]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/kernel/cpu/perf_event.c
perf/x86: Improve sysfs event mapping with event string
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / cpu / perf_event.c
CommitLineData
241771ef 1/*
cdd6c482 2 * Performance events x86 architecture code
241771ef 3 *
98144511
IM
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
30dd568c 9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
1da53e02 10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
241771ef
IM
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
cdd6c482 15#include <linux/perf_event.h>
241771ef
IM
16#include <linux/capability.h>
17#include <linux/notifier.h>
18#include <linux/hardirq.h>
19#include <linux/kprobes.h>
4ac13294 20#include <linux/module.h>
241771ef
IM
21#include <linux/kdebug.h>
22#include <linux/sched.h>
d7d59fb3 23#include <linux/uaccess.h>
5a0e3ad6 24#include <linux/slab.h>
30dd568c 25#include <linux/cpu.h>
272d30be 26#include <linux/bitops.h>
0c9d42ed 27#include <linux/device.h>
241771ef 28
241771ef 29#include <asm/apic.h>
d7d59fb3 30#include <asm/stacktrace.h>
4e935e47 31#include <asm/nmi.h>
69092624 32#include <asm/smp.h>
c8e5910e 33#include <asm/alternative.h>
e3f3541c 34#include <asm/timer.h>
d07bdfd3
PZ
35#include <asm/desc.h>
36#include <asm/ldt.h>
241771ef 37
de0428a7
KW
38#include "perf_event.h"
39
de0428a7 40struct x86_pmu x86_pmu __read_mostly;
efc9f05d 41
de0428a7 42DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
b0f3f28e
PZ
43 .enabled = 1,
44};
241771ef 45
de0428a7 46u64 __read_mostly hw_cache_event_ids
8326f44d
IM
47 [PERF_COUNT_HW_CACHE_MAX]
48 [PERF_COUNT_HW_CACHE_OP_MAX]
49 [PERF_COUNT_HW_CACHE_RESULT_MAX];
de0428a7 50u64 __read_mostly hw_cache_extra_regs
e994d7d2
AK
51 [PERF_COUNT_HW_CACHE_MAX]
52 [PERF_COUNT_HW_CACHE_OP_MAX]
53 [PERF_COUNT_HW_CACHE_RESULT_MAX];
8326f44d 54
ee06094f 55/*
cdd6c482
IM
56 * Propagate event elapsed time into the generic event.
57 * Can only be executed on the CPU where the event is active.
ee06094f
IM
58 * Returns the delta events processed.
59 */
de0428a7 60u64 x86_perf_event_update(struct perf_event *event)
ee06094f 61{
cc2ad4ba 62 struct hw_perf_event *hwc = &event->hw;
948b1bb8 63 int shift = 64 - x86_pmu.cntval_bits;
ec3232bd 64 u64 prev_raw_count, new_raw_count;
cc2ad4ba 65 int idx = hwc->idx;
ec3232bd 66 s64 delta;
ee06094f 67
15c7ad51 68 if (idx == INTEL_PMC_IDX_FIXED_BTS)
30dd568c
MM
69 return 0;
70
ee06094f 71 /*
cdd6c482 72 * Careful: an NMI might modify the previous event value.
ee06094f
IM
73 *
74 * Our tactic to handle this is to first atomically read and
75 * exchange a new raw count - then add that new-prev delta
cdd6c482 76 * count to the generic event atomically:
ee06094f
IM
77 */
78again:
e7850595 79 prev_raw_count = local64_read(&hwc->prev_count);
c48b6053 80 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
ee06094f 81
e7850595 82 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
ee06094f
IM
83 new_raw_count) != prev_raw_count)
84 goto again;
85
86 /*
87 * Now we have the new raw value and have updated the prev
88 * timestamp already. We can now calculate the elapsed delta
cdd6c482 89 * (event-)time and add that to the generic event.
ee06094f
IM
90 *
91 * Careful, not all hw sign-extends above the physical width
ec3232bd 92 * of the count.
ee06094f 93 */
ec3232bd
PZ
94 delta = (new_raw_count << shift) - (prev_raw_count << shift);
95 delta >>= shift;
ee06094f 96
e7850595
PZ
97 local64_add(delta, &event->count);
98 local64_sub(delta, &hwc->period_left);
4b7bfd0d
RR
99
100 return new_raw_count;
ee06094f
IM
101}
102
a7e3ed1e
AK
103/*
104 * Find and validate any extra registers to set up.
105 */
106static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
107{
efc9f05d 108 struct hw_perf_event_extra *reg;
a7e3ed1e
AK
109 struct extra_reg *er;
110
efc9f05d 111 reg = &event->hw.extra_reg;
a7e3ed1e
AK
112
113 if (!x86_pmu.extra_regs)
114 return 0;
115
116 for (er = x86_pmu.extra_regs; er->msr; er++) {
117 if (er->event != (config & er->config_mask))
118 continue;
119 if (event->attr.config1 & ~er->valid_mask)
120 return -EINVAL;
efc9f05d
SE
121
122 reg->idx = er->idx;
123 reg->config = event->attr.config1;
124 reg->reg = er->msr;
a7e3ed1e
AK
125 break;
126 }
127 return 0;
128}
129
cdd6c482 130static atomic_t active_events;
4e935e47
PZ
131static DEFINE_MUTEX(pmc_reserve_mutex);
132
b27ea29c
RR
133#ifdef CONFIG_X86_LOCAL_APIC
134
4e935e47
PZ
135static bool reserve_pmc_hardware(void)
136{
137 int i;
138
948b1bb8 139 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989 140 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
4e935e47
PZ
141 goto perfctr_fail;
142 }
143
948b1bb8 144 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989 145 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
4e935e47
PZ
146 goto eventsel_fail;
147 }
148
149 return true;
150
151eventsel_fail:
152 for (i--; i >= 0; i--)
41bf4989 153 release_evntsel_nmi(x86_pmu_config_addr(i));
4e935e47 154
948b1bb8 155 i = x86_pmu.num_counters;
4e935e47
PZ
156
157perfctr_fail:
158 for (i--; i >= 0; i--)
41bf4989 159 release_perfctr_nmi(x86_pmu_event_addr(i));
4e935e47 160
4e935e47
PZ
161 return false;
162}
163
164static void release_pmc_hardware(void)
165{
166 int i;
167
948b1bb8 168 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989
RR
169 release_perfctr_nmi(x86_pmu_event_addr(i));
170 release_evntsel_nmi(x86_pmu_config_addr(i));
4e935e47 171 }
4e935e47
PZ
172}
173
b27ea29c
RR
174#else
175
176static bool reserve_pmc_hardware(void) { return true; }
177static void release_pmc_hardware(void) {}
178
179#endif
180
33c6d6a7
DZ
181static bool check_hw_exists(void)
182{
f285f92f 183 u64 val, val_new = ~0;
4407204c 184 int i, reg, ret = 0;
33c6d6a7 185
4407204c
PZ
186 /*
187 * Check to see if the BIOS enabled any of the counters, if so
188 * complain and bail.
