]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/kernel/cpu/perf_event.c
perf/x86: Vectorize cpuc->kfree_on_online
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / cpu / perf_event.c
CommitLineData
241771ef 1/*
cdd6c482 2 * Performance events x86 architecture code
241771ef 3 *
98144511
IM
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
30dd568c 9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
1da53e02 10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
241771ef
IM
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
cdd6c482 15#include <linux/perf_event.h>
241771ef
IM
16#include <linux/capability.h>
17#include <linux/notifier.h>
18#include <linux/hardirq.h>
19#include <linux/kprobes.h>
4ac13294 20#include <linux/module.h>
241771ef
IM
21#include <linux/kdebug.h>
22#include <linux/sched.h>
d7d59fb3 23#include <linux/uaccess.h>
5a0e3ad6 24#include <linux/slab.h>
30dd568c 25#include <linux/cpu.h>
272d30be 26#include <linux/bitops.h>
0c9d42ed 27#include <linux/device.h>
241771ef 28
241771ef 29#include <asm/apic.h>
d7d59fb3 30#include <asm/stacktrace.h>
4e935e47 31#include <asm/nmi.h>
69092624 32#include <asm/smp.h>
c8e5910e 33#include <asm/alternative.h>
7911d3f7 34#include <asm/mmu_context.h>
375074cc 35#include <asm/tlbflush.h>
e3f3541c 36#include <asm/timer.h>
d07bdfd3
PZ
37#include <asm/desc.h>
38#include <asm/ldt.h>
241771ef 39
de0428a7
KW
40#include "perf_event.h"
41
de0428a7 42struct x86_pmu x86_pmu __read_mostly;
efc9f05d 43
de0428a7 44DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
b0f3f28e
PZ
45 .enabled = 1,
46};
241771ef 47
a6673429
AL
48struct static_key rdpmc_always_available = STATIC_KEY_INIT_FALSE;
49
de0428a7 50u64 __read_mostly hw_cache_event_ids
8326f44d
IM
51 [PERF_COUNT_HW_CACHE_MAX]
52 [PERF_COUNT_HW_CACHE_OP_MAX]
53 [PERF_COUNT_HW_CACHE_RESULT_MAX];
de0428a7 54u64 __read_mostly hw_cache_extra_regs
e994d7d2
AK
55 [PERF_COUNT_HW_CACHE_MAX]
56 [PERF_COUNT_HW_CACHE_OP_MAX]
57 [PERF_COUNT_HW_CACHE_RESULT_MAX];
8326f44d 58
ee06094f 59/*
cdd6c482
IM
60 * Propagate event elapsed time into the generic event.
61 * Can only be executed on the CPU where the event is active.
ee06094f
IM
62 * Returns the delta events processed.
63 */
de0428a7 64u64 x86_perf_event_update(struct perf_event *event)
ee06094f 65{
cc2ad4ba 66 struct hw_perf_event *hwc = &event->hw;
948b1bb8 67 int shift = 64 - x86_pmu.cntval_bits;
ec3232bd 68 u64 prev_raw_count, new_raw_count;
cc2ad4ba 69 int idx = hwc->idx;
ec3232bd 70 s64 delta;
ee06094f 71
15c7ad51 72 if (idx == INTEL_PMC_IDX_FIXED_BTS)
30dd568c
MM
73 return 0;
74
ee06094f 75 /*
cdd6c482 76 * Careful: an NMI might modify the previous event value.
ee06094f
IM
77 *
78 * Our tactic to handle this is to first atomically read and
79 * exchange a new raw count - then add that new-prev delta
cdd6c482 80 * count to the generic event atomically:
ee06094f
IM
81 */
82again:
e7850595 83 prev_raw_count = local64_read(&hwc->prev_count);
c48b6053 84 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
ee06094f 85
e7850595 86 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
ee06094f
IM
87 new_raw_count) != prev_raw_count)
88 goto again;
89
90 /*
91 * Now we have the new raw value and have updated the prev
92 * timestamp already. We can now calculate the elapsed delta
cdd6c482 93 * (event-)time and add that to the generic event.
ee06094f
IM
94 *
95 * Careful, not all hw sign-extends above the physical width
ec3232bd 96 * of the count.
ee06094f 97 */
ec3232bd
PZ
98 delta = (new_raw_count << shift) - (prev_raw_count << shift);
99 delta >>= shift;
ee06094f 100
e7850595
PZ
101 local64_add(delta, &event->count);
102 local64_sub(delta, &hwc->period_left);
4b7bfd0d
RR
103
104 return new_raw_count;
ee06094f
IM
105}
106
a7e3ed1e
AK
107/*
108 * Find and validate any extra registers to set up.
109 */
110static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
111{
efc9f05d 112 struct hw_perf_event_extra *reg;
a7e3ed1e
AK
113 struct extra_reg *er;
114
efc9f05d 115 reg = &event->hw.extra_reg;
a7e3ed1e
AK
116
117 if (!x86_pmu.extra_regs)
118 return 0;
119
120 for (er = x86_pmu.extra_regs; er->msr; er++) {
121 if (er->event != (config & er->config_mask))
122 continue;
123 if (event->attr.config1 & ~er->valid_mask)
124 return -EINVAL;
338b522c
KL
125 /* Check if the extra msrs can be safely accessed*/
126 if (!er->extra_msr_access)
127 return -ENXIO;
efc9f05d
SE
128
129 reg->idx = er->idx;
130 reg->config = event->attr.config1;
131 reg->reg = er->msr;
a7e3ed1e
AK
132 break;
133 }
134 return 0;
135}
136
cdd6c482 137static atomic_t active_events;
4e935e47
PZ
138static DEFINE_MUTEX(pmc_reserve_mutex);
139
b27ea29c
RR
140#ifdef CONFIG_X86_LOCAL_APIC
141
4e935e47
PZ
142static bool reserve_pmc_hardware(void)
143{
144 int i;
145
948b1bb8 146 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989 147 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
4e935e47
PZ
148 goto perfctr_fail;
149 }
150
948b1bb8 151 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989 152 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
4e935e47
PZ
153 goto eventsel_fail;
154 }
155
156 return true;
157
158eventsel_fail:
159 for (i--; i >= 0; i--)
41bf4989 160 release_evntsel_nmi(x86_pmu_config_addr(i));
4e935e47 161
948b1bb8 162 i = x86_pmu.num_counters;
4e935e47
PZ
163
164perfctr_fail:
165 for (i--; i >= 0; i--)
41bf4989 166 release_perfctr_nmi(x86_pmu_event_addr(i));
4e935e47 167
4e935e47
PZ
168 return false;
169}
170
171static void release_pmc_hardware(void)
172{
173 int i;
174
948b1bb8 175 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989
RR
176 release_perfctr_nmi(x86_pmu_event_addr(i));
177 release_evntsel_nmi(x86_pmu_config_addr(i));
4e935e47 178 }
4e935e47
PZ
179}
180
b27ea29c
RR
181#else
182
183static bool reserve_pmc_hardware(void) { return true; }
184static void release_pmc_hardware(void) {}
185
186#endif
187
33c6d6a7
DZ
188static bool check_hw_exists(void)
189{
a5ebe0ba
GD
190 u64 val, val_fail, val_new= ~0;
191 int i, reg, reg_fail, ret = 0;
192 int bios_fail = 0;
33c6d6a7 193
4407204c
PZ
194 /*
195 * Check to see if the BIOS enabled any of the counters, if so
196 * complain and bail.
197 */
198 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989 199 reg = x86_pmu_config_addr(i);
4407204c
PZ
200 ret = rdmsrl_safe(reg, &val);
201 if (ret)
202 goto msr_fail;
a5ebe0ba
GD
203 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
204 bios_fail = 1;
205 val_fail = val;
206 reg_fail = reg;
207 }
4407204c
PZ
208 }
209
210 if (x86_pmu.num_counters_fixed) {
211 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
212 ret = rdmsrl_safe(reg, &val);
213 if (ret)
214 goto msr_fail;
215 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
a5ebe0ba
GD
216 if (val & (0x03 << i*4)) {
217 bios_fail = 1;
218 val_fail = val;
219 reg_fail = reg;
220 }
4407204c
PZ
221 }
222 }
223
224 /*
bffd5fc2
AP
225 * Read the current value, change it and read it back to see if it
226 * matches, this is needed to detect certain hardware emulators
227 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
4407204c 228 */
f285f92f 229 reg = x86_pmu_event_addr(0);
bffd5fc2
AP
230 if (rdmsrl_safe(reg, &val))
231 goto msr_fail;
232 val ^= 0xffffUL;
f285f92f
RR
233 ret = wrmsrl_safe(reg, val);
234 ret |= rdmsrl_safe(reg, &val_new);
33c6d6a7 235 if (ret || val != val_new)
4407204c 236 goto msr_fail;
33c6d6a7 237
45daae57
IM
238 /*
239 * We still allow the PMU driver to operate:
240 */
a5ebe0ba
GD
241 if (bios_fail) {
242 printk(KERN_CONT "Broken BIOS detected, complain to your hardware vendor.\n");
243 printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg_fail, val_fail);
244 }
45daae57
IM
245
246 return true;
4407204c
PZ
247
248msr_fail:
249 printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
65d71fe1
PZI
250 printk("%sFailed to access perfctr msr (MSR %x is %Lx)\n",
251 boot_cpu_has(X86_FEATURE_HYPERVISOR) ? KERN_INFO : KERN_ERR,
252 reg, val_new);
45daae57 253
4407204c 254 return false;
33c6d6a7
DZ
255}
256
cdd6c482 257static void hw_perf_event_destroy(struct perf_event *event)
4e935e47 258{
cdd6c482 259 if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
4e935e47 260 release_pmc_hardware();
ca037701 261 release_ds_buffers();
4e935e47
PZ
262 mutex_unlock(&pmc_reserve_mutex);
263 }
264}
265
48070342
AS
266void hw_perf_lbr_event_destroy(struct perf_event *event)
267{
268 hw_perf_event_destroy(event);
269
270 /* undo the lbr/bts event accounting */
271 x86_del_exclusive(x86_lbr_exclusive_lbr);
272}
273
85cf9dba
RR
274static inline int x86_pmu_initialized(void)
275{
276 return x86_pmu.handle_irq != NULL;
277}
278
8326f44d 279static inline int
e994d7d2 280set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
8326f44d 281{
e994d7d2 282 struct perf_event_attr *attr = &event->attr;
8326f44d
IM
283 unsigned int cache_type, cache_op, cache_result;
284 u64 config, val;
285
286 config = attr->config;
287
288 cache_type = (config >> 0) & 0xff;
289 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
290 return -EINVAL;
291
292 cache_op = (config >> 8) & 0xff;
293 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
294 return -EINVAL;
295
296 cache_result = (config >> 16) & 0xff;
297 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
298 return -EINVAL;
299
300 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
301
302 if (val == 0)
303 return -ENOENT;
304
305 if (val == -1)
306 return -EINVAL;
307
308 hwc->config |= val;
e994d7d2
AK
309 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
310 return x86_pmu_extra_regs(val, event);
8326f44d
IM
311}
312
48070342
AS
313/*
314 * Check if we can create event of a certain type (that no conflicting events
315 * are present).
