]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/kernel/cpu/perf_event.c
perf: Add group scheduling transactional APIs
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / cpu / perf_event.c
CommitLineData
241771ef 1/*
cdd6c482 2 * Performance events x86 architecture code
241771ef 3 *
98144511
IM
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
30dd568c 9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
1da53e02 10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
241771ef
IM
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
cdd6c482 15#include <linux/perf_event.h>
241771ef
IM
16#include <linux/capability.h>
17#include <linux/notifier.h>
18#include <linux/hardirq.h>
19#include <linux/kprobes.h>
4ac13294 20#include <linux/module.h>
241771ef
IM
21#include <linux/kdebug.h>
22#include <linux/sched.h>
d7d59fb3 23#include <linux/uaccess.h>
5a0e3ad6 24#include <linux/slab.h>
74193ef0 25#include <linux/highmem.h>
30dd568c 26#include <linux/cpu.h>
272d30be 27#include <linux/bitops.h>
241771ef 28
241771ef 29#include <asm/apic.h>
d7d59fb3 30#include <asm/stacktrace.h>
4e935e47 31#include <asm/nmi.h>
257ef9d2 32#include <asm/compat.h>
241771ef 33
7645a24c
PZ
34#if 0
35#undef wrmsrl
36#define wrmsrl(msr, val) \
37do { \
38 trace_printk("wrmsrl(%lx, %lx)\n", (unsigned long)(msr),\
39 (unsigned long)(val)); \
40 native_write_msr((msr), (u32)((u64)(val)), \
41 (u32)((u64)(val) >> 32)); \
42} while (0)
43#endif
44
ef21f683
PZ
45/*
46 * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
47 */
48static unsigned long
49copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
50{
51 unsigned long offset, addr = (unsigned long)from;
52 int type = in_nmi() ? KM_NMI : KM_IRQ0;
53 unsigned long size, len = 0;
54 struct page *page;
55 void *map;
56 int ret;
57
58 do {
59 ret = __get_user_pages_fast(addr, 1, 0, &page);
60 if (!ret)
61 break;
62
63 offset = addr & (PAGE_SIZE - 1);
64 size = min(PAGE_SIZE - offset, n - len);
65
66 map = kmap_atomic(page, type);
67 memcpy(to, map+offset, size);
68 kunmap_atomic(map, type);
69 put_page(page);
70
71 len += size;
72 to += size;
73 addr += size;
74
75 } while (len < n);
76
77 return len;
78}
79
1da53e02 80struct event_constraint {
c91e0f5d
PZ
81 union {
82 unsigned long idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
b622d644 83 u64 idxmsk64;
c91e0f5d 84 };
b622d644
PZ
85 u64 code;
86 u64 cmask;
272d30be 87 int weight;
1da53e02
SE
88};
89
38331f62
SE
90struct amd_nb {
91 int nb_id; /* NorthBridge id */
92 int refcnt; /* reference count */
93 struct perf_event *owners[X86_PMC_IDX_MAX];
94 struct event_constraint event_constraints[X86_PMC_IDX_MAX];
95};
96
caff2bef
PZ
97#define MAX_LBR_ENTRIES 16
98
cdd6c482 99struct cpu_hw_events {
ca037701
PZ
100 /*
101 * Generic x86 PMC bits
102 */
1da53e02 103 struct perf_event *events[X86_PMC_IDX_MAX]; /* in counter order */
43f6201a 104 unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
b0f3f28e 105 int enabled;
241771ef 106
1da53e02
SE
107 int n_events;
108 int n_added;
109 int assign[X86_PMC_IDX_MAX]; /* event to counter assignment */
447a194b 110 u64 tags[X86_PMC_IDX_MAX];
1da53e02 111 struct perf_event *event_list[X86_PMC_IDX_MAX]; /* in enabled order */
ca037701
PZ
112
113 /*
114 * Intel DebugStore bits
115 */
116 struct debug_store *ds;
117 u64 pebs_enabled;
118
caff2bef
PZ
119 /*
120 * Intel LBR bits
121 */
122 int lbr_users;
123 void *lbr_context;
124 struct perf_branch_stack lbr_stack;
125 struct perf_branch_entry lbr_entries[MAX_LBR_ENTRIES];
126
ca037701
PZ
127 /*
128 * AMD specific bits
129 */
38331f62 130 struct amd_nb *amd_nb;
b690081d
SE
131};
132
fce877e3 133#define __EVENT_CONSTRAINT(c, n, m, w) {\
b622d644 134 { .idxmsk64 = (n) }, \
c91e0f5d
PZ
135 .code = (c), \
136 .cmask = (m), \
fce877e3 137 .weight = (w), \
c91e0f5d 138}
b690081d 139
fce877e3
PZ
140#define EVENT_CONSTRAINT(c, n, m) \
141 __EVENT_CONSTRAINT(c, n, m, HWEIGHT(n))
142
ca037701
PZ
143/*
144 * Constraint on the Event code.
145 */
ed8777fc 146#define INTEL_EVENT_CONSTRAINT(c, n) \
a098f448 147 EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT)
8433be11 148
ca037701
PZ
149/*
150 * Constraint on the Event code + UMask + fixed-mask
a098f448
RR
151 *
152 * filter mask to validate fixed counter events.
153 * the following filters disqualify for fixed counters:
154 * - inv
155 * - edge
156 * - cnt-mask
157 * The other filters are supported by fixed counters.
158 * The any-thread option is supported starting with v3.
ca037701 159 */
ed8777fc 160#define FIXED_EVENT_CONSTRAINT(c, n) \
a098f448 161 EVENT_CONSTRAINT(c, (1ULL << (32+n)), X86_RAW_EVENT_MASK)
8433be11 162
ca037701
PZ
163/*
164 * Constraint on the Event code + UMask
165 */
166#define PEBS_EVENT_CONSTRAINT(c, n) \
167 EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK)
168
ed8777fc
PZ
169#define EVENT_CONSTRAINT_END \
170 EVENT_CONSTRAINT(0, 0, 0)
171
172#define for_each_event_constraint(e, c) \
a1f2b70a 173 for ((e) = (c); (e)->weight; (e)++)
b690081d 174
8db909a7
PZ
175union perf_capabilities {
176 struct {
177 u64 lbr_format : 6;
178 u64 pebs_trap : 1;
179 u64 pebs_arch_reg : 1;
180 u64 pebs_format : 4;
181 u64 smm_freeze : 1;
182 };
183 u64 capabilities;
184};
185
241771ef 186/*
5f4ec28f 187 * struct x86_pmu - generic x86 pmu
241771ef 188 */
5f4ec28f 189struct x86_pmu {
ca037701
PZ
190 /*
191 * Generic x86 PMC bits
192 */
faa28ae0
RR
193 const char *name;
194 int version;
a3288106 195 int (*handle_irq)(struct pt_regs *);
9e35ad38 196 void (*disable_all)(void);
11164cd4 197 void (*enable_all)(int added);
aff3d91a
PZ
198 void (*enable)(struct perf_event *);
199 void (*disable)(struct perf_event *);
b4cdc5c2 200 int (*hw_config)(struct perf_event *event);
a072738e 201 int (*schedule_events)(struct cpu_hw_events *cpuc, int n, int *assign);
169e41eb
JSR
202 unsigned eventsel;
203 unsigned perfctr;
b0f3f28e 204 u64 (*event_map)(int);
169e41eb 205 int max_events;
948b1bb8
RR
206 int num_counters;
207 int num_counters_fixed;
208 int cntval_bits;
209 u64 cntval_mask;
04da8a43 210 int apic;
c619b8ff 211 u64 max_period;
63b14649
PZ
212 struct event_constraint *
213 (*get_event_constraints)(struct cpu_hw_events *cpuc,
214 struct perf_event *event);
215
c91e0f5d
PZ
216 void (*put_event_constraints)(struct cpu_hw_events *cpuc,
217 struct perf_event *event);
63b14649 218 struct event_constraint *event_constraints;
3c44780b 219 void (*quirks)(void);
3f6da390 220
b38b24ea 221 int (*cpu_prepare)(int cpu);
3f6da390
PZ
222 void (*cpu_starting)(int cpu);
223 void (*cpu_dying)(int cpu);
224 void (*cpu_dead)(int cpu);
ca037701
PZ
225
226 /*
227 * Intel Arch Perfmon v2+
228 */
8db909a7
PZ
229 u64 intel_ctrl;
230 union perf_capabilities intel_cap;
ca037701
PZ
231
232 /*
233 * Intel DebugStore bits
234 */
235 int bts, pebs;
236 int pebs_record_size;
237 void (*drain_pebs)(struct pt_regs *regs);
238 struct event_constraint *pebs_constraints;
caff2bef
PZ
239
240 /*
241 * Intel LBR
242 */
243 unsigned long lbr_tos, lbr_from, lbr_to; /* MSR base regs */
244 int lbr_nr; /* hardware stack size */
b56a3802
JSR
245};
246
4a06bd85 247static struct x86_pmu x86_pmu __read_mostly;
b56a3802 248
cdd6c482 249static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
b0f3f28e
PZ
250 .enabled = 1,
251};
241771ef 252
07088edb 253static int x86_perf_event_set_period(struct perf_event *event);
b690081d 254
8326f44d 255/*
dfc65094 256 * Generalized hw caching related hw_event table, filled
8326f44d 257 * in on a per model basis. A value of 0 means
dfc65094
IM
258 * 'not supported', -1 means 'hw_event makes no sense on
259 * this CPU', any other value means the raw hw_event
8326f44d
IM
260 * ID.