189 */
190 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989 191 reg = x86_pmu_config_addr(i);
4407204c
PZ
192 ret = rdmsrl_safe(reg, &val);
193 if (ret)
194 goto msr_fail;
195 if (val & ARCH_PERFMON_EVENTSEL_ENABLE)
196 goto bios_fail;
197 }
198
199 if (x86_pmu.num_counters_fixed) {
200 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
201 ret = rdmsrl_safe(reg, &val);
202 if (ret)
203 goto msr_fail;
204 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
205 if (val & (0x03 << i*4))
206 goto bios_fail;
207 }
208 }
209
210 /*
bffd5fc2
AP
211 * Read the current value, change it and read it back to see if it
212 * matches, this is needed to detect certain hardware emulators
213 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
4407204c 214 */
f285f92f 215 reg = x86_pmu_event_addr(0);
bffd5fc2
AP
216 if (rdmsrl_safe(reg, &val))
217 goto msr_fail;
218 val ^= 0xffffUL;
f285f92f
RR
219 ret = wrmsrl_safe(reg, val);
220 ret |= rdmsrl_safe(reg, &val_new);
33c6d6a7 221 if (ret || val != val_new)
4407204c 222 goto msr_fail;
33c6d6a7
DZ
223
224 return true;
4407204c
PZ
225
226bios_fail:
45daae57
IM
227 /*
228 * We still allow the PMU driver to operate:
229 */
230 printk(KERN_CONT "Broken BIOS detected, complain to your hardware vendor.\n");
4407204c 231 printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg, val);
45daae57
IM
232
233 return true;
4407204c
PZ
234
235msr_fail:
236 printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
f285f92f 237 printk(KERN_ERR "Failed to access perfctr msr (MSR %x is %Lx)\n", reg, val_new);
45daae57 238
4407204c 239 return false;
33c6d6a7
DZ
240}
241
cdd6c482 242static void hw_perf_event_destroy(struct perf_event *event)
4e935e47 243{
cdd6c482 244 if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
4e935e47 245 release_pmc_hardware();
ca037701 246 release_ds_buffers();
4e935e47
PZ
247 mutex_unlock(&pmc_reserve_mutex);
248 }
249}
250
85cf9dba
RR
251static inline int x86_pmu_initialized(void)
252{
253 return x86_pmu.handle_irq != NULL;
254}
255
8326f44d 256static inline int
e994d7d2 257set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
8326f44d 258{
e994d7d2 259 struct perf_event_attr *attr = &event->attr;
8326f44d
IM
260 unsigned int cache_type, cache_op, cache_result;
261 u64 config, val;
262
263 config = attr->config;
264
265 cache_type = (config >> 0) & 0xff;
266 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
267 return -EINVAL;
268
269 cache_op = (config >> 8) & 0xff;
270 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
271 return -EINVAL;
272
273 cache_result = (config >> 16) & 0xff;
274 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
275 return -EINVAL;
276
277 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
278
279 if (val == 0)
280 return -ENOENT;
281
282 if (val == -1)
283 return -EINVAL;
284
285 hwc->config |= val;
e994d7d2
AK
286 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
287 return x86_pmu_extra_regs(val, event);
8326f44d
IM
288}
289
de0428a7 290int x86_setup_perfctr(struct perf_event *event)
c1726f34
RR
291{
292 struct perf_event_attr *attr = &event->attr;
293 struct hw_perf_event *hwc = &event->hw;
294 u64 config;
295
6c7e550f 296 if (!is_sampling_event(event)) {
c1726f34
RR
297 hwc->sample_period = x86_pmu.max_period;
298 hwc->last_period = hwc->sample_period;
e7850595 299 local64_set(&hwc->period_left, hwc->sample_period);
c1726f34
RR
300 } else {
301 /*
302 * If we have a PMU initialized but no APIC
303 * interrupts, we cannot sample hardware
304 * events (user-space has to fall back and
305 * sample via a hrtimer based software event):
306 */
307 if (!x86_pmu.apic)
308 return -EOPNOTSUPP;
309 }
310
311 if (attr->type == PERF_TYPE_RAW)
ed13ec58 312 return x86_pmu_extra_regs(event->attr.config, event);
c1726f34
RR
313
314 if (attr->type == PERF_TYPE_HW_CACHE)
e994d7d2 315 return set_ext_hw_attr(hwc, event);
c1726f34
RR
316
317 if (attr->config >= x86_pmu.max_events)
318 return -EINVAL;
319
320 /*
321 * The generic map:
322 */
323 config = x86_pmu.event_map(attr->config);
324
325 if (config == 0)
326 return -ENOENT;
327
328 if (config == -1LL)
329 return -EINVAL;
330
331 /*
332 * Branch tracing:
333 */
18a073a3
PZ
334 if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
335 !attr->freq && hwc->sample_period == 1) {
c1726f34 336 /* BTS is not supported by this architecture. */
6809b6ea 337 if (!x86_pmu.bts_active)
c1726f34
RR
338 return -EOPNOTSUPP;
339
340 /* BTS is currently only allowed for user-mode. */
341 if (!attr->exclude_kernel)
342 return -EOPNOTSUPP;
343 }
344
345 hwc->config |= config;
346
347 return 0;
348}
4261e0e0 349
ff3fb511
SE
350/*
351 * check that branch_sample_type is compatible with
352 * settings needed for precise_ip > 1 which implies
353 * using the LBR to capture ALL taken branches at the
354 * priv levels of the measurement
355 */
356static inline int precise_br_compat(struct perf_event *event)
357{
358 u64 m = event->attr.branch_sample_type;
359 u64 b = 0;
360
361 /* must capture all branches */
362 if (!(m & PERF_SAMPLE_BRANCH_ANY))
363 return 0;
364
365 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
366
367 if (!event->attr.exclude_user)
368 b |= PERF_SAMPLE_BRANCH_USER;
369
370 if (!event->attr.exclude_kernel)
371 b |= PERF_SAMPLE_BRANCH_KERNEL;
372
373 /*
374 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
375 */
376
377 return m == b;
378}
379
de0428a7 380int x86_pmu_hw_config(struct perf_event *event)
a072738e 381{
ab608344
PZ
382 if (event->attr.precise_ip) {
383 int precise = 0;
384
385 /* Support for constant skid */
c93dc84c 386 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
ab608344
PZ
387 precise++;
388
5553be26
PZ
389 /* Support for IP fixup */
390 if (x86_pmu.lbr_nr)
391 precise++;
392 }
ab608344
PZ
393
394 if (event->attr.precise_ip > precise)
395 return -EOPNOTSUPP;
ff3fb511
SE
396 /*
397 * check that PEBS LBR correction does not conflict with
398 * whatever the user is asking with attr->branch_sample_type
399 */
400 if (event->attr.precise_ip > 1) {
401 u64 *br_type = &event->attr.branch_sample_type;
402
403 if (has_branch_stack(event)) {
404 if (!precise_br_compat(event))
405 return -EOPNOTSUPP;
406
407 /* branch_sample_type is compatible */
408
409 } else {
410 /*
411 * user did not specify branch_sample_type
412 *
413 * For PEBS fixups, we capture all
414 * the branches at the priv level of the
415 * event.
416 */
417 *br_type = PERF_SAMPLE_BRANCH_ANY;
418
419 if (!event->attr.exclude_user)
420 *br_type |= PERF_SAMPLE_BRANCH_USER;
421
422 if (!event->attr.exclude_kernel)
423 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
424 }
425 }
ab608344
PZ
426 }
427
a072738e
CG
428 /*
429 * Generate PMC IRQs:
430 * (keep 'enabled' bit clear for now)
431 */
b4cdc5c2 432 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
a072738e
CG
433
434 /*
435 * Count user and OS events unless requested not to
436 */
b4cdc5c2
PZ
437 if (!event->attr.exclude_user)
438 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
439 if (!event->attr.exclude_kernel)
440 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
a072738e 441
b4cdc5c2
PZ
442 if (event->attr.type == PERF_TYPE_RAW)
443 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
a072738e 444
9d0fcba6 445 return x86_setup_perfctr(event);
a098f448
RR
446}
447
241771ef 448/*
0d48696f 449 * Setup the hardware configuration for a given attr_type
241771ef 450 */
b0a873eb 451static int __x86_pmu_event_init(struct perf_event *event)
241771ef 452{
4e935e47 453 int err;
241771ef 454
85cf9dba
RR
455 if (!x86_pmu_initialized())
456 return -ENODEV;
241771ef 457
4e935e47 458 err = 0;
cdd6c482 459 if (!atomic_inc_not_zero(&active_events)) {
4e935e47 460 mutex_lock(&pmc_reserve_mutex);
cdd6c482 461 if (atomic_read(&active_events) == 0) {
30dd568c
MM
462 if (!reserve_pmc_hardware())
463 err = -EBUSY;
f80c9e30
PZ
464 else
465 reserve_ds_buffers();
30dd568c
MM
466 }
467 if (!err)
cdd6c482 468 atomic_inc(&active_events);
4e935e47
PZ
469 mutex_unlock(&pmc_reserve_mutex);
470 }
471 if (err)
472 return err;
473
cdd6c482 474 event->destroy = hw_perf_event_destroy;
a1792cda 475
4261e0e0
RR
476 event->hw.idx = -1;
477 event->hw.last_cpu = -1;
478 event->hw.last_tag = ~0ULL;
b690081d 479
efc9f05d
SE
480 /* mark unused */
481 event->hw.extra_reg.idx = EXTRA_REG_NONE;
b36817e8
SE
482 event->hw.branch_reg.idx = EXTRA_REG_NONE;
483
9d0fcba6 484 return x86_pmu.hw_config(event);
4261e0e0
RR
485}
486
de0428a7 487void x86_pmu_disable_all(void)
f87ad35d 488{
cdd6c482 489 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
9e35ad38
PZ
490 int idx;
491
948b1bb8 492 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
b0f3f28e
PZ
493 u64 val;
494
43f6201a 495 if (!test_bit(idx, cpuc->active_mask))
4295ee62 496 continue;
41bf4989 497 rdmsrl(x86_pmu_config_addr(idx), val);
bb1165d6 498 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
4295ee62 499 continue;
bb1165d6 500 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
41bf4989 501 wrmsrl(x86_pmu_config_addr(idx), val);
f87ad35d 502 }
f87ad35d
JSR
503}
504
a4eaf7f1 505static void x86_pmu_disable(struct pmu *pmu)
b56a3802 506{
1da53e02
SE
507 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
508
85cf9dba 509 if (!x86_pmu_initialized())
9e35ad38 510 return;
1da53e02 511
1a6e21f7
PZ
512 if (!cpuc->enabled)
513 return;
514
515 cpuc->n_added = 0;
516 cpuc->enabled = 0;
517 barrier();
1da53e02
SE
518
519 x86_pmu.disable_all();
b56a3802 520}
241771ef 521
de0428a7 522void x86_pmu_enable_all(int added)
f87ad35d 523{
cdd6c482 524 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
f87ad35d
JSR
525 int idx;
526
948b1bb8 527 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
d45dd923 528 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
b0f3f28e 529
43f6201a 530 if (!test_bit(idx, cpuc->active_mask))
4295ee62 531 continue;
984b838c 532
d45dd923 533 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
f87ad35d
JSR
534 }
535}
536
51b0fe39 537static struct pmu pmu;
1da53e02
SE
538
539static inline int is_x86_event(struct perf_event *event)
540{
541 return event->pmu == &pmu;
542}
543
1e2ad28f
RR
544/*
545 * Event scheduler state:
546 *
547 * Assign events iterating over all events and counters, beginning
548 * with events with least weights first. Keep the current iterator
549 * state in struct sched_state.