316 */
317int x86_add_exclusive(unsigned int what)
318{
319 int ret = -EBUSY, i;
320
321 if (atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what]))
322 return 0;
323
324 mutex_lock(&pmc_reserve_mutex);
325 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++)
326 if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
327 goto out;
328
329 atomic_inc(&x86_pmu.lbr_exclusive[what]);
330 ret = 0;
331
332out:
333 mutex_unlock(&pmc_reserve_mutex);
334 return ret;
335}
336
337void x86_del_exclusive(unsigned int what)
338{
339 atomic_dec(&x86_pmu.lbr_exclusive[what]);
340}
341
de0428a7 342int x86_setup_perfctr(struct perf_event *event)
c1726f34
RR
343{
344 struct perf_event_attr *attr = &event->attr;
345 struct hw_perf_event *hwc = &event->hw;
346 u64 config;
347
6c7e550f 348 if (!is_sampling_event(event)) {
c1726f34
RR
349 hwc->sample_period = x86_pmu.max_period;
350 hwc->last_period = hwc->sample_period;
e7850595 351 local64_set(&hwc->period_left, hwc->sample_period);
c1726f34
RR
352 }
353
354 if (attr->type == PERF_TYPE_RAW)
ed13ec58 355 return x86_pmu_extra_regs(event->attr.config, event);
c1726f34
RR
356
357 if (attr->type == PERF_TYPE_HW_CACHE)
e994d7d2 358 return set_ext_hw_attr(hwc, event);
c1726f34
RR
359
360 if (attr->config >= x86_pmu.max_events)
361 return -EINVAL;
362
363 /*
364 * The generic map:
365 */
366 config = x86_pmu.event_map(attr->config);
367
368 if (config == 0)
369 return -ENOENT;
370
371 if (config == -1LL)
372 return -EINVAL;
373
374 /*
375 * Branch tracing:
376 */
18a073a3
PZ
377 if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
378 !attr->freq && hwc->sample_period == 1) {
c1726f34 379 /* BTS is not supported by this architecture. */
6809b6ea 380 if (!x86_pmu.bts_active)
c1726f34
RR
381 return -EOPNOTSUPP;
382
383 /* BTS is currently only allowed for user-mode. */
384 if (!attr->exclude_kernel)
385 return -EOPNOTSUPP;
48070342
AS
386
387 /* disallow bts if conflicting events are present */
388 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
389 return -EBUSY;
390
391 event->destroy = hw_perf_lbr_event_destroy;
c1726f34
RR
392 }
393
394 hwc->config |= config;
395
396 return 0;
397}
4261e0e0 398
ff3fb511
SE
399/*
400 * check that branch_sample_type is compatible with
401 * settings needed for precise_ip > 1 which implies
402 * using the LBR to capture ALL taken branches at the
403 * priv levels of the measurement
404 */
405static inline int precise_br_compat(struct perf_event *event)
406{
407 u64 m = event->attr.branch_sample_type;
408 u64 b = 0;
409
410 /* must capture all branches */
411 if (!(m & PERF_SAMPLE_BRANCH_ANY))
412 return 0;
413
414 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
415
416 if (!event->attr.exclude_user)
417 b |= PERF_SAMPLE_BRANCH_USER;
418
419 if (!event->attr.exclude_kernel)
420 b |= PERF_SAMPLE_BRANCH_KERNEL;
421
422 /*
423 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
424 */
425
426 return m == b;
427}
428
de0428a7 429int x86_pmu_hw_config(struct perf_event *event)
a072738e 430{
ab608344
PZ
431 if (event->attr.precise_ip) {
432 int precise = 0;
433
434 /* Support for constant skid */
c93dc84c 435 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
ab608344
PZ
436 precise++;
437
5553be26 438 /* Support for IP fixup */
03de874a 439 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
5553be26
PZ
440 precise++;
441 }
ab608344
PZ
442
443 if (event->attr.precise_ip > precise)
444 return -EOPNOTSUPP;
4b854900
YZ
445 }
446 /*
447 * check that PEBS LBR correction does not conflict with
448 * whatever the user is asking with attr->branch_sample_type
449 */
450 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
451 u64 *br_type = &event->attr.branch_sample_type;
452
453 if (has_branch_stack(event)) {
454 if (!precise_br_compat(event))
455 return -EOPNOTSUPP;
456
457 /* branch_sample_type is compatible */
458
459 } else {
460 /*
461 * user did not specify branch_sample_type
462 *
463 * For PEBS fixups, we capture all
464 * the branches at the priv level of the
465 * event.
466 */
467 *br_type = PERF_SAMPLE_BRANCH_ANY;
468
469 if (!event->attr.exclude_user)
470 *br_type |= PERF_SAMPLE_BRANCH_USER;
471
472 if (!event->attr.exclude_kernel)
473 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
ff3fb511 474 }
ab608344
PZ
475 }
476
e18bf526
YZ
477 if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
478 event->attach_state |= PERF_ATTACH_TASK_DATA;
479
a072738e
CG
480 /*
481 * Generate PMC IRQs:
482 * (keep 'enabled' bit clear for now)
483 */
b4cdc5c2 484 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
a072738e
CG
485
486 /*
487 * Count user and OS events unless requested not to
488 */
b4cdc5c2
PZ
489 if (!event->attr.exclude_user)
490 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
491 if (!event->attr.exclude_kernel)
492 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
a072738e 493
b4cdc5c2
PZ
494 if (event->attr.type == PERF_TYPE_RAW)
495 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
a072738e 496
294fe0f5
AK
497 if (event->attr.sample_period && x86_pmu.limit_period) {
498 if (x86_pmu.limit_period(event, event->attr.sample_period) >
499 event->attr.sample_period)
500 return -EINVAL;
501 }
502
9d0fcba6 503 return x86_setup_perfctr(event);
a098f448
RR
504}
505
241771ef 506/*
0d48696f 507 * Setup the hardware configuration for a given attr_type
241771ef 508 */
b0a873eb 509static int __x86_pmu_event_init(struct perf_event *event)
241771ef 510{
4e935e47 511 int err;
241771ef 512
85cf9dba
RR
513 if (!x86_pmu_initialized())
514 return -ENODEV;
241771ef 515
4e935e47 516 err = 0;
cdd6c482 517 if (!atomic_inc_not_zero(&active_events)) {
4e935e47 518 mutex_lock(&pmc_reserve_mutex);
cdd6c482 519 if (atomic_read(&active_events) == 0) {
30dd568c
MM
520 if (!reserve_pmc_hardware())
521 err = -EBUSY;
f80c9e30
PZ
522 else
523 reserve_ds_buffers();
30dd568c
MM
524 }
525 if (!err)
cdd6c482 526 atomic_inc(&active_events);
4e935e47
PZ
527 mutex_unlock(&pmc_reserve_mutex);
528 }
529 if (err)
530 return err;
531
cdd6c482 532 event->destroy = hw_perf_event_destroy;
a1792cda 533
4261e0e0
RR
534 event->hw.idx = -1;
535 event->hw.last_cpu = -1;
536 event->hw.last_tag = ~0ULL;
b690081d 537
efc9f05d
SE
538 /* mark unused */
539 event->hw.extra_reg.idx = EXTRA_REG_NONE;
b36817e8
SE
540 event->hw.branch_reg.idx = EXTRA_REG_NONE;
541
9d0fcba6 542 return x86_pmu.hw_config(event);
4261e0e0
RR
543}
544
de0428a7 545void x86_pmu_disable_all(void)
f87ad35d 546{
89cbc767 547 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
9e35ad38
PZ
548 int idx;
549
948b1bb8 550 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
b0f3f28e
PZ
551 u64 val;
552
43f6201a 553 if (!test_bit(idx, cpuc->active_mask))
4295ee62 554 continue;
41bf4989 555 rdmsrl(x86_pmu_config_addr(idx), val);
bb1165d6 556 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
4295ee62 557 continue;
bb1165d6 558 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
41bf4989 559 wrmsrl(x86_pmu_config_addr(idx), val);
f87ad35d 560 }
f87ad35d
JSR
561}
562
a4eaf7f1 563static void x86_pmu_disable(struct pmu *pmu)
b56a3802 564{
89cbc767 565 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1da53e02 566
85cf9dba 567 if (!x86_pmu_initialized())
9e35ad38 568 return;
1da53e02 569
1a6e21f7
PZ
570 if (!cpuc->enabled)
571 return;
572
573 cpuc->n_added = 0;
574 cpuc->enabled = 0;
575 barrier();
1da53e02
SE
576
577 x86_pmu.disable_all();
b56a3802 578}
241771ef 579
de0428a7 580void x86_pmu_enable_all(int added)
f87ad35d 581{
89cbc767 582 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
f87ad35d
JSR
583 int idx;
584
948b1bb8 585 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
d45dd923 586 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
b0f3f28e 587
43f6201a 588 if (!test_bit(idx, cpuc->active_mask))
4295ee62 589 continue;
984b838c 590
d45dd923 591 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
f87ad35d
JSR
592 }
593}
594
51b0fe39 595static struct pmu pmu;
1da53e02
SE
596
597static inline int is_x86_event(struct perf_event *event)
598{
599 return event->pmu == &pmu;
600}
601
1e2ad28f
RR
602/*
603 * Event scheduler state:
604 *
605 * Assign events iterating over all events and counters, beginning
606 * with events with least weights first. Keep the current iterator
607 * state in struct sched_state.