261 */
262
263#define C(x) PERF_COUNT_HW_CACHE_##x
264
265static u64 __read_mostly hw_cache_event_ids
266 [PERF_COUNT_HW_CACHE_MAX]
267 [PERF_COUNT_HW_CACHE_OP_MAX]
268 [PERF_COUNT_HW_CACHE_RESULT_MAX];
269
ee06094f 270/*
cdd6c482
IM
271 * Propagate event elapsed time into the generic event.
272 * Can only be executed on the CPU where the event is active.
ee06094f
IM
273 * Returns the delta events processed.
274 */
4b7bfd0d 275static u64
cc2ad4ba 276x86_perf_event_update(struct perf_event *event)
ee06094f 277{
cc2ad4ba 278 struct hw_perf_event *hwc = &event->hw;
948b1bb8 279 int shift = 64 - x86_pmu.cntval_bits;
ec3232bd 280 u64 prev_raw_count, new_raw_count;
cc2ad4ba 281 int idx = hwc->idx;
ec3232bd 282 s64 delta;
ee06094f 283
30dd568c
MM
284 if (idx == X86_PMC_IDX_FIXED_BTS)
285 return 0;
286
ee06094f 287 /*
cdd6c482 288 * Careful: an NMI might modify the previous event value.
ee06094f
IM
289 *
290 * Our tactic to handle this is to first atomically read and
291 * exchange a new raw count - then add that new-prev delta
cdd6c482 292 * count to the generic event atomically:
ee06094f
IM
293 */
294again:
295 prev_raw_count = atomic64_read(&hwc->prev_count);
cdd6c482 296 rdmsrl(hwc->event_base + idx, new_raw_count);
ee06094f
IM
297
298 if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
299 new_raw_count) != prev_raw_count)
300 goto again;
301
302 /*
303 * Now we have the new raw value and have updated the prev
304 * timestamp already. We can now calculate the elapsed delta
cdd6c482 305 * (event-)time and add that to the generic event.
ee06094f
IM
306 *
307 * Careful, not all hw sign-extends above the physical width
ec3232bd 308 * of the count.
ee06094f 309 */
ec3232bd
PZ
310 delta = (new_raw_count << shift) - (prev_raw_count << shift);
311 delta >>= shift;
ee06094f 312
cdd6c482 313 atomic64_add(delta, &event->count);
ee06094f 314 atomic64_sub(delta, &hwc->period_left);
4b7bfd0d
RR
315
316 return new_raw_count;
ee06094f
IM
317}
318
cdd6c482 319static atomic_t active_events;
4e935e47
PZ
320static DEFINE_MUTEX(pmc_reserve_mutex);
321
b27ea29c
RR
322#ifdef CONFIG_X86_LOCAL_APIC
323
4e935e47
PZ
324static bool reserve_pmc_hardware(void)
325{
326 int i;
327
328 if (nmi_watchdog == NMI_LOCAL_APIC)
329 disable_lapic_nmi_watchdog();
330
948b1bb8 331 for (i = 0; i < x86_pmu.num_counters; i++) {
4a06bd85 332 if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
4e935e47
PZ
333 goto perfctr_fail;
334 }
335
948b1bb8 336 for (i = 0; i < x86_pmu.num_counters; i++) {
4a06bd85 337 if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
4e935e47
PZ
338 goto eventsel_fail;
339 }
340
341 return true;
342
343eventsel_fail:
344 for (i--; i >= 0; i--)
4a06bd85 345 release_evntsel_nmi(x86_pmu.eventsel + i);
4e935e47 346
948b1bb8 347 i = x86_pmu.num_counters;
4e935e47
PZ
348
349perfctr_fail:
350 for (i--; i >= 0; i--)
4a06bd85 351 release_perfctr_nmi(x86_pmu.perfctr + i);
4e935e47
PZ
352
353 if (nmi_watchdog == NMI_LOCAL_APIC)
354 enable_lapic_nmi_watchdog();
355
356 return false;
357}
358
359static void release_pmc_hardware(void)
360{
361 int i;
362
948b1bb8 363 for (i = 0; i < x86_pmu.num_counters; i++) {
4a06bd85
RR
364 release_perfctr_nmi(x86_pmu.perfctr + i);
365 release_evntsel_nmi(x86_pmu.eventsel + i);
4e935e47
PZ
366 }
367
368 if (nmi_watchdog == NMI_LOCAL_APIC)
369 enable_lapic_nmi_watchdog();
370}
371
b27ea29c
RR
372#else
373
374static bool reserve_pmc_hardware(void) { return true; }
375static void release_pmc_hardware(void) {}
376
377#endif
378
ca037701
PZ
379static int reserve_ds_buffers(void);
380static void release_ds_buffers(void);
30dd568c 381
cdd6c482 382static void hw_perf_event_destroy(struct perf_event *event)
4e935e47 383{
cdd6c482 384 if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
4e935e47 385 release_pmc_hardware();
ca037701 386 release_ds_buffers();
4e935e47
PZ
387 mutex_unlock(&pmc_reserve_mutex);
388 }
389}
390
85cf9dba
RR
391static inline int x86_pmu_initialized(void)
392{
393 return x86_pmu.handle_irq != NULL;
394}
395
8326f44d 396static inline int
cdd6c482 397set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event_attr *attr)
8326f44d
IM
398{
399 unsigned int cache_type, cache_op, cache_result;
400 u64 config, val;
401
402 config = attr->config;
403
404 cache_type = (config >> 0) & 0xff;
405 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
406 return -EINVAL;
407
408 cache_op = (config >> 8) & 0xff;
409 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
410 return -EINVAL;
411
412 cache_result = (config >> 16) & 0xff;
413 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
414 return -EINVAL;
415
416 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
417
418 if (val == 0)
419 return -ENOENT;
420
421 if (val == -1)
422 return -EINVAL;
423
424 hwc->config |= val;
425
426 return 0;
427}
428
c1726f34
RR
429static int x86_setup_perfctr(struct perf_event *event)
430{
431 struct perf_event_attr *attr = &event->attr;
432 struct hw_perf_event *hwc = &event->hw;
433 u64 config;
434
435 if (!hwc->sample_period) {
436 hwc->sample_period = x86_pmu.max_period;
437 hwc->last_period = hwc->sample_period;
438 atomic64_set(&hwc->period_left, hwc->sample_period);
439 } else {
440 /*
441 * If we have a PMU initialized but no APIC
442 * interrupts, we cannot sample hardware
443 * events (user-space has to fall back and
444 * sample via a hrtimer based software event):
445 */
446 if (!x86_pmu.apic)
447 return -EOPNOTSUPP;
448 }
449
450 if (attr->type == PERF_TYPE_RAW)
451 return 0;
452
453 if (attr->type == PERF_TYPE_HW_CACHE)
454 return set_ext_hw_attr(hwc, attr);
455
456 if (attr->config >= x86_pmu.max_events)
457 return -EINVAL;
458
459 /*
460 * The generic map:
461 */
462 config = x86_pmu.event_map(attr->config);
463
464 if (config == 0)
465 return -ENOENT;
466