550 */
551struct sched_state {
552 int weight;
553 int event; /* event index */
554 int counter; /* counter index */
555 int unassigned; /* number of events to be assigned left */
556 unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
557};
558
bc1738f6
RR
559/* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
560#define SCHED_STATES_MAX 2
561
1e2ad28f
RR
562struct perf_sched {
563 int max_weight;
564 int max_events;
565 struct event_constraint **constraints;
566 struct sched_state state;
bc1738f6
RR
567 int saved_states;
568 struct sched_state saved[SCHED_STATES_MAX];
1e2ad28f
RR
569};
570
571/*
572 * Initialize interator that runs through all events and counters.
573 */
574static void perf_sched_init(struct perf_sched *sched, struct event_constraint **c,
575 int num, int wmin, int wmax)
576{
577 int idx;
578
579 memset(sched, 0, sizeof(*sched));
580 sched->max_events = num;
581 sched->max_weight = wmax;
582 sched->constraints = c;
583
584 for (idx = 0; idx < num; idx++) {
585 if (c[idx]->weight == wmin)
586 break;
587 }
588
589 sched->state.event = idx; /* start with min weight */
590 sched->state.weight = wmin;
591 sched->state.unassigned = num;
592}
593
bc1738f6
RR
594static void perf_sched_save_state(struct perf_sched *sched)
595{
596 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
597 return;
598
599 sched->saved[sched->saved_states] = sched->state;
600 sched->saved_states++;
601}
602
603static bool perf_sched_restore_state(struct perf_sched *sched)
604{
605 if (!sched->saved_states)
606 return false;
607
608 sched->saved_states--;
609 sched->state = sched->saved[sched->saved_states];
610
611 /* continue with next counter: */
612 clear_bit(sched->state.counter++, sched->state.used);
613
614 return true;
615}
616
1e2ad28f
RR
617/*
618 * Select a counter for the current event to schedule. Return true on
619 * success.
620 */
bc1738f6 621static bool __perf_sched_find_counter(struct perf_sched *sched)
1e2ad28f
RR
622{
623 struct event_constraint *c;
624 int idx;
625
626 if (!sched->state.unassigned)
627 return false;
628
629 if (sched->state.event >= sched->max_events)
630 return false;
631
632 c = sched->constraints[sched->state.event];
633
4defea85 634 /* Prefer fixed purpose counters */
15c7ad51
RR
635 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
636 idx = INTEL_PMC_IDX_FIXED;
307b1cd7 637 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
4defea85
PZ
638 if (!__test_and_set_bit(idx, sched->state.used))
639 goto done;
640 }
641 }
1e2ad28f
RR
642 /* Grab the first unused counter starting with idx */
643 idx = sched->state.counter;
15c7ad51 644 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
1e2ad28f 645 if (!__test_and_set_bit(idx, sched->state.used))
4defea85 646 goto done;
1e2ad28f 647 }
1e2ad28f 648
4defea85
PZ
649 return false;
650
651done:
652 sched->state.counter = idx;
1e2ad28f 653
bc1738f6
RR
654 if (c->overlap)
655 perf_sched_save_state(sched);
656
657 return true;
658}
659
660static bool perf_sched_find_counter(struct perf_sched *sched)
661{
662 while (!__perf_sched_find_counter(sched)) {
663 if (!perf_sched_restore_state(sched))
664 return false;
665 }
666
1e2ad28f
RR
667 return true;
668}
669
670/*
671 * Go through all unassigned events and find the next one to schedule.
672 * Take events with the least weight first. Return true on success.
673 */
674static bool perf_sched_next_event(struct perf_sched *sched)
675{
676 struct event_constraint *c;
677
678 if (!sched->state.unassigned || !--sched->state.unassigned)
679 return false;
680
681 do {
682 /* next event */
683 sched->state.event++;
684 if (sched->state.event >= sched->max_events) {
685 /* next weight */
686 sched->state.event = 0;
687 sched->state.weight++;
688 if (sched->state.weight > sched->max_weight)
689 return false;
690 }
691 c = sched->constraints[sched->state.event];
692 } while (c->weight != sched->state.weight);
693
694 sched->state.counter = 0; /* start with first counter */
695
696 return true;
697}
698
699/*
700 * Assign a counter for each event.
701 */
4b4969b1
YZ
702int perf_assign_events(struct event_constraint **constraints, int n,
703 int wmin, int wmax, int *assign)
1e2ad28f
RR
704{
705 struct perf_sched sched;
706
707 perf_sched_init(&sched, constraints, n, wmin, wmax);
708
709 do {
710 if (!perf_sched_find_counter(&sched))
711 break; /* failed */
712 if (assign)
713 assign[sched.state.event] = sched.state.counter;
714 } while (perf_sched_next_event(&sched));
715
716 return sched.state.unassigned;
717}
718
de0428a7 719int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
1da53e02 720{
63b14649 721 struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
1da53e02 722 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
1e2ad28f 723 int i, wmin, wmax, num = 0;
1da53e02
SE
724 struct hw_perf_event *hwc;
725
726 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
727
1e2ad28f 728 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
b622d644
PZ
729 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
730 constraints[i] = c;
1e2ad28f
RR
731 wmin = min(wmin, c->weight);
732 wmax = max(wmax, c->weight);
1da53e02
SE
733 }
734
8113070d
SE
735 /*
736 * fastpath, try to reuse previous register
737 */
c933c1a6 738 for (i = 0; i < n; i++) {
8113070d 739 hwc = &cpuc->event_list[i]->hw;
81269a08 740 c = constraints[i];
8113070d
SE
741
742 /* never assigned */
743 if (hwc->idx == -1)
744 break;
745
746 /* constraint still honored */
63b14649 747 if (!test_bit(hwc->idx, c->idxmsk))
8113070d
SE
748 break;
749
750 /* not already used */
751 if (test_bit(hwc->idx, used_mask))
752 break;
753
34538ee7 754 __set_bit(hwc->idx, used_mask);
8113070d
SE
755 if (assign)
756 assign[i] = hwc->idx;
757 }
8113070d 758
1e2ad28f
RR
759 /* slow path */
760 if (i != n)
761 num = perf_assign_events(constraints, n, wmin, wmax, assign);
8113070d 762
1da53e02
SE
763 /*
764 * scheduling failed or is just a simulation,
765 * free resources if necessary
766 */
767 if (!assign || num) {
768 for (i = 0; i < n; i++) {
769 if (x86_pmu.put_event_constraints)
770 x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
771 }
772 }
aa2bc1ad 773 return num ? -EINVAL : 0;
1da53e02
SE
774}
775
776/*
777 * dogrp: true if must collect siblings events (group)
778 * returns total number of events and error code
779 */
780static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
781{
782 struct perf_event *event;
783 int n, max_count;
784
948b1bb8 785 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
1da53e02
SE
786
787 /* current number of events already accepted */
788 n = cpuc->n_events;
789
790 if (is_x86_event(leader)) {
791 if (n >= max_count)
aa2bc1ad 792 return -EINVAL;
1da53e02
SE
793 cpuc->event_list[n] = leader;
794 n++;
795 }
796 if (!dogrp)
797 return n;
798
799 list_for_each_entry(event, &leader->sibling_list, group_entry) {
800 if (!is_x86_event(event) ||
8113070d 801 event->state <= PERF_EVENT_STATE_OFF)
1da53e02
SE
802 continue;
803
804 if (n >= max_count)
aa2bc1ad 805 return -EINVAL;
1da53e02
SE
806
807 cpuc->event_list[n] = event;
808 n++;
809 }
810 return n;
811}
812
1da53e02 813static inline void x86_assign_hw_event(struct perf_event *event,
447a194b 814 struct cpu_hw_events *cpuc, int i)
1da53e02 815{
447a194b
SE
816 struct hw_perf_event *hwc = &event->hw;
817
818 hwc->idx = cpuc->assign[i];
819 hwc->last_cpu = smp_processor_id();
820 hwc->last_tag = ++cpuc->tags[i];
1da53e02 821
15c7ad51 822 if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
1da53e02
SE
823 hwc->config_base = 0;
824 hwc->event_base = 0;
15c7ad51 825 } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1da53e02 826 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
15c7ad51
RR
827 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
828 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1da53e02 829 } else {
73d6e522
RR
830 hwc->config_base = x86_pmu_config_addr(hwc->idx);
831 hwc->event_base = x86_pmu_event_addr(hwc->idx);
0fbdad07 832 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1da53e02
SE
833 }
834}
835
447a194b
SE
836static inline int match_prev_assignment(struct hw_perf_event *hwc,
837 struct cpu_hw_events *cpuc,
838 int i)
839{
840 return hwc->idx == cpuc->assign[i] &&
841 hwc->last_cpu == smp_processor_id() &&
842 hwc->last_tag == cpuc->tags[i];
843}
844
a4eaf7f1 845static void x86_pmu_start(struct perf_event *event, int flags);
2e841873 846
a4eaf7f1 847static void x86_pmu_enable(struct pmu *pmu)
ee06094f 848{
1da53e02
SE
849 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
850 struct perf_event *event;
851 struct hw_perf_event *hwc;
11164cd4 852 int i, added = cpuc->n_added;
1da53e02 853
85cf9dba 854 if (!x86_pmu_initialized())
2b9ff0db 855 return;
1a6e21f7
PZ
856
857 if (cpuc->enabled)
858 return;
859
1da53e02 860 if (cpuc->n_added) {
19925ce7 861 int n_running = cpuc->n_events - cpuc->n_added;
1da53e02
SE
862 /*
863 * apply assignment obtained either from
864 * hw_perf_group_sched_in() or x86_pmu_enable()
865 *
866 * step1: save events moving to new counters
867 * step2: reprogram moved events into new counters
868 */
19925ce7 869 for (i = 0; i < n_running; i++) {
1da53e02
SE
870 event = cpuc->event_list[i];
871 hwc = &event->hw;
872
447a194b
SE
873 /*
874 * we can avoid reprogramming counter if:
875 * - assigned same counter as last time
876 * - running on same CPU as last time
877 * - no other event has used the counter since
878 */
879 if (hwc->idx == -1 ||
880 match_prev_assignment(hwc, cpuc, i))
1da53e02
SE
881 continue;
882
a4eaf7f1
PZ
883 /*
884 * Ensure we don't accidentally enable a stopped
885 * counter simply because we rescheduled.