608 */
609struct sched_state {
610 int weight;
611 int event; /* event index */
612 int counter; /* counter index */
613 int unassigned; /* number of events to be assigned left */
614 unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
615};
616
bc1738f6
RR
617/* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
618#define SCHED_STATES_MAX 2
619
1e2ad28f
RR
620struct perf_sched {
621 int max_weight;
622 int max_events;
43b45780 623 struct perf_event **events;
1e2ad28f 624 struct sched_state state;
bc1738f6
RR
625 int saved_states;
626 struct sched_state saved[SCHED_STATES_MAX];
1e2ad28f
RR
627};
628
629/*
630 * Initialize interator that runs through all events and counters.
631 */
43b45780 632static void perf_sched_init(struct perf_sched *sched, struct perf_event **events,
1e2ad28f
RR
633 int num, int wmin, int wmax)
634{
635 int idx;
636
637 memset(sched, 0, sizeof(*sched));
638 sched->max_events = num;
639 sched->max_weight = wmax;
43b45780 640 sched->events = events;
1e2ad28f
RR
641
642 for (idx = 0; idx < num; idx++) {
43b45780 643 if (events[idx]->hw.constraint->weight == wmin)
1e2ad28f
RR
644 break;
645 }
646
647 sched->state.event = idx; /* start with min weight */
648 sched->state.weight = wmin;
649 sched->state.unassigned = num;
650}
651
bc1738f6
RR
652static void perf_sched_save_state(struct perf_sched *sched)
653{
654 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
655 return;
656
657 sched->saved[sched->saved_states] = sched->state;
658 sched->saved_states++;
659}
660
661static bool perf_sched_restore_state(struct perf_sched *sched)
662{
663 if (!sched->saved_states)
664 return false;
665
666 sched->saved_states--;
667 sched->state = sched->saved[sched->saved_states];
668
669 /* continue with next counter: */
670 clear_bit(sched->state.counter++, sched->state.used);
671
672 return true;
673}
674
1e2ad28f
RR
675/*
676 * Select a counter for the current event to schedule. Return true on
677 * success.
678 */
bc1738f6 679static bool __perf_sched_find_counter(struct perf_sched *sched)
1e2ad28f
RR
680{
681 struct event_constraint *c;
682 int idx;
683
684 if (!sched->state.unassigned)
685 return false;
686
687 if (sched->state.event >= sched->max_events)
688 return false;
689
43b45780 690 c = sched->events[sched->state.event]->hw.constraint;
4defea85 691 /* Prefer fixed purpose counters */
15c7ad51
RR
692 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
693 idx = INTEL_PMC_IDX_FIXED;
307b1cd7 694 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
4defea85
PZ
695 if (!__test_and_set_bit(idx, sched->state.used))
696 goto done;
697 }
698 }
1e2ad28f
RR
699 /* Grab the first unused counter starting with idx */
700 idx = sched->state.counter;
15c7ad51 701 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
1e2ad28f 702 if (!__test_and_set_bit(idx, sched->state.used))
4defea85 703 goto done;
1e2ad28f 704 }
1e2ad28f 705
4defea85
PZ
706 return false;
707
708done:
709 sched->state.counter = idx;
1e2ad28f 710
bc1738f6
RR
711 if (c->overlap)
712 perf_sched_save_state(sched);
713
714 return true;
715}
716
717static bool perf_sched_find_counter(struct perf_sched *sched)
718{
719 while (!__perf_sched_find_counter(sched)) {
720 if (!perf_sched_restore_state(sched))
721 return false;
722 }
723
1e2ad28f
RR
724 return true;
725}
726
727/*
728 * Go through all unassigned events and find the next one to schedule.
729 * Take events with the least weight first. Return true on success.
730 */
731static bool perf_sched_next_event(struct perf_sched *sched)
732{
733 struct event_constraint *c;
734
735 if (!sched->state.unassigned || !--sched->state.unassigned)
736 return false;
737
738 do {
739 /* next event */
740 sched->state.event++;
741 if (sched->state.event >= sched->max_events) {
742 /* next weight */
743 sched->state.event = 0;
744 sched->state.weight++;
745 if (sched->state.weight > sched->max_weight)
746 return false;
747 }
43b45780 748 c = sched->events[sched->state.event]->hw.constraint;
1e2ad28f
RR
749 } while (c->weight != sched->state.weight);
750
751 sched->state.counter = 0; /* start with first counter */
752
753 return true;
754}
755
756/*
757 * Assign a counter for each event.
758 */
43b45780 759int perf_assign_events(struct perf_event **events, int n,
4b4969b1 760 int wmin, int wmax, int *assign)
1e2ad28f
RR
761{
762 struct perf_sched sched;
763
43b45780 764 perf_sched_init(&sched, events, n, wmin, wmax);
1e2ad28f
RR
765
766 do {
767 if (!perf_sched_find_counter(&sched))
768 break; /* failed */
769 if (assign)
770 assign[sched.state.event] = sched.state.counter;
771 } while (perf_sched_next_event(&sched));
772
773 return sched.state.unassigned;
774}
4a3dc121 775EXPORT_SYMBOL_GPL(perf_assign_events);
1e2ad28f 776
de0428a7 777int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
1da53e02 778{
43b45780 779 struct event_constraint *c;
1da53e02 780 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
2f7f73a5 781 struct perf_event *e;
1e2ad28f 782 int i, wmin, wmax, num = 0;
1da53e02
SE
783 struct hw_perf_event *hwc;
784
785 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
786
1e2ad28f 787 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
43b45780 788 hwc = &cpuc->event_list[i]->hw;
b622d644 789 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
43b45780
AH
790 hwc->constraint = c;
791
1e2ad28f
RR
792 wmin = min(wmin, c->weight);
793 wmax = max(wmax, c->weight);
1da53e02
SE
794 }
795
8113070d
SE
796 /*
797 * fastpath, try to reuse previous register
798 */
c933c1a6 799 for (i = 0; i < n; i++) {
8113070d 800 hwc = &cpuc->event_list[i]->hw;
43b45780 801 c = hwc->constraint;
8113070d
SE
802
803 /* never assigned */
804 if (hwc->idx == -1)
805 break;
806
807 /* constraint still honored */
63b14649 808 if (!test_bit(hwc->idx, c->idxmsk))
8113070d
SE
809 break;
810
811 /* not already used */
812 if (test_bit(hwc->idx, used_mask))
813 break;
814
34538ee7 815 __set_bit(hwc->idx, used_mask);
8113070d
SE
816 if (assign)
817 assign[i] = hwc->idx;
818 }
8113070d 819
1e2ad28f
RR
820 /* slow path */
821 if (i != n)
43b45780
AH
822 num = perf_assign_events(cpuc->event_list, n, wmin,
823 wmax, assign);
8113070d 824
2f7f73a5
SE
825 /*
826 * Mark the event as committed, so we do not put_constraint()
827 * in case new events are added and fail scheduling.
828 */
829 if (!num && assign) {
830 for (i = 0; i < n; i++) {
831 e = cpuc->event_list[i];
832 e->hw.flags |= PERF_X86_EVENT_COMMITTED;
833 }
834 }
1da53e02
SE
835 /*
836 * scheduling failed or is just a simulation,
837 * free resources if necessary
838 */
839 if (!assign || num) {
840 for (i = 0; i < n; i++) {
2f7f73a5
SE
841 e = cpuc->event_list[i];
842 /*
843 * do not put_constraint() on comitted events,
844 * because they are good to go
845 */
846 if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
847 continue;
848
1da53e02 849 if (x86_pmu.put_event_constraints)
2f7f73a5 850 x86_pmu.put_event_constraints(cpuc, e);
1da53e02
SE
851 }
852 }
aa2bc1ad 853 return num ? -EINVAL : 0;
1da53e02
SE
854}
855
856/*
857 * dogrp: true if must collect siblings events (group)
858 * returns total number of events and error code
859 */
860static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
861{
862 struct perf_event *event;
863 int n, max_count;
864
948b1bb8 865 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
1da53e02
SE
866
867 /* current number of events already accepted */
868 n = cpuc->n_events;
869
870 if (is_x86_event(leader)) {
871 if (n >= max_count)
aa2bc1ad 872 return -EINVAL;
1da53e02
SE
873 cpuc->event_list[n] = leader;
874 n++;
875 }
876 if (!dogrp)
877 return n;
878
879 list_for_each_entry(event, &leader->sibling_list, group_entry) {
880 if (!is_x86_event(event) ||
8113070d 881 event->state <= PERF_EVENT_STATE_OFF)
1da53e02
SE
882 continue;
883
884 if (n >= max_count)
aa2bc1ad 885 return -EINVAL;
1da53e02
SE
886
887 cpuc->event_list[n] = event;
888 n++;
889 }
890 return n;
891}
892
1da53e02 893static inline void x86_assign_hw_event(struct perf_event *event,
447a194b 894 struct cpu_hw_events *cpuc, int i)
1da53e02 895{
447a194b
SE
896 struct hw_perf_event *hwc = &event->hw;
897
898 hwc->idx = cpuc->assign[i];
899 hwc->last_cpu = smp_processor_id();
900 hwc->last_tag = ++cpuc->tags[i];
1da53e02 901
15c7ad51 902 if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
1da53e02
SE
903 hwc->config_base = 0;
904 hwc->event_base = 0;
15c7ad51 905 } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1da53e02 906 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
15c7ad51
RR
907 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
908 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1da53e02 909 } else {
73d6e522
RR
910 hwc->config_base = x86_pmu_config_addr(hwc->idx);
911 hwc->event_base = x86_pmu_event_addr(hwc->idx);
0fbdad07 912 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1da53e02
SE
913 }
914}
915
447a194b
SE
916static inline int match_prev_assignment(struct hw_perf_event *hwc,
917 struct cpu_hw_events *cpuc,
918 int i)
919{
920 return hwc->idx == cpuc->assign[i] &&
921 hwc->last_cpu == smp_processor_id() &&
922 hwc->last_tag == cpuc->tags[i];
923}
924
a4eaf7f1 925static void x86_pmu_start(struct perf_event *event, int flags);
2e841873 926
a4eaf7f1 927static void x86_pmu_enable(struct pmu *pmu)
ee06094f 928{
89cbc767 929 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1da53e02
SE
930 struct perf_event *event;
931 struct hw_perf_event *hwc;
11164cd4 932 int i, added = cpuc->n_added;
1da53e02 933
85cf9dba 934 if (!x86_pmu_initialized())
2b9ff0db 935 return;
1a6e21f7
PZ
936
937 if (cpuc->enabled)
938 return;
939
1da53e02 940 if (cpuc->n_added) {
19925ce7 941 int n_running = cpuc->n_events - cpuc->n_added;
1da53e02
SE
942 /*
943 * apply assignment obtained either from
944 * hw_perf_group_sched_in() or x86_pmu_enable()
945 *
946 * step1: save events moving to new counters
1da53e02 947 */
19925ce7 948 for (i = 0; i < n_running; i++) {
1da53e02
SE
949 event = cpuc->event_list[i];
950 hwc = &event->hw;
951
447a194b
SE
952 /*
953 * we can avoid reprogramming counter if:
954 * - assigned same counter as last time
955 * - running on same CPU as last time
956 * - no other event has used the counter since
957 */
958 if (hwc->idx == -1 ||
959 match_prev_assignment(hwc, cpuc, i))
1da53e02
SE
960 continue;
961
a4eaf7f1
PZ
962 /*
963 * Ensure we don't accidentally enable a stopped
964 * counter simply because we rescheduled.
