 range0_sizek = ALIGN(state->range_sizek, chunk_sizek);
f5098d62 851 if (range0_sizek == state->range_sizek) {
95ffa243
YL
852 printk(KERN_INFO "rangeX: %016lx - %016lx\n", range0_basek<<10, (range0_basek + state->range_sizek)<<10);
853 state->reg = range_to_mtrr(state->reg, range0_basek,
854 state->range_sizek, MTRR_TYPE_WRBACK, state->address_bits);
855 return;
f5098d62
YL
856 } else if (basek) {
857 while (range0_basek + range0_sizek - chunk_sizek > basek) {
858 range0_sizek -= chunk_sizek;
859 if (!range0_sizek)
860 break;
861 }
95ffa243
YL
862 }
863
864
f5098d62
YL
865 if (range0_sizek > chunk_sizek)
866 range0_sizek -= chunk_sizek;
95ffa243
YL
867 printk(KERN_INFO "range0: %016lx - %016lx\n", range0_basek<<10, (range0_basek + range0_sizek)<<10);
868 state->reg = range_to_mtrr(state->reg, range0_basek,
869 range0_sizek, MTRR_TYPE_WRBACK, state->address_bits);
870
871 range_basek = range0_basek + range0_sizek;
872 range_sizek = chunk_sizek;
f5098d62
YL
873
874 if ((range_sizek - (state->range_sizek - range0_sizek) < (chunk_sizek >> 1)) &&
875 (range_basek + range_sizek <= basek)) {
95ffa243
YL
876 hole_sizek = range_sizek - (state->range_sizek - range0_sizek);
877 hole_basek = range_basek + range_sizek - hole_sizek;
878 } else
879 range_sizek = state->range_sizek - range0_sizek;
880
881 printk(KERN_INFO "range: %016lx - %016lx\n", range_basek<<10, (range_basek + range_sizek)<<10);
882 state->reg = range_to_mtrr(state->reg, range_basek,
883 range_sizek, MTRR_TYPE_WRBACK, state->address_bits);
884 if (hole_sizek) {
885 printk(KERN_INFO "hole: %016lx - %016lx\n", hole_basek<<10, (hole_basek + hole_sizek)<<10);
886 state->reg = range_to_mtrr(state->reg, hole_basek,
887 hole_sizek, MTRR_TYPE_UNCACHABLE, state->address_bits);
888 }
889}
890
f5098d62
YL
891static void __init
892set_var_mtrr_range(struct var_mtrr_state *state, unsigned long base_pfn,
893 unsigned long size_pfn)
95ffa243
YL
894{
895 unsigned long basek, sizek;
896
897 if (state->reg >= num_var_ranges)
898 return;
899
900 basek = base_pfn << (PAGE_SHIFT - 10);
901 sizek = size_pfn << (PAGE_SHIFT - 10);
902
903 /* See if I can merge with the last range */
904 if ((basek <= 1024) || (state->range_startk + state->range_sizek == basek)) {
905 unsigned long endk = basek + sizek;
906 state->range_sizek = endk - state->range_startk;
907 return;
908 }
909 /* Write the range mtrrs */
910 if (state->range_sizek != 0) {
911 range_to_mtrr_with_hole(state, basek);
912
913 state->range_startk = 0;
914 state->range_sizek = 0;
915 }
916 /* Allocate an msr */
917 state->range_startk = basek;
918 state->range_sizek = sizek;
919}
920
921/* mininum size of mtrr block that can take hole */
922static u64 mtrr_chunk_size __initdata = (256ULL<<20);
923
924static int __init parse_mtrr_chunk_size_opt(char *p)
925{
926 if (!p)
927 return -EINVAL;
928 mtrr_chunk_size = memparse(p, &p);
