]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/kernel/cpu/perf_event.c
perf/x86/intel: Add Broadwell core support
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / cpu / perf_event.c
CommitLineData
241771ef 1/*
cdd6c482 2 * Performance events x86 architecture code
241771ef 3 *
98144511
IM
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
30dd568c 9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
1da53e02 10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
241771ef
IM
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
cdd6c482 15#include <linux/perf_event.h>
241771ef
IM
16#include <linux/capability.h>
17#include <linux/notifier.h>
18#include <linux/hardirq.h>
19#include <linux/kprobes.h>
4ac13294 20#include <linux/module.h>
241771ef
IM
21#include <linux/kdebug.h>
22#include <linux/sched.h>
d7d59fb3 23#include <linux/uaccess.h>
5a0e3ad6 24#include <linux/slab.h>
30dd568c 25#include <linux/cpu.h>
272d30be 26#include <linux/bitops.h>
0c9d42ed 27#include <linux/device.h>
241771ef 28
241771ef 29#include <asm/apic.h>
d7d59fb3 30#include <asm/stacktrace.h>
4e935e47 31#include <asm/nmi.h>
69092624 32#include <asm/smp.h>
c8e5910e 33#include <asm/alternative.h>
7911d3f7 34#include <asm/mmu_context.h>
375074cc 35#include <asm/tlbflush.h>
e3f3541c 36#include <asm/timer.h>
d07bdfd3
PZ
37#include <asm/desc.h>
38#include <asm/ldt.h>
241771ef 39
de0428a7
KW
40#include "perf_event.h"
41
de0428a7 42struct x86_pmu x86_pmu __read_mostly;
efc9f05d 43
de0428a7 44DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
b0f3f28e
PZ
45 .enabled = 1,
46};
241771ef 47
a6673429
AL
48struct static_key rdpmc_always_available = STATIC_KEY_INIT_FALSE;
49
de0428a7 50u64 __read_mostly hw_cache_event_ids
8326f44d
IM
51 [PERF_COUNT_HW_CACHE_MAX]
52 [PERF_COUNT_HW_CACHE_OP_MAX]
53 [PERF_COUNT_HW_CACHE_RESULT_MAX];
de0428a7 54u64 __read_mostly hw_cache_extra_regs
e994d7d2
AK
55 [PERF_COUNT_HW_CACHE_MAX]
56 [PERF_COUNT_HW_CACHE_OP_MAX]
57 [PERF_COUNT_HW_CACHE_RESULT_MAX];
8326f44d 58
ee06094f 59/*
cdd6c482
IM
60 * Propagate event elapsed time into the generic event.
61 * Can only be executed on the CPU where the event is active.
ee06094f
IM
62 * Returns the delta events processed.
63 */
de0428a7 64u64 x86_perf_event_update(struct perf_event *event)
ee06094f 65{
cc2ad4ba 66 struct hw_perf_event *hwc = &event->hw;
948b1bb8 67 int shift = 64 - x86_pmu.cntval_bits;
ec3232bd 68 u64 prev_raw_count, new_raw_count;
cc2ad4ba 69 int idx = hwc->idx;
ec3232bd 70 s64 delta;
ee06094f 71
15c7ad51 72 if (idx == INTEL_PMC_IDX_FIXED_BTS)
30dd568c
MM
73 return 0;
74
ee06094f 75 /*
cdd6c482 76 * Careful: an NMI might modify the previous event value.
ee06094f
IM
77 *
78 * Our tactic to handle this is to first atomically read and
79 * exchange a new raw count - then add that new-prev delta
cdd6c482 80 * count to the generic event atomically:
ee06094f
IM
81 */
82again:
e7850595 83 prev_raw_count = local64_read(&hwc->prev_count);
c48b6053 84 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
ee06094f 85
e7850595 86 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
ee06094f
IM
87 new_raw_count) != prev_raw_count)
88 goto again;
89
90 /*
91 * Now we have the new raw value and have updated the prev
92 * timestamp already. We can now calculate the elapsed delta
cdd6c482 93 * (event-)time and add that to the generic event.
ee06094f
IM
94 *
95 * Careful, not all hw sign-extends above the physical width
ec3232bd 96 * of the count.
ee06094f 97 */
ec3232bd
PZ
98 delta = (new_raw_count << shift) - (prev_raw_count << shift);
99 delta >>= shift;
ee06094f 100
e7850595
PZ
101 local64_add(delta, &event->count);
102 local64_sub(delta, &hwc->period_left);
4b7bfd0d
RR
103
104 return new_raw_count;
ee06094f
IM
105}
106
a7e3ed1e
AK
107/*
108 * Find and validate any extra registers to set up.
109 */
110static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
111{
efc9f05d 112 struct hw_perf_event_extra *reg;
a7e3ed1e
AK
113 struct extra_reg *er;
114
efc9f05d 115 reg = &event->hw.extra_reg;
a7e3ed1e
AK
116
117 if (!x86_pmu.extra_regs)
118 return 0;
119
120 for (er = x86_pmu.extra_regs; er->msr; er++) {
121 if (er->event != (config & er->config_mask))
122 continue;
123 if (event->attr.config1 & ~er->valid_mask)
124 return -EINVAL;
338b522c
KL
125 /* Check if the extra msrs can be safely accessed*/
126 if (!er->extra_msr_access)
127 return -ENXIO;
efc9f05d
SE
128
129 reg->idx = er->idx;
130 reg->config = event->attr.config1;
131 reg->reg = er->msr;
a7e3ed1e
AK
132 break;
133 }
134 return 0;
135}
136
cdd6c482 137static atomic_t active_events;
4e935e47
PZ
138static DEFINE_MUTEX(pmc_reserve_mutex);
139
b27ea29c
RR
140#ifdef CONFIG_X86_LOCAL_APIC
141
4e935e47
PZ
142static bool reserve_pmc_hardware(void)
143{
144 int i;
145
948b1bb8 146 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989 147 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
4e935e47
PZ
148 goto perfctr_fail;
149 }
150
948b1bb8 151 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989 152 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
4e935e47
PZ
153 goto eventsel_fail;
154 }
155
156 return true;
157
158eventsel_fail:
159 for (i--; i >= 0; i--)
41bf4989 160 release_evntsel_nmi(x86_pmu_config_addr(i));
4e935e47 161
948b1bb8 162 i = x86_pmu.num_counters;
4e935e47
PZ
163
164perfctr_fail:
165 for (i--; i >= 0; i--)
41bf4989 166 release_perfctr_nmi(x86_pmu_event_addr(i));
4e935e47 167
4e935e47
PZ
168 return false;
169}
170
171static void release_pmc_hardware(void)
172{
173 int i;
174
948b1bb8 175 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989
RR
176 release_perfctr_nmi(x86_pmu_event_addr(i));
177 release_evntsel_nmi(x86_pmu_config_addr(i));
4e935e47 178 }
4e935e47
PZ
179}
180
b27ea29c
RR
181#else
182
183static bool reserve_pmc_hardware(void) { return true; }
184static void release_pmc_hardware(void) {}
185
186#endif
187
33c6d6a7
DZ
188static bool check_hw_exists(void)
189{
a5ebe0ba
GD
190 u64 val, val_fail, val_new= ~0;
191 int i, reg, reg_fail, ret = 0;
192 int bios_fail = 0;
33c6d6a7 193
4407204c
PZ
194 /*
195 * Check to see if the BIOS enabled any of the counters, if so
196 * complain and bail.