965 */
966 if (hwc->state & PERF_HES_STOPPED)
967 hwc->state |= PERF_HES_ARCH;
968
969 x86_pmu_stop(event, PERF_EF_UPDATE);
1da53e02
SE
970 }
971
c347a2f1
PZ
972 /*
973 * step2: reprogram moved events into new counters
974 */
1da53e02 975 for (i = 0; i < cpuc->n_events; i++) {
1da53e02
SE
976 event = cpuc->event_list[i];
977 hwc = &event->hw;
978
45e16a68 979 if (!match_prev_assignment(hwc, cpuc, i))
447a194b 980 x86_assign_hw_event(event, cpuc, i);
45e16a68
PZ
981 else if (i < n_running)
982 continue;
1da53e02 983
a4eaf7f1
PZ
984 if (hwc->state & PERF_HES_ARCH)
985 continue;
986
987 x86_pmu_start(event, PERF_EF_RELOAD);
1da53e02
SE
988 }
989 cpuc->n_added = 0;
990 perf_events_lapic_init();
991 }
1a6e21f7
PZ
992
993 cpuc->enabled = 1;
994 barrier();
995
11164cd4 996 x86_pmu.enable_all(added);
ee06094f 997}
ee06094f 998
245b2e70 999static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
241771ef 1000
ee06094f
IM
1001/*
1002 * Set the next IRQ period, based on the hwc->period_left value.
cdd6c482 1003 * To be called with the event disabled in hw:
ee06094f 1004 */
de0428a7 1005int x86_perf_event_set_period(struct perf_event *event)
241771ef 1006{
07088edb 1007 struct hw_perf_event *hwc = &event->hw;
e7850595 1008 s64 left = local64_read(&hwc->period_left);
e4abb5d4 1009 s64 period = hwc->sample_period;
7645a24c 1010 int ret = 0, idx = hwc->idx;
ee06094f 1011
15c7ad51 1012 if (idx == INTEL_PMC_IDX_FIXED_BTS)
30dd568c
MM
1013 return 0;
1014
ee06094f 1015 /*
af901ca1 1016 * If we are way outside a reasonable range then just skip forward:
ee06094f
IM
1017 */
1018 if (unlikely(left <= -period)) {
1019 left = period;
e7850595 1020 local64_set(&hwc->period_left, left);
9e350de3 1021 hwc->last_period = period;
e4abb5d4 1022 ret = 1;
ee06094f
IM
1023 }
1024
1025 if (unlikely(left <= 0)) {
1026 left += period;
e7850595 1027 local64_set(&hwc->period_left, left);
9e350de3 1028 hwc->last_period = period;
e4abb5d4 1029 ret = 1;
ee06094f 1030 }
1c80f4b5 1031 /*
dfc65094 1032 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1c80f4b5
IM
1033 */
1034 if (unlikely(left < 2))
1035 left = 2;
241771ef 1036
e4abb5d4
PZ
1037 if (left > x86_pmu.max_period)
1038 left = x86_pmu.max_period;
1039
294fe0f5
AK
1040 if (x86_pmu.limit_period)
1041 left = x86_pmu.limit_period(event, left);
1042
245b2e70 1043 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
ee06094f
IM
1044
1045 /*
cdd6c482 1046 * The hw event starts counting from this event offset,
ee06094f
IM
1047 * mark it to be able to extra future deltas:
1048 */
e7850595 1049 local64_set(&hwc->prev_count, (u64)-left);
ee06094f 1050
73d6e522 1051 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
68aa00ac
CG
1052
1053 /*
1054 * Due to erratum on certan cpu we need
1055 * a second write to be sure the register
1056 * is updated properly
1057 */
1058 if (x86_pmu.perfctr_second_write) {
73d6e522 1059 wrmsrl(hwc->event_base,
948b1bb8 1060 (u64)(-left) & x86_pmu.cntval_mask);
68aa00ac 1061 }
e4abb5d4 1062
cdd6c482 1063 perf_event_update_userpage(event);
194002b2 1064
e4abb5d4 1065 return ret;
2f18d1e8
IM
1066}
1067
de0428a7 1068void x86_pmu_enable_event(struct perf_event *event)
7c90cc45 1069{
0a3aee0d 1070 if (__this_cpu_read(cpu_hw_events.enabled))
31fa58af
RR
1071 __x86_pmu_enable_event(&event->hw,
1072 ARCH_PERFMON_EVENTSEL_ENABLE);
241771ef
IM
1073}
1074
b690081d 1075/*
a4eaf7f1 1076 * Add a single event to the PMU.
1da53e02
SE
1077 *
1078 * The event is added to the group of enabled events
1079 * but only if it can be scehduled with existing events.
fe9081cc 1080 */
a4eaf7f1 1081static int x86_pmu_add(struct perf_event *event, int flags)
fe9081cc 1082{
89cbc767 1083 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1da53e02
SE
1084 struct hw_perf_event *hwc;
1085 int assign[X86_PMC_IDX_MAX];
1086 int n, n0, ret;
fe9081cc 1087
1da53e02 1088 hwc = &event->hw;
fe9081cc 1089
1da53e02 1090 n0 = cpuc->n_events;
24cd7f54
PZ
1091 ret = n = collect_events(cpuc, event, false);
1092 if (ret < 0)
1093 goto out;
53b441a5 1094
a4eaf7f1
PZ
1095 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1096 if (!(flags & PERF_EF_START))
1097 hwc->state |= PERF_HES_ARCH;
1098
4d1c52b0
LM
1099 /*
1100 * If group events scheduling transaction was started,
0d2eb44f 1101 * skip the schedulability test here, it will be performed
c347a2f1 1102 * at commit time (->commit_txn) as a whole.
4d1c52b0 1103 */
8d2cacbb 1104 if (cpuc->group_flag & PERF_EVENT_TXN)
24cd7f54 1105 goto done_collect;
4d1c52b0 1106
a072738e 1107 ret = x86_pmu.schedule_events(cpuc, n, assign);
1da53e02 1108 if (ret)
24cd7f54 1109 goto out;
1da53e02
SE
1110 /*
1111 * copy new assignment, now we know it is possible
1112 * will be used by hw_perf_enable()
1113 */
1114 memcpy(cpuc->assign, assign, n*sizeof(int));
7e2ae347 1115
24cd7f54 1116done_collect:
c347a2f1
PZ
1117 /*
1118 * Commit the collect_events() state. See x86_pmu_del() and
1119 * x86_pmu_*_txn().