929 return 0;
930}
931early_param("mtrr_chunk_size", parse_mtrr_chunk_size_opt);
932
933/* granity of mtrr of block */
f5098d62 934static u64 mtrr_gran_size __initdata = (1ULL<<20);
95ffa243
YL
935
936static int __init parse_mtrr_gran_size_opt(char *p)
937{
938 if (!p)
939 return -EINVAL;
940 mtrr_gran_size = memparse(p, &p);
941 return 0;
942}
943early_param("mtrr_gran_size", parse_mtrr_gran_size_opt);
944
f5098d62
YL
945static void __init
946x86_setup_var_mtrrs(struct res_range *range, int nr_range,
947 unsigned address_bits)
95ffa243
YL
948{
949 struct var_mtrr_state var_state;
950 int i;
951
f5098d62
YL
952 var_state.range_startk = 0;
953 var_state.range_sizek = 0;
954 var_state.reg = 0;
955 var_state.address_bits = address_bits;
956 var_state.chunk_sizek = mtrr_chunk_size >> 10;
957 var_state.gran_sizek = mtrr_gran_size >> 10;
95ffa243
YL
958
959 /* Write the range etc */
960 for (i = 0; i < nr_range; i++)
961 set_var_mtrr_range(&var_state, range[i].start, range[i].end - range[i].start + 1);
962
963 /* Write the last range */
964 range_to_mtrr_with_hole(&var_state, 0);
965 printk(KERN_INFO "DONE variable MTRRs\n");
966 /* Clear out the extra MTRR's */
f5098d62
YL
967 while (var_state.reg < num_var_ranges) {
968 set_var_mtrr(var_state.reg, 0, 0, 0, var_state.address_bits);
969 var_state.reg++;
970 }
95ffa243
YL
971}
972
f5098d62
YL
973static int __init
974x86_get_mtrr_mem_range(struct res_range *range, int nr_range,
975 unsigned long extra_remove_base,
976 unsigned long extra_remove_size)
95ffa243
YL
977{
978 unsigned long i, base, size;
979 mtrr_type type;
980
981 for (i = 0; i < num_var_ranges; i++) {
982 mtrr_if->get(i, &base, &size, &type);
983 if (type != MTRR_TYPE_WRBACK)
984 continue;
f5098d62 985 nr_range = add_range_with_merge(range, nr_range, base, base + size - 1);
95ffa243
YL
986 }
987 printk(KERN_INFO "After WB checking\n");
988 for (i = 0; i < nr_range; i++)
989 printk(KERN_INFO "MTRR MAP PFN: %016lx - %016lx\n", range[i].start, range[i].end + 1);
990
991 /* take out UC ranges */
992 for (i = 0; i < num_var_ranges; i++) {
993 mtrr_if->get(i, &base, &size, &type);
994 if (type != MTRR_TYPE_UNCACHABLE)
995 continue;
996 if (!size)
997 continue;
998 subtract_range(range, base, base + size - 1);
999 }
1000 if (extra_remove_size)
1001 subtract_range(range, extra_remove_base, extra_remove_base + extra_remove_size - 1);
1002
1003 /* get new range num */
1004 nr_range = 0;
1005 for (i = 0; i < RANGE_NUM; i++) {
1006 if (!range[i].end)
1007 continue;
1008 nr_range++;
1009 }
1010 printk(KERN_INFO "After UC checking\n");
1011 for (i = 0; i < nr_range; i++)
1012 printk(KERN_INFO "MTRR MAP PFN: %016lx - %016lx\n", range[i].start, range[i].end + 1);
1013
1014 /* sort the ranges */
1015 sort(range, nr_range, sizeof(struct res_range), cmp_range, NULL);
1016 printk(KERN_INFO "After sorting\n");