886 */
887 if (hwc->state & PERF_HES_STOPPED)
888 hwc->state |= PERF_HES_ARCH;
889
890 x86_pmu_stop(event, PERF_EF_UPDATE);
1da53e02
SE
891 }
892
893 for (i = 0; i < cpuc->n_events; i++) {
1da53e02
SE
894 event = cpuc->event_list[i];
895 hwc = &event->hw;
896
45e16a68 897 if (!match_prev_assignment(hwc, cpuc, i))
447a194b 898 x86_assign_hw_event(event, cpuc, i);
45e16a68
PZ
899 else if (i < n_running)
900 continue;
1da53e02 901
a4eaf7f1
PZ
902 if (hwc->state & PERF_HES_ARCH)
903 continue;
904
905 x86_pmu_start(event, PERF_EF_RELOAD);
1da53e02
SE
906 }
907 cpuc->n_added = 0;
908 perf_events_lapic_init();
909 }
1a6e21f7
PZ
910
911 cpuc->enabled = 1;
912 barrier();
913
11164cd4 914 x86_pmu.enable_all(added);
ee06094f 915}
ee06094f 916
245b2e70 917static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
241771ef 918
ee06094f
IM
919/*
920 * Set the next IRQ period, based on the hwc->period_left value.
cdd6c482 921 * To be called with the event disabled in hw:
ee06094f 922 */
de0428a7 923int x86_perf_event_set_period(struct perf_event *event)
241771ef 924{
07088edb 925 struct hw_perf_event *hwc = &event->hw;
e7850595 926 s64 left = local64_read(&hwc->period_left);
e4abb5d4 927 s64 period = hwc->sample_period;
7645a24c 928 int ret = 0, idx = hwc->idx;
ee06094f 929
15c7ad51 930 if (idx == INTEL_PMC_IDX_FIXED_BTS)
30dd568c
MM
931 return 0;
932
ee06094f 933 /*
af901ca1 934 * If we are way outside a reasonable range then just skip forward:
ee06094f
IM
935 */
936 if (unlikely(left <= -period)) {
937 left = period;
e7850595 938 local64_set(&hwc->period_left, left);
9e350de3 939 hwc->last_period = period;
e4abb5d4 940 ret = 1;
ee06094f
IM
941 }
942
943 if (unlikely(left <= 0)) {
944 left += period;
e7850595 945 local64_set(&hwc->period_left, left);
9e350de3 946 hwc->last_period = period;
e4abb5d4 947 ret = 1;
ee06094f 948 }
1c80f4b5 949 /*
dfc65094 950 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1c80f4b5
IM
951 */
952 if (unlikely(left < 2))
953 left = 2;
241771ef 954
e4abb5d4
PZ
955 if (left > x86_pmu.max_period)
956 left = x86_pmu.max_period;
957
245b2e70 958 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
ee06094f
IM
959
960 /*
cdd6c482 961 * The hw event starts counting from this event offset,
ee06094f
IM
962 * mark it to be able to extra future deltas:
963 */
e7850595 964 local64_set(&hwc->prev_count, (u64)-left);
ee06094f 965
73d6e522 966 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
68aa00ac
CG
967
968 /*
969 * Due to erratum on certan cpu we need
970 * a second write to be sure the register
971 * is updated properly
972 */
973 if (x86_pmu.perfctr_second_write) {
73d6e522 974 wrmsrl(hwc->event_base,
948b1bb8 975 (u64)(-left) & x86_pmu.cntval_mask);
68aa00ac 976 }
e4abb5d4 977
cdd6c482 978 perf_event_update_userpage(event);
194002b2 979
e4abb5d4 980 return ret;
2f18d1e8
IM
981}
982
de0428a7 983void x86_pmu_enable_event(struct perf_event *event)
7c90cc45 984{
0a3aee0d 985 if (__this_cpu_read(cpu_hw_events.enabled))
31fa58af
RR
986 __x86_pmu_enable_event(&event->hw,
987 ARCH_PERFMON_EVENTSEL_ENABLE);
241771ef
IM
988}
989
b690081d 990/*
a4eaf7f1 991 * Add a single event to the PMU.
1da53e02
SE
992 *
993 * The event is added to the group of enabled events
994 * but only if it can be scehduled with existing events.
fe9081cc 995 */
a4eaf7f1 996static int x86_pmu_add(struct perf_event *event, int flags)
fe9081cc
PZ
997{
998 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1da53e02
SE
999 struct hw_perf_event *hwc;
1000 int assign[X86_PMC_IDX_MAX];
1001 int n, n0, ret;
fe9081cc 1002
1da53e02 1003 hwc = &event->hw;
fe9081cc 1004
33696fc0 1005 perf_pmu_disable(event->pmu);
1da53e02 1006 n0 = cpuc->n_events;
24cd7f54
PZ
1007 ret = n = collect_events(cpuc, event, false);
1008 if (ret < 0)
1009 goto out;
53b441a5 1010
a4eaf7f1
PZ
1011 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1012 if (!(flags & PERF_EF_START))
1013 hwc->state |= PERF_HES_ARCH;
1014
4d1c52b0
LM
1015 /*
1016 * If group events scheduling transaction was started,
0d2eb44f 1017 * skip the schedulability test here, it will be performed
a4eaf7f1 1018 * at commit time (->commit_txn) as a whole
4d1c52b0 1019 */
8d2cacbb 1020 if (cpuc->group_flag & PERF_EVENT_TXN)
24cd7f54 1021 goto done_collect;
4d1c52b0 1022
a072738e 1023 ret = x86_pmu.schedule_events(cpuc, n, assign);
1da53e02 1024 if (ret)
24cd7f54 1025 goto out;
1da53e02
SE
1026 /*
1027 * copy new assignment, now we know it is possible
1028 * will be used by hw_perf_enable()
1029 */
1030 memcpy(cpuc->assign, assign, n*sizeof(int));
7e2ae347 1031
24cd7f54 1032done_collect:
1da53e02 1033 cpuc->n_events = n;
356e1f2e 1034 cpuc->n_added += n - n0;
90151c35 1035 cpuc->n_txn += n - n0;
95cdd2e7 1036
24cd7f54
PZ
1037 ret = 0;
1038out:
33696fc0 1039 perf_pmu_enable(event->pmu);
24cd7f54 1040 return ret;
241771ef
IM
1041}
1042
a4eaf7f1 1043static void x86_pmu_start(struct perf_event *event, int flags)
d76a0812 1044{
c08053e6
PZ
1045 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1046 int idx = event->hw.idx;
1047
a4eaf7f1
PZ
1048 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1049 return;
1050
1051 if (WARN_ON_ONCE(idx == -1))
1052 return;
1053
1054 if (flags & PERF_EF_RELOAD) {
1055 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1056 x86_perf_event_set_period(event);
1057 }
1058
1059 event->hw.state = 0;
d76a0812 1060
c08053e6
PZ
1061 cpuc->events[idx] = event;
1062 __set_bit(idx, cpuc->active_mask);
63e6be6d 1063 __set_bit(idx, cpuc->running);
aff3d91a 1064 x86_pmu.enable(event);
c08053e6 1065 perf_event_update_userpage(event);
a78ac325
PZ
1066}
1067
cdd6c482 1068void perf_event_print_debug(void)
241771ef 1069{
2f18d1e8 1070 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
ca037701 1071 u64 pebs;
cdd6c482 1072 struct cpu_hw_events *cpuc;
5bb9efe3 1073 unsigned long flags;
1e125676
IM
1074 int cpu, idx;
1075
948b1bb8 1076 if (!x86_pmu.num_counters)
1e125676 1077 return;
241771ef 1078
5bb9efe3 1079 local_irq_save(flags);
241771ef
IM
1080
1081 cpu = smp_processor_id();
cdd6c482 1082 cpuc = &per_cpu(cpu_hw_events, cpu);
241771ef 1083
faa28ae0 1084 if (x86_pmu.version >= 2) {
a1ef58f4
JSR
1085 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1086 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1087 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1088 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
ca037701 1089 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
a1ef58f4
JSR
1090
1091 pr_info("\n");
1092 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1093 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1094 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1095 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
ca037701 1096 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
f87ad35d 1097 }
7645a24c 1098 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
241771ef 1099
948b1bb8 1100 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
41bf4989
RR
1101 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1102 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
241771ef 1103
245b2e70 1104 prev_left = per_cpu(pmc_prev_left[idx], cpu);
241771ef 1105
a1ef58f4 1106 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
241771ef 1107 cpu, idx, pmc_ctrl);
a1ef58f4 1108 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
241771ef 1109 cpu, idx, pmc_count);
a1ef58f4 1110 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
ee06094f 1111 cpu, idx, prev_left);
241771ef 1112 }
948b1bb8 1113 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
2f18d1e8
IM
1114 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1115
a1ef58f4 1116 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
2f18d1e8
IM
1117 cpu, idx, pmc_count);
1118 }
5bb9efe3 1119 local_irq_restore(flags);
241771ef
IM
1120}
1121
de0428a7 1122void x86_pmu_stop(struct perf_event *event, int flags)
241771ef 1123{
d76a0812 1124 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
cdd6c482 1125 struct hw_perf_event *hwc = &event->hw;
241771ef 1126
a4eaf7f1
PZ
1127 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1128 x86_pmu.disable(event);
1129 cpuc->events[hwc->idx] = NULL;
1130 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1131 hwc->state |= PERF_HES_STOPPED;
1132 }
30dd568c 1133
a4eaf7f1
PZ
1134 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1135 /*
1136 * Drain the remaining delta count out of a event
1137 * that we are disabling:
1138 */
1139 x86_perf_event_update(event);
1140 hwc->state |= PERF_HES_UPTODATE;
1141 }
2e841873
PZ
1142}
1143
a4eaf7f1 1144static void x86_pmu_del(struct perf_event *event, int flags)
2e841873
PZ
1145{
1146 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1147 int i;
1148
90151c35
SE
1149 /*
1150 * If we're called during a txn, we don't need to do anything.