197 */
198 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989 199 reg = x86_pmu_config_addr(i);
4407204c
PZ
200 ret = rdmsrl_safe(reg, &val);
201 if (ret)
202 goto msr_fail;
a5ebe0ba
GD
203 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
204 bios_fail = 1;
205 val_fail = val;
206 reg_fail = reg;
207 }
4407204c
PZ
208 }
209
210 if (x86_pmu.num_counters_fixed) {
211 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
212 ret = rdmsrl_safe(reg, &val);
213 if (ret)
214 goto msr_fail;
215 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
a5ebe0ba
GD
216 if (val & (0x03 << i*4)) {
217 bios_fail = 1;
218 val_fail = val;
219 reg_fail = reg;
220 }
4407204c
PZ
221 }
222 }
223
224 /*
bffd5fc2
AP
225 * Read the current value, change it and read it back to see if it
226 * matches, this is needed to detect certain hardware emulators
227 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
4407204c 228 */
f285f92f 229 reg = x86_pmu_event_addr(0);
bffd5fc2
AP
230 if (rdmsrl_safe(reg, &val))
231 goto msr_fail;
232 val ^= 0xffffUL;
f285f92f
RR
233 ret = wrmsrl_safe(reg, val);
234 ret |= rdmsrl_safe(reg, &val_new);
33c6d6a7 235 if (ret || val != val_new)
4407204c 236 goto msr_fail;
33c6d6a7 237
45daae57
IM
238 /*
239 * We still allow the PMU driver to operate:
240 */
a5ebe0ba
GD
241 if (bios_fail) {
242 printk(KERN_CONT "Broken BIOS detected, complain to your hardware vendor.\n");
243 printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg_fail, val_fail);
244 }
45daae57
IM
245
246 return true;
4407204c
PZ
247
248msr_fail:
249 printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
65d71fe1
PZI
250 printk("%sFailed to access perfctr msr (MSR %x is %Lx)\n",
251 boot_cpu_has(X86_FEATURE_HYPERVISOR) ? KERN_INFO : KERN_ERR,
252 reg, val_new);
45daae57 253
4407204c 254 return false;
33c6d6a7
DZ
255}
256
cdd6c482 257static void hw_perf_event_destroy(struct perf_event *event)
4e935e47 258{
cdd6c482 259 if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
4e935e47 260 release_pmc_hardware();
ca037701 261 release_ds_buffers();
4e935e47
PZ
262 mutex_unlock(&pmc_reserve_mutex);
263 }
264}
265
85cf9dba
RR
266static inline int x86_pmu_initialized(void)
267{
268 return x86_pmu.handle_irq != NULL;
269}
270
8326f44d 271static inline int
e994d7d2 272set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
8326f44d 273{
e994d7d2 274 struct perf_event_attr *attr = &event->attr;
8326f44d
IM
275 unsigned int cache_type, cache_op, cache_result;
276 u64 config, val;
277
278 config = attr->config;
279
280 cache_type = (config >> 0) & 0xff;
281 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
282 return -EINVAL;
283
284 cache_op = (config >> 8) & 0xff;
285 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
286 return -EINVAL;
287
288 cache_result = (config >> 16) & 0xff;
289 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
290 return -EINVAL;
291
292 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
293
294 if (val == 0)
295 return -ENOENT;
296
297 if (val == -1)
298 return -EINVAL;
299
300 hwc->config |= val;
e994d7d2
AK
301 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
302 return x86_pmu_extra_regs(val, event);
8326f44d
IM
303}
304
de0428a7 305int x86_setup_perfctr(struct perf_event *event)
c1726f34
RR
306{
307 struct perf_event_attr *attr = &event->attr;
308 struct hw_perf_event *hwc = &event->hw;
309 u64 config;
310
6c7e550f 311 if (!is_sampling_event(event)) {
c1726f34
RR
312 hwc->sample_period = x86_pmu.max_period;
313 hwc->last_period = hwc->sample_period;
e7850595 314 local64_set(&hwc->period_left, hwc->sample_period);
c1726f34
RR
315 }
316
317 if (attr->type == PERF_TYPE_RAW)
ed13ec58 318 return x86_pmu_extra_regs(event->attr.config, event);
c1726f34
RR
319
320 if (attr->type == PERF_TYPE_HW_CACHE)
e994d7d2 321 return set_ext_hw_attr(hwc, event);
c1726f34
RR
322
323 if (attr->config >= x86_pmu.max_events)
324 return -EINVAL;
325
326 /*
327 * The generic map:
328 */
329 config = x86_pmu.event_map(attr->config);
330
331 if (config == 0)
332 return -ENOENT;
333
334 if (config == -1LL)
335 return -EINVAL;
336
337 /*
338 * Branch tracing:
339 */
18a073a3
PZ
340 if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
341 !attr->freq && hwc->sample_period == 1) {
c1726f34 342 /* BTS is not supported by this architecture. */
6809b6ea 343 if (!x86_pmu.bts_active)
c1726f34
RR
344 return -EOPNOTSUPP;
345
346 /* BTS is currently only allowed for user-mode. */
347 if (!attr->exclude_kernel)
348 return -EOPNOTSUPP;
349 }
350
351 hwc->config |= config;
352
353 return 0;
354}
4261e0e0 355
ff3fb511
SE
356/*
357 * check that branch_sample_type is compatible with
358 * settings needed for precise_ip > 1 which implies
359 * using the LBR to capture ALL taken branches at the
360 * priv levels of the measurement
361 */
362static inline int precise_br_compat(struct perf_event *event)
363{
364 u64 m = event->attr.branch_sample_type;
365 u64 b = 0;
366
367 /* must capture all branches */
368 if (!(m & PERF_SAMPLE_BRANCH_ANY))
369 return 0;
370
371 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
372
373 if (!event->attr.exclude_user)
374 b |= PERF_SAMPLE_BRANCH_USER;
375
376 if (!event->attr.exclude_kernel)
377 b |= PERF_SAMPLE_BRANCH_KERNEL;
378
379 /*
380 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
381 */
382
383 return m == b;
384}
385
de0428a7 386int x86_pmu_hw_config(struct perf_event *event)
a072738e 387{
ab608344
PZ
388 if (event->attr.precise_ip) {
389 int precise = 0;
390
391 /* Support for constant skid */
c93dc84c 392 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
ab608344
PZ
393 precise++;
394
5553be26 395 /* Support for IP fixup */
03de874a 396 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
5553be26
PZ
397 precise++;
398 }
ab608344
PZ
399
400 if (event->attr.precise_ip > precise)
401 return -EOPNOTSUPP;
4b854900
YZ
402 }
403 /*
404 * check that PEBS LBR correction does not conflict with
405 * whatever the user is asking with attr->branch_sample_type
406 */
407 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
408 u64 *br_type = &event->attr.branch_sample_type;
409
410 if (has_branch_stack(event)) {
411 if (!precise_br_compat(event))
412 return -EOPNOTSUPP;
413
414 /* branch_sample_type is compatible */
415
416 } else {
417 /*
418 * user did not specify branch_sample_type
419 *
420 * For PEBS fixups, we capture all
421 * the branches at the priv level of the
422 * event.
423 */
424 *br_type = PERF_SAMPLE_BRANCH_ANY;
425
426 if (!event->attr.exclude_user)
427 *br_type |= PERF_SAMPLE_BRANCH_USER;
428
429 if (!event->attr.exclude_kernel)
430 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
ff3fb511 431 }
ab608344
PZ
432 }
433
e18bf526
YZ
434 if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
435 event->attach_state |= PERF_ATTACH_TASK_DATA;
436
a072738e
CG
437 /*
438 * Generate PMC IRQs:
439 * (keep 'enabled' bit clear for now)
440 */
b4cdc5c2 441 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
a072738e
CG
442
443 /*
444 * Count user and OS events unless requested not to
445 */
b4cdc5c2
PZ
446 if (!event->attr.exclude_user)
447 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
448 if (!event->attr.exclude_kernel)
449 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
a072738e 450
b4cdc5c2
PZ
451 if (event->attr.type == PERF_TYPE_RAW)
452 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
a072738e 453
9d0fcba6 454 return x86_setup_perfctr(event);
a098f448
RR
455}
456
241771ef 457/*
0d48696f 458 * Setup the hardware configuration for a given attr_type
241771ef 459 */
b0a873eb 460static int __x86_pmu_event_init(struct perf_event *event)
241771ef 461{
4e935e47 462 int err;
241771ef 463
85cf9dba
RR
464 if (!x86_pmu_initialized())
465 return -ENODEV;
241771ef 466
4e935e47 467 err = 0;
cdd6c482 468 if (!atomic_inc_not_zero(&active_events)) {
4e935e47 469 mutex_lock(&pmc_reserve_mutex);
cdd6c482 470 if (atomic_read(&active_events) == 0) {
30dd568c
MM
471 if (!reserve_pmc_hardware())
472 err = -EBUSY;
f80c9e30
PZ
473 else
474 reserve_ds_buffers();
30dd568c
MM
475 }
476 if (!err)
cdd6c482 477 atomic_inc(&active_events);
4e935e47
PZ
478 mutex_unlock(&pmc_reserve_mutex);
479 }
480 if (err)
481 return err;
482
cdd6c482 483 event->destroy = hw_perf_event_destroy;
a1792cda 484
4261e0e0
RR
485 event->hw.idx = -1;
486 event->hw.last_cpu = -1;
487 event->hw.last_tag = ~0ULL;
b690081d 488
efc9f05d
SE
489 /* mark unused */
490 event->hw.extra_reg.idx = EXTRA_REG_NONE;
b36817e8
SE
491 event->hw.branch_reg.idx = EXTRA_REG_NONE;
492
9d0fcba6 493 return x86_pmu.hw_config(event);
4261e0e0
RR
494}
495
de0428a7 496void x86_pmu_disable_all(void)
f87ad35d 497{
89cbc767 498 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
9e35ad38
PZ
499 int idx;
500
948b1bb8 501 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
b0f3f28e
PZ
502 u64 val;
503
43f6201a 504 if (!test_bit(idx, cpuc->active_mask))
4295ee62 505 continue;
41bf4989 506 rdmsrl(x86_pmu_config_addr(idx), val);
bb1165d6 507 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
4295ee62 508 continue;
bb1165d6 509 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
41bf4989 510 wrmsrl(x86_pmu_config_addr(idx), val);
f87ad35d 511 }
f87ad35d
JSR
512}
513
a4eaf7f1 514static void x86_pmu_disable(struct pmu *pmu)
b56a3802 515{
89cbc767 516 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1da53e02 517
85cf9dba 518 if (!x86_pmu_initialized())
9e35ad38 519 return;
1da53e02 520
1a6e21f7
PZ
521 if (!cpuc->enabled)
522 return;
523
524 cpuc->n_added = 0;
525 cpuc->enabled = 0;
526 barrier();
1da53e02
SE
527
528 x86_pmu.disable_all();
b56a3802 529}
241771ef 530
de0428a7 531void x86_pmu_enable_all(int added)
f87ad35d 532{
89cbc767 533 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
f87ad35d
JSR
534 int idx;
535
948b1bb8 536 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
d45dd923 537 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
b0f3f28e 538
43f6201a 539 if (!test_bit(idx, cpuc->active_mask))
4295ee62 540 continue;
984b838c 541
d45dd923 542 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
f87ad35d
JSR
543 }
544}
545
51b0fe39 546static struct pmu pmu;
1da53e02
SE
547
548static inline int is_x86_event(struct perf_event *event)
549{
550 return event->pmu == &pmu;
551}
552
1e2ad28f
RR
553/*
554 * Event scheduler state:
555 *
556 * Assign events iterating over all events and counters, beginning
557 * with events with least weights first. Keep the current iterator
558 * state in struct sched_state.
559 */
560struct sched_state {
561 int weight;
562 int event; /* event index */
563 int counter; /* counter index */
564 int unassigned; /* number of events to be assigned left */
565 unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
566};
567
bc1738f6
RR
568/* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
569#define SCHED_STATES_MAX 2
570
1e2ad28f
RR
571struct perf_sched {
572 int max_weight;
573 int max_events;
43b45780 574 struct perf_event **events;
1e2ad28f 575 struct sched_state state;
bc1738f6
RR
576 int saved_states;
577 struct sched_state saved[SCHED_STATES_MAX];
1e2ad28f
RR
578};
579
580/*
581 * Initialize interator that runs through all events and counters.