467 if (config == -1LL)
468 return -EINVAL;
469
470 /*
471 * Branch tracing:
472 */
473 if ((attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) &&
474 (hwc->sample_period == 1)) {
475 /* BTS is not supported by this architecture. */
476 if (!x86_pmu.bts)
477 return -EOPNOTSUPP;
478
479 /* BTS is currently only allowed for user-mode. */
480 if (!attr->exclude_kernel)
481 return -EOPNOTSUPP;
482 }
483
484 hwc->config |= config;
485
486 return 0;
487}
4261e0e0 488
b4cdc5c2 489static int x86_pmu_hw_config(struct perf_event *event)
a072738e 490{
ab608344
PZ
491 if (event->attr.precise_ip) {
492 int precise = 0;
493
494 /* Support for constant skid */
495 if (x86_pmu.pebs)
496 precise++;
497
498 /* Support for IP fixup */
499 if (x86_pmu.lbr_nr)
500 precise++;
501
502 if (event->attr.precise_ip > precise)
503 return -EOPNOTSUPP;
504 }
505
a072738e
CG
506 /*
507 * Generate PMC IRQs:
508 * (keep 'enabled' bit clear for now)
509 */
b4cdc5c2 510 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
a072738e
CG
511
512 /*
513 * Count user and OS events unless requested not to
514 */
b4cdc5c2
PZ
515 if (!event->attr.exclude_user)
516 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
517 if (!event->attr.exclude_kernel)
518 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
a072738e 519
b4cdc5c2
PZ
520 if (event->attr.type == PERF_TYPE_RAW)
521 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
a072738e 522
9d0fcba6 523 return x86_setup_perfctr(event);
a098f448
RR
524}
525
241771ef 526/*
0d48696f 527 * Setup the hardware configuration for a given attr_type
241771ef 528 */
cdd6c482 529static int __hw_perf_event_init(struct perf_event *event)
241771ef 530{
4e935e47 531 int err;
241771ef 532
85cf9dba
RR
533 if (!x86_pmu_initialized())
534 return -ENODEV;
241771ef 535
4e935e47 536 err = 0;
cdd6c482 537 if (!atomic_inc_not_zero(&active_events)) {
4e935e47 538 mutex_lock(&pmc_reserve_mutex);
cdd6c482 539 if (atomic_read(&active_events) == 0) {
30dd568c
MM
540 if (!reserve_pmc_hardware())
541 err = -EBUSY;
4b24a88b 542 else {
ca037701 543 err = reserve_ds_buffers();
4b24a88b
SE
544 if (err)
545 release_pmc_hardware();
546 }
30dd568c
MM
547 }
548 if (!err)
cdd6c482 549 atomic_inc(&active_events);
4e935e47
PZ
550 mutex_unlock(&pmc_reserve_mutex);
551 }
552 if (err)
553 return err;
554
cdd6c482 555 event->destroy = hw_perf_event_destroy;
a1792cda 556
4261e0e0
RR
557 event->hw.idx = -1;
558 event->hw.last_cpu = -1;
559 event->hw.last_tag = ~0ULL;
b690081d 560
9d0fcba6 561 return x86_pmu.hw_config(event);
4261e0e0
RR
562}
563
8c48e444 564static void x86_pmu_disable_all(void)
f87ad35d 565{
cdd6c482 566 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
9e35ad38
PZ
567 int idx;
568
948b1bb8 569 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
b0f3f28e
PZ
570 u64 val;
571
43f6201a 572 if (!test_bit(idx, cpuc->active_mask))
4295ee62 573 continue;
8c48e444 574 rdmsrl(x86_pmu.eventsel + idx, val);
bb1165d6 575 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
4295ee62 576 continue;
bb1165d6 577 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
8c48e444 578 wrmsrl(x86_pmu.eventsel + idx, val);
f87ad35d 579 }
f87ad35d
JSR
580}
581
9e35ad38 582void hw_perf_disable(void)
b56a3802 583{
1da53e02
SE
584 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
585
85cf9dba 586 if (!x86_pmu_initialized())
9e35ad38 587 return;
1da53e02 588
1a6e21f7
PZ
589 if (!cpuc->enabled)
590 return;
591
592 cpuc->n_added = 0;
593 cpuc->enabled = 0;
594 barrier();
1da53e02
SE
595
596 x86_pmu.disable_all();
b56a3802 597}
241771ef 598
11164cd4 599static void x86_pmu_enable_all(int added)
f87ad35d 600{
cdd6c482 601 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
f87ad35d
JSR
602 int idx;
603
948b1bb8 604 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
cdd6c482 605 struct perf_event *event = cpuc->events[idx];
4295ee62 606 u64 val;
b0f3f28e 607
43f6201a 608 if (!test_bit(idx, cpuc->active_mask))
4295ee62 609 continue;
984b838c 610
cdd6c482 611 val = event->hw.config;
bb1165d6 612 val |= ARCH_PERFMON_EVENTSEL_ENABLE;
8c48e444 613 wrmsrl(x86_pmu.eventsel + idx, val);
f87ad35d
JSR
614 }
615}
616
1da53e02
SE
617static const struct pmu pmu;
618
619static inline int is_x86_event(struct perf_event *event)
620{
621 return event->pmu == &pmu;
622}
623
624static int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
625{
63b14649 626 struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
1da53e02 627 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
c933c1a6 628 int i, j, w, wmax, num = 0;
1da53e02
SE
629 struct hw_perf_event *hwc;
630
631 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
632
633 for (i = 0; i < n; i++) {
b622d644
PZ
634 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
635 constraints[i] = c;
1da53e02
SE
636 }
637
8113070d
SE
638 /*
639 * fastpath, try to reuse previous register
640 */
c933c1a6 641 for (i = 0; i < n; i++) {
8113070d 642 hwc = &cpuc->event_list[i]->hw;
81269a08 643 c = constraints[i];
8113070d
SE
644
645 /* never assigned */
646 if (hwc->idx == -1)
647 break;
648
649 /* constraint still honored */
63b14649 650 if (!test_bit(hwc->idx, c->idxmsk))
8113070d
SE
651 break;
652
653 /* not already used */
654 if (test_bit(hwc->idx, used_mask))
655 break;
656
34538ee7 657 __set_bit(hwc->idx, used_mask);
8113070d
SE
658 if (assign)
659 assign[i] = hwc->idx;
660 }
c933c1a6 661 if (i == n)
8113070d
SE
662 goto done;
663
664 /*
665 * begin slow path
666 */
667
668 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
669
1da53e02
SE
670 /*
671 * weight = number of possible counters
672 *
673 * 1 = most constrained, only works on one counter
674 * wmax = least constrained, works on any counter
675 *
676 * assign events to counters starting with most
677 * constrained events.