1017 for (i = 0; i < nr_range; i++)
1018 printk(KERN_INFO "MTRR MAP PFN: %016lx - %016lx\n", range[i].start, range[i].end + 1);
1019
1020 return nr_range;
1021}
1022
1023static int __init mtrr_cleanup(unsigned address_bits)
1024{
f5098d62 1025 unsigned long extra_remove_base, extra_remove_size;
95ffa243 1026 unsigned long i, base, size, def, dummy;
95ffa243 1027 struct res_range range[RANGE_NUM];
f5098d62 1028 mtrr_type type;
95ffa243 1029 int nr_range;
95ffa243
YL
1030
1031 /* extra one for all 0 */
1032 int num[MTRR_NUM_TYPES + 1];
1033
1034 if (!is_cpu(INTEL) || enable_mtrr_cleanup < 1)
1035 return 0;
1036 rdmsr(MTRRdefType_MSR, def, dummy);
1037 def &= 0xff;
1038 if (def != MTRR_TYPE_UNCACHABLE)
1039 return 0;
1040
1041 /* check entries number */
1042 memset(num, 0, sizeof(num));
1043 for (i = 0; i < num_var_ranges; i++) {
1044 mtrr_if->get(i, &base, &size, &type);
1045 if (type >= MTRR_NUM_TYPES)
1046 continue;
1047 if (!size)
1048 type = MTRR_NUM_TYPES;
1049 num[type]++;
1050 }
1051
1052 /* check if we got UC entries */
1053 if (!num[MTRR_TYPE_UNCACHABLE])
1054 return 0;
1055
1056 /* check if we only had WB and UC */
1057 if (num[MTRR_TYPE_WRBACK] + num[MTRR_TYPE_UNCACHABLE] !=
1058 num_var_ranges - num[MTRR_NUM_TYPES])
1059 return 0;
1060
1061 memset(range, 0, sizeof(range));
1062 extra_remove_size = 0;
1063 if (mtrr_tom2) {
1064 extra_remove_base = 1 << (32 - PAGE_SHIFT);
1065 extra_remove_size = (mtrr_tom2>>PAGE_SHIFT) - extra_remove_base;
1066 }
1067 nr_range = x86_get_mtrr_mem_range(range, 0, extra_remove_base, extra_remove_size);
1068
1069 /* convert ranges to var ranges state */
1070 x86_setup_var_mtrrs(range, nr_range, address_bits);
1071
1072 return 1;
95ffa243
YL
1073}
1074
99fc8d42
JB
1075static int disable_mtrr_trim;
1076
1077static int __init disable_mtrr_trim_setup(char *str)
1078{
1079 disable_mtrr_trim = 1;
1080 return 0;
1081}
1082early_param("disable_mtrr_trim", disable_mtrr_trim_setup);
1083
1084/*
1085 * Newer AMD K8s and later CPUs have a special magic MSR way to force WB
1086 * for memory >4GB. Check for that here.
1087 * Note this won't check if the MTRRs < 4GB where the magic bit doesn't
1088 * apply to are wrong, but so far we don't know of any such case in the wild.
1089 */
1090#define Tom2Enabled (1U << 21)
1091#define Tom2ForceMemTypeWB (1U << 22)
1092
35605a10 1093int __init amd_special_default_mtrr(void)
99fc8d42
JB
1094{
1095 u32 l, h;
1096
99fc8d42
JB
1097 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD)
1098 return 0;
1099 if (boot_cpu_data.x86 < 0xf || boot_cpu_data.x86 > 0x11)
1100 return 0;
1101 /* In case some hypervisor doesn't pass SYSCFG through */
1102 if (rdmsr_safe(MSR_K8_SYSCFG, &l, &h) < 0)
1103 return 0;
1104 /*
1105 * Memory between 4GB and top of mem is forced WB by this magic bit.
1106 * Reserved before K8RevF, but should be zero there.