582 */
43b45780 583static void perf_sched_init(struct perf_sched *sched, struct perf_event **events,
1e2ad28f
RR
584 int num, int wmin, int wmax)
585{
586 int idx;
587
588 memset(sched, 0, sizeof(*sched));
589 sched->max_events = num;
590 sched->max_weight = wmax;
43b45780 591 sched->events = events;
1e2ad28f
RR
592
593 for (idx = 0; idx < num; idx++) {
43b45780 594 if (events[idx]->hw.constraint->weight == wmin)
1e2ad28f
RR
595 break;
596 }
597
598 sched->state.event = idx; /* start with min weight */
599 sched->state.weight = wmin;
600 sched->state.unassigned = num;
601}
602
bc1738f6
RR
603static void perf_sched_save_state(struct perf_sched *sched)
604{
605 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
606 return;
607
608 sched->saved[sched->saved_states] = sched->state;
609 sched->saved_states++;
610}
611
612static bool perf_sched_restore_state(struct perf_sched *sched)
613{
614 if (!sched->saved_states)
615 return false;
616
617 sched->saved_states--;
618 sched->state = sched->saved[sched->saved_states];
619
620 /* continue with next counter: */
621 clear_bit(sched->state.counter++, sched->state.used);
622
623 return true;
624}
625
1e2ad28f
RR
626/*
627 * Select a counter for the current event to schedule. Return true on
628 * success.
629 */
bc1738f6 630static bool __perf_sched_find_counter(struct perf_sched *sched)
1e2ad28f
RR
631{
632 struct event_constraint *c;
633 int idx;
634
635 if (!sched->state.unassigned)
636 return false;
637
638 if (sched->state.event >= sched->max_events)
639 return false;
640
43b45780 641 c = sched->events[sched->state.event]->hw.constraint;
4defea85 642 /* Prefer fixed purpose counters */
15c7ad51
RR
643 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
644 idx = INTEL_PMC_IDX_FIXED;
307b1cd7 645 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
4defea85
PZ
646 if (!__test_and_set_bit(idx, sched->state.used))
647 goto done;
648 }
649 }
1e2ad28f
RR
650 /* Grab the first unused counter starting with idx */
651 idx = sched->state.counter;
15c7ad51 652 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
1e2ad28f 653 if (!__test_and_set_bit(idx, sched->state.used))
4defea85 654 goto done;
1e2ad28f 655 }
1e2ad28f 656
4defea85
PZ
657 return false;
658
659done:
660 sched->state.counter = idx;
1e2ad28f 661
bc1738f6
RR
662 if (c->overlap)
663 perf_sched_save_state(sched);
664
665 return true;
666}
667
668static bool perf_sched_find_counter(struct perf_sched *sched)
669{
670 while (!__perf_sched_find_counter(sched)) {
671 if (!perf_sched_restore_state(sched))
672 return false;
673 }
674
1e2ad28f
RR
675 return true;
676}
677
678/*
679 * Go through all unassigned events and find the next one to schedule.
680 * Take events with the least weight first. Return true on success.
681 */
682static bool perf_sched_next_event(struct perf_sched *sched)
683{
684 struct event_constraint *c;
685
686 if (!sched->state.unassigned || !--sched->state.unassigned)
687 return false;
688
689 do {
690 /* next event */
691 sched->state.event++;
692 if (sched->state.event >= sched->max_events) {
693 /* next weight */
694 sched->state.event = 0;
695 sched->state.weight++;
696 if (sched->state.weight > sched->max_weight)
697 return false;
698 }
43b45780 699 c = sched->events[sched->state.event]->hw.constraint;
1e2ad28f
RR
700 } while (c->weight != sched->state.weight);
701
702 sched->state.counter = 0; /* start with first counter */
703
704 return true;
705}
706
707/*
708 * Assign a counter for each event.
709 */
43b45780 710int perf_assign_events(struct perf_event **events, int n,
4b4969b1 711 int wmin, int wmax, int *assign)
1e2ad28f
RR
712{
713 struct perf_sched sched;
714
43b45780 715 perf_sched_init(&sched, events, n, wmin, wmax);
1e2ad28f
RR
716
717 do {
718 if (!perf_sched_find_counter(&sched))
719 break; /* failed */
720 if (assign)
721 assign[sched.state.event] = sched.state.counter;
722 } while (perf_sched_next_event(&sched));
723
724 return sched.state.unassigned;
725}
4a3dc121 726EXPORT_SYMBOL_GPL(perf_assign_events);
1e2ad28f 727
de0428a7 728int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
1da53e02 729{
43b45780 730 struct event_constraint *c;
1da53e02 731 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
2f7f73a5 732 struct perf_event *e;
1e2ad28f 733 int i, wmin, wmax, num = 0;
1da53e02
SE
734 struct hw_perf_event *hwc;
735
736 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
737
1e2ad28f 738 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
43b45780 739 hwc = &cpuc->event_list[i]->hw;
b622d644 740 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
43b45780
AH
741 hwc->constraint = c;
742
1e2ad28f
RR
743 wmin = min(wmin, c->weight);
744 wmax = max(wmax, c->weight);
1da53e02
SE
745 }
746
8113070d
SE
747 /*
748 * fastpath, try to reuse previous register
749 */
c933c1a6 750 for (i = 0; i < n; i++) {
8113070d 751 hwc = &cpuc->event_list[i]->hw;
43b45780 752 c = hwc->constraint;
8113070d
SE
753
754 /* never assigned */
755 if (hwc->idx == -1)
756 break;
757
758 /* constraint still honored */
63b14649 759 if (!test_bit(hwc->idx, c->idxmsk))
8113070d
SE
760 break;
761
762 /* not already used */
763 if (test_bit(hwc->idx, used_mask))
764 break;
765
34538ee7 766 __set_bit(hwc->idx, used_mask);
8113070d
SE
767 if (assign)
768 assign[i] = hwc->idx;
769 }
8113070d 770
1e2ad28f
RR
771 /* slow path */
772 if (i != n)
43b45780
AH
773 num = perf_assign_events(cpuc->event_list, n, wmin,
774 wmax, assign);
8113070d 775
2f7f73a5
SE
776 /*
777 * Mark the event as committed, so we do not put_constraint()
778 * in case new events are added and fail scheduling.
779 */
780 if (!num && assign) {
781 for (i = 0; i < n; i++) {
782 e = cpuc->event_list[i];
783 e->hw.flags |= PERF_X86_EVENT_COMMITTED;
784 }
785 }
1da53e02
SE
786 /*
787 * scheduling failed or is just a simulation,
788 * free resources if necessary
789 */
790 if (!assign || num) {
791 for (i = 0; i < n; i++) {
2f7f73a5
SE
792 e = cpuc->event_list[i];
793 /*
794 * do not put_constraint() on comitted events,
795 * because they are good to go
796 */
797 if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
798 continue;
799
1da53e02 800 if (x86_pmu.put_event_constraints)
2f7f73a5 801 x86_pmu.put_event_constraints(cpuc, e);
1da53e02
SE
802 }
803 }
aa2bc1ad 804 return num ? -EINVAL : 0;
1da53e02
SE
805}
806
807/*
808 * dogrp: true if must collect siblings events (group)
809 * returns total number of events and error code
810 */
811static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
812{
813 struct perf_event *event;
814 int n, max_count;
815
948b1bb8 816 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
1da53e02
SE
817
818 /* current number of events already accepted */
819 n = cpuc->n_events;
820
821 if (is_x86_event(leader)) {
822 if (n >= max_count)
aa2bc1ad 823 return -EINVAL;
1da53e02
SE
824 cpuc->event_list[n] = leader;
825 n++;
826 }
827 if (!dogrp)
828 return n;
829
830 list_for_each_entry(event, &leader->sibling_list, group_entry) {
831 if (!is_x86_event(event) ||
8113070d 832 event->state <= PERF_EVENT_STATE_OFF)
1da53e02
SE
833 continue;
834
835 if (n >= max_count)
aa2bc1ad 836 return -EINVAL;
1da53e02
SE
837
838 cpuc->event_list[n] = event;
839 n++;
840 }
841 return n;
842}
843
1da53e02 844static inline void x86_assign_hw_event(struct perf_event *event,
447a194b 845 struct cpu_hw_events *cpuc, int i)
1da53e02 846{
447a194b
SE
847 struct hw_perf_event *hwc = &event->hw;
848
849 hwc->idx = cpuc->assign[i];
850 hwc->last_cpu = smp_processor_id();
851 hwc->last_tag = ++cpuc->tags[i];
1da53e02 852
15c7ad51 853 if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
1da53e02
SE
854 hwc->config_base = 0;
855 hwc->event_base = 0;
15c7ad51 856 } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1da53e02 857 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
15c7ad51
RR
858 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
859 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1da53e02 860 } else {
73d6e522
RR
861 hwc->config_base = x86_pmu_config_addr(hwc->idx);
862 hwc->event_base = x86_pmu_event_addr(hwc->idx);
0fbdad07 863 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1da53e02
SE
864 }
865}
866
447a194b
SE
867static inline int match_prev_assignment(struct hw_perf_event *hwc,
868 struct cpu_hw_events *cpuc,
869 int i)
870{
871 return hwc->idx == cpuc->assign[i] &&
872 hwc->last_cpu == smp_processor_id() &&
873 hwc->last_tag == cpuc->tags[i];
874}
875
a4eaf7f1 876static void x86_pmu_start(struct perf_event *event, int flags);
2e841873 877
a4eaf7f1 878static void x86_pmu_enable(struct pmu *pmu)
ee06094f 879{
89cbc767 880 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1da53e02
SE
881 struct perf_event *event;
882 struct hw_perf_event *hwc;
11164cd4 883 int i, added = cpuc->n_added;
1da53e02 884
85cf9dba 885 if (!x86_pmu_initialized())
2b9ff0db 886 return;
1a6e21f7
PZ
887
888 if (cpuc->enabled)
889 return;
890
1da53e02 891 if (cpuc->n_added) {
19925ce7 892 int n_running = cpuc->n_events - cpuc->n_added;
1da53e02
SE
893 /*
894 * apply assignment obtained either from
895 * hw_perf_group_sched_in() or x86_pmu_enable()
896 *
897 * step1: save events moving to new counters
1da53e02 898 */
19925ce7 899 for (i = 0; i < n_running; i++) {
1da53e02
SE
900 event = cpuc->event_list[i];
901 hwc = &event->hw;
902
447a194b
SE
903 /*
904 * we can avoid reprogramming counter if:
905 * - assigned same counter as last time
906 * - running on same CPU as last time
907 * - no other event has used the counter since
908 */
909 if (hwc->idx == -1 ||
910 match_prev_assignment(hwc, cpuc, i))
1da53e02
SE
911 continue;
912
a4eaf7f1
PZ
913 /*
914 * Ensure we don't accidentally enable a stopped
915 * counter simply because we rescheduled.