678 */
948b1bb8 679 wmax = x86_pmu.num_counters;
1da53e02
SE
680
681 /*
682 * when fixed event counters are present,
683 * wmax is incremented by 1 to account
684 * for one more choice
685 */
948b1bb8 686 if (x86_pmu.num_counters_fixed)
1da53e02
SE
687 wmax++;
688
8113070d 689 for (w = 1, num = n; num && w <= wmax; w++) {
1da53e02 690 /* for each event */
8113070d 691 for (i = 0; num && i < n; i++) {
81269a08 692 c = constraints[i];
1da53e02
SE
693 hwc = &cpuc->event_list[i]->hw;
694
272d30be 695 if (c->weight != w)
1da53e02
SE
696 continue;
697
984b3f57 698 for_each_set_bit(j, c->idxmsk, X86_PMC_IDX_MAX) {
1da53e02
SE
699 if (!test_bit(j, used_mask))
700 break;
701 }
702
703 if (j == X86_PMC_IDX_MAX)
704 break;
1da53e02 705
34538ee7 706 __set_bit(j, used_mask);
8113070d 707
1da53e02
SE
708 if (assign)
709 assign[i] = j;
710 num--;
711 }
712 }
8113070d 713done:
1da53e02
SE
714 /*
715 * scheduling failed or is just a simulation,
716 * free resources if necessary
717 */
718 if (!assign || num) {
719 for (i = 0; i < n; i++) {
720 if (x86_pmu.put_event_constraints)
721 x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
722 }
723 }
724 return num ? -ENOSPC : 0;
725}
726
727/*
728 * dogrp: true if must collect siblings events (group)
729 * returns total number of events and error code
730 */
731static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
732{
733 struct perf_event *event;
734 int n, max_count;
735
948b1bb8 736 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
1da53e02
SE
737
738 /* current number of events already accepted */
739 n = cpuc->n_events;
740
741 if (is_x86_event(leader)) {
742 if (n >= max_count)
743 return -ENOSPC;
744 cpuc->event_list[n] = leader;
745 n++;
746 }
747 if (!dogrp)
748 return n;
749
750 list_for_each_entry(event, &leader->sibling_list, group_entry) {
751 if (!is_x86_event(event) ||
8113070d 752 event->state <= PERF_EVENT_STATE_OFF)
1da53e02
SE
753 continue;
754
755 if (n >= max_count)
756 return -ENOSPC;
757
758 cpuc->event_list[n] = event;
759 n++;
760 }
761 return n;
762}
763
1da53e02 764static inline void x86_assign_hw_event(struct perf_event *event,
447a194b 765 struct cpu_hw_events *cpuc, int i)
1da53e02 766{
447a194b
SE
767 struct hw_perf_event *hwc = &event->hw;
768
769 hwc->idx = cpuc->assign[i];
770 hwc->last_cpu = smp_processor_id();
771 hwc->last_tag = ++cpuc->tags[i];
1da53e02
SE
772
773 if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
774 hwc->config_base = 0;
775 hwc->event_base = 0;
776 } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
777 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
778 /*
779 * We set it so that event_base + idx in wrmsr/rdmsr maps to
780 * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
781 */
782 hwc->event_base =
783 MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
784 } else {
785 hwc->config_base = x86_pmu.eventsel;
786 hwc->event_base = x86_pmu.perfctr;
787 }
788}
789
447a194b
SE
790static inline int match_prev_assignment(struct hw_perf_event *hwc,
791 struct cpu_hw_events *cpuc,
792 int i)
793{
794 return hwc->idx == cpuc->assign[i] &&
795 hwc->last_cpu == smp_processor_id() &&
796 hwc->last_tag == cpuc->tags[i];
797}
798
c08053e6 799static int x86_pmu_start(struct perf_event *event);
d76a0812 800static void x86_pmu_stop(struct perf_event *event);
2e841873 801
9e35ad38 802void hw_perf_enable(void)
ee06094f 803{
1da53e02
SE
804 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
805 struct perf_event *event;
806 struct hw_perf_event *hwc;
11164cd4 807 int i, added = cpuc->n_added;
1da53e02 808
85cf9dba 809 if (!x86_pmu_initialized())
2b9ff0db 810 return;
1a6e21f7
PZ
811
812 if (cpuc->enabled)
813 return;
814
1da53e02 815 if (cpuc->n_added) {
19925ce7 816 int n_running = cpuc->n_events - cpuc->n_added;
1da53e02
SE
817 /*
818 * apply assignment obtained either from
819 * hw_perf_group_sched_in() or x86_pmu_enable()
820 *
821 * step1: save events moving to new counters
822 * step2: reprogram moved events into new counters
823 */
19925ce7 824 for (i = 0; i < n_running; i++) {
1da53e02
SE
825 event = cpuc->event_list[i];
826 hwc = &event->hw;
827
447a194b
SE
828 /*
829 * we can avoid reprogramming counter if:
830 * - assigned same counter as last time
831 * - running on same CPU as last time
832 * - no other event has used the counter since
833 */
834 if (hwc->idx == -1 ||
835 match_prev_assignment(hwc, cpuc, i))
1da53e02
SE
836 continue;
837
d76a0812 838 x86_pmu_stop(event);
1da53e02
SE
839 }
840
841 for (i = 0; i < cpuc->n_events; i++) {
1da53e02
SE
842 event = cpuc->event_list[i];
843 hwc = &event->hw;
844
45e16a68 845 if (!match_prev_assignment(hwc, cpuc, i))
447a194b 846 x86_assign_hw_event(event, cpuc, i);
45e16a68
PZ
847 else if (i < n_running)
848 continue;
1da53e02 849
c08053e6 850 x86_pmu_start(event);
1da53e02
SE
851 }
852 cpuc->n_added = 0;
853 perf_events_lapic_init();
854 }
1a6e21f7
PZ
855
856 cpuc->enabled = 1;
857 barrier();
858
11164cd4 859 x86_pmu.enable_all(added);
ee06094f 860}
ee06094f 861
31fa58af
RR
862static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc,
863 u64 enable_mask)
b0f3f28e 864{
31fa58af 865 wrmsrl(hwc->config_base + hwc->idx, hwc->config | enable_mask);
b0f3f28e
PZ
866}
867
aff3d91a 868static inline void x86_pmu_disable_event(struct perf_event *event)
b0f3f28e 869{
aff3d91a 870 struct hw_perf_event *hwc = &event->hw;
7645a24c
PZ
871
872 wrmsrl(hwc->config_base + hwc->idx, hwc->config);
b0f3f28e
PZ
873}
874
245b2e70 875static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
241771ef 876
ee06094f
IM
877/*
878 * Set the next IRQ period, based on the hwc->period_left value.
cdd6c482 879 * To be called with the event disabled in hw:
ee06094f 880 */
e4abb5d4 881static int
07088edb 882x86_perf_event_set_period(struct perf_event *event)
241771ef 883{
07088edb 884 struct hw_perf_event *hwc = &event->hw;
2f18d1e8 885 s64 left = atomic64_read(&hwc->period_left);
e4abb5d4 886 s64 period = hwc->sample_period;
7645a24c 887 int ret = 0, idx = hwc->idx;
ee06094f 888
30dd568c
MM
889 if (idx == X86_PMC_IDX_FIXED_BTS)
890 return 0;
891
ee06094f 892 /*
af901ca1 893 * If we are way outside a reasonable range then just skip forward:
ee06094f
IM
894 */
895 if (unlikely(left <= -period)) {
896 left = period;
897 atomic64_set(&hwc->period_left, left);
9e350de3 898 hwc->last_period = period;
e4abb5d4 899 ret = 1;
ee06094f
IM
900 }
901
902 if (unlikely(left <= 0)) {
903 left += period;
904 atomic64_set(&hwc->period_left, left);
9e350de3 905 hwc->last_period = period;
e4abb5d4 906 ret = 1;
ee06094f 907 }
1c80f4b5 908 /*
dfc65094 909 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1c80f4b5
IM
910 */
911 if (unlikely(left < 2))
912 left = 2;
241771ef 913
e4abb5d4
PZ
914 if (left > x86_pmu.max_period)
915 left = x86_pmu.max_period;
916
245b2e70 917 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
ee06094f
IM
918
919 /*
cdd6c482 920 * The hw event starts counting from this event offset,
ee06094f
IM
921 * mark it to be able to extra future deltas:
922 */
2f18d1e8 923 atomic64_set(&hwc->prev_count, (u64)-left);
ee06094f 924
7645a24c 925 wrmsrl(hwc->event_base + idx,
948b1bb8 926 (u64)(-left) & x86_pmu.cntval_mask);
e4abb5d4 927
cdd6c482 928 perf_event_update_userpage(event);
194002b2 929
e4abb5d4 930 return ret;
2f18d1e8
IM
931}
932
aff3d91a 933static void x86_pmu_enable_event(struct perf_event *event)
7c90cc45 934{
cdd6c482 935 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
7c90cc45 936 if (cpuc->enabled)
31fa58af
RR
937 __x86_pmu_enable_event(&event->hw,
938 ARCH_PERFMON_EVENTSEL_ENABLE);
241771ef
IM
939}
940
b690081d 941/*
1da53e02
SE
942 * activate a single event
943 *
944 * The event is added to the group of enabled events
945 * but only if it can be scehduled with existing events.