1151 * The events never got scheduled and ->cancel_txn will truncate
1152 * the event_list.
1153 */
8d2cacbb 1154 if (cpuc->group_flag & PERF_EVENT_TXN)
90151c35
SE
1155 return;
1156
a4eaf7f1 1157 x86_pmu_stop(event, PERF_EF_UPDATE);
194002b2 1158
1da53e02
SE
1159 for (i = 0; i < cpuc->n_events; i++) {
1160 if (event == cpuc->event_list[i]) {
1161
1162 if (x86_pmu.put_event_constraints)
1163 x86_pmu.put_event_constraints(cpuc, event);
1164
1165 while (++i < cpuc->n_events)
1166 cpuc->event_list[i-1] = cpuc->event_list[i];
1167
1168 --cpuc->n_events;
6c9687ab 1169 break;
1da53e02
SE
1170 }
1171 }
cdd6c482 1172 perf_event_update_userpage(event);
241771ef
IM
1173}
1174
de0428a7 1175int x86_pmu_handle_irq(struct pt_regs *regs)
a29aa8a7 1176{
df1a132b 1177 struct perf_sample_data data;
cdd6c482
IM
1178 struct cpu_hw_events *cpuc;
1179 struct perf_event *event;
11d1578f 1180 int idx, handled = 0;
9029a5e3
IM
1181 u64 val;
1182
cdd6c482 1183 cpuc = &__get_cpu_var(cpu_hw_events);
962bf7a6 1184
2bce5dac
DZ
1185 /*
1186 * Some chipsets need to unmask the LVTPC in a particular spot
1187 * inside the nmi handler. As a result, the unmasking was pushed
1188 * into all the nmi handlers.
1189 *
1190 * This generic handler doesn't seem to have any issues where the
1191 * unmasking occurs so it was left at the top.
1192 */
1193 apic_write(APIC_LVTPC, APIC_DM_NMI);
1194
948b1bb8 1195 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
63e6be6d
RR
1196 if (!test_bit(idx, cpuc->active_mask)) {
1197 /*
1198 * Though we deactivated the counter some cpus
1199 * might still deliver spurious interrupts still
1200 * in flight. Catch them:
1201 */
1202 if (__test_and_clear_bit(idx, cpuc->running))
1203 handled++;
a29aa8a7 1204 continue;
63e6be6d 1205 }
962bf7a6 1206
cdd6c482 1207 event = cpuc->events[idx];
a4016a79 1208
cc2ad4ba 1209 val = x86_perf_event_update(event);
948b1bb8 1210 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
48e22d56 1211 continue;
962bf7a6 1212
9e350de3 1213 /*
cdd6c482 1214 * event overflow
9e350de3 1215 */
4177c42a 1216 handled++;
fd0d000b 1217 perf_sample_data_init(&data, 0, event->hw.last_period);
9e350de3 1218
07088edb 1219 if (!x86_perf_event_set_period(event))
e4abb5d4
PZ
1220 continue;
1221
a8b0ca17 1222 if (perf_event_overflow(event, &data, regs))
a4eaf7f1 1223 x86_pmu_stop(event, 0);
a29aa8a7 1224 }
962bf7a6 1225
9e350de3
PZ
1226 if (handled)
1227 inc_irq_stat(apic_perf_irqs);
1228
a29aa8a7
RR
1229 return handled;
1230}
39d81eab 1231
cdd6c482 1232void perf_events_lapic_init(void)
241771ef 1233{
04da8a43 1234 if (!x86_pmu.apic || !x86_pmu_initialized())
241771ef 1235 return;
85cf9dba 1236
241771ef 1237 /*
c323d95f 1238 * Always use NMI for PMU
241771ef 1239 */
c323d95f 1240 apic_write(APIC_LVTPC, APIC_DM_NMI);
241771ef
IM
1241}
1242
1243static int __kprobes
9c48f1c6 1244perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
241771ef 1245{
cdd6c482 1246 if (!atomic_read(&active_events))
9c48f1c6 1247 return NMI_DONE;
4177c42a 1248
9c48f1c6 1249 return x86_pmu.handle_irq(regs);
241771ef
IM
1250}
1251
de0428a7
KW
1252struct event_constraint emptyconstraint;
1253struct event_constraint unconstrained;
f87ad35d 1254
3f6da390
PZ
1255static int __cpuinit
1256x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1257{
1258 unsigned int cpu = (long)hcpu;
7fdba1ca 1259 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
b38b24ea 1260 int ret = NOTIFY_OK;
3f6da390
PZ
1261
1262 switch (action & ~CPU_TASKS_FROZEN) {
1263 case CPU_UP_PREPARE:
7fdba1ca 1264 cpuc->kfree_on_online = NULL;
3f6da390 1265 if (x86_pmu.cpu_prepare)
b38b24ea 1266 ret = x86_pmu.cpu_prepare(cpu);
3f6da390
PZ
1267 break;
1268
1269 case CPU_STARTING:
0c9d42ed
PZ
1270 if (x86_pmu.attr_rdpmc)
1271 set_in_cr4(X86_CR4_PCE);
3f6da390
PZ
1272 if (x86_pmu.cpu_starting)
1273 x86_pmu.cpu_starting(cpu);
1274 break;
1275
7fdba1ca
PZ
1276 case CPU_ONLINE:
1277 kfree(cpuc->kfree_on_online);
1278 break;
1279
3f6da390
PZ
1280 case CPU_DYING:
1281 if (x86_pmu.cpu_dying)
1282 x86_pmu.cpu_dying(cpu);
1283 break;
1284
b38b24ea 1285 case CPU_UP_CANCELED:
3f6da390
PZ
1286 case CPU_DEAD:
1287 if (x86_pmu.cpu_dead)
1288 x86_pmu.cpu_dead(cpu);
1289 break;
1290
1291 default:
1292 break;
1293 }
1294
b38b24ea 1295 return ret;
3f6da390
PZ
1296}
1297
12558038
CG
1298static void __init pmu_check_apic(void)
1299{
1300 if (cpu_has_apic)
1301 return;
1302
1303 x86_pmu.apic = 0;
1304 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1305 pr_info("no hardware sampling interrupt available.\n");
1306}
1307
641cc938
JO
1308static struct attribute_group x86_pmu_format_group = {
1309 .name = "format",
1310 .attrs = NULL,
1311};
1312
8300daa2
JO
1313/*
1314 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1315 * out of events_attr attributes.