916 */
917 if (hwc->state & PERF_HES_STOPPED)
918 hwc->state |= PERF_HES_ARCH;
919
920 x86_pmu_stop(event, PERF_EF_UPDATE);
1da53e02
SE
921 }
922
c347a2f1
PZ
923 /*
924 * step2: reprogram moved events into new counters
925 */
1da53e02 926 for (i = 0; i < cpuc->n_events; i++) {
1da53e02
SE
927 event = cpuc->event_list[i];
928 hwc = &event->hw;
929
45e16a68 930 if (!match_prev_assignment(hwc, cpuc, i))
447a194b 931 x86_assign_hw_event(event, cpuc, i);
45e16a68
PZ
932 else if (i < n_running)
933 continue;
1da53e02 934
a4eaf7f1
PZ
935 if (hwc->state & PERF_HES_ARCH)
936 continue;
937
938 x86_pmu_start(event, PERF_EF_RELOAD);
1da53e02
SE
939 }
940 cpuc->n_added = 0;
941 perf_events_lapic_init();
942 }
1a6e21f7
PZ
943
944 cpuc->enabled = 1;
945 barrier();
946
11164cd4 947 x86_pmu.enable_all(added);
ee06094f 948}
ee06094f 949
245b2e70 950static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
241771ef 951
ee06094f
IM
952/*
953 * Set the next IRQ period, based on the hwc->period_left value.
cdd6c482 954 * To be called with the event disabled in hw:
ee06094f 955 */
de0428a7 956int x86_perf_event_set_period(struct perf_event *event)
241771ef 957{
07088edb 958 struct hw_perf_event *hwc = &event->hw;
e7850595 959 s64 left = local64_read(&hwc->period_left);
e4abb5d4 960 s64 period = hwc->sample_period;
7645a24c 961 int ret = 0, idx = hwc->idx;
ee06094f 962
15c7ad51 963 if (idx == INTEL_PMC_IDX_FIXED_BTS)
30dd568c
MM
964 return 0;
965
ee06094f 966 /*
af901ca1 967 * If we are way outside a reasonable range then just skip forward:
ee06094f
IM
968 */
969 if (unlikely(left <= -period)) {
970 left = period;
e7850595 971 local64_set(&hwc->period_left, left);
9e350de3 972 hwc->last_period = period;
e4abb5d4 973 ret = 1;
ee06094f
IM
974 }
975
976 if (unlikely(left <= 0)) {
977 left += period;
e7850595 978 local64_set(&hwc->period_left, left);
9e350de3 979 hwc->last_period = period;
e4abb5d4 980 ret = 1;
ee06094f 981 }
1c80f4b5 982 /*
dfc65094 983 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1c80f4b5
IM
984 */
985 if (unlikely(left < 2))
986 left = 2;
241771ef 987
e4abb5d4
PZ
988 if (left > x86_pmu.max_period)
989 left = x86_pmu.max_period;
990
245b2e70 991 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
ee06094f
IM
992
993 /*
cdd6c482 994 * The hw event starts counting from this event offset,
ee06094f
IM
995 * mark it to be able to extra future deltas:
996 */
e7850595 997 local64_set(&hwc->prev_count, (u64)-left);
ee06094f 998
73d6e522 999 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
68aa00ac
CG
1000
1001 /*
1002 * Due to erratum on certan cpu we need
1003 * a second write to be sure the register
1004 * is updated properly
1005 */
1006 if (x86_pmu.perfctr_second_write) {
73d6e522 1007 wrmsrl(hwc->event_base,
948b1bb8 1008 (u64)(-left) & x86_pmu.cntval_mask);
68aa00ac 1009 }
e4abb5d4 1010
cdd6c482 1011 perf_event_update_userpage(event);
194002b2 1012
e4abb5d4 1013 return ret;
2f18d1e8
IM
1014}
1015
de0428a7 1016void x86_pmu_enable_event(struct perf_event *event)
7c90cc45 1017{
0a3aee0d 1018 if (__this_cpu_read(cpu_hw_events.enabled))
31fa58af
RR
1019 __x86_pmu_enable_event(&event->hw,
1020 ARCH_PERFMON_EVENTSEL_ENABLE);
241771ef
IM
1021}
1022
b690081d 1023/*
a4eaf7f1 1024 * Add a single event to the PMU.
1da53e02
SE
1025 *
1026 * The event is added to the group of enabled events
1027 * but only if it can be scehduled with existing events.
fe9081cc 1028 */
a4eaf7f1 1029static int x86_pmu_add(struct perf_event *event, int flags)
fe9081cc 1030{
89cbc767 1031 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1da53e02
SE
1032 struct hw_perf_event *hwc;
1033 int assign[X86_PMC_IDX_MAX];
1034 int n, n0, ret;
fe9081cc 1035
1da53e02 1036 hwc = &event->hw;
fe9081cc 1037
33696fc0 1038 perf_pmu_disable(event->pmu);
1da53e02 1039 n0 = cpuc->n_events;
24cd7f54
PZ
1040 ret = n = collect_events(cpuc, event, false);
1041 if (ret < 0)
1042 goto out;
53b441a5 1043
a4eaf7f1
PZ
1044 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1045 if (!(flags & PERF_EF_START))
1046 hwc->state |= PERF_HES_ARCH;
1047
4d1c52b0
LM
1048 /*
1049 * If group events scheduling transaction was started,
0d2eb44f 1050 * skip the schedulability test here, it will be performed
c347a2f1 1051 * at commit time (->commit_txn) as a whole.
4d1c52b0 1052 */
8d2cacbb 1053 if (cpuc->group_flag & PERF_EVENT_TXN)
24cd7f54 1054 goto done_collect;
4d1c52b0 1055
a072738e 1056 ret = x86_pmu.schedule_events(cpuc, n, assign);
1da53e02 1057 if (ret)
24cd7f54 1058 goto out;
1da53e02
SE
1059 /*
1060 * copy new assignment, now we know it is possible
1061 * will be used by hw_perf_enable()
1062 */
1063 memcpy(cpuc->assign, assign, n*sizeof(int));
7e2ae347 1064
24cd7f54 1065done_collect:
c347a2f1
PZ
1066 /*
1067 * Commit the collect_events() state. See x86_pmu_del() and
1068 * x86_pmu_*_txn().
1069 */
1da53e02 1070 cpuc->n_events = n;
356e1f2e 1071 cpuc->n_added += n - n0;
90151c35 1072 cpuc->n_txn += n - n0;
95cdd2e7 1073
24cd7f54
PZ
1074 ret = 0;
1075out:
33696fc0 1076 perf_pmu_enable(event->pmu);
24cd7f54 1077 return ret;
241771ef
IM
1078}
1079
a4eaf7f1 1080static void x86_pmu_start(struct perf_event *event, int flags)
d76a0812 1081{
89cbc767 1082 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
c08053e6
PZ
1083 int idx = event->hw.idx;
1084
a4eaf7f1
PZ
1085 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1086 return;
1087
1088 if (WARN_ON_ONCE(idx == -1))
1089 return;
1090
1091 if (flags & PERF_EF_RELOAD) {
1092 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1093 x86_perf_event_set_period(event);
1094 }
1095
1096 event->hw.state = 0;
d76a0812 1097
c08053e6
PZ
1098 cpuc->events[idx] = event;
1099 __set_bit(idx, cpuc->active_mask);
63e6be6d 1100 __set_bit(idx, cpuc->running);
aff3d91a 1101 x86_pmu.enable(event);
c08053e6 1102 perf_event_update_userpage(event);
a78ac325
PZ
1103}
1104
cdd6c482 1105void perf_event_print_debug(void)
241771ef 1106{
2f18d1e8 1107 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
ca037701 1108 u64 pebs;
cdd6c482 1109 struct cpu_hw_events *cpuc;
5bb9efe3 1110 unsigned long flags;
1e125676
IM
1111 int cpu, idx;
1112
948b1bb8 1113 if (!x86_pmu.num_counters)
1e125676 1114 return;
241771ef 1115
5bb9efe3 1116 local_irq_save(flags);
241771ef
IM
1117
1118 cpu = smp_processor_id();
cdd6c482 1119 cpuc = &per_cpu(cpu_hw_events, cpu);
241771ef 1120
faa28ae0 1121 if (x86_pmu.version >= 2) {
a1ef58f4
JSR
1122 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1123 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1124 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1125 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
ca037701 1126 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
a1ef58f4
JSR
1127
1128 pr_info("\n");
1129 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1130 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1131 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1132 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
ca037701 1133 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
f87ad35d 1134 }
7645a24c 1135 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
241771ef 1136
948b1bb8 1137 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
41bf4989
RR
1138 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1139 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
241771ef 1140
245b2e70 1141 prev_left = per_cpu(pmc_prev_left[idx], cpu);
241771ef 1142
a1ef58f4 1143 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
241771ef 1144 cpu, idx, pmc_ctrl);
a1ef58f4 1145 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
241771ef 1146 cpu, idx, pmc_count);
a1ef58f4 1147 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
ee06094f 1148 cpu, idx, prev_left);
241771ef 1149 }
948b1bb8 1150 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
2f18d1e8
IM
1151 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1152
a1ef58f4 1153 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
2f18d1e8
IM
1154 cpu, idx, pmc_count);
1155 }
5bb9efe3 1156 local_irq_restore(flags);
241771ef
IM
1157}
1158
de0428a7 1159void x86_pmu_stop(struct perf_event *event, int flags)
241771ef 1160{
89cbc767 1161 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
cdd6c482 1162 struct hw_perf_event *hwc = &event->hw;
241771ef 1163
a4eaf7f1
PZ
1164 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1165 x86_pmu.disable(event);
1166 cpuc->events[hwc->idx] = NULL;
1167 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1168 hwc->state |= PERF_HES_STOPPED;
1169 }
30dd568c 1170
a4eaf7f1
PZ
1171 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1172 /*
1173 * Drain the remaining delta count out of a event
1174 * that we are disabling:
1175 */
1176 x86_perf_event_update(event);
1177 hwc->state |= PERF_HES_UPTODATE;
1178 }
2e841873
PZ
1179}
1180
a4eaf7f1 1181static void x86_pmu_del(struct perf_event *event, int flags)
2e841873 1182{
89cbc767 1183 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2e841873
PZ
1184 int i;
1185
2f7f73a5
SE
1186 /*
1187 * event is descheduled
1188 */
1189 event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1190
90151c35
SE
1191 /*
1192 * If we're called during a txn, we don't need to do anything.