1120 */
1da53e02 1121 cpuc->n_events = n;
356e1f2e 1122 cpuc->n_added += n - n0;
90151c35 1123 cpuc->n_txn += n - n0;
95cdd2e7 1124
24cd7f54
PZ
1125 ret = 0;
1126out:
24cd7f54 1127 return ret;
241771ef
IM
1128}
1129
a4eaf7f1 1130static void x86_pmu_start(struct perf_event *event, int flags)
d76a0812 1131{
89cbc767 1132 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
c08053e6
PZ
1133 int idx = event->hw.idx;
1134
a4eaf7f1
PZ
1135 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1136 return;
1137
1138 if (WARN_ON_ONCE(idx == -1))
1139 return;
1140
1141 if (flags & PERF_EF_RELOAD) {
1142 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1143 x86_perf_event_set_period(event);
1144 }
1145
1146 event->hw.state = 0;
d76a0812 1147
c08053e6
PZ
1148 cpuc->events[idx] = event;
1149 __set_bit(idx, cpuc->active_mask);
63e6be6d 1150 __set_bit(idx, cpuc->running);
aff3d91a 1151 x86_pmu.enable(event);
c08053e6 1152 perf_event_update_userpage(event);
a78ac325
PZ
1153}
1154
cdd6c482 1155void perf_event_print_debug(void)
241771ef 1156{
2f18d1e8 1157 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
ca037701 1158 u64 pebs;
cdd6c482 1159 struct cpu_hw_events *cpuc;
5bb9efe3 1160 unsigned long flags;
1e125676
IM
1161 int cpu, idx;
1162
948b1bb8 1163 if (!x86_pmu.num_counters)
1e125676 1164 return;
241771ef 1165
5bb9efe3 1166 local_irq_save(flags);
241771ef
IM
1167
1168 cpu = smp_processor_id();
cdd6c482 1169 cpuc = &per_cpu(cpu_hw_events, cpu);
241771ef 1170
faa28ae0 1171 if (x86_pmu.version >= 2) {
a1ef58f4
JSR
1172 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1173 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1174 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1175 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
ca037701 1176 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
a1ef58f4
JSR
1177
1178 pr_info("\n");
1179 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1180 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1181 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1182 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
ca037701 1183 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
f87ad35d 1184 }
7645a24c 1185 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
241771ef 1186
948b1bb8 1187 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
41bf4989
RR
1188 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1189 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
241771ef 1190
245b2e70 1191 prev_left = per_cpu(pmc_prev_left[idx], cpu);
241771ef 1192
a1ef58f4 1193 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
241771ef 1194 cpu, idx, pmc_ctrl);
a1ef58f4 1195 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
241771ef 1196 cpu, idx, pmc_count);
a1ef58f4 1197 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
ee06094f 1198 cpu, idx, prev_left);
241771ef 1199 }
948b1bb8 1200 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
2f18d1e8
IM
1201 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1202
a1ef58f4 1203 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
2f18d1e8
IM
1204 cpu, idx, pmc_count);
1205 }
5bb9efe3 1206 local_irq_restore(flags);
241771ef
IM
1207}
1208
de0428a7 1209void x86_pmu_stop(struct perf_event *event, int flags)
241771ef 1210{
89cbc767 1211 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
cdd6c482 1212 struct hw_perf_event *hwc = &event->hw;
241771ef 1213
a4eaf7f1
PZ
1214 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1215 x86_pmu.disable(event);
1216 cpuc->events[hwc->idx] = NULL;
1217 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1218 hwc->state |= PERF_HES_STOPPED;
1219 }
30dd568c 1220
a4eaf7f1
PZ
1221 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1222 /*
1223 * Drain the remaining delta count out of a event
1224 * that we are disabling:
1225 */
1226 x86_perf_event_update(event);
1227 hwc->state |= PERF_HES_UPTODATE;
1228 }
2e841873
PZ
1229}
1230
a4eaf7f1 1231static void x86_pmu_del(struct perf_event *event, int flags)
2e841873 1232{
89cbc767 1233 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2e841873
PZ
1234 int i;
1235
2f7f73a5
SE
1236 /*
1237 * event is descheduled
1238 */
1239 event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1240
90151c35
SE
1241 /*
1242 * If we're called during a txn, we don't need to do anything.
1243 * The events never got scheduled and ->cancel_txn will truncate
1244 * the event_list.
c347a2f1
PZ
1245 *
1246 * XXX assumes any ->del() called during a TXN will only be on
1247 * an event added during that same TXN.
90151c35 1248 */
8d2cacbb 1249 if (cpuc->group_flag & PERF_EVENT_TXN)
90151c35
SE
1250 return;
1251
c347a2f1
PZ
1252 /*
1253 * Not a TXN, therefore cleanup properly.
1254 */
a4eaf7f1 1255 x86_pmu_stop(event, PERF_EF_UPDATE);
194002b2 1256
1da53e02 1257 for (i = 0; i < cpuc->n_events; i++) {
c347a2f1
PZ
1258 if (event == cpuc->event_list[i])
1259 break;
1260 }
1da53e02 1261
c347a2f1
PZ
1262 if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1263 return;
26e61e89 1264
c347a2f1
PZ
1265 /* If we have a newly added event; make sure to decrease n_added. */
1266 if (i >= cpuc->n_events - cpuc->n_added)
1267 --cpuc->n_added;
1da53e02 1268
c347a2f1
PZ
1269 if (x86_pmu.put_event_constraints)
1270 x86_pmu.put_event_constraints(cpuc, event);
1271
1272 /* Delete the array entry. */
1273 while (++i < cpuc->n_events)
1274 cpuc->event_list[i-1] = cpuc->event_list[i];
1275 --cpuc->n_events;
1da53e02 1276
cdd6c482 1277 perf_event_update_userpage(event);
241771ef
IM
1278}
1279
de0428a7 1280int x86_pmu_handle_irq(struct pt_regs *regs)
a29aa8a7 1281{
df1a132b 1282 struct perf_sample_data data;
cdd6c482
IM
1283 struct cpu_hw_events *cpuc;
1284 struct perf_event *event;
11d1578f 1285 int idx, handled = 0;
9029a5e3
IM
1286 u64 val;
1287
89cbc767 1288 cpuc = this_cpu_ptr(&cpu_hw_events);
962bf7a6 1289
2bce5dac
DZ
1290 /*
1291 * Some chipsets need to unmask the LVTPC in a particular spot
1292 * inside the nmi handler. As a result, the unmasking was pushed
1293 * into all the nmi handlers.
1294 *
1295 * This generic handler doesn't seem to have any issues where the
1296 * unmasking occurs so it was left at the top.
1297 */
1298 apic_write(APIC_LVTPC, APIC_DM_NMI);
1299
948b1bb8 1300 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
63e6be6d
RR
1301 if (!test_bit(idx, cpuc->active_mask)) {
1302 /*
1303 * Though we deactivated the counter some cpus
1304 * might still deliver spurious interrupts still
1305 * in flight. Catch them:
1306 */
1307 if (__test_and_clear_bit(idx, cpuc->running))
1308 handled++;
a29aa8a7 1309 continue;
63e6be6d 1310 }
962bf7a6 1311
cdd6c482 1312 event = cpuc->events[idx];
a4016a79 1313
cc2ad4ba 1314 val = x86_perf_event_update(event);
948b1bb8 1315 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
48e22d56 1316 continue;
962bf7a6 1317
9e350de3 1318 /*
cdd6c482 1319 * event overflow
9e350de3 1320 */
4177c42a 1321 handled++;
fd0d000b 1322 perf_sample_data_init(&data, 0, event->hw.last_period);
9e350de3 1323
07088edb 1324 if (!x86_perf_event_set_period(event))
e4abb5d4
PZ
1325 continue;
1326
a8b0ca17 1327 if (perf_event_overflow(event, &data, regs))
a4eaf7f1 1328 x86_pmu_stop(event, 0);
a29aa8a7 1329 }
962bf7a6 1330
9e350de3
PZ
1331 if (handled)
1332 inc_irq_stat(apic_perf_irqs);
1333
a29aa8a7
RR
1334 return handled;
1335}
39d81eab 1336
cdd6c482 1337void perf_events_lapic_init(void)
241771ef 1338{
04da8a43 1339 if (!x86_pmu.apic || !x86_pmu_initialized())
241771ef 1340 return;
85cf9dba 1341
241771ef 1342 /*
c323d95f 1343 * Always use NMI for PMU
241771ef 1344 */
c323d95f 1345 apic_write(APIC_LVTPC, APIC_DM_NMI);
241771ef
IM
1346}
1347
9326638c 1348static int
9c48f1c6 1349perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
241771ef 1350{
14c63f17
DH
1351 u64 start_clock;
1352 u64 finish_clock;
e8a923cc 1353 int ret;
14c63f17 1354
cdd6c482 1355 if (!atomic_read(&active_events))
9c48f1c6 1356 return NMI_DONE;
4177c42a 1357
e8a923cc 1358 start_clock = sched_clock();
14c63f17 1359 ret = x86_pmu.handle_irq(regs);
e8a923cc 1360 finish_clock = sched_clock();
14c63f17
DH
1361
1362 perf_sample_event_took(finish_clock - start_clock);
1363
1364 return ret;
241771ef 1365}
9326638c 1366NOKPROBE_SYMBOL(perf_event_nmi_handler);
241771ef 1367
de0428a7
KW
1368struct event_constraint emptyconstraint;
1369struct event_constraint unconstrained;
f87ad35d 1370
148f9bb8 1371static int
3f6da390
PZ
1372x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1373{
1374 unsigned int cpu = (long)hcpu;
7fdba1ca 1375 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
90413464 1376 int i, ret = NOTIFY_OK;
3f6da390
PZ
1377
1378 switch (action & ~CPU_TASKS_FROZEN) {
1379 case CPU_UP_PREPARE:
90413464
SE
1380 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1381 cpuc->kfree_on_online[i] = NULL;
3f6da390 1382 if (x86_pmu.cpu_prepare)
b38b24ea 1383 ret = x86_pmu.cpu_prepare(cpu);
3f6da390
PZ
1384 break;
1385
1386 case CPU_STARTING:
1387 if (x86_pmu.cpu_starting)
1388 x86_pmu.cpu_starting(cpu);
1389 break;
1390
7fdba1ca 1391 case CPU_ONLINE:
90413464
SE
1392 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1393 kfree(cpuc->kfree_on_online[i]);
1394 cpuc->kfree_on_online[i] = NULL;
1395 }
7fdba1ca
PZ
1396 break;
1397
3f6da390
PZ
1398 case CPU_DYING:
1399 if (x86_pmu.cpu_dying)
1400 x86_pmu.cpu_dying(cpu);
1401 break;
1402
b38b24ea 1403 case CPU_UP_CANCELED:
3f6da390
PZ
1404 case CPU_DEAD:
1405 if (x86_pmu.cpu_dead)
1406 x86_pmu.cpu_dead(cpu);
1407 break;
1408
1409 default:
1410 break;
1411 }
1412
b38b24ea 1413 return ret;
3f6da390
PZ
1414}
1415
12558038
CG
1416static void __init pmu_check_apic(void)
1417{
1418 if (cpu_has_apic)
1419 return;
1420
1421 x86_pmu.apic = 0;
1422 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1423 pr_info("no hardware sampling interrupt available.\n");
c184c980
VW
1424
1425 /*
1426 * If we have a PMU initialized but no APIC
1427 * interrupts, we cannot sample hardware
1428 * events (user-space has to fall back and
1429 * sample via a hrtimer based software event):
1430 */
1431 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1432
12558038
CG
1433}
1434
641cc938
JO
1435static struct attribute_group x86_pmu_format_group = {
1436 .name = "format",
1437 .attrs = NULL,
1438};
1439
8300daa2
JO
1440/*
1441 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1442 * out of events_attr attributes.