1316 */
1317static void __init filter_events(struct attribute **attrs)
1318{
3a54aaa0
SE
1319 struct device_attribute *d;
1320 struct perf_pmu_events_attr *pmu_attr;
8300daa2
JO
1321 int i, j;
1322
1323 for (i = 0; attrs[i]; i++) {
3a54aaa0
SE
1324 d = (struct device_attribute *)attrs[i];
1325 pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1326 /* str trumps id */
1327 if (pmu_attr->event_str)
1328 continue;
8300daa2
JO
1329 if (x86_pmu.event_map(i))
1330 continue;
1331
1332 for (j = i; attrs[j]; j++)
1333 attrs[j] = attrs[j + 1];
1334
1335 /* Check the shifted attr. */
1336 i--;
1337 }
1338}
1339
1a6461b1
AK
1340/* Merge two pointer arrays */
1341static __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1342{
1343 struct attribute **new;
1344 int j, i;
1345
1346 for (j = 0; a[j]; j++)
1347 ;
1348 for (i = 0; b[i]; i++)
1349 j++;
1350 j++;
1351
1352 new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1353 if (!new)
1354 return NULL;
1355
1356 j = 0;
1357 for (i = 0; a[i]; i++)
1358 new[j++] = a[i];
1359 for (i = 0; b[i]; i++)
1360 new[j++] = b[i];
1361 new[j] = NULL;
1362
1363 return new;
1364}
1365
95d18aa2 1366static ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr,
a4747393
JO
1367 char *page)
1368{
1369 struct perf_pmu_events_attr *pmu_attr = \
1370 container_of(attr, struct perf_pmu_events_attr, attr);
a4747393 1371 u64 config = x86_pmu.event_map(pmu_attr->id);
a4747393 1372
3a54aaa0
SE
1373 /* string trumps id */
1374 if (pmu_attr->event_str)
1375 return sprintf(page, "%s", pmu_attr->event_str);
a4747393 1376
3a54aaa0
SE
1377 return x86_pmu.events_sysfs_show(page, config);
1378}
a4747393
JO
1379
1380EVENT_ATTR(cpu-cycles, CPU_CYCLES );
1381EVENT_ATTR(instructions, INSTRUCTIONS );
1382EVENT_ATTR(cache-references, CACHE_REFERENCES );
1383EVENT_ATTR(cache-misses, CACHE_MISSES );
1384EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS );
1385EVENT_ATTR(branch-misses, BRANCH_MISSES );
1386EVENT_ATTR(bus-cycles, BUS_CYCLES );
1387EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
1388EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND );
1389EVENT_ATTR(ref-cycles, REF_CPU_CYCLES );
1390
1391static struct attribute *empty_attrs;
1392
95d18aa2 1393static struct attribute *events_attr[] = {
a4747393
JO
1394 EVENT_PTR(CPU_CYCLES),
1395 EVENT_PTR(INSTRUCTIONS),
1396 EVENT_PTR(CACHE_REFERENCES),
1397 EVENT_PTR(CACHE_MISSES),
1398 EVENT_PTR(BRANCH_INSTRUCTIONS),
1399 EVENT_PTR(BRANCH_MISSES),
1400 EVENT_PTR(BUS_CYCLES),
1401 EVENT_PTR(STALLED_CYCLES_FRONTEND),
1402 EVENT_PTR(STALLED_CYCLES_BACKEND),
1403 EVENT_PTR(REF_CPU_CYCLES),
1404 NULL,
1405};
1406
1407static struct attribute_group x86_pmu_events_group = {
1408 .name = "events",
1409 .attrs = events_attr,
1410};
1411
0bf79d44 1412ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
43c032fe 1413{
43c032fe
JO
1414 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1415 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1416 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1417 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1418 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY);
1419 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV);
1420 ssize_t ret;
1421
1422 /*
1423 * We have whole page size to spend and just little data
1424 * to write, so we can safely use sprintf.
1425 */
1426 ret = sprintf(page, "event=0x%02llx", event);
1427
1428 if (umask)
1429 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1430
1431 if (edge)
1432 ret += sprintf(page + ret, ",edge");
1433
1434 if (pc)
1435 ret += sprintf(page + ret, ",pc");
1436
1437 if (any)
1438 ret += sprintf(page + ret, ",any");
1439
1440 if (inv)
1441 ret += sprintf(page + ret, ",inv");
1442
1443 if (cmask)
1444 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1445
1446 ret += sprintf(page + ret, "\n");
1447
1448 return ret;
1449}
1450
dda99116 1451static int __init init_hw_perf_events(void)
b56a3802 1452{
c1d6f42f 1453 struct x86_pmu_quirk *quirk;
72eae04d
RR
1454 int err;
1455
cdd6c482 1456 pr_info("Performance Events: ");
1123e3ad 1457
b56a3802
JSR
1458 switch (boot_cpu_data.x86_vendor) {
1459 case X86_VENDOR_INTEL:
72eae04d 1460 err = intel_pmu_init();
b56a3802 1461 break;
f87ad35d 1462 case X86_VENDOR_AMD:
72eae04d 1463 err = amd_pmu_init();
f87ad35d 1464 break;
4138960a 1465 default:
004417a6 1466 return 0;
b56a3802 1467 }
1123e3ad 1468 if (err != 0) {
cdd6c482 1469 pr_cont("no PMU driver, software events only.\n");
004417a6 1470 return 0;
1123e3ad 1471 }
b56a3802 1472
12558038
CG
1473 pmu_check_apic();
1474
33c6d6a7 1475 /* sanity check that the hardware exists or is emulated */
4407204c 1476 if (!check_hw_exists())
004417a6 1477 return 0;
33c6d6a7 1478
1123e3ad 1479 pr_cont("%s PMU driver.\n", x86_pmu.name);
faa28ae0 1480
c1d6f42f
PZ
1481 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1482 quirk->func();
3c44780b 1483
a1eac7ac
RR
1484 if (!x86_pmu.intel_ctrl)
1485 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
241771ef 1486
cdd6c482 1487 perf_events_lapic_init();
9c48f1c6 1488 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1123e3ad 1489
63b14649 1490 unconstrained = (struct event_constraint)
948b1bb8 1491 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
bc1738f6 1492 0, x86_pmu.num_counters, 0);
63b14649 1493
0c9d42ed 1494 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
641cc938 1495 x86_pmu_format_group.attrs = x86_pmu.format_attrs;
0c9d42ed 1496
a4747393
JO
1497 if (!x86_pmu.events_sysfs_show)
1498 x86_pmu_events_group.attrs = &empty_attrs;
8300daa2
JO
1499 else
1500 filter_events(x86_pmu_events_group.attrs);
a4747393 1501
1a6461b1
AK
1502 if (x86_pmu.cpu_events) {
1503 struct attribute **tmp;
1504
1505 tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1506 if (!WARN_ON(!tmp))
1507 x86_pmu_events_group.attrs = tmp;
1508 }
1509
57c0c15b 1510 pr_info("... version: %d\n", x86_pmu.version);
948b1bb8
RR
1511 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1512 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1513 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
57c0c15b 1514 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
948b1bb8 1515 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
d6dc0b4e 1516 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
3f6da390 1517
2e80a82a 1518 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
3f6da390 1519 perf_cpu_notifier(x86_pmu_notifier);
004417a6
PZ
1520
1521 return 0;
241771ef 1522}
004417a6 1523early_initcall(init_hw_perf_events);
621a01ea 1524
cdd6c482 1525static inline void x86_pmu_read(struct perf_event *event)
ee06094f 1526{
cc2ad4ba 1527 x86_perf_event_update(event);
ee06094f
IM
1528}
1529
4d1c52b0
LM
1530/*
1531 * Start group events scheduling transaction
1532 * Set the flag to make pmu::enable() not perform the
1533 * schedulability test, it will be performed at commit time
1534 */
51b0fe39 1535static void x86_pmu_start_txn(struct pmu *pmu)
4d1c52b0 1536{
33696fc0 1537 perf_pmu_disable(pmu);
0a3aee0d
TH
1538 __this_cpu_or(cpu_hw_events.group_flag, PERF_EVENT_TXN);
1539 __this_cpu_write(cpu_hw_events.n_txn, 0);
4d1c52b0
LM
1540}
1541
1542/*
1543 * Stop group events scheduling transaction
1544 * Clear the flag and pmu::enable() will perform the
1545 * schedulability test.
1546 */
51b0fe39 1547static void x86_pmu_cancel_txn(struct pmu *pmu)
4d1c52b0 1548{
0a3aee0d 1549 __this_cpu_and(cpu_hw_events.group_flag, ~PERF_EVENT_TXN);
90151c35
SE
1550 /*
1551 * Truncate the collected events.
1552 */
0a3aee0d
TH
1553 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1554 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
33696fc0 1555 perf_pmu_enable(pmu);
4d1c52b0
LM
1556}
1557
1558/*
1559 * Commit group events scheduling transaction
1560 * Perform the group schedulability test as a whole
1561 * Return 0 if success
1562 */
51b0fe39 1563static int x86_pmu_commit_txn(struct pmu *pmu)
4d1c52b0
LM
1564{
1565 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1566 int assign[X86_PMC_IDX_MAX];
1567 int n, ret;
1568
1569 n = cpuc->n_events;
1570
1571 if (!x86_pmu_initialized())
1572 return -EAGAIN;
1573
1574 ret = x86_pmu.schedule_events(cpuc, n, assign);
1575 if (ret)
1576 return ret;
1577
1578 /*
1579 * copy new assignment, now we know it is possible
1580 * will be used by hw_perf_enable()
1581 */
1582 memcpy(cpuc->assign, assign, n*sizeof(int));
1583
8d2cacbb 1584 cpuc->group_flag &= ~PERF_EVENT_TXN;
33696fc0 1585 perf_pmu_enable(pmu);
4d1c52b0
LM
1586 return 0;
1587}
cd8a38d3
SE
1588/*
1589 * a fake_cpuc is used to validate event groups. Due to
1590 * the extra reg logic, we need to also allocate a fake
1591 * per_core and per_cpu structure. Otherwise, group events
1592 * using extra reg may conflict without the kernel being
1593 * able to catch this when the last event gets added to
1594 * the group.