1193 * The events never got scheduled and ->cancel_txn will truncate
1194 * the event_list.
c347a2f1
PZ
1195 *
1196 * XXX assumes any ->del() called during a TXN will only be on
1197 * an event added during that same TXN.
90151c35 1198 */
8d2cacbb 1199 if (cpuc->group_flag & PERF_EVENT_TXN)
90151c35
SE
1200 return;
1201
c347a2f1
PZ
1202 /*
1203 * Not a TXN, therefore cleanup properly.
1204 */
a4eaf7f1 1205 x86_pmu_stop(event, PERF_EF_UPDATE);
194002b2 1206
1da53e02 1207 for (i = 0; i < cpuc->n_events; i++) {
c347a2f1
PZ
1208 if (event == cpuc->event_list[i])
1209 break;
1210 }
1da53e02 1211
c347a2f1
PZ
1212 if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1213 return;
26e61e89 1214
c347a2f1
PZ
1215 /* If we have a newly added event; make sure to decrease n_added. */
1216 if (i >= cpuc->n_events - cpuc->n_added)
1217 --cpuc->n_added;
1da53e02 1218
c347a2f1
PZ
1219 if (x86_pmu.put_event_constraints)
1220 x86_pmu.put_event_constraints(cpuc, event);
1221
1222 /* Delete the array entry. */
1223 while (++i < cpuc->n_events)
1224 cpuc->event_list[i-1] = cpuc->event_list[i];
1225 --cpuc->n_events;
1da53e02 1226
cdd6c482 1227 perf_event_update_userpage(event);
241771ef
IM
1228}
1229
de0428a7 1230int x86_pmu_handle_irq(struct pt_regs *regs)
a29aa8a7 1231{
df1a132b 1232 struct perf_sample_data data;
cdd6c482
IM
1233 struct cpu_hw_events *cpuc;
1234 struct perf_event *event;
11d1578f 1235 int idx, handled = 0;
9029a5e3
IM
1236 u64 val;
1237
89cbc767 1238 cpuc = this_cpu_ptr(&cpu_hw_events);
962bf7a6 1239
2bce5dac
DZ
1240 /*
1241 * Some chipsets need to unmask the LVTPC in a particular spot
1242 * inside the nmi handler. As a result, the unmasking was pushed
1243 * into all the nmi handlers.
1244 *
1245 * This generic handler doesn't seem to have any issues where the
1246 * unmasking occurs so it was left at the top.
1247 */
1248 apic_write(APIC_LVTPC, APIC_DM_NMI);
1249
948b1bb8 1250 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
63e6be6d
RR
1251 if (!test_bit(idx, cpuc->active_mask)) {
1252 /*
1253 * Though we deactivated the counter some cpus
1254 * might still deliver spurious interrupts still
1255 * in flight. Catch them:
1256 */
1257 if (__test_and_clear_bit(idx, cpuc->running))
1258 handled++;
a29aa8a7 1259 continue;
63e6be6d 1260 }
962bf7a6 1261
cdd6c482 1262 event = cpuc->events[idx];
a4016a79 1263
cc2ad4ba 1264 val = x86_perf_event_update(event);
948b1bb8 1265 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
48e22d56 1266 continue;
962bf7a6 1267
9e350de3 1268 /*
cdd6c482 1269 * event overflow
9e350de3 1270 */
4177c42a 1271 handled++;
fd0d000b 1272 perf_sample_data_init(&data, 0, event->hw.last_period);
9e350de3 1273
07088edb 1274 if (!x86_perf_event_set_period(event))
e4abb5d4
PZ
1275 continue;
1276
a8b0ca17 1277 if (perf_event_overflow(event, &data, regs))
a4eaf7f1 1278 x86_pmu_stop(event, 0);
a29aa8a7 1279 }
962bf7a6 1280
9e350de3
PZ
1281 if (handled)
1282 inc_irq_stat(apic_perf_irqs);
1283
a29aa8a7
RR
1284 return handled;
1285}
39d81eab 1286
cdd6c482 1287void perf_events_lapic_init(void)
241771ef 1288{
04da8a43 1289 if (!x86_pmu.apic || !x86_pmu_initialized())
241771ef 1290 return;
85cf9dba 1291
241771ef 1292 /*
c323d95f 1293 * Always use NMI for PMU
241771ef 1294 */
c323d95f 1295 apic_write(APIC_LVTPC, APIC_DM_NMI);
241771ef
IM
1296}
1297
9326638c 1298static int
9c48f1c6 1299perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
241771ef 1300{
14c63f17
DH
1301 u64 start_clock;
1302 u64 finish_clock;
e8a923cc 1303 int ret;
14c63f17 1304
cdd6c482 1305 if (!atomic_read(&active_events))
9c48f1c6 1306 return NMI_DONE;
4177c42a 1307
e8a923cc 1308 start_clock = sched_clock();
14c63f17 1309 ret = x86_pmu.handle_irq(regs);
e8a923cc 1310 finish_clock = sched_clock();
14c63f17
DH
1311
1312 perf_sample_event_took(finish_clock - start_clock);
1313
1314 return ret;
241771ef 1315}
9326638c 1316NOKPROBE_SYMBOL(perf_event_nmi_handler);
241771ef 1317
de0428a7
KW
1318struct event_constraint emptyconstraint;
1319struct event_constraint unconstrained;
f87ad35d 1320
148f9bb8 1321static int
3f6da390
PZ
1322x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1323{
1324 unsigned int cpu = (long)hcpu;
7fdba1ca 1325 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
b38b24ea 1326 int ret = NOTIFY_OK;
3f6da390
PZ
1327
1328 switch (action & ~CPU_TASKS_FROZEN) {
1329 case CPU_UP_PREPARE:
7fdba1ca 1330 cpuc->kfree_on_online = NULL;
3f6da390 1331 if (x86_pmu.cpu_prepare)
b38b24ea 1332 ret = x86_pmu.cpu_prepare(cpu);
3f6da390
PZ
1333 break;
1334
1335 case CPU_STARTING:
1336 if (x86_pmu.cpu_starting)
1337 x86_pmu.cpu_starting(cpu);
1338 break;
1339
7fdba1ca
PZ
1340 case CPU_ONLINE:
1341 kfree(cpuc->kfree_on_online);
1342 break;
1343
3f6da390
PZ
1344 case CPU_DYING:
1345 if (x86_pmu.cpu_dying)
1346 x86_pmu.cpu_dying(cpu);
1347 break;
1348
b38b24ea 1349 case CPU_UP_CANCELED:
3f6da390
PZ
1350 case CPU_DEAD:
1351 if (x86_pmu.cpu_dead)
1352 x86_pmu.cpu_dead(cpu);
1353 break;
1354
1355 default:
1356 break;
1357 }
1358
b38b24ea 1359 return ret;
3f6da390
PZ
1360}
1361
12558038
CG
1362static void __init pmu_check_apic(void)
1363{
1364 if (cpu_has_apic)
1365 return;
1366
1367 x86_pmu.apic = 0;
1368 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1369 pr_info("no hardware sampling interrupt available.\n");
c184c980
VW
1370
1371 /*
1372 * If we have a PMU initialized but no APIC
1373 * interrupts, we cannot sample hardware
1374 * events (user-space has to fall back and
1375 * sample via a hrtimer based software event):
1376 */
1377 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1378
12558038
CG
1379}
1380
641cc938
JO
1381static struct attribute_group x86_pmu_format_group = {
1382 .name = "format",
1383 .attrs = NULL,
1384};
1385
8300daa2
JO
1386/*
1387 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1388 * out of events_attr attributes.