1107 */
1108 if ((l & (Tom2Enabled | Tom2ForceMemTypeWB)) ==
1109 (Tom2Enabled | Tom2ForceMemTypeWB))
1110 return 1;
1111 return 0;
1112}
1113
42651f15
YL
1114static u64 __init real_trim_memory(unsigned long start_pfn, unsigned long limit_pfn)
1115{
1116 u64 trim_start, trim_size;
8a374026 1117 trim_start = start_pfn;
42651f15
YL
1118 trim_start <<= PAGE_SHIFT;
1119 trim_size = limit_pfn;
1120 trim_size <<= PAGE_SHIFT;
1121 trim_size -= trim_start;
8a374026 1122
42651f15
YL
1123 return update_memory_range(trim_start, trim_size, E820_RAM,
1124 E820_RESERVED);
1125}
99fc8d42
JB
1126/**
1127 * mtrr_trim_uncached_memory - trim RAM not covered by MTRRs
f5106d91 1128 * @end_pfn: ending page frame number
99fc8d42
JB
1129 *
1130 * Some buggy BIOSes don't setup the MTRRs properly for systems with certain
1131 * memory configurations. This routine checks that the highest MTRR matches
1132 * the end of memory, to make sure the MTRRs having a write back type cover
1133 * all of the memory the kernel is intending to use. If not, it'll trim any
1134 * memory off the end by adjusting end_pfn, removing it from the kernel's
1135 * allocation pools, warning the user with an obnoxious message.
1136 */
1137int __init mtrr_trim_uncached_memory(unsigned long end_pfn)
1138{
20651af9 1139 unsigned long i, base, size, highest_pfn = 0, def, dummy;
99fc8d42 1140 mtrr_type type;
42651f15
YL
1141 struct res_range range[RANGE_NUM];
1142 int nr_range;
1143 u64 total_real_trim_size;
99fc8d42 1144
42651f15
YL
1145 /* extra one for all 0 */
1146 int num[MTRR_NUM_TYPES + 1];
99fc8d42
JB
1147 /*
1148 * Make sure we only trim uncachable memory on machines that
1149 * support the Intel MTRR architecture:
1150 */
093af8d7
YL
1151 if (!is_cpu(INTEL) || disable_mtrr_trim)
1152 return 0;
99fc8d42
JB
1153 rdmsr(MTRRdefType_MSR, def, dummy);
1154 def &= 0xff;
093af8d7
YL
1155 if (def != MTRR_TYPE_UNCACHABLE)
1156 return 0;
1157
99fc8d42
JB
1158 /* Find highest cached pfn */
1159 for (i = 0; i < num_var_ranges; i++) {
1160 mtrr_if->get(i, &base, &size, &type);
1161 if (type != MTRR_TYPE_WRBACK)
1162 continue;
20651af9
YL
1163 if (highest_pfn < base + size)
1164 highest_pfn = base + size;
99fc8d42
JB
1165 }
1166
093af8d7 1167 /* kvm/qemu doesn't have mtrr set right, don't trim them all */
20651af9 1168 if (!highest_pfn) {
4147c874
JR
1169 if (!kvm_para_available()) {
1170 printk(KERN_WARNING
1171 "WARNING: strange, CPU MTRRs all blank?\n");
1172 WARN_ON(1);
1173 }
99fc8d42 1174 return 0;
093af8d7 1175 }
99fc8d42 1176
42651f15
YL
1177 /* check entries number */
1178 memset(num, 0, sizeof(num));
1179 for (i = 0; i < num_var_ranges; i++) {
1180 mtrr_if->get(i, &base, &size, &type);
1181 if (type >= MTRR_NUM_TYPES)
1182 continue;
1183 if (!size)
1184 type = MTRR_NUM_TYPES;
1185 num[type]++;
1186 }
1187
1188 /* no entry for WB? */
1189 if (!num[MTRR_TYPE_WRBACK])