1595 */
1596static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1597{
1598 kfree(cpuc->shared_regs);
1599 kfree(cpuc);
1600}
1601
1602static struct cpu_hw_events *allocate_fake_cpuc(void)
1603{
1604 struct cpu_hw_events *cpuc;
1605 int cpu = raw_smp_processor_id();
1606
1607 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1608 if (!cpuc)
1609 return ERR_PTR(-ENOMEM);
1610
1611 /* only needed, if we have extra_regs */
1612 if (x86_pmu.extra_regs) {
1613 cpuc->shared_regs = allocate_shared_regs(cpu);
1614 if (!cpuc->shared_regs)
1615 goto error;
1616 }
b430f7c4 1617 cpuc->is_fake = 1;
cd8a38d3
SE
1618 return cpuc;
1619error:
1620 free_fake_cpuc(cpuc);
1621 return ERR_PTR(-ENOMEM);
1622}
4d1c52b0 1623
ca037701
PZ
1624/*
1625 * validate that we can schedule this event
1626 */
1627static int validate_event(struct perf_event *event)
1628{
1629 struct cpu_hw_events *fake_cpuc;
1630 struct event_constraint *c;
1631 int ret = 0;
1632
cd8a38d3
SE
1633 fake_cpuc = allocate_fake_cpuc();
1634 if (IS_ERR(fake_cpuc))
1635 return PTR_ERR(fake_cpuc);
ca037701
PZ
1636
1637 c = x86_pmu.get_event_constraints(fake_cpuc, event);
1638
1639 if (!c || !c->weight)
aa2bc1ad 1640 ret = -EINVAL;
ca037701
PZ
1641
1642 if (x86_pmu.put_event_constraints)
1643 x86_pmu.put_event_constraints(fake_cpuc, event);
1644
cd8a38d3 1645 free_fake_cpuc(fake_cpuc);
ca037701
PZ
1646
1647 return ret;
1648}
1649
1da53e02
SE
1650/*
1651 * validate a single event group
1652 *
1653 * validation include:
184f412c
IM
1654 * - check events are compatible which each other
1655 * - events do not compete for the same counter
1656 * - number of events <= number of counters
1da53e02
SE
1657 *
1658 * validation ensures the group can be loaded onto the
1659 * PMU if it was the only group available.
1660 */
fe9081cc
PZ
1661static int validate_group(struct perf_event *event)
1662{
1da53e02 1663 struct perf_event *leader = event->group_leader;
502568d5 1664 struct cpu_hw_events *fake_cpuc;
aa2bc1ad 1665 int ret = -EINVAL, n;
fe9081cc 1666
cd8a38d3
SE
1667 fake_cpuc = allocate_fake_cpuc();
1668 if (IS_ERR(fake_cpuc))
1669 return PTR_ERR(fake_cpuc);
1da53e02
SE
1670 /*
1671 * the event is not yet connected with its
1672 * siblings therefore we must first collect
1673 * existing siblings, then add the new event
1674 * before we can simulate the scheduling
1675 */
502568d5 1676 n = collect_events(fake_cpuc, leader, true);
1da53e02 1677 if (n < 0)
cd8a38d3 1678 goto out;
fe9081cc 1679
502568d5
PZ
1680 fake_cpuc->n_events = n;
1681 n = collect_events(fake_cpuc, event, false);
1da53e02 1682 if (n < 0)
cd8a38d3 1683 goto out;
fe9081cc 1684
502568d5 1685 fake_cpuc->n_events = n;
1da53e02 1686
a072738e 1687 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
502568d5 1688
502568d5 1689out:
cd8a38d3 1690 free_fake_cpuc(fake_cpuc);
502568d5 1691 return ret;
fe9081cc
PZ
1692}
1693
dda99116 1694static int x86_pmu_event_init(struct perf_event *event)
621a01ea 1695{
51b0fe39 1696 struct pmu *tmp;
621a01ea
IM
1697 int err;
1698
b0a873eb
PZ
1699 switch (event->attr.type) {
1700 case PERF_TYPE_RAW:
1701 case PERF_TYPE_HARDWARE:
1702 case PERF_TYPE_HW_CACHE:
1703 break;
1704
1705 default:
1706 return -ENOENT;
1707 }
1708
1709 err = __x86_pmu_event_init(event);
fe9081cc 1710 if (!err) {
8113070d
SE
1711 /*
1712 * we temporarily connect event to its pmu
1713 * such that validate_group() can classify
1714 * it as an x86 event using is_x86_event()
1715 */
1716 tmp = event->pmu;
1717 event->pmu = &pmu;
1718
fe9081cc
PZ
1719 if (event->group_leader != event)
1720 err = validate_group(event);
ca037701
PZ
1721 else
1722 err = validate_event(event);
8113070d
SE
1723
1724 event->pmu = tmp;
fe9081cc 1725 }
a1792cda 1726 if (err) {
cdd6c482
IM
1727 if (event->destroy)
1728 event->destroy(event);
a1792cda 1729 }
621a01ea 1730
b0a873eb 1731 return err;
621a01ea 1732}
d7d59fb3 1733
fe4a3308
PZ
1734static int x86_pmu_event_idx(struct perf_event *event)
1735{
1736 int idx = event->hw.idx;
1737
c7206205
PZ
1738 if (!x86_pmu.attr_rdpmc)
1739 return 0;
1740
15c7ad51
RR
1741 if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
1742 idx -= INTEL_PMC_IDX_FIXED;
fe4a3308
PZ
1743 idx |= 1 << 30;
1744 }
1745
1746 return idx + 1;
1747}
1748
0c9d42ed
PZ
1749static ssize_t get_attr_rdpmc(struct device *cdev,
1750 struct device_attribute *attr,
1751 char *buf)
1752{
1753 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
1754}
1755
1756static void change_rdpmc(void *info)
1757{
1758 bool enable = !!(unsigned long)info;
1759
1760 if (enable)
1761 set_in_cr4(X86_CR4_PCE);
1762 else
1763 clear_in_cr4(X86_CR4_PCE);
1764}
1765
1766static ssize_t set_attr_rdpmc(struct device *cdev,
1767 struct device_attribute *attr,
1768 const char *buf, size_t count)
1769{
e2b297fc
SK
1770 unsigned long val;
1771 ssize_t ret;
1772
1773 ret = kstrtoul(buf, 0, &val);
1774 if (ret)
1775 return ret;
0c9d42ed
PZ
1776
1777 if (!!val != !!x86_pmu.attr_rdpmc) {
1778 x86_pmu.attr_rdpmc = !!val;
1779 smp_call_function(change_rdpmc, (void *)val, 1);
1780 }
1781
1782 return count;
1783}
1784
1785static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
1786
1787static struct attribute *x86_pmu_attrs[] = {
1788 &dev_attr_rdpmc.attr,
1789 NULL,
1790};
1791
1792static struct attribute_group x86_pmu_attr_group = {
1793 .attrs = x86_pmu_attrs,
1794};
1795
1796static const struct attribute_group *x86_pmu_attr_groups[] = {
1797 &x86_pmu_attr_group,
641cc938 1798 &x86_pmu_format_group,
a4747393 1799 &x86_pmu_events_group,
0c9d42ed
PZ
1800 NULL,
1801};
1802
d010b332
SE
1803static void x86_pmu_flush_branch_stack(void)
1804{
1805 if (x86_pmu.flush_branch_stack)
1806 x86_pmu.flush_branch_stack();
1807}
1808
c93dc84c
PZ
1809void perf_check_microcode(void)
1810{
1811 if (x86_pmu.check_microcode)
1812 x86_pmu.check_microcode();
1813}
1814EXPORT_SYMBOL_GPL(perf_check_microcode);
1815
b0a873eb 1816static struct pmu pmu = {
d010b332
SE
1817 .pmu_enable = x86_pmu_enable,
1818 .pmu_disable = x86_pmu_disable,
a4eaf7f1 1819
c93dc84c 1820 .attr_groups = x86_pmu_attr_groups,
0c9d42ed 1821
c93dc84c 1822 .event_init = x86_pmu_event_init,
a4eaf7f1 1823
d010b332
SE
1824 .add = x86_pmu_add,
1825 .del = x86_pmu_del,
1826 .start = x86_pmu_start,
1827 .stop = x86_pmu_stop,
1828 .read = x86_pmu_read,
a4eaf7f1 1829
c93dc84c
PZ
1830 .start_txn = x86_pmu_start_txn,
1831 .cancel_txn = x86_pmu_cancel_txn,
1832 .commit_txn = x86_pmu_commit_txn,
fe4a3308 1833
c93dc84c 1834 .event_idx = x86_pmu_event_idx,
d010b332 1835 .flush_branch_stack = x86_pmu_flush_branch_stack,
b0a873eb
PZ
1836};
1837
c7206205 1838void arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
e3f3541c 1839{
c7206205
PZ
1840 userpg->cap_usr_time = 0;
1841 userpg->cap_usr_rdpmc = x86_pmu.attr_rdpmc;
1842 userpg->pmc_width = x86_pmu.cntval_bits;
1843
e3f3541c
PZ
1844 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1845 return;
1846
1847 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
1848 return;
1849
c7206205 1850 userpg->cap_usr_time = 1;
e3f3541c
PZ
1851 userpg->time_mult = this_cpu_read(cyc2ns);