1389 */
1390static void __init filter_events(struct attribute **attrs)
1391{
3a54aaa0
SE
1392 struct device_attribute *d;
1393 struct perf_pmu_events_attr *pmu_attr;
8300daa2
JO
1394 int i, j;
1395
1396 for (i = 0; attrs[i]; i++) {
3a54aaa0
SE
1397 d = (struct device_attribute *)attrs[i];
1398 pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1399 /* str trumps id */
1400 if (pmu_attr->event_str)
1401 continue;
8300daa2
JO
1402 if (x86_pmu.event_map(i))
1403 continue;
1404
1405 for (j = i; attrs[j]; j++)
1406 attrs[j] = attrs[j + 1];
1407
1408 /* Check the shifted attr. */
1409 i--;
1410 }
1411}
1412
1a6461b1
AK
1413/* Merge two pointer arrays */
1414static __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1415{
1416 struct attribute **new;
1417 int j, i;
1418
1419 for (j = 0; a[j]; j++)
1420 ;
1421 for (i = 0; b[i]; i++)
1422 j++;
1423 j++;
1424
1425 new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1426 if (!new)
1427 return NULL;
1428
1429 j = 0;
1430 for (i = 0; a[i]; i++)
1431 new[j++] = a[i];
1432 for (i = 0; b[i]; i++)
1433 new[j++] = b[i];
1434 new[j] = NULL;
1435
1436 return new;
1437}
1438
f20093ee 1439ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr,
a4747393
JO
1440 char *page)
1441{
1442 struct perf_pmu_events_attr *pmu_attr = \
1443 container_of(attr, struct perf_pmu_events_attr, attr);
a4747393 1444 u64 config = x86_pmu.event_map(pmu_attr->id);
a4747393 1445
3a54aaa0
SE
1446 /* string trumps id */
1447 if (pmu_attr->event_str)
1448 return sprintf(page, "%s", pmu_attr->event_str);
a4747393 1449
3a54aaa0
SE
1450 return x86_pmu.events_sysfs_show(page, config);
1451}
a4747393
JO
1452
1453EVENT_ATTR(cpu-cycles, CPU_CYCLES );
1454EVENT_ATTR(instructions, INSTRUCTIONS );
1455EVENT_ATTR(cache-references, CACHE_REFERENCES );
1456EVENT_ATTR(cache-misses, CACHE_MISSES );
1457EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS );
1458EVENT_ATTR(branch-misses, BRANCH_MISSES );
1459EVENT_ATTR(bus-cycles, BUS_CYCLES );
1460EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
1461EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND );
1462EVENT_ATTR(ref-cycles, REF_CPU_CYCLES );
1463
1464static struct attribute *empty_attrs;
1465
95d18aa2 1466static struct attribute *events_attr[] = {
a4747393
JO
1467 EVENT_PTR(CPU_CYCLES),
1468 EVENT_PTR(INSTRUCTIONS),
1469 EVENT_PTR(CACHE_REFERENCES),
1470 EVENT_PTR(CACHE_MISSES),
1471 EVENT_PTR(BRANCH_INSTRUCTIONS),
1472 EVENT_PTR(BRANCH_MISSES),
1473 EVENT_PTR(BUS_CYCLES),
1474 EVENT_PTR(STALLED_CYCLES_FRONTEND),
1475 EVENT_PTR(STALLED_CYCLES_BACKEND),
1476 EVENT_PTR(REF_CPU_CYCLES),
1477 NULL,
1478};
1479
1480static struct attribute_group x86_pmu_events_group = {
1481 .name = "events",
1482 .attrs = events_attr,
1483};
1484
0bf79d44 1485ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
43c032fe 1486{
43c032fe
JO
1487 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1488 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1489 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1490 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1491 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY);
1492 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV);
1493 ssize_t ret;
1494
1495 /*
1496 * We have whole page size to spend and just little data
1497 * to write, so we can safely use sprintf.
1498 */
1499 ret = sprintf(page, "event=0x%02llx", event);
1500
1501 if (umask)
1502 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1503
1504 if (edge)
1505 ret += sprintf(page + ret, ",edge");
1506
1507 if (pc)
1508 ret += sprintf(page + ret, ",pc");
1509
1510 if (any)
1511 ret += sprintf(page + ret, ",any");
1512
1513 if (inv)
1514 ret += sprintf(page + ret, ",inv");
1515
1516 if (cmask)
1517 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1518
1519 ret += sprintf(page + ret, "\n");
1520
1521 return ret;
1522}
1523
dda99116 1524static int __init init_hw_perf_events(void)
b56a3802 1525{
c1d6f42f 1526 struct x86_pmu_quirk *quirk;
72eae04d
RR
1527 int err;
1528
cdd6c482 1529 pr_info("Performance Events: ");
1123e3ad 1530
b56a3802
JSR
1531 switch (boot_cpu_data.x86_vendor) {
1532 case X86_VENDOR_INTEL:
72eae04d 1533 err = intel_pmu_init();
b56a3802 1534 break;
f87ad35d 1535 case X86_VENDOR_AMD:
72eae04d 1536 err = amd_pmu_init();
f87ad35d 1537 break;
4138960a 1538 default:
8a3da6c7 1539 err = -ENOTSUPP;
b56a3802 1540 }
1123e3ad 1541 if (err != 0) {
cdd6c482 1542 pr_cont("no PMU driver, software events only.\n");
004417a6 1543 return 0;
1123e3ad 1544 }
b56a3802 1545
12558038
CG
1546 pmu_check_apic();
1547
33c6d6a7 1548 /* sanity check that the hardware exists or is emulated */
4407204c 1549 if (!check_hw_exists())
004417a6 1550 return 0;
33c6d6a7 1551
1123e3ad 1552 pr_cont("%s PMU driver.\n", x86_pmu.name);
faa28ae0 1553
e97df763
PZ
1554 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1555
c1d6f42f
PZ
1556 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1557 quirk->func();
3c44780b 1558
a1eac7ac
RR
1559 if (!x86_pmu.intel_ctrl)
1560 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
241771ef 1561
cdd6c482 1562 perf_events_lapic_init();
9c48f1c6 1563 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1123e3ad 1564
63b14649 1565 unconstrained = (struct event_constraint)
948b1bb8 1566 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
9fac2cf3 1567 0, x86_pmu.num_counters, 0, 0);
63b14649 1568
641cc938 1569 x86_pmu_format_group.attrs = x86_pmu.format_attrs;
0c9d42ed 1570
f20093ee
SE
1571 if (x86_pmu.event_attrs)
1572 x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1573
a4747393
JO
1574 if (!x86_pmu.events_sysfs_show)
1575 x86_pmu_events_group.attrs = &empty_attrs;
8300daa2
JO
1576 else
1577 filter_events(x86_pmu_events_group.attrs);
a4747393 1578
1a6461b1
AK
1579 if (x86_pmu.cpu_events) {
1580 struct attribute **tmp;
1581
1582 tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1583 if (!WARN_ON(!tmp))
1584 x86_pmu_events_group.attrs = tmp;
1585 }
1586
57c0c15b 1587 pr_info("... version: %d\n", x86_pmu.version);
948b1bb8
RR
1588 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1589 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1590 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
57c0c15b 1591 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
948b1bb8 1592 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
d6dc0b4e 1593 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
3f6da390 1594
2e80a82a 1595 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
3f6da390 1596 perf_cpu_notifier(x86_pmu_notifier);
004417a6
PZ
1597
1598 return 0;
241771ef 1599}
004417a6 1600early_initcall(init_hw_perf_events);
621a01ea 1601
cdd6c482 1602static inline void x86_pmu_read(struct perf_event *event)
ee06094f 1603{
cc2ad4ba 1604 x86_perf_event_update(event);
ee06094f
IM
1605}
1606
4d1c52b0
LM
1607/*
1608 * Start group events scheduling transaction
1609 * Set the flag to make pmu::enable() not perform the
1610 * schedulability test, it will be performed at commit time
1611 */
51b0fe39 1612static void x86_pmu_start_txn(struct pmu *pmu)
4d1c52b0 1613{
33696fc0 1614 perf_pmu_disable(pmu);
0a3aee0d
TH
1615 __this_cpu_or(cpu_hw_events.group_flag, PERF_EVENT_TXN);
1616 __this_cpu_write(cpu_hw_events.n_txn, 0);
4d1c52b0
LM
1617}
1618
1619/*
1620 * Stop group events scheduling transaction
1621 * Clear the flag and pmu::enable() will perform the
1622 * schedulability test.
1623 */
51b0fe39 1624static void x86_pmu_cancel_txn(struct pmu *pmu)
4d1c52b0 1625{
0a3aee0d 1626 __this_cpu_and(cpu_hw_events.group_flag, ~PERF_EVENT_TXN);
90151c35 1627 /*
c347a2f1
PZ
1628 * Truncate collected array by the number of events added in this
1629 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
90151c35 1630 */
0a3aee0d
TH
1631 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1632 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
33696fc0 1633 perf_pmu_enable(pmu);
4d1c52b0
LM
1634}
1635
1636/*
1637 * Commit group events scheduling transaction
1638 * Perform the group schedulability test as a whole
1639 * Return 0 if success
c347a2f1
PZ
1640 *
1641 * Does not cancel the transaction on failure; expects the caller to do this.
4d1c52b0 1642 */
51b0fe39 1643static int x86_pmu_commit_txn(struct pmu *pmu)
4d1c52b0 1644{
89cbc767 1645 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4d1c52b0
LM
1646 int assign[X86_PMC_IDX_MAX];
1647 int n, ret;
1648
1649 n = cpuc->n_events;
1650
1651 if (!x86_pmu_initialized())
1652 return -EAGAIN;
1653
1654 ret = x86_pmu.schedule_events(cpuc, n, assign);
1655 if (ret)
1656 return ret;
1657
1658 /*
1659 * copy new assignment, now we know it is possible
1660 * will be used by hw_perf_enable()
1661 */
1662 memcpy(cpuc->assign, assign, n*sizeof(int));
1663
8d2cacbb 1664 cpuc->group_flag &= ~PERF_EVENT_TXN;
33696fc0 1665 perf_pmu_enable(pmu);
4d1c52b0
LM
1666 return 0;
1667}
cd8a38d3
SE
1668/*
1669 * a fake_cpuc is used to validate event groups. Due to
1670 * the extra reg logic, we need to also allocate a fake
1671 * per_core and per_cpu structure. Otherwise, group events
1672 * using extra reg may conflict without the kernel being
1673 * able to catch this when the last event gets added to
1674 * the group.