946 *
947 * Called with PMU disabled. If successful and return value 1,
948 * then guaranteed to call perf_enable() and hw_perf_enable()
fe9081cc
PZ
949 */
950static int x86_pmu_enable(struct perf_event *event)
951{
952 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1da53e02
SE
953 struct hw_perf_event *hwc;
954 int assign[X86_PMC_IDX_MAX];
955 int n, n0, ret;
fe9081cc 956
1da53e02 957 hwc = &event->hw;
fe9081cc 958
1da53e02
SE
959 n0 = cpuc->n_events;
960 n = collect_events(cpuc, event, false);
961 if (n < 0)
962 return n;
53b441a5 963
a072738e 964 ret = x86_pmu.schedule_events(cpuc, n, assign);
1da53e02
SE
965 if (ret)
966 return ret;
967 /*
968 * copy new assignment, now we know it is possible
969 * will be used by hw_perf_enable()
970 */
971 memcpy(cpuc->assign, assign, n*sizeof(int));
7e2ae347 972
1da53e02 973 cpuc->n_events = n;
356e1f2e 974 cpuc->n_added += n - n0;
95cdd2e7
IM
975
976 return 0;
241771ef
IM
977}
978
d76a0812
SE
979static int x86_pmu_start(struct perf_event *event)
980{
c08053e6
PZ
981 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
982 int idx = event->hw.idx;
983
984 if (idx == -1)
d76a0812
SE
985 return -EAGAIN;
986
07088edb 987 x86_perf_event_set_period(event);
c08053e6
PZ
988 cpuc->events[idx] = event;
989 __set_bit(idx, cpuc->active_mask);
aff3d91a 990 x86_pmu.enable(event);
c08053e6 991 perf_event_update_userpage(event);
d76a0812
SE
992
993 return 0;
994}
995
cdd6c482 996static void x86_pmu_unthrottle(struct perf_event *event)
a78ac325 997{
71e2d282
PZ
998 int ret = x86_pmu_start(event);
999 WARN_ON_ONCE(ret);
a78ac325
PZ
1000}
1001
cdd6c482 1002void perf_event_print_debug(void)
241771ef 1003{
2f18d1e8 1004 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
ca037701 1005 u64 pebs;
cdd6c482 1006 struct cpu_hw_events *cpuc;
5bb9efe3 1007 unsigned long flags;
1e125676
IM
1008 int cpu, idx;
1009
948b1bb8 1010 if (!x86_pmu.num_counters)
1e125676 1011 return;
241771ef 1012
5bb9efe3 1013 local_irq_save(flags);
241771ef
IM
1014
1015 cpu = smp_processor_id();
cdd6c482 1016 cpuc = &per_cpu(cpu_hw_events, cpu);
241771ef 1017
faa28ae0 1018 if (x86_pmu.version >= 2) {
a1ef58f4
JSR
1019 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1020 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1021 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1022 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
ca037701 1023 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
a1ef58f4
JSR
1024
1025 pr_info("\n");
1026 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1027 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1028 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1029 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
ca037701 1030 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
f87ad35d 1031 }
7645a24c 1032 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
241771ef 1033
948b1bb8 1034 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
4a06bd85
RR
1035 rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
1036 rdmsrl(x86_pmu.perfctr + idx, pmc_count);
241771ef 1037
245b2e70 1038 prev_left = per_cpu(pmc_prev_left[idx], cpu);
241771ef 1039
a1ef58f4 1040 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
241771ef 1041 cpu, idx, pmc_ctrl);
a1ef58f4 1042 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
241771ef 1043 cpu, idx, pmc_count);
a1ef58f4 1044 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
ee06094f 1045 cpu, idx, prev_left);
241771ef 1046 }
948b1bb8 1047 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
2f18d1e8
IM
1048 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1049
a1ef58f4 1050 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
2f18d1e8
IM
1051 cpu, idx, pmc_count);
1052 }
5bb9efe3 1053 local_irq_restore(flags);
241771ef
IM
1054}
1055
d76a0812 1056static void x86_pmu_stop(struct perf_event *event)
241771ef 1057{
d76a0812 1058 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
cdd6c482 1059 struct hw_perf_event *hwc = &event->hw;
2e841873 1060 int idx = hwc->idx;
241771ef 1061
71e2d282
PZ
1062 if (!__test_and_clear_bit(idx, cpuc->active_mask))
1063 return;
1064
aff3d91a 1065 x86_pmu.disable(event);
241771ef 1066
ee06094f 1067 /*
cdd6c482 1068 * Drain the remaining delta count out of a event
ee06094f
IM
1069 * that we are disabling:
1070 */
cc2ad4ba 1071 x86_perf_event_update(event);
30dd568c 1072
cdd6c482 1073 cpuc->events[idx] = NULL;
2e841873
PZ
1074}
1075
1076static void x86_pmu_disable(struct perf_event *event)
1077{
1078 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1079 int i;
1080
d76a0812 1081 x86_pmu_stop(event);
194002b2 1082
1da53e02
SE
1083 for (i = 0; i < cpuc->n_events; i++) {
1084 if (event == cpuc->event_list[i]) {
1085
1086 if (x86_pmu.put_event_constraints)
1087 x86_pmu.put_event_constraints(cpuc, event);
1088
1089 while (++i < cpuc->n_events)
1090 cpuc->event_list[i-1] = cpuc->event_list[i];
1091
1092 --cpuc->n_events;
6c9687ab 1093 break;
1da53e02
SE
1094 }
1095 }
cdd6c482 1096 perf_event_update_userpage(event);
241771ef
IM
1097}
1098
8c48e444 1099static int x86_pmu_handle_irq(struct pt_regs *regs)
a29aa8a7 1100{
df1a132b 1101 struct perf_sample_data data;
cdd6c482
IM
1102 struct cpu_hw_events *cpuc;
1103 struct perf_event *event;
1104 struct hw_perf_event *hwc;
11d1578f 1105 int idx, handled = 0;
9029a5e3
IM
1106 u64 val;
1107
dc1d628a 1108 perf_sample_data_init(&data, 0);
df1a132b 1109
cdd6c482 1110 cpuc = &__get_cpu_var(cpu_hw_events);
962bf7a6 1111
948b1bb8 1112 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
43f6201a 1113 if (!test_bit(idx, cpuc->active_mask))
a29aa8a7 1114 continue;
962bf7a6 1115
cdd6c482
IM
1116 event = cpuc->events[idx];
1117 hwc = &event->hw;
a4016a79 1118
cc2ad4ba 1119 val = x86_perf_event_update(event);
948b1bb8 1120 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
48e22d56 1121 continue;
962bf7a6 1122
9e350de3 1123 /*
cdd6c482 1124 * event overflow
9e350de3
PZ