1190 return 0;
1191
1192 /* check if we only had WB and UC */
1193 if (num[MTRR_TYPE_WRBACK] + num[MTRR_TYPE_UNCACHABLE] !=
1194 num_var_ranges - num[MTRR_NUM_TYPES])
1195 return 0;
1196
1197 memset(range, 0, sizeof(range));
1198 nr_range = 0;
1199 if (mtrr_tom2) {
1200 range[nr_range].start = (1ULL<<(32 - PAGE_SHIFT));
1201 range[nr_range].end = (mtrr_tom2 >> PAGE_SHIFT) - 1;
1202 if (highest_pfn < range[nr_range].end + 1)
1203 highest_pfn = range[nr_range].end + 1;
1204 nr_range++;
1205 }
1206 nr_range = x86_get_mtrr_mem_range(range, nr_range, 0, 0);
1207
42651f15 1208 total_real_trim_size = 0;
8a374026 1209 /* check the head */
42651f15
YL
1210 if (range[0].start)
1211 total_real_trim_size += real_trim_memory(0, range[0].start);
8a374026
YL
1212 /* check the holes */
1213 for (i = 0; i < nr_range - 1; i++) {
42651f15
YL
1214 if (range[i].end + 1 < range[i+1].start)
1215 total_real_trim_size += real_trim_memory(range[i].end + 1, range[i+1].start);
1216 }
8a374026
YL
1217 /* check the top */
1218 i = nr_range - 1;
1219 if (range[i].end + 1 < end_pfn)
1220 total_real_trim_size += real_trim_memory(range[i].end + 1, end_pfn);
42651f15
YL
1221
1222 if (total_real_trim_size) {
1223 printk(KERN_WARNING "WARNING: BIOS bug: CPU MTRRs don't cover"
1224 " all of memory, losing %lluMB of RAM.\n",
1225 total_real_trim_size >> 20);
1226
8a374026
YL
1227 if (enable_mtrr_cleanup < 1)
1228 WARN_ON(1);
42651f15 1229
8a374026 1230 printk(KERN_INFO "update e820 for mtrr\n");
42651f15 1231 update_e820();
8a374026
YL
1232
1233 return 1;
42651f15
YL
1234 }
1235
8a374026 1236 return 0;
99fc8d42 1237}
1da177e4
LT
1238
1239/**
3b520b23 1240 * mtrr_bp_init - initialize mtrrs on the boot CPU
1da177e4
LT
1241 *
1242 * This needs to be called early; before any of the other CPUs are
1243 * initialized (i.e. before smp_init()).
1244 *
1245 */
9ef231a4 1246void __init mtrr_bp_init(void)
1da177e4 1247{
95ffa243 1248 u32 phys_addr;
1da177e4
LT
1249 init_ifs();
1250
95ffa243
YL
1251 phys_addr = 32;
1252
1da177e4
LT
1253 if (cpu_has_mtrr) {
1254 mtrr_if = &generic_mtrr_ops;
1255 size_or_mask = 0xff000000; /* 36 bits */
1256 size_and_mask = 0x00f00000;
95ffa243 1257 phys_addr = 36;
1f2c958a
AK
1258
1259 /* This is an AMD specific MSR, but we assume(hope?) that
1260 Intel will implement it to when they extend the address
1261 bus of the Xeon. */
1262 if (cpuid_eax(0x80000000) >= 0x80000008) {
1f2c958a 1263 phys_addr = cpuid_eax(0x80000008) & 0xff;
af9c142d
SL
1264 /* CPUID workaround for Intel 0F33/0F34 CPU */
1265 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
1266 boot_cpu_data.x86 == 0xF &&
1267 boot_cpu_data.x86_model == 0x3 &&
1268 (boot_cpu_data.x86_mask == 0x3 ||
1269 boot_cpu_data.x86_mask == 0x4))
1270 phys_addr = 36;
1271
6c5806ca
AH
1272 size_or_mask = ~((1ULL << (phys_addr - PAGE_SHIFT)) - 1);
1273 size_and_mask = ~size_or_mask & 0xfffff00000ULL;