1675 */
1676static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1677{
1678 kfree(cpuc->shared_regs);
1679 kfree(cpuc);
1680}
1681
1682static struct cpu_hw_events *allocate_fake_cpuc(void)
1683{
1684 struct cpu_hw_events *cpuc;
1685 int cpu = raw_smp_processor_id();
1686
1687 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1688 if (!cpuc)
1689 return ERR_PTR(-ENOMEM);
1690
1691 /* only needed, if we have extra_regs */
1692 if (x86_pmu.extra_regs) {
1693 cpuc->shared_regs = allocate_shared_regs(cpu);
1694 if (!cpuc->shared_regs)
1695 goto error;
1696 }
b430f7c4 1697 cpuc->is_fake = 1;
cd8a38d3
SE
1698 return cpuc;
1699error:
1700 free_fake_cpuc(cpuc);
1701 return ERR_PTR(-ENOMEM);
1702}
4d1c52b0 1703
ca037701
PZ
1704/*
1705 * validate that we can schedule this event
1706 */
1707static int validate_event(struct perf_event *event)
1708{
1709 struct cpu_hw_events *fake_cpuc;
1710 struct event_constraint *c;
1711 int ret = 0;
1712
cd8a38d3
SE
1713 fake_cpuc = allocate_fake_cpuc();
1714 if (IS_ERR(fake_cpuc))
1715 return PTR_ERR(fake_cpuc);
ca037701
PZ
1716
1717 c = x86_pmu.get_event_constraints(fake_cpuc, event);
1718
1719 if (!c || !c->weight)
aa2bc1ad 1720 ret = -EINVAL;
ca037701
PZ
1721
1722 if (x86_pmu.put_event_constraints)
1723 x86_pmu.put_event_constraints(fake_cpuc, event);
1724
cd8a38d3 1725 free_fake_cpuc(fake_cpuc);
ca037701
PZ
1726
1727 return ret;
1728}
1729
1da53e02
SE
1730/*
1731 * validate a single event group
1732 *
1733 * validation include:
184f412c
IM
1734 * - check events are compatible which each other
1735 * - events do not compete for the same counter
1736 * - number of events <= number of counters
1da53e02
SE
1737 *
1738 * validation ensures the group can be loaded onto the
1739 * PMU if it was the only group available.
1740 */
fe9081cc
PZ
1741static int validate_group(struct perf_event *event)
1742{
1da53e02 1743 struct perf_event *leader = event->group_leader;
502568d5 1744 struct cpu_hw_events *fake_cpuc;
aa2bc1ad 1745 int ret = -EINVAL, n;
fe9081cc 1746
cd8a38d3
SE
1747 fake_cpuc = allocate_fake_cpuc();
1748 if (IS_ERR(fake_cpuc))
1749 return PTR_ERR(fake_cpuc);
1da53e02
SE
1750 /*
1751 * the event is not yet connected with its
1752 * siblings therefore we must first collect
1753 * existing siblings, then add the new event
1754 * before we can simulate the scheduling
1755 */
502568d5 1756 n = collect_events(fake_cpuc, leader, true);
1da53e02 1757 if (n < 0)
cd8a38d3 1758 goto out;
fe9081cc 1759
502568d5
PZ
1760 fake_cpuc->n_events = n;
1761 n = collect_events(fake_cpuc, event, false);
1da53e02 1762 if (n < 0)
cd8a38d3 1763 goto out;
fe9081cc 1764
502568d5 1765 fake_cpuc->n_events = n;
1da53e02 1766
a072738e 1767 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
502568d5 1768
502568d5 1769out:
cd8a38d3 1770 free_fake_cpuc(fake_cpuc);
502568d5 1771 return ret;
fe9081cc
PZ
1772}
1773
dda99116 1774static int x86_pmu_event_init(struct perf_event *event)
621a01ea 1775{
51b0fe39 1776 struct pmu *tmp;
621a01ea
IM
1777 int err;
1778
b0a873eb
PZ
1779 switch (event->attr.type) {
1780 case PERF_TYPE_RAW:
1781 case PERF_TYPE_HARDWARE:
1782 case PERF_TYPE_HW_CACHE:
1783 break;
1784
1785 default:
1786 return -ENOENT;
1787 }
1788
1789 err = __x86_pmu_event_init(event);
fe9081cc 1790 if (!err) {
8113070d
SE
1791 /*
1792 * we temporarily connect event to its pmu
1793 * such that validate_group() can classify
1794 * it as an x86 event using is_x86_event()
1795 */
1796 tmp = event->pmu;
1797 event->pmu = &pmu;
1798
fe9081cc
PZ
1799 if (event->group_leader != event)
1800 err = validate_group(event);
ca037701
PZ
1801 else
1802 err = validate_event(event);
8113070d
SE
1803
1804 event->pmu = tmp;
fe9081cc 1805 }
a1792cda 1806 if (err) {
cdd6c482
IM
1807 if (event->destroy)
1808 event->destroy(event);
a1792cda 1809 }
621a01ea 1810
7911d3f7
AL
1811 if (ACCESS_ONCE(x86_pmu.attr_rdpmc))
1812 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
1813
b0a873eb 1814 return err;
621a01ea 1815}
d7d59fb3 1816
7911d3f7
AL
1817static void refresh_pce(void *ignored)
1818{
1819 if (current->mm)
1820 load_mm_cr4(current->mm);
1821}
1822
1823static void x86_pmu_event_mapped(struct perf_event *event)
1824{
1825 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
1826 return;
1827
1828 if (atomic_inc_return(&current->mm->context.perf_rdpmc_allowed) == 1)
1829 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
1830}
1831
1832static void x86_pmu_event_unmapped(struct perf_event *event)
1833{
1834 if (!current->mm)
1835 return;
1836
1837 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
1838 return;
1839
1840 if (atomic_dec_and_test(&current->mm->context.perf_rdpmc_allowed))
1841 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
1842}
1843
fe4a3308
PZ
1844static int x86_pmu_event_idx(struct perf_event *event)
1845{
1846 int idx = event->hw.idx;
1847
7911d3f7 1848 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
c7206205
PZ
1849 return 0;
1850
15c7ad51
RR
1851 if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
1852 idx -= INTEL_PMC_IDX_FIXED;
fe4a3308
PZ
1853 idx |= 1 << 30;
1854 }
1855
1856 return idx + 1;
1857}
1858
0c9d42ed
PZ
1859static ssize_t get_attr_rdpmc(struct device *cdev,
1860 struct device_attribute *attr,
1861 char *buf)
1862{
1863 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
1864}
1865
0c9d42ed
PZ
1866static ssize_t set_attr_rdpmc(struct device *cdev,
1867 struct device_attribute *attr,
1868 const char *buf, size_t count)
1869{
e2b297fc
SK
1870 unsigned long val;
1871 ssize_t ret;
1872
1873 ret = kstrtoul(buf, 0, &val);
1874 if (ret)
1875 return ret;
e97df763 1876
a6673429
AL
1877 if (val > 2)
1878 return -EINVAL;
1879
e97df763
PZ
1880 if (x86_pmu.attr_rdpmc_broken)
1881 return -ENOTSUPP;
0c9d42ed 1882
a6673429
AL
1883 if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
1884 /*
1885 * Changing into or out of always available, aka
1886 * perf-event-bypassing mode. This path is extremely slow,
1887 * but only root can trigger it, so it's okay.