1125 */
1126 handled = 1;
cdd6c482 1127 data.period = event->hw.last_period;
9e350de3 1128
07088edb 1129 if (!x86_perf_event_set_period(event))
e4abb5d4
PZ
1130 continue;
1131
cdd6c482 1132 if (perf_event_overflow(event, 1, &data, regs))
71e2d282 1133 x86_pmu_stop(event);
a29aa8a7 1134 }
962bf7a6 1135
9e350de3
PZ
1136 if (handled)
1137 inc_irq_stat(apic_perf_irqs);
1138
a29aa8a7
RR
1139 return handled;
1140}
39d81eab 1141
b6276f35
PZ
1142void smp_perf_pending_interrupt(struct pt_regs *regs)
1143{
1144 irq_enter();
1145 ack_APIC_irq();
1146 inc_irq_stat(apic_pending_irqs);
cdd6c482 1147 perf_event_do_pending();
b6276f35
PZ
1148 irq_exit();
1149}
1150
cdd6c482 1151void set_perf_event_pending(void)
b6276f35 1152{
04da8a43 1153#ifdef CONFIG_X86_LOCAL_APIC
7d428966
PZ
1154 if (!x86_pmu.apic || !x86_pmu_initialized())
1155 return;
1156
b6276f35 1157 apic->send_IPI_self(LOCAL_PENDING_VECTOR);
04da8a43 1158#endif
b6276f35
PZ
1159}
1160
cdd6c482 1161void perf_events_lapic_init(void)
241771ef 1162{
04da8a43 1163 if (!x86_pmu.apic || !x86_pmu_initialized())
241771ef 1164 return;
85cf9dba 1165
241771ef 1166 /*
c323d95f 1167 * Always use NMI for PMU
241771ef 1168 */
c323d95f 1169 apic_write(APIC_LVTPC, APIC_DM_NMI);
241771ef
IM
1170}
1171
1172static int __kprobes
cdd6c482 1173perf_event_nmi_handler(struct notifier_block *self,
241771ef
IM
1174 unsigned long cmd, void *__args)
1175{
1176 struct die_args *args = __args;
1177 struct pt_regs *regs;
b0f3f28e 1178
cdd6c482 1179 if (!atomic_read(&active_events))
63a809a2
PZ
1180 return NOTIFY_DONE;
1181
b0f3f28e
PZ
1182 switch (cmd) {
1183 case DIE_NMI:
1184 case DIE_NMI_IPI:
1185 break;
241771ef 1186
b0f3f28e 1187 default:
241771ef 1188 return NOTIFY_DONE;
b0f3f28e 1189 }
241771ef
IM
1190
1191 regs = args->regs;
1192
1193 apic_write(APIC_LVTPC, APIC_DM_NMI);
a4016a79
PZ
1194 /*
1195 * Can't rely on the handled return value to say it was our NMI, two
cdd6c482 1196 * events could trigger 'simultaneously' raising two back-to-back NMIs.
a4016a79
PZ
1197 *
1198 * If the first NMI handles both, the latter will be empty and daze
1199 * the CPU.
1200 */
a3288106 1201 x86_pmu.handle_irq(regs);
241771ef 1202
a4016a79 1203 return NOTIFY_STOP;
241771ef
IM
1204}
1205
f22f54f4
PZ
1206static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1207 .notifier_call = perf_event_nmi_handler,
1208 .next = NULL,
1209 .priority = 1
1210};
1211
63b14649 1212static struct event_constraint unconstrained;
38331f62 1213static struct event_constraint emptyconstraint;
63b14649 1214
63b14649 1215static struct event_constraint *
f22f54f4 1216x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1da53e02 1217{
63b14649 1218 struct event_constraint *c;
1da53e02 1219
1da53e02
SE
1220 if (x86_pmu.event_constraints) {
1221 for_each_event_constraint(c, x86_pmu.event_constraints) {
63b14649
PZ
1222 if ((event->hw.config & c->cmask) == c->code)
1223 return c;
1da53e02
SE
1224 }
1225 }
63b14649
PZ
1226
1227 return &unconstrained;
1da53e02
SE
1228}
1229
1da53e02 1230static int x86_event_sched_in(struct perf_event *event,
6e37738a 1231 struct perf_cpu_context *cpuctx)
1da53e02
SE
1232{
1233 int ret = 0;
1234
1235 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1236 event->oncpu = smp_processor_id();
1da53e02
SE
1237 event->tstamp_running += event->ctx->time - event->tstamp_stopped;
1238
1239 if (!is_x86_event(event))
1240 ret = event->pmu->enable(event);
1241
1242 if (!ret && !is_software_event(event))
1243 cpuctx->active_oncpu++;
1244
1245 if (!ret && event->attr.exclusive)
1246 cpuctx->exclusive = 1;
1247
1248 return ret;
1249}
1250
1251static void x86_event_sched_out(struct perf_event *event,
6e37738a 1252 struct perf_cpu_context *cpuctx)
1da53e02
SE
1253{
1254 event->state = PERF_EVENT_STATE_INACTIVE;
1255 event->oncpu = -1;
1256
1257 if (!is_x86_event(event))
1258 event->pmu->disable(event);
1259
1260 event->tstamp_running -= event->ctx->time - event->tstamp_stopped;
1261
1262 if (!is_software_event(event))
1263 cpuctx->active_oncpu--;
1264
1265 if (event->attr.exclusive || !cpuctx->active_oncpu)
1266 cpuctx->exclusive = 0;
1267}
1268
1269/*
1270 * Called to enable a whole group of events.
1271 * Returns 1 if the group was enabled, or -EAGAIN if it could not be.
1272 * Assumes the caller has disabled interrupts and has
1273 * frozen the PMU with hw_perf_save_disable.
1274 *
1275 * called with PMU disabled. If successful and return value 1,
1276 * then guaranteed to call perf_enable() and hw_perf_enable()
1277 */
1278int hw_perf_group_sched_in(struct perf_event *leader,
1279 struct perf_cpu_context *cpuctx,
6e37738a 1280 struct perf_event_context *ctx)
1da53e02 1281{
6e37738a 1282 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1da53e02
SE
1283 struct perf_event *sub;
1284 int assign[X86_PMC_IDX_MAX];
1285 int n0, n1, ret;
1286
0b861225
CG
1287 if (!x86_pmu_initialized())
1288 return 0;
1289
1da53e02
SE
1290 /* n0 = total number of events */
1291 n0 = collect_events(cpuc, leader, true);
1292 if (n0 < 0)
1293 return n0;
1294
a072738e 1295 ret = x86_pmu.schedule_events(cpuc, n0, assign);
1da53e02
SE
1296 if (ret)
1297 return ret;
1298
6e37738a 1299 ret = x86_event_sched_in(leader, cpuctx);
1da53e02
SE
1300 if (ret)
1301 return ret;
1302
1303 n1 = 1;
1304 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
8113070d 1305 if (sub->state > PERF_EVENT_STATE_OFF) {
6e37738a 1306 ret = x86_event_sched_in(sub, cpuctx);
1da53e02
SE
1307 if (ret)
1308 goto undo;
1309 ++n1;
1310 }
1311 }
1312 /*
1313 * copy new assignment, now we know it is possible
1314 * will be used by hw_perf_enable()
1315 */
1316 memcpy(cpuc->assign, assign, n0*sizeof(int));
1317
1318 cpuc->n_events = n0;
356e1f2e 1319 cpuc->n_added += n1;
1da53e02
SE
1320 ctx->nr_active += n1;
1321
1322 /*
1323 * 1 means successful and events are active
1324 * This is not quite true because we defer
1325 * actual activation until hw_perf_enable() but
1326 * this way we* ensure caller won't try to enable