1f2c958a
AK
1274 } else if (boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR &&
1275 boot_cpu_data.x86 == 6) {
1276 /* VIA C* family have Intel style MTRRs, but
1277 don't support PAE */
1278 size_or_mask = 0xfff00000; /* 32 bits */
1279 size_and_mask = 0;
95ffa243 1280 phys_addr = 32;
1da177e4
LT
1281 }
1282 } else {
1283 switch (boot_cpu_data.x86_vendor) {
1284 case X86_VENDOR_AMD:
1285 if (cpu_has_k6_mtrr) {
1286 /* Pre-Athlon (K6) AMD CPU MTRRs */
1287 mtrr_if = mtrr_ops[X86_VENDOR_AMD];
1288 size_or_mask = 0xfff00000; /* 32 bits */
1289 size_and_mask = 0;
1290 }
1291 break;
1292 case X86_VENDOR_CENTAUR:
1293 if (cpu_has_centaur_mcr) {
1294 mtrr_if = mtrr_ops[X86_VENDOR_CENTAUR];
1295 size_or_mask = 0xfff00000; /* 32 bits */
1296 size_and_mask = 0;
1297 }
1298 break;
1299 case X86_VENDOR_CYRIX:
1300 if (cpu_has_cyrix_arr) {
1301 mtrr_if = mtrr_ops[X86_VENDOR_CYRIX];
1302 size_or_mask = 0xfff00000; /* 32 bits */
1303 size_and_mask = 0;
1304 }
1305 break;
1306 default:
1307 break;
1308 }
1309 }
1da177e4
LT
1310
1311 if (mtrr_if) {
1312 set_num_var_ranges();
1313 init_table();
95ffa243 1314 if (use_intel()) {
3b520b23 1315 get_mtrr_state();
95ffa243
YL
1316
1317 if (mtrr_cleanup(phys_addr))
1318 mtrr_if->set_all();
1319
1320 }
1da177e4 1321 }
1da177e4
LT
1322}
1323
3b520b23
SL
1324void mtrr_ap_init(void)
1325{
1326 unsigned long flags;
1327
1328 if (!mtrr_if || !use_intel())
1329 return;
1330 /*
14cc3e2b 1331 * Ideally we should hold mtrr_mutex here to avoid mtrr entries changed,
3b520b23
SL
1332 * but this routine will be called in cpu boot time, holding the lock
1333 * breaks it. This routine is called in two cases: 1.very earily time
1334 * of software resume, when there absolutely isn't mtrr entry changes;
1335 * 2.cpu hotadd time. We let mtrr_add/del_page hold cpuhotplug lock to
1336 * prevent mtrr entry changes
1337 */
1338 local_irq_save(flags);
1339
1340 mtrr_if->set_all();
1341
1342 local_irq_restore(flags);
1343}
1344
2b1f6278
BK
1345/**
1346 * Save current fixed-range MTRR state of the BSP
1347 */
1348void mtrr_save_state(void)
1349{
c8f2518e 1350 smp_call_function_single(0, mtrr_save_fixed_ranges, NULL, 1, 1);
2b1f6278
BK
1351}
1352
3b520b23
SL
1353static int __init mtrr_init_finialize(void)
1354{
1355 if (!mtrr_if)
1356 return 0;
95ffa243
YL
1357 if (use_intel()) {
1358 if (enable_mtrr_cleanup < 1)
1359 mtrr_state_warn();
1360 } else {
27b46d76 1361 /* The CPUs haven't MTRR and seem to not support SMP. They have
3b520b23
SL
1362 * specific drivers, we use a tricky method to support
1363 * suspend/resume for them.
1364 * TBD: is there any system with such CPU which supports
1365 * suspend/resume? if no, we should remove the code.
1366 */
1367 sysdev_driver_register(&cpu_sysdev_class,
1368 &mtrr_sysdev_driver);
1369 }
1370 return 0;
1371}
1372subsys_initcall(mtrr_init_finialize);