1443 */
1444static void __init filter_events(struct attribute **attrs)
1445{
3a54aaa0
SE
1446 struct device_attribute *d;
1447 struct perf_pmu_events_attr *pmu_attr;
8300daa2
JO
1448 int i, j;
1449
1450 for (i = 0; attrs[i]; i++) {
3a54aaa0
SE
1451 d = (struct device_attribute *)attrs[i];
1452 pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1453 /* str trumps id */
1454 if (pmu_attr->event_str)
1455 continue;
8300daa2
JO
1456 if (x86_pmu.event_map(i))
1457 continue;
1458
1459 for (j = i; attrs[j]; j++)
1460 attrs[j] = attrs[j + 1];
1461
1462 /* Check the shifted attr. */
1463 i--;
1464 }
1465}
1466
1a6461b1
AK
1467/* Merge two pointer arrays */
1468static __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1469{
1470 struct attribute **new;
1471 int j, i;
1472
1473 for (j = 0; a[j]; j++)
1474 ;
1475 for (i = 0; b[i]; i++)
1476 j++;
1477 j++;
1478
1479 new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1480 if (!new)
1481 return NULL;
1482
1483 j = 0;
1484 for (i = 0; a[i]; i++)
1485 new[j++] = a[i];
1486 for (i = 0; b[i]; i++)
1487 new[j++] = b[i];
1488 new[j] = NULL;
1489
1490 return new;
1491}
1492
f20093ee 1493ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr,
a4747393
JO
1494 char *page)
1495{
1496 struct perf_pmu_events_attr *pmu_attr = \
1497 container_of(attr, struct perf_pmu_events_attr, attr);
a4747393 1498 u64 config = x86_pmu.event_map(pmu_attr->id);
a4747393 1499
3a54aaa0
SE
1500 /* string trumps id */
1501 if (pmu_attr->event_str)
1502 return sprintf(page, "%s", pmu_attr->event_str);
a4747393 1503
3a54aaa0
SE
1504 return x86_pmu.events_sysfs_show(page, config);
1505}
a4747393
JO
1506
1507EVENT_ATTR(cpu-cycles, CPU_CYCLES );
1508EVENT_ATTR(instructions, INSTRUCTIONS );
1509EVENT_ATTR(cache-references, CACHE_REFERENCES );
1510EVENT_ATTR(cache-misses, CACHE_MISSES );
1511EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS );
1512EVENT_ATTR(branch-misses, BRANCH_MISSES );
1513EVENT_ATTR(bus-cycles, BUS_CYCLES );
1514EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
1515EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND );
1516EVENT_ATTR(ref-cycles, REF_CPU_CYCLES );
1517
1518static struct attribute *empty_attrs;
1519
95d18aa2 1520static struct attribute *events_attr[] = {
a4747393
JO
1521 EVENT_PTR(CPU_CYCLES),
1522 EVENT_PTR(INSTRUCTIONS),
1523 EVENT_PTR(CACHE_REFERENCES),
1524 EVENT_PTR(CACHE_MISSES),
1525 EVENT_PTR(BRANCH_INSTRUCTIONS),
1526 EVENT_PTR(BRANCH_MISSES),
1527 EVENT_PTR(BUS_CYCLES),
1528 EVENT_PTR(STALLED_CYCLES_FRONTEND),
1529 EVENT_PTR(STALLED_CYCLES_BACKEND),
1530 EVENT_PTR(REF_CPU_CYCLES),
1531 NULL,
1532};
1533
1534static struct attribute_group x86_pmu_events_group = {
1535 .name = "events",
1536 .attrs = events_attr,
1537};
1538
0bf79d44 1539ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
43c032fe 1540{
43c032fe
JO
1541 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1542 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1543 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1544 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1545 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY);
1546 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV);
1547 ssize_t ret;
1548
1549 /*
1550 * We have whole page size to spend and just little data
1551 * to write, so we can safely use sprintf.
1552 */
1553 ret = sprintf(page, "event=0x%02llx", event);
1554
1555 if (umask)
1556 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1557
1558 if (edge)
1559 ret += sprintf(page + ret, ",edge");
1560
1561 if (pc)
1562 ret += sprintf(page + ret, ",pc");
1563
1564 if (any)
1565 ret += sprintf(page + ret, ",any");
1566
1567 if (inv)
1568 ret += sprintf(page + ret, ",inv");
1569
1570 if (cmask)
1571 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1572
1573 ret += sprintf(page + ret, "\n");
1574
1575 return ret;
1576}
1577
dda99116 1578static int __init init_hw_perf_events(void)
b56a3802 1579{
c1d6f42f 1580 struct x86_pmu_quirk *quirk;
72eae04d
RR
1581 int err;
1582
cdd6c482 1583 pr_info("Performance Events: ");
1123e3ad 1584
b56a3802
JSR
1585 switch (boot_cpu_data.x86_vendor) {
1586 case X86_VENDOR_INTEL:
72eae04d 1587 err = intel_pmu_init();
b56a3802 1588 break;
f87ad35d 1589 case X86_VENDOR_AMD:
72eae04d 1590 err = amd_pmu_init();
f87ad35d 1591 break;
4138960a 1592 default:
8a3da6c7 1593 err = -ENOTSUPP;
b56a3802 1594 }
1123e3ad 1595 if (err != 0) {
cdd6c482 1596 pr_cont("no PMU driver, software events only.\n");
004417a6 1597 return 0;
1123e3ad 1598 }
b56a3802 1599
12558038
CG
1600 pmu_check_apic();
1601
33c6d6a7 1602 /* sanity check that the hardware exists or is emulated */
4407204c 1603 if (!check_hw_exists())
004417a6 1604 return 0;
33c6d6a7 1605
1123e3ad 1606 pr_cont("%s PMU driver.\n", x86_pmu.name);
faa28ae0 1607
e97df763
PZ
1608 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1609
c1d6f42f
PZ
1610 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1611 quirk->func();
3c44780b 1612
a1eac7ac
RR
1613 if (!x86_pmu.intel_ctrl)
1614 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
241771ef 1615
cdd6c482 1616 perf_events_lapic_init();
9c48f1c6 1617 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1123e3ad 1618
63b14649 1619 unconstrained = (struct event_constraint)
948b1bb8 1620 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
9fac2cf3 1621 0, x86_pmu.num_counters, 0, 0);
63b14649 1622
641cc938 1623 x86_pmu_format_group.attrs = x86_pmu.format_attrs;
0c9d42ed 1624
f20093ee
SE
1625 if (x86_pmu.event_attrs)
1626 x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1627
a4747393
JO
1628 if (!x86_pmu.events_sysfs_show)
1629 x86_pmu_events_group.attrs = &empty_attrs;
8300daa2
JO
1630 else
1631 filter_events(x86_pmu_events_group.attrs);
a4747393 1632
1a6461b1
AK
1633 if (x86_pmu.cpu_events) {
1634 struct attribute **tmp;
1635
1636 tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1637 if (!WARN_ON(!tmp))
1638 x86_pmu_events_group.attrs = tmp;
1639 }
1640
57c0c15b 1641 pr_info("... version: %d\n", x86_pmu.version);
948b1bb8
RR
1642 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1643 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1644 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
57c0c15b 1645 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
948b1bb8 1646 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
d6dc0b4e 1647 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
3f6da390 1648
2e80a82a 1649 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
3f6da390 1650 perf_cpu_notifier(x86_pmu_notifier);
004417a6
PZ
1651
1652 return 0;
241771ef 1653}
004417a6 1654early_initcall(init_hw_perf_events);
621a01ea 1655
cdd6c482 1656static inline void x86_pmu_read(struct perf_event *event)
ee06094f 1657{
cc2ad4ba 1658 x86_perf_event_update(event);
ee06094f
IM
1659}
1660
4d1c52b0
LM
1661/*
1662 * Start group events scheduling transaction
1663 * Set the flag to make pmu::enable() not perform the
1664 * schedulability test, it will be performed at commit time
1665 */
51b0fe39 1666static void x86_pmu_start_txn(struct pmu *pmu)
4d1c52b0 1667{
33696fc0 1668 perf_pmu_disable(pmu);
0a3aee0d
TH
1669 __this_cpu_or(cpu_hw_events.group_flag, PERF_EVENT_TXN);
1670 __this_cpu_write(cpu_hw_events.n_txn, 0);
4d1c52b0
LM
1671}
1672
1673/*
1674 * Stop group events scheduling transaction
1675 * Clear the flag and pmu::enable() will perform the
1676 * schedulability test.
1677 */
51b0fe39 1678static void x86_pmu_cancel_txn(struct pmu *pmu)
4d1c52b0 1679{
0a3aee0d 1680 __this_cpu_and(cpu_hw_events.group_flag, ~PERF_EVENT_TXN);
90151c35 1681 /*
c347a2f1
PZ
1682 * Truncate collected array by the number of events added in this
1683 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
90151c35 1684 */
0a3aee0d
TH
1685 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1686 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
33696fc0 1687 perf_pmu_enable(pmu);
4d1c52b0
LM
1688}
1689
1690/*
1691 * Commit group events scheduling transaction
1692 * Perform the group schedulability test as a whole
1693 * Return 0 if success
c347a2f1
PZ
1694 *
1695 * Does not cancel the transaction on failure; expects the caller to do this.
4d1c52b0 1696 */
51b0fe39 1697static int x86_pmu_commit_txn(struct pmu *pmu)
4d1c52b0 1698{
89cbc767 1699 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4d1c52b0
LM
1700 int assign[X86_PMC_IDX_MAX];
1701 int n, ret;
1702
1703 n = cpuc->n_events;
1704
1705 if (!x86_pmu_initialized())
1706 return -EAGAIN;
1707
1708 ret = x86_pmu.schedule_events(cpuc, n, assign);
1709 if (ret)
1710 return ret;
1711
1712 /*
1713 * copy new assignment, now we know it is possible
1714 * will be used by hw_perf_enable()
1715 */
1716 memcpy(cpuc->assign, assign, n*sizeof(int));
1717
8d2cacbb 1718 cpuc->group_flag &= ~PERF_EVENT_TXN;
33696fc0 1719 perf_pmu_enable(pmu);
4d1c52b0
LM
1720 return 0;
1721}
cd8a38d3
SE
1722/*
1723 * a fake_cpuc is used to validate event groups. Due to
1724 * the extra reg logic, we need to also allocate a fake
1725 * per_core and per_cpu structure. Otherwise, group events
1726 * using extra reg may conflict without the kernel being
1727 * able to catch this when the last event gets added to
1728 * the group.