1327 * individual events
1328 */
1329 return 1;
1330undo:
6e37738a 1331 x86_event_sched_out(leader, cpuctx);
1da53e02
SE
1332 n0 = 1;
1333 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1334 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
6e37738a 1335 x86_event_sched_out(sub, cpuctx);
1da53e02
SE
1336 if (++n0 == n1)
1337 break;
1338 }
1339 }
1340 return ret;
1341}
1342
f22f54f4
PZ
1343#include "perf_event_amd.c"
1344#include "perf_event_p6.c"
a072738e 1345#include "perf_event_p4.c"
caff2bef 1346#include "perf_event_intel_lbr.c"
ca037701 1347#include "perf_event_intel_ds.c"
f22f54f4 1348#include "perf_event_intel.c"
f87ad35d 1349
3f6da390
PZ
1350static int __cpuinit
1351x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1352{
1353 unsigned int cpu = (long)hcpu;
b38b24ea 1354 int ret = NOTIFY_OK;
3f6da390
PZ
1355
1356 switch (action & ~CPU_TASKS_FROZEN) {
1357 case CPU_UP_PREPARE:
1358 if (x86_pmu.cpu_prepare)
b38b24ea 1359 ret = x86_pmu.cpu_prepare(cpu);
3f6da390
PZ
1360 break;
1361
1362 case CPU_STARTING:
1363 if (x86_pmu.cpu_starting)
1364 x86_pmu.cpu_starting(cpu);
1365 break;
1366
1367 case CPU_DYING:
1368 if (x86_pmu.cpu_dying)
1369 x86_pmu.cpu_dying(cpu);
1370 break;
1371
b38b24ea 1372 case CPU_UP_CANCELED:
3f6da390
PZ
1373 case CPU_DEAD:
1374 if (x86_pmu.cpu_dead)
1375 x86_pmu.cpu_dead(cpu);
1376 break;
1377
1378 default:
1379 break;
1380 }
1381
b38b24ea 1382 return ret;
3f6da390
PZ
1383}
1384
12558038
CG
1385static void __init pmu_check_apic(void)
1386{
1387 if (cpu_has_apic)
1388 return;
1389
1390 x86_pmu.apic = 0;
1391 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1392 pr_info("no hardware sampling interrupt available.\n");
1393}
1394
cdd6c482 1395void __init init_hw_perf_events(void)
b56a3802 1396{
b622d644 1397 struct event_constraint *c;
72eae04d
RR
1398 int err;
1399
cdd6c482 1400 pr_info("Performance Events: ");
1123e3ad 1401
b56a3802
JSR
1402 switch (boot_cpu_data.x86_vendor) {
1403 case X86_VENDOR_INTEL:
72eae04d 1404 err = intel_pmu_init();
b56a3802 1405 break;
f87ad35d 1406 case X86_VENDOR_AMD:
72eae04d 1407 err = amd_pmu_init();
f87ad35d 1408 break;
4138960a
RR
1409 default:
1410 return;
b56a3802 1411 }
1123e3ad 1412 if (err != 0) {
cdd6c482 1413 pr_cont("no PMU driver, software events only.\n");
b56a3802 1414 return;
1123e3ad 1415 }
b56a3802 1416
12558038
CG
1417 pmu_check_apic();
1418
1123e3ad 1419 pr_cont("%s PMU driver.\n", x86_pmu.name);
faa28ae0 1420
3c44780b
PZ
1421 if (x86_pmu.quirks)
1422 x86_pmu.quirks();
1423
948b1bb8 1424 if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
cdd6c482 1425 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
948b1bb8
RR
1426 x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
1427 x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
241771ef 1428 }
948b1bb8
RR
1429 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1430 perf_max_events = x86_pmu.num_counters;
241771ef 1431
948b1bb8 1432 if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
cdd6c482 1433 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
948b1bb8
RR
1434 x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
1435 x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
703e937c 1436 }
862a1a5f 1437
d6dc0b4e 1438 x86_pmu.intel_ctrl |=
948b1bb8 1439 ((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
241771ef 1440
cdd6c482
IM
1441 perf_events_lapic_init();
1442 register_die_notifier(&perf_event_nmi_notifier);
1123e3ad 1443
63b14649 1444 unconstrained = (struct event_constraint)
948b1bb8
RR
1445 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1446 0, x86_pmu.num_counters);
63b14649 1447
b622d644
PZ
1448 if (x86_pmu.event_constraints) {
1449 for_each_event_constraint(c, x86_pmu.event_constraints) {
a098f448 1450 if (c->cmask != X86_RAW_EVENT_MASK)
b622d644
PZ
1451 continue;
1452
948b1bb8
RR
1453 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
1454 c->weight += x86_pmu.num_counters;
b622d644
PZ
1455 }
1456 }
1457
57c0c15b 1458 pr_info("... version: %d\n", x86_pmu.version);
948b1bb8
RR
1459 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1460 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1461 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
57c0c15b 1462 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
948b1bb8 1463 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
d6dc0b4e 1464 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
3f6da390
PZ
1465
1466 perf_cpu_notifier(x86_pmu_notifier);
241771ef 1467}
621a01ea 1468
cdd6c482 1469static inline void x86_pmu_read(struct perf_event *event)
ee06094f 1470{
cc2ad4ba 1471 x86_perf_event_update(event);
ee06094f
IM
1472}
1473
4aeb0b42
RR
1474static const struct pmu pmu = {
1475 .enable = x86_pmu_enable,
1476 .disable = x86_pmu_disable,
d76a0812
SE
1477 .start = x86_pmu_start,
1478 .stop = x86_pmu_stop,
4aeb0b42 1479 .read = x86_pmu_read,
a78ac325 1480 .unthrottle = x86_pmu_unthrottle,
621a01ea
IM
1481};
1482
ca037701
PZ
1483/*
1484 * validate that we can schedule this event
1485 */
1486static int validate_event(struct perf_event *event)
1487{
1488 struct cpu_hw_events *fake_cpuc;
1489 struct event_constraint *c;
1490 int ret = 0;
1491
1492 fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1493 if (!fake_cpuc)
1494 return -ENOMEM;
1495
1496 c = x86_pmu.get_event_constraints(fake_cpuc, event);
1497
1498 if (!c || !c->weight)
1499 ret = -ENOSPC;
1500
1501 if (x86_pmu.put_event_constraints)
1502 x86_pmu.put_event_constraints(fake_cpuc, event);
1503
1504 kfree(fake_cpuc);
1505
1506 return ret;
1507}
1508
1da53e02
SE
1509/*
1510 * validate a single event group
1511 *
1512 * validation include:
184f412c
IM
1513 * - check events are compatible which each other
1514 * - events do not compete for the same counter
1515 * - number of events <= number of counters
1da53e02
SE
1516 *
1517 * validation ensures the group can be loaded onto the
1518 * PMU if it was the only group available.