1888 */
1889 if (val == 2)
1890 static_key_slow_inc(&rdpmc_always_available);
1891 else
1892 static_key_slow_dec(&rdpmc_always_available);
1893 on_each_cpu(refresh_pce, NULL, 1);
1894 }
1895
1896 x86_pmu.attr_rdpmc = val;
1897
0c9d42ed
PZ
1898 return count;
1899}
1900
1901static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
1902
1903static struct attribute *x86_pmu_attrs[] = {
1904 &dev_attr_rdpmc.attr,
1905 NULL,
1906};
1907
1908static struct attribute_group x86_pmu_attr_group = {
1909 .attrs = x86_pmu_attrs,
1910};
1911
1912static const struct attribute_group *x86_pmu_attr_groups[] = {
1913 &x86_pmu_attr_group,
641cc938 1914 &x86_pmu_format_group,
a4747393 1915 &x86_pmu_events_group,
0c9d42ed
PZ
1916 NULL,
1917};
1918
ba532500
YZ
1919static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
1920{
1921 if (x86_pmu.sched_task)
1922 x86_pmu.sched_task(ctx, sched_in);
1923}
1924
c93dc84c
PZ
1925void perf_check_microcode(void)
1926{
1927 if (x86_pmu.check_microcode)
1928 x86_pmu.check_microcode();
1929}
1930EXPORT_SYMBOL_GPL(perf_check_microcode);
1931
b0a873eb 1932static struct pmu pmu = {
d010b332
SE
1933 .pmu_enable = x86_pmu_enable,
1934 .pmu_disable = x86_pmu_disable,
a4eaf7f1 1935
c93dc84c 1936 .attr_groups = x86_pmu_attr_groups,
0c9d42ed 1937
c93dc84c 1938 .event_init = x86_pmu_event_init,
a4eaf7f1 1939
7911d3f7
AL
1940 .event_mapped = x86_pmu_event_mapped,
1941 .event_unmapped = x86_pmu_event_unmapped,
1942
d010b332
SE
1943 .add = x86_pmu_add,
1944 .del = x86_pmu_del,
1945 .start = x86_pmu_start,
1946 .stop = x86_pmu_stop,
1947 .read = x86_pmu_read,
a4eaf7f1 1948
c93dc84c
PZ
1949 .start_txn = x86_pmu_start_txn,
1950 .cancel_txn = x86_pmu_cancel_txn,
1951 .commit_txn = x86_pmu_commit_txn,
fe4a3308 1952
c93dc84c 1953 .event_idx = x86_pmu_event_idx,
ba532500 1954 .sched_task = x86_pmu_sched_task,
e18bf526 1955 .task_ctx_size = sizeof(struct x86_perf_task_context),
b0a873eb
PZ
1956};
1957
c1317ec2
AL
1958void arch_perf_update_userpage(struct perf_event *event,
1959 struct perf_event_mmap_page *userpg, u64 now)
e3f3541c 1960{
20d1c86a
PZ
1961 struct cyc2ns_data *data;
1962
fa731587
PZ
1963 userpg->cap_user_time = 0;
1964 userpg->cap_user_time_zero = 0;
7911d3f7
AL
1965 userpg->cap_user_rdpmc =
1966 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
c7206205
PZ
1967 userpg->pmc_width = x86_pmu.cntval_bits;
1968
35af99e6 1969 if (!sched_clock_stable())
e3f3541c
PZ
1970 return;
1971
20d1c86a
PZ
1972 data = cyc2ns_read_begin();
1973
fa731587 1974 userpg->cap_user_time = 1;
20d1c86a
PZ
1975 userpg->time_mult = data->cyc2ns_mul;
1976 userpg->time_shift = data->cyc2ns_shift;
1977 userpg->time_offset = data->cyc2ns_offset - now;
c73deb6a 1978
d8b11a0c 1979 userpg->cap_user_time_zero = 1;
20d1c86a
PZ
1980 userpg->time_zero = data->cyc2ns_offset;
1981
1982 cyc2ns_read_end(data);
e3f3541c
PZ
1983}
1984
d7d59fb3
PZ
1985/*
1986 * callchain support
1987 */
1988
d7d59fb3
PZ
1989static int backtrace_stack(void *data, char *name)
1990{
038e836e 1991 return 0;
d7d59fb3
PZ
1992}
1993
1994static void backtrace_address(void *data, unsigned long addr, int reliable)
1995{
1996 struct perf_callchain_entry *entry = data;
1997
70791ce9 1998 perf_callchain_store(entry, addr);
d7d59fb3
PZ
1999}
2000
2001static const struct stacktrace_ops backtrace_ops = {
d7d59fb3
PZ
2002 .stack = backtrace_stack,
2003 .address = backtrace_address,
06d65bda 2004 .walk_stack = print_context_stack_bp,
d7d59fb3
PZ
2005};
2006
56962b44
FW
2007void
2008perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
d7d59fb3 2009{
927c7a9e
FW
2010 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2011 /* TODO: We don't support guest os callchain now */
ed805261 2012 return;
927c7a9e
FW
2013 }
2014
70791ce9 2015 perf_callchain_store(entry, regs->ip);
d7d59fb3 2016
e8e999cf 2017 dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
d7d59fb3
PZ
2018}
2019
bc6ca7b3
AS
2020static inline int
2021valid_user_frame(const void __user *fp, unsigned long size)
2022{
2023 return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2024}
2025
d07bdfd3
PZ
2026static unsigned long get_segment_base(unsigned int segment)
2027{
2028 struct desc_struct *desc;
2029 int idx = segment >> 3;
2030
2031 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2032 if (idx > LDT_ENTRIES)
2033 return 0;
2034
2035 if (idx > current->active_mm->context.size)
2036 return 0;
2037
2038 desc = current->active_mm->context.ldt;
2039 } else {
2040 if (idx > GDT_ENTRIES)
2041 return 0;
2042
89cbc767 2043 desc = raw_cpu_ptr(gdt_page.gdt);
d07bdfd3
PZ
2044 }
2045
2046 return get_desc_base(desc + idx);
2047}
2048
257ef9d2 2049#ifdef CONFIG_COMPAT
d1a797f3
PA
2050
2051#include <asm/compat.h>
2052
257ef9d2
TE
2053static inline int
2054perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
74193ef0 2055{
257ef9d2 2056 /* 32-bit process in 64-bit kernel. */
d07bdfd3 2057 unsigned long ss_base, cs_base;
257ef9d2
TE
2058 struct stack_frame_ia32 frame;
2059 const void __user *fp;
74193ef0 2060
257ef9d2
TE
2061 if (!test_thread_flag(TIF_IA32))
2062 return 0;
2063
d07bdfd3
PZ
2064 cs_base = get_segment_base(regs->cs);
2065 ss_base = get_segment_base(regs->ss);
2066
2067 fp = compat_ptr(ss_base + regs->bp);
257ef9d2
TE
2068 while (entry->nr < PERF_MAX_STACK_DEPTH) {
2069 unsigned long bytes;
2070 frame.next_frame = 0;
2071 frame.return_address = 0;
2072
2073 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
0a196848 2074 if (bytes != 0)
257ef9d2 2075 break;
74193ef0 2076
bc6ca7b3
AS
2077 if (!valid_user_frame(fp, sizeof(frame)))
2078 break;
2079
d07bdfd3
PZ
2080 perf_callchain_store(entry, cs_base + frame.return_address);
2081 fp = compat_ptr(ss_base + frame.next_frame);
257ef9d2
TE
2082 }
2083 return 1;
d7d59fb3 2084}
257ef9d2
TE
2085#else
2086static inline int
2087perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
2088{
2089 return 0;
2090}
2091#endif
d7d59fb3 2092
56962b44
FW
2093void
2094perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
d7d59fb3
PZ
2095{
2096 struct stack_frame frame;
2097 const void __user *fp;
2098
927c7a9e
FW
2099 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2100 /* TODO: We don't support guest os callchain now */
ed805261 2101 return;
927c7a9e 2102 }
5a6cec3a 2103
d07bdfd3
PZ
2104 /*
2105 * We don't know what to do with VM86 stacks.. ignore them for now.
2106 */
2107 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2108 return;
2109
74193ef0 2110 fp = (void __user *)regs->bp;
d7d59fb3 2111
70791ce9 2112 perf_callchain_store(entry, regs->ip);
d7d59fb3 2113
20afc60f
AV
2114 if (!current->mm)
2115 return;
2116
257ef9d2
TE
2117 if (perf_callchain_user32(regs, entry))
2118 return;
2119
f9188e02 2120 while (entry->nr < PERF_MAX_STACK_DEPTH) {
257ef9d2 2121 unsigned long bytes;
038e836e 2122 frame.next_frame = NULL;
d7d59fb3
PZ
2123 frame.return_address = 0;
2124
257ef9d2 2125 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
0a196848 2126 if (bytes != 0)
d7d59fb3
PZ
2127 break;
2128
bc6ca7b3
AS
2129 if (!valid_user_frame(fp, sizeof(frame)))
2130 break;
2131
70791ce9 2132 perf_callchain_store(entry, frame.return_address);
038e836e 2133 fp = frame.next_frame;
d7d59fb3
PZ
2134 }
2135}
2136
d07bdfd3
PZ
2137/*
2138 * Deal with code segment offsets for the various execution modes:
2139 *
2140 * VM86 - the good olde 16 bit days, where the linear address is
2141 * 20 bits and we use regs->ip + 0x10 * regs->cs.
2142 *
2143 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
2144 * to figure out what the 32bit base address is.
2145 *
2146 * X32 - has TIF_X32 set, but is running in x86_64
2147 *
2148 * X86_64 - CS,DS,SS,ES are all zero based.
2149 */
2150static unsigned long code_segment_base(struct pt_regs *regs)
39447b38 2151{
d07bdfd3
PZ
2152 /*
2153 * If we are in VM86 mode, add the segment offset to convert to a
2154 * linear address.
2155 */
2156 if (regs->flags & X86_VM_MASK)
2157 return 0x10 * regs->cs;
2158
2159 /*
2160 * For IA32 we look at the GDT/LDT segment base to convert the
2161 * effective IP to a linear address.
2162 */
2163#ifdef CONFIG_X86_32
2164 if (user_mode(regs) && regs->cs != __USER_CS)
2165 return get_segment_base(regs->cs);
2166#else
2167 if (test_thread_flag(TIF_IA32)) {
2168 if (user_mode(regs) && regs->cs != __USER32_CS)
2169 return get_segment_base(regs->cs);
2170 }
2171#endif
2172 return 0;
2173}
dcf46b94 2174
d07bdfd3
PZ
2175unsigned long perf_instruction_pointer(struct pt_regs *regs)
2176{
39447b38 2177 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
d07bdfd3 2178 return perf_guest_cbs->get_guest_ip();
dcf46b94 2179
d07bdfd3 2180 return regs->ip + code_segment_base(regs);
39447b38
ZY
2181}
2182
2183unsigned long perf_misc_flags(struct pt_regs *regs)
2184{
2185 int misc = 0;
dcf46b94 2186
39447b38 2187 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
dcf46b94
ZY
2188 if (perf_guest_cbs->is_user_mode())
2189 misc |= PERF_RECORD_MISC_GUEST_USER;
2190 else
2191 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2192 } else {
d07bdfd3 2193 if (user_mode(regs))
dcf46b94
ZY
2194 misc |= PERF_RECORD_MISC_USER;
2195 else
2196 misc |= PERF_RECORD_MISC_KERNEL;
2197 }
2198
39447b38 2199 if (regs->flags & PERF_EFLAGS_EXACT)
ab608344 2200 misc |= PERF_RECORD_MISC_EXACT_IP;
39447b38
ZY
2201
2202 return misc;
2203}
b3d9468a
GN
2204
2205void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2206{
2207 cap->version = x86_pmu.version;
2208 cap->num_counters_gp = x86_pmu.num_counters;
2209 cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2210 cap->bit_width_gp = x86_pmu.cntval_bits;
2211 cap->bit_width_fixed = x86_pmu.cntval_bits;
2212 cap->events_mask = (unsigned int)x86_pmu.events_maskl;
2213 cap->events_mask_len = x86_pmu.events_mask_len;
2214}
2215EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);