1729 */
1730static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1731{
1732 kfree(cpuc->shared_regs);
1733 kfree(cpuc);
1734}
1735
1736static struct cpu_hw_events *allocate_fake_cpuc(void)
1737{
1738 struct cpu_hw_events *cpuc;
1739 int cpu = raw_smp_processor_id();
1740
1741 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1742 if (!cpuc)
1743 return ERR_PTR(-ENOMEM);
1744
1745 /* only needed, if we have extra_regs */
1746 if (x86_pmu.extra_regs) {
1747 cpuc->shared_regs = allocate_shared_regs(cpu);
1748 if (!cpuc->shared_regs)
1749 goto error;
1750 }
b430f7c4 1751 cpuc->is_fake = 1;
cd8a38d3
SE
1752 return cpuc;
1753error:
1754 free_fake_cpuc(cpuc);
1755 return ERR_PTR(-ENOMEM);
1756}
4d1c52b0 1757
ca037701
PZ
1758/*
1759 * validate that we can schedule this event
1760 */
1761static int validate_event(struct perf_event *event)
1762{
1763 struct cpu_hw_events *fake_cpuc;
1764 struct event_constraint *c;
1765 int ret = 0;
1766
cd8a38d3
SE
1767 fake_cpuc = allocate_fake_cpuc();
1768 if (IS_ERR(fake_cpuc))
1769 return PTR_ERR(fake_cpuc);
ca037701
PZ
1770
1771 c = x86_pmu.get_event_constraints(fake_cpuc, event);
1772
1773 if (!c || !c->weight)
aa2bc1ad 1774 ret = -EINVAL;
ca037701
PZ
1775
1776 if (x86_pmu.put_event_constraints)
1777 x86_pmu.put_event_constraints(fake_cpuc, event);
1778
cd8a38d3 1779 free_fake_cpuc(fake_cpuc);
ca037701
PZ
1780
1781 return ret;
1782}
1783
1da53e02
SE
1784/*
1785 * validate a single event group
1786 *
1787 * validation include:
184f412c
IM
1788 * - check events are compatible which each other
1789 * - events do not compete for the same counter
1790 * - number of events <= number of counters
1da53e02
SE
1791 *
1792 * validation ensures the group can be loaded onto the
1793 * PMU if it was the only group available.
1794 */
fe9081cc
PZ
1795static int validate_group(struct perf_event *event)
1796{
1da53e02 1797 struct perf_event *leader = event->group_leader;
502568d5 1798 struct cpu_hw_events *fake_cpuc;
aa2bc1ad 1799 int ret = -EINVAL, n;
fe9081cc 1800
cd8a38d3
SE
1801 fake_cpuc = allocate_fake_cpuc();
1802 if (IS_ERR(fake_cpuc))
1803 return PTR_ERR(fake_cpuc);
1da53e02
SE
1804 /*
1805 * the event is not yet connected with its
1806 * siblings therefore we must first collect
1807 * existing siblings, then add the new event
1808 * before we can simulate the scheduling
1809 */
502568d5 1810 n = collect_events(fake_cpuc, leader, true);
1da53e02 1811 if (n < 0)
cd8a38d3 1812 goto out;
fe9081cc 1813
502568d5
PZ
1814 fake_cpuc->n_events = n;
1815 n = collect_events(fake_cpuc, event, false);
1da53e02 1816 if (n < 0)
cd8a38d3 1817 goto out;
fe9081cc 1818
502568d5 1819 fake_cpuc->n_events = n;
1da53e02 1820
a072738e 1821 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
502568d5 1822
502568d5 1823out:
cd8a38d3 1824 free_fake_cpuc(fake_cpuc);
502568d5 1825 return ret;
fe9081cc
PZ
1826}
1827
dda99116 1828static int x86_pmu_event_init(struct perf_event *event)
621a01ea 1829{
51b0fe39 1830 struct pmu *tmp;
621a01ea
IM
1831 int err;
1832
b0a873eb
PZ
1833 switch (event->attr.type) {
1834 case PERF_TYPE_RAW:
1835 case PERF_TYPE_HARDWARE:
1836 case PERF_TYPE_HW_CACHE:
1837 break;
1838
1839 default:
1840 return -ENOENT;
1841 }
1842
1843 err = __x86_pmu_event_init(event);
fe9081cc 1844 if (!err) {
8113070d
SE
1845 /*
1846 * we temporarily connect event to its pmu
1847 * such that validate_group() can classify
1848 * it as an x86 event using is_x86_event()
1849 */
1850 tmp = event->pmu;
1851 event->pmu = &pmu;
1852
fe9081cc
PZ
1853 if (event->group_leader != event)
1854 err = validate_group(event);
ca037701
PZ
1855 else
1856 err = validate_event(event);
8113070d
SE
1857
1858 event->pmu = tmp;
fe9081cc 1859 }
a1792cda 1860 if (err) {
cdd6c482
IM
1861 if (event->destroy)
1862 event->destroy(event);
a1792cda 1863 }
621a01ea 1864
7911d3f7
AL
1865 if (ACCESS_ONCE(x86_pmu.attr_rdpmc))
1866 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
1867
b0a873eb 1868 return err;
621a01ea 1869}
d7d59fb3 1870
7911d3f7
AL
1871static void refresh_pce(void *ignored)
1872{
1873 if (current->mm)
1874 load_mm_cr4(current->mm);
1875}
1876
1877static void x86_pmu_event_mapped(struct perf_event *event)
1878{
1879 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
1880 return;
1881
1882 if (atomic_inc_return(&current->mm->context.perf_rdpmc_allowed) == 1)
1883 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
1884}
1885
1886static void x86_pmu_event_unmapped(struct perf_event *event)
1887{
1888 if (!current->mm)
1889 return;
1890
1891 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
1892 return;
1893
1894 if (atomic_dec_and_test(&current->mm->context.perf_rdpmc_allowed))
1895 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
1896}
1897
fe4a3308
PZ
1898static int x86_pmu_event_idx(struct perf_event *event)
1899{
1900 int idx = event->hw.idx;
1901
7911d3f7 1902 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
c7206205
PZ
1903 return 0;
1904
15c7ad51
RR
1905 if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
1906 idx -= INTEL_PMC_IDX_FIXED;
fe4a3308
PZ
1907 idx |= 1 << 30;
1908 }
1909
1910 return idx + 1;
1911}
1912
0c9d42ed
PZ
1913static ssize_t get_attr_rdpmc(struct device *cdev,
1914 struct device_attribute *attr,
1915 char *buf)
1916{
1917 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
1918}
1919
0c9d42ed
PZ
1920static ssize_t set_attr_rdpmc(struct device *cdev,
1921 struct device_attribute *attr,
1922 const char *buf, size_t count)
1923{
e2b297fc
SK
1924 unsigned long val;
1925 ssize_t ret;
1926
1927 ret = kstrtoul(buf, 0, &val);
1928 if (ret)
1929 return ret;
e97df763 1930
a6673429
AL
1931 if (val > 2)
1932 return -EINVAL;
1933
e97df763
PZ
1934 if (x86_pmu.attr_rdpmc_broken)
1935 return -ENOTSUPP;
0c9d42ed 1936
a6673429
AL
1937 if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
1938 /*
1939 * Changing into or out of always available, aka
1940 * perf-event-bypassing mode. This path is extremely slow,
1941 * but only root can trigger it, so it's okay.
1942 */
1943 if (val == 2)
1944 static_key_slow_inc(&rdpmc_always_available);
1945 else
1946 static_key_slow_dec(&rdpmc_always_available);
1947 on_each_cpu(refresh_pce, NULL, 1);
1948 }
1949
1950 x86_pmu.attr_rdpmc = val;
1951
0c9d42ed
PZ
1952 return count;
1953}
1954
1955static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
1956
1957static struct attribute *x86_pmu_attrs[] = {
1958 &dev_attr_rdpmc.attr,
1959 NULL,
1960};
1961
1962static struct attribute_group x86_pmu_attr_group = {
1963 .attrs = x86_pmu_attrs,
1964};
1965
1966static const struct attribute_group *x86_pmu_attr_groups[] = {
1967 &x86_pmu_attr_group,
641cc938 1968 &x86_pmu_format_group,
a4747393 1969 &x86_pmu_events_group,
0c9d42ed
PZ
1970 NULL,
1971};
1972
ba532500
YZ
1973static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
1974{
1975 if (x86_pmu.sched_task)
1976 x86_pmu.sched_task(ctx, sched_in);
1977}
1978
c93dc84c
PZ
1979void perf_check_microcode(void)
1980{
1981 if (x86_pmu.check_microcode)
1982 x86_pmu.check_microcode();
1983}
1984EXPORT_SYMBOL_GPL(perf_check_microcode);
1985
b0a873eb 1986static struct pmu pmu = {
d010b332
SE
1987 .pmu_enable = x86_pmu_enable,
1988 .pmu_disable = x86_pmu_disable,
a4eaf7f1 1989
c93dc84c 1990 .attr_groups = x86_pmu_attr_groups,
0c9d42ed 1991
c93dc84c 1992 .event_init = x86_pmu_event_init,
a4eaf7f1 1993
7911d3f7
AL
1994 .event_mapped = x86_pmu_event_mapped,
1995 .event_unmapped = x86_pmu_event_unmapped,
1996
d010b332
SE
1997 .add = x86_pmu_add,
1998 .del = x86_pmu_del,
1999 .start = x86_pmu_start,
2000 .stop = x86_pmu_stop,
2001 .read = x86_pmu_read,
a4eaf7f1 2002
c93dc84c
PZ
2003 .start_txn = x86_pmu_start_txn,
2004 .cancel_txn = x86_pmu_cancel_txn,
2005 .commit_txn = x86_pmu_commit_txn,
fe4a3308 2006
c93dc84c 2007 .event_idx = x86_pmu_event_idx,
ba532500 2008 .sched_task = x86_pmu_sched_task,
e18bf526 2009 .task_ctx_size = sizeof(struct x86_perf_task_context),
b0a873eb
PZ
2010};
2011
c1317ec2
AL
2012void arch_perf_update_userpage(struct perf_event *event,
2013 struct perf_event_mmap_page *userpg, u64 now)
e3f3541c 2014{
20d1c86a
PZ
2015 struct cyc2ns_data *data;
2016
fa731587
PZ
2017 userpg->cap_user_time = 0;
2018 userpg->cap_user_time_zero = 0;
7911d3f7
AL
2019 userpg->cap_user_rdpmc =
2020 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
c7206205
PZ
2021 userpg->pmc_width = x86_pmu.cntval_bits;
2022
35af99e6 2023 if (!sched_clock_stable())
e3f3541c
PZ
2024 return;
2025
20d1c86a
PZ
2026 data = cyc2ns_read_begin();
2027
34f43927
PZ
2028 /*
2029 * Internal timekeeping for enabled/running/stopped times
2030 * is always in the local_clock domain.