1852 userpg->time_shift = CYC2NS_SCALE_FACTOR;
1853 userpg->time_offset = this_cpu_read(cyc2ns_offset) - now;
1854}
1855
d7d59fb3
PZ
1856/*
1857 * callchain support
1858 */
1859
d7d59fb3
PZ
1860static int backtrace_stack(void *data, char *name)
1861{
038e836e 1862 return 0;
d7d59fb3
PZ
1863}
1864
1865static void backtrace_address(void *data, unsigned long addr, int reliable)
1866{
1867 struct perf_callchain_entry *entry = data;
1868
70791ce9 1869 perf_callchain_store(entry, addr);
d7d59fb3
PZ
1870}
1871
1872static const struct stacktrace_ops backtrace_ops = {
d7d59fb3
PZ
1873 .stack = backtrace_stack,
1874 .address = backtrace_address,
06d65bda 1875 .walk_stack = print_context_stack_bp,
d7d59fb3
PZ
1876};
1877
56962b44
FW
1878void
1879perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
d7d59fb3 1880{
927c7a9e
FW
1881 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1882 /* TODO: We don't support guest os callchain now */
ed805261 1883 return;
927c7a9e
FW
1884 }
1885
70791ce9 1886 perf_callchain_store(entry, regs->ip);
d7d59fb3 1887
e8e999cf 1888 dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
d7d59fb3
PZ
1889}
1890
bc6ca7b3
AS
1891static inline int
1892valid_user_frame(const void __user *fp, unsigned long size)
1893{
1894 return (__range_not_ok(fp, size, TASK_SIZE) == 0);
1895}
1896
d07bdfd3
PZ
1897static unsigned long get_segment_base(unsigned int segment)
1898{
1899 struct desc_struct *desc;
1900 int idx = segment >> 3;
1901
1902 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1903 if (idx > LDT_ENTRIES)
1904 return 0;
1905
1906 if (idx > current->active_mm->context.size)
1907 return 0;
1908
1909 desc = current->active_mm->context.ldt;
1910 } else {
1911 if (idx > GDT_ENTRIES)
1912 return 0;
1913
1914 desc = __this_cpu_ptr(&gdt_page.gdt[0]);
1915 }
1916
1917 return get_desc_base(desc + idx);
1918}
1919
257ef9d2 1920#ifdef CONFIG_COMPAT
d1a797f3
PA
1921
1922#include <asm/compat.h>
1923
257ef9d2
TE
1924static inline int
1925perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
74193ef0 1926{
257ef9d2 1927 /* 32-bit process in 64-bit kernel. */
d07bdfd3 1928 unsigned long ss_base, cs_base;
257ef9d2
TE
1929 struct stack_frame_ia32 frame;
1930 const void __user *fp;
74193ef0 1931
257ef9d2
TE
1932 if (!test_thread_flag(TIF_IA32))
1933 return 0;
1934
d07bdfd3
PZ
1935 cs_base = get_segment_base(regs->cs);
1936 ss_base = get_segment_base(regs->ss);
1937
1938 fp = compat_ptr(ss_base + regs->bp);
257ef9d2
TE
1939 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1940 unsigned long bytes;
1941 frame.next_frame = 0;
1942 frame.return_address = 0;
1943
1944 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1945 if (bytes != sizeof(frame))
1946 break;
74193ef0 1947
bc6ca7b3
AS
1948 if (!valid_user_frame(fp, sizeof(frame)))
1949 break;
1950
d07bdfd3
PZ
1951 perf_callchain_store(entry, cs_base + frame.return_address);
1952 fp = compat_ptr(ss_base + frame.next_frame);
257ef9d2
TE
1953 }
1954 return 1;
d7d59fb3 1955}
257ef9d2
TE
1956#else
1957static inline int
1958perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1959{
1960 return 0;
1961}
1962#endif
d7d59fb3 1963
56962b44
FW
1964void
1965perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
d7d59fb3
PZ
1966{
1967 struct stack_frame frame;
1968 const void __user *fp;
1969
927c7a9e
FW
1970 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1971 /* TODO: We don't support guest os callchain now */
ed805261 1972 return;
927c7a9e 1973 }
5a6cec3a 1974
d07bdfd3
PZ
1975 /*
1976 * We don't know what to do with VM86 stacks.. ignore them for now.
1977 */
1978 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
1979 return;
1980
74193ef0 1981 fp = (void __user *)regs->bp;
d7d59fb3 1982
70791ce9 1983 perf_callchain_store(entry, regs->ip);
d7d59fb3 1984
20afc60f
AV
1985 if (!current->mm)
1986 return;
1987
257ef9d2
TE
1988 if (perf_callchain_user32(regs, entry))
1989 return;
1990
f9188e02 1991 while (entry->nr < PERF_MAX_STACK_DEPTH) {
257ef9d2 1992 unsigned long bytes;
038e836e 1993 frame.next_frame = NULL;
d7d59fb3
PZ
1994 frame.return_address = 0;
1995
257ef9d2
TE
1996 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1997 if (bytes != sizeof(frame))
d7d59fb3
PZ
1998 break;
1999
bc6ca7b3
AS
2000 if (!valid_user_frame(fp, sizeof(frame)))
2001 break;
2002
70791ce9 2003 perf_callchain_store(entry, frame.return_address);
038e836e 2004 fp = frame.next_frame;
d7d59fb3
PZ
2005 }
2006}
2007
d07bdfd3
PZ
2008/*
2009 * Deal with code segment offsets for the various execution modes:
2010 *
2011 * VM86 - the good olde 16 bit days, where the linear address is
2012 * 20 bits and we use regs->ip + 0x10 * regs->cs.
2013 *
2014 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
2015 * to figure out what the 32bit base address is.
2016 *
2017 * X32 - has TIF_X32 set, but is running in x86_64
2018 *
2019 * X86_64 - CS,DS,SS,ES are all zero based.
2020 */
2021static unsigned long code_segment_base(struct pt_regs *regs)
39447b38 2022{
d07bdfd3
PZ
2023 /*
2024 * If we are in VM86 mode, add the segment offset to convert to a
2025 * linear address.
2026 */
2027 if (regs->flags & X86_VM_MASK)
2028 return 0x10 * regs->cs;
2029
2030 /*
2031 * For IA32 we look at the GDT/LDT segment base to convert the
2032 * effective IP to a linear address.
2033 */
2034#ifdef CONFIG_X86_32
2035 if (user_mode(regs) && regs->cs != __USER_CS)
2036 return get_segment_base(regs->cs);
2037#else
2038 if (test_thread_flag(TIF_IA32)) {
2039 if (user_mode(regs) && regs->cs != __USER32_CS)
2040 return get_segment_base(regs->cs);
2041 }
2042#endif
2043 return 0;
2044}
dcf46b94 2045
d07bdfd3
PZ
2046unsigned long perf_instruction_pointer(struct pt_regs *regs)
2047{
39447b38 2048 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
d07bdfd3 2049 return perf_guest_cbs->get_guest_ip();
dcf46b94 2050
d07bdfd3 2051 return regs->ip + code_segment_base(regs);
39447b38
ZY
2052}
2053
2054unsigned long perf_misc_flags(struct pt_regs *regs)
2055{
2056 int misc = 0;
dcf46b94 2057
39447b38 2058 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
dcf46b94
ZY
2059 if (perf_guest_cbs->is_user_mode())
2060 misc |= PERF_RECORD_MISC_GUEST_USER;
2061 else
2062 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2063 } else {
d07bdfd3 2064 if (user_mode(regs))
dcf46b94
ZY
2065 misc |= PERF_RECORD_MISC_USER;
2066 else
2067 misc |= PERF_RECORD_MISC_KERNEL;
2068 }
2069
39447b38 2070 if (regs->flags & PERF_EFLAGS_EXACT)
ab608344 2071 misc |= PERF_RECORD_MISC_EXACT_IP;
39447b38
ZY
2072
2073 return misc;
2074}
b3d9468a
GN
2075
2076void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2077{
2078 cap->version = x86_pmu.version;
2079 cap->num_counters_gp = x86_pmu.num_counters;
2080 cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2081 cap->bit_width_gp = x86_pmu.cntval_bits;
2082 cap->bit_width_fixed = x86_pmu.cntval_bits;
2083 cap->events_mask = (unsigned int)x86_pmu.events_maskl;
2084 cap->events_mask_len = x86_pmu.events_mask_len;
2085}
2086EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);