1519 */
fe9081cc
PZ
1520static int validate_group(struct perf_event *event)
1521{
1da53e02 1522 struct perf_event *leader = event->group_leader;
502568d5
PZ
1523 struct cpu_hw_events *fake_cpuc;
1524 int ret, n;
fe9081cc 1525
502568d5
PZ
1526 ret = -ENOMEM;
1527 fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1528 if (!fake_cpuc)
1529 goto out;
fe9081cc 1530
1da53e02
SE
1531 /*
1532 * the event is not yet connected with its
1533 * siblings therefore we must first collect
1534 * existing siblings, then add the new event
1535 * before we can simulate the scheduling
1536 */
502568d5
PZ
1537 ret = -ENOSPC;
1538 n = collect_events(fake_cpuc, leader, true);
1da53e02 1539 if (n < 0)
502568d5 1540 goto out_free;
fe9081cc 1541
502568d5
PZ
1542 fake_cpuc->n_events = n;
1543 n = collect_events(fake_cpuc, event, false);
1da53e02 1544 if (n < 0)
502568d5 1545 goto out_free;
fe9081cc 1546
502568d5 1547 fake_cpuc->n_events = n;
1da53e02 1548
a072738e 1549 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
502568d5
PZ
1550
1551out_free:
1552 kfree(fake_cpuc);
1553out:
1554 return ret;
fe9081cc
PZ
1555}
1556
cdd6c482 1557const struct pmu *hw_perf_event_init(struct perf_event *event)
621a01ea 1558{
8113070d 1559 const struct pmu *tmp;
621a01ea
IM
1560 int err;
1561
cdd6c482 1562 err = __hw_perf_event_init(event);
fe9081cc 1563 if (!err) {
8113070d
SE
1564 /*
1565 * we temporarily connect event to its pmu
1566 * such that validate_group() can classify
1567 * it as an x86 event using is_x86_event()
1568 */
1569 tmp = event->pmu;
1570 event->pmu = &pmu;
1571
fe9081cc
PZ
1572 if (event->group_leader != event)
1573 err = validate_group(event);
ca037701
PZ
1574 else
1575 err = validate_event(event);
8113070d
SE
1576
1577 event->pmu = tmp;
fe9081cc 1578 }
a1792cda 1579 if (err) {
cdd6c482
IM
1580 if (event->destroy)
1581 event->destroy(event);
9ea98e19 1582 return ERR_PTR(err);
a1792cda 1583 }
621a01ea 1584
4aeb0b42 1585 return &pmu;
621a01ea 1586}
d7d59fb3
PZ
1587
1588/*
1589 * callchain support
1590 */
1591
1592static inline
f9188e02 1593void callchain_store(struct perf_callchain_entry *entry, u64 ip)
d7d59fb3 1594{
f9188e02 1595 if (entry->nr < PERF_MAX_STACK_DEPTH)
d7d59fb3
PZ
1596 entry->ip[entry->nr++] = ip;
1597}
1598
245b2e70
TH
1599static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_irq_entry);
1600static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_nmi_entry);
d7d59fb3
PZ
1601
1602
1603static void
1604backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
1605{
1606 /* Ignore warnings */
1607}
1608
1609static void backtrace_warning(void *data, char *msg)
1610{
1611 /* Ignore warnings */
1612}
1613
1614static int backtrace_stack(void *data, char *name)
1615{
038e836e 1616 return 0;
d7d59fb3
PZ
1617}
1618
1619static void backtrace_address(void *data, unsigned long addr, int reliable)
1620{
1621 struct perf_callchain_entry *entry = data;
1622
6f4dee06 1623 callchain_store(entry, addr);
d7d59fb3
PZ
1624}
1625
1626static const struct stacktrace_ops backtrace_ops = {
1627 .warning = backtrace_warning,
1628 .warning_symbol = backtrace_warning_symbol,
1629 .stack = backtrace_stack,
1630 .address = backtrace_address,
06d65bda 1631 .walk_stack = print_context_stack_bp,
d7d59fb3
PZ
1632};
1633
038e836e
IM
1634#include "../dumpstack.h"
1635
d7d59fb3
PZ
1636static void
1637perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry)
1638{
f9188e02 1639 callchain_store(entry, PERF_CONTEXT_KERNEL);
038e836e 1640 callchain_store(entry, regs->ip);
d7d59fb3 1641
48b5ba9c 1642 dump_trace(NULL, regs, NULL, regs->bp, &backtrace_ops, entry);
d7d59fb3
PZ
1643}
1644
257ef9d2
TE
1645#ifdef CONFIG_COMPAT
1646static inline int
1647perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
74193ef0 1648{
257ef9d2
TE
1649 /* 32-bit process in 64-bit kernel. */
1650 struct stack_frame_ia32 frame;
1651 const void __user *fp;
74193ef0 1652
257ef9d2
TE
1653 if (!test_thread_flag(TIF_IA32))
1654 return 0;
1655
1656 fp = compat_ptr(regs->bp);
1657 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1658 unsigned long bytes;
1659 frame.next_frame = 0;
1660 frame.return_address = 0;
1661
1662 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1663 if (bytes != sizeof(frame))
1664 break;
74193ef0 1665
257ef9d2
TE
1666 if (fp < compat_ptr(regs->sp))
1667 break;
74193ef0 1668
257ef9d2
TE
1669 callchain_store(entry, frame.return_address);
1670 fp = compat_ptr(frame.next_frame);
1671 }
1672 return 1;
d7d59fb3 1673}
257ef9d2
TE
1674#else
1675static inline int
1676perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1677{
1678 return 0;
1679}
1680#endif
d7d59fb3
PZ
1681
1682static void
1683perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry)
1684{
1685 struct stack_frame frame;
1686 const void __user *fp;
1687
5a6cec3a
IM
1688 if (!user_mode(regs))
1689 regs = task_pt_regs(current);
1690
74193ef0 1691 fp = (void __user *)regs->bp;
d7d59fb3 1692
f9188e02 1693 callchain_store(entry, PERF_CONTEXT_USER);
d7d59fb3
PZ
1694 callchain_store(entry, regs->ip);
1695
257ef9d2
TE
1696 if (perf_callchain_user32(regs, entry))
1697 return;
1698
f9188e02 1699 while (entry->nr < PERF_MAX_STACK_DEPTH) {
257ef9d2 1700 unsigned long bytes;
038e836e 1701 frame.next_frame = NULL;
d7d59fb3
PZ
1702 frame.return_address = 0;
1703
257ef9d2
TE
1704 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1705 if (bytes != sizeof(frame))
d7d59fb3
PZ
1706 break;
1707
5a6cec3a 1708 if ((unsigned long)fp < regs->sp)
d7d59fb3
PZ
1709 break;
1710
1711 callchain_store(entry, frame.return_address);
038e836e 1712 fp = frame.next_frame;
d7d59fb3
PZ
1713 }
1714}
1715
1716static void
1717perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry)
1718{
1719 int is_user;
1720
1721 if (!regs)
1722 return;
1723
1724 is_user = user_mode(regs);
1725
d7d59fb3
PZ
1726 if (is_user && current->state != TASK_RUNNING)
1727 return;
1728
1729 if (!is_user)
1730 perf_callchain_kernel(regs, entry);
1731
1732 if (current->mm)
1733 perf_callchain_user(regs, entry);
1734}
1735
1736struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1737{
1738 struct perf_callchain_entry *entry;
1739
39447b38
ZY
1740 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1741 /* TODO: We don't support guest os callchain now */
1742 return NULL;
1743 }
1744
d7d59fb3 1745 if (in_nmi())
245b2e70 1746 entry = &__get_cpu_var(pmc_nmi_entry);
d7d59fb3 1747 else
245b2e70 1748 entry = &__get_cpu_var(pmc_irq_entry);
d7d59fb3
PZ
1749
1750 entry->nr = 0;
1751
1752 perf_do_callchain(regs, entry);
1753
1754 return entry;
1755}
5331d7b8
FW
1756
1757void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
1758{
1759 regs->ip = ip;
1760 /*
1761 * perf_arch_fetch_caller_regs adds another call, we need to increment
1762 * the skip level
1763 */
1764 regs->bp = rewind_frame_pointer(skip + 1);
1765 regs->cs = __KERNEL_CS;
1766 local_save_flags(regs->flags);
1767}
39447b38
ZY
1768
1769unsigned long perf_instruction_pointer(struct pt_regs *regs)
1770{
1771 unsigned long ip;
dcf46b94 1772
39447b38
ZY
1773 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
1774 ip = perf_guest_cbs->get_guest_ip();
1775 else
1776 ip = instruction_pointer(regs);
dcf46b94 1777
39447b38
ZY
1778 return ip;
1779}
1780
1781unsigned long perf_misc_flags(struct pt_regs *regs)
1782{
1783 int misc = 0;
dcf46b94 1784
39447b38 1785 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
dcf46b94
ZY
1786 if (perf_guest_cbs->is_user_mode())
1787 misc |= PERF_RECORD_MISC_GUEST_USER;
1788 else
1789 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1790 } else {
1791 if (user_mode(regs))
1792 misc |= PERF_RECORD_MISC_USER;
1793 else
1794 misc |= PERF_RECORD_MISC_KERNEL;
1795 }
1796
39447b38 1797 if (regs->flags & PERF_EFLAGS_EXACT)
ab608344 1798 misc |= PERF_RECORD_MISC_EXACT_IP;
39447b38
ZY
1799
1800 return misc;
1801}