2031 */
fa731587 2032 userpg->cap_user_time = 1;
20d1c86a
PZ
2033 userpg->time_mult = data->cyc2ns_mul;
2034 userpg->time_shift = data->cyc2ns_shift;
2035 userpg->time_offset = data->cyc2ns_offset - now;
c73deb6a 2036
34f43927
PZ
2037 /*
2038 * cap_user_time_zero doesn't make sense when we're using a different
2039 * time base for the records.
2040 */
2041 if (event->clock == &local_clock) {
2042 userpg->cap_user_time_zero = 1;
2043 userpg->time_zero = data->cyc2ns_offset;
2044 }
20d1c86a
PZ
2045
2046 cyc2ns_read_end(data);
e3f3541c
PZ
2047}
2048
d7d59fb3
PZ
2049/*
2050 * callchain support
2051 */
2052
d7d59fb3
PZ
2053static int backtrace_stack(void *data, char *name)
2054{
038e836e 2055 return 0;
d7d59fb3
PZ
2056}
2057
2058static void backtrace_address(void *data, unsigned long addr, int reliable)
2059{
2060 struct perf_callchain_entry *entry = data;
2061
70791ce9 2062 perf_callchain_store(entry, addr);
d7d59fb3
PZ
2063}
2064
2065static const struct stacktrace_ops backtrace_ops = {
d7d59fb3
PZ
2066 .stack = backtrace_stack,
2067 .address = backtrace_address,
06d65bda 2068 .walk_stack = print_context_stack_bp,
d7d59fb3
PZ
2069};
2070
56962b44
FW
2071void
2072perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
d7d59fb3 2073{
927c7a9e
FW
2074 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2075 /* TODO: We don't support guest os callchain now */
ed805261 2076 return;
927c7a9e
FW
2077 }
2078
70791ce9 2079 perf_callchain_store(entry, regs->ip);
d7d59fb3 2080
e8e999cf 2081 dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
d7d59fb3
PZ
2082}
2083
bc6ca7b3
AS
2084static inline int
2085valid_user_frame(const void __user *fp, unsigned long size)
2086{
2087 return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2088}
2089
d07bdfd3
PZ
2090static unsigned long get_segment_base(unsigned int segment)
2091{
2092 struct desc_struct *desc;
2093 int idx = segment >> 3;
2094
2095 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2096 if (idx > LDT_ENTRIES)
2097 return 0;
2098
2099 if (idx > current->active_mm->context.size)
2100 return 0;
2101
2102 desc = current->active_mm->context.ldt;
2103 } else {
2104 if (idx > GDT_ENTRIES)
2105 return 0;
2106
89cbc767 2107 desc = raw_cpu_ptr(gdt_page.gdt);
d07bdfd3
PZ
2108 }
2109
2110 return get_desc_base(desc + idx);
2111}
2112
257ef9d2 2113#ifdef CONFIG_COMPAT
d1a797f3
PA
2114
2115#include <asm/compat.h>
2116
257ef9d2
TE
2117static inline int
2118perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
74193ef0 2119{
257ef9d2 2120 /* 32-bit process in 64-bit kernel. */
d07bdfd3 2121 unsigned long ss_base, cs_base;
257ef9d2
TE
2122 struct stack_frame_ia32 frame;
2123 const void __user *fp;
74193ef0 2124
257ef9d2
TE
2125 if (!test_thread_flag(TIF_IA32))
2126 return 0;
2127
d07bdfd3
PZ
2128 cs_base = get_segment_base(regs->cs);
2129 ss_base = get_segment_base(regs->ss);
2130
2131 fp = compat_ptr(ss_base + regs->bp);
257ef9d2
TE
2132 while (entry->nr < PERF_MAX_STACK_DEPTH) {
2133 unsigned long bytes;
2134 frame.next_frame = 0;
2135 frame.return_address = 0;
2136
2137 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
0a196848 2138 if (bytes != 0)
257ef9d2 2139 break;
74193ef0 2140
bc6ca7b3
AS
2141 if (!valid_user_frame(fp, sizeof(frame)))
2142 break;
2143
d07bdfd3
PZ
2144 perf_callchain_store(entry, cs_base + frame.return_address);
2145 fp = compat_ptr(ss_base + frame.next_frame);
257ef9d2
TE
2146 }
2147 return 1;
d7d59fb3 2148}
257ef9d2
TE
2149#else
2150static inline int
2151perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
2152{
2153 return 0;
2154}
2155#endif
d7d59fb3 2156
56962b44
FW
2157void
2158perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
d7d59fb3
PZ
2159{
2160 struct stack_frame frame;
2161 const void __user *fp;
2162
927c7a9e
FW
2163 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2164 /* TODO: We don't support guest os callchain now */
ed805261 2165 return;
927c7a9e 2166 }
5a6cec3a 2167
d07bdfd3
PZ
2168 /*
2169 * We don't know what to do with VM86 stacks.. ignore them for now.
2170 */
2171 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2172 return;
2173
74193ef0 2174 fp = (void __user *)regs->bp;
d7d59fb3 2175
70791ce9 2176 perf_callchain_store(entry, regs->ip);
d7d59fb3 2177
20afc60f
AV
2178 if (!current->mm)
2179 return;
2180
257ef9d2
TE
2181 if (perf_callchain_user32(regs, entry))
2182 return;
2183
f9188e02 2184 while (entry->nr < PERF_MAX_STACK_DEPTH) {
257ef9d2 2185 unsigned long bytes;
038e836e 2186 frame.next_frame = NULL;
d7d59fb3
PZ
2187 frame.return_address = 0;
2188
257ef9d2 2189 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
0a196848 2190 if (bytes != 0)
d7d59fb3
PZ
2191 break;
2192
bc6ca7b3
AS
2193 if (!valid_user_frame(fp, sizeof(frame)))
2194 break;
2195
70791ce9 2196 perf_callchain_store(entry, frame.return_address);
038e836e 2197 fp = frame.next_frame;
d7d59fb3
PZ
2198 }
2199}
2200
d07bdfd3
PZ
2201/*
2202 * Deal with code segment offsets for the various execution modes:
2203 *
2204 * VM86 - the good olde 16 bit days, where the linear address is
2205 * 20 bits and we use regs->ip + 0x10 * regs->cs.
2206 *
2207 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
2208 * to figure out what the 32bit base address is.
2209 *
2210 * X32 - has TIF_X32 set, but is running in x86_64
2211 *
2212 * X86_64 - CS,DS,SS,ES are all zero based.
2213 */
2214static unsigned long code_segment_base(struct pt_regs *regs)
39447b38 2215{
d07bdfd3
PZ
2216 /*
2217 * If we are in VM86 mode, add the segment offset to convert to a
2218 * linear address.
2219 */
2220 if (regs->flags & X86_VM_MASK)
2221 return 0x10 * regs->cs;
2222
2223 /*
2224 * For IA32 we look at the GDT/LDT segment base to convert the
2225 * effective IP to a linear address.
2226 */
2227#ifdef CONFIG_X86_32
2228 if (user_mode(regs) && regs->cs != __USER_CS)
2229 return get_segment_base(regs->cs);
2230#else
2231 if (test_thread_flag(TIF_IA32)) {
2232 if (user_mode(regs) && regs->cs != __USER32_CS)
2233 return get_segment_base(regs->cs);
2234 }
2235#endif
2236 return 0;
2237}
dcf46b94 2238
d07bdfd3
PZ
2239unsigned long perf_instruction_pointer(struct pt_regs *regs)
2240{
39447b38 2241 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
d07bdfd3 2242 return perf_guest_cbs->get_guest_ip();
dcf46b94 2243
d07bdfd3 2244 return regs->ip + code_segment_base(regs);
39447b38
ZY
2245}
2246
2247unsigned long perf_misc_flags(struct pt_regs *regs)
2248{
2249 int misc = 0;
dcf46b94 2250
39447b38 2251 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
dcf46b94
ZY
2252 if (perf_guest_cbs->is_user_mode())
2253 misc |= PERF_RECORD_MISC_GUEST_USER;
2254 else
2255 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2256 } else {
d07bdfd3 2257 if (user_mode(regs))
dcf46b94
ZY
2258 misc |= PERF_RECORD_MISC_USER;
2259 else
2260 misc |= PERF_RECORD_MISC_KERNEL;
2261 }
2262
39447b38 2263 if (regs->flags & PERF_EFLAGS_EXACT)
ab608344 2264 misc |= PERF_RECORD_MISC_EXACT_IP;
39447b38
ZY
2265
2266 return misc;
2267}
b3d9468a
GN
2268
2269void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2270{
2271 cap->version = x86_pmu.version;
2272 cap->num_counters_gp = x86_pmu.num_counters;
2273 cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2274 cap->bit_width_gp = x86_pmu.cntval_bits;
2275 cap->bit_width_fixed = x86_pmu.cntval_bits;
2276 cap->events_mask = (unsigned int)x86_pmu.events_maskl;
2277 cap->events_mask_len = x86_pmu.events_mask_len;
2278}
2